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Unfortunately, the approaches proposed in the previous two presentations still don’t
always work:

U
0=

10

R=20

Ground

R
=1

00

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

1: u0 = f (t)
2: u1 = R1 · i1
3: u2 = R2 · i2
4: uL = L · diL

dt

5: iC = C · duC
dt

6: u0 = u1 + uL

7: uC = u1 + u2

8: uL = u2

9: i0 = i1 + iC
10: i1 = i2 + iL

⇒ We got again 10 implicitly
formulated DAEs in 10 unknowns.
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Let us try the same approach. The structure digraph of the DAE system can be drawn
as follows:
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After a few steps of causalization:

Eq.(1)

Eq.( )

Eq.( )

Eq.(9)

Eq.(8)

Eq.( )

Eq.( )

Eq.( )

Eq.(10)

Eq.( )

u0

i0

u1

i1

u2

i2
uL

diL/dt

duC/dt

iC

� After four causalization
steps, we got into troubles.

� The two connections
attached to variable iC have
meanwhile both been
colored in blue.

� Hence we are left without
any equation to compute iC .

� The DAE system contains
a structural singularity.
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Let us try another approach. We introduce the node potentials as additional variables:
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1: u0 = f (t)
2: u0 = v1 − v0

3: u1 = R1 · i1
4: u1 = v1 − v2

5: u2 = R2 · i2
6: u2 = v2 − v0

7: uL = L · diL
dt

8: uL = v2 − v0

9: iC = C · duC
dt

10: uC = v1 − v0

11: v0 = 0

12: i0 = i1 + iC
13: i1 = i2 + iL

⇒ We now got 13 implicitly
formulated DAEs in 13 unknowns.
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The structure digraph of the DAE system can be drawn as follows:
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After a few steps of causalization:
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� This time around, we were able to causalize
seven equations before getting into troubles.

� Once again, the two connections attached to
variable iC have meanwhile both been colored
in blue.

� Hence we are left without any equation to
compute iC .

� However, we seem to have made the problem
worse, in that we now also have an equation,
the former Eq.(10), that has its two attached
connections colored in blue.

� Hence Eq.(10) has now become redundant,
and we won’t be able to use it at all.
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Before we deal with the above circuit, let us choose a much simpler circuit that
exhibits the same problems.
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1: u0 = f (t)
2: uR = R · i0
3: i1 = C1 · du1

dt

4: i2 = C2 · du2
dt

5: u0 = uR + u1

6: u2 = u1

7: i0 = i1 + i2

⇒ We now got 7 implicitly
formulated DAEs in 7 unknowns.
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� If we choose u1 and u2 as state variables, then both u1 and u2 are considered
known variables, and Eq.(6) has no unknown left. Thus, that equation must be
considered a constraint equation.

� We can turn the causality around on one of the capacitive equations, solving
e.g. for the variable i2, instead of du2

dt
. Consequently, the solver has to solve for

du2
dt

instead of u2, thus the integrator has been turned into a differentiator.

� In the model equations, u2 must now be considered an unknown, whereas du2
dt

is
considered a known variable.
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The equations can now easily be brought into causal form:

u0 = f (t)

i2 = C2 · du2

dt

u2 = u1

uR = u0 − u1

i0 =
1

R
· uR

i1 = i0 − i2

du1

dt
=

1

C1

· i1

with the block diagram:
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� Numerical differentiation is a bad idea if explicit formulae are being used. These
algorithms are highly unstable.

� Using implicit formulae, numerical integration and differentiation are essentially
the same, but implicit formulae call for an iteration at every step.

� Pantelides proposed a different approach. He noted that, if:

u2(t) = u1(t), ∀t

it follows that:
du2(t)

dt
=

du1(t)

dt
,∀t
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Thus, we can symbolically differentiate the constraint equation, and replace the
constraint equation by its derivative:

u0 = f (t)

uR = R · i0
i1 = C1 · du1

dt

i2 = C2 · du2

dt

u0 = uR + u1

du2

dt
=

du1

dt

i0 = i1 + i2

with the partially causalized structure digraph:
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� The constraint equation has indeed disappeared. After partial causalization of
the equations, we are now faced with an algebraic loop in four equations and
four unknowns, a situation that we already know how to deal with.
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This approach works, but has a disadvantage.

� We again have two integrators in the model that we can seemingly integrate
separately and independently of each other.

� Yet, this is an illusion. The constraint on the capacitive voltages has not
disappeared. It has only been hidden.

� It is true that we can now numerically integrate du1
dt

into u1, and du2
dt

into u2.
However, we must still satisfy the original constraint equation when choosing
the initial conditions for the two integrators.

� The second integrator does not represent a true state variable. In fact, it is
wasteful. We don’t need two integrators, since the system has only one degree
of freedom, i.e., one energy storage.
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Let us modify the approach. Rather than replacing the constraint equation by its
derivative, we shall augment the set of equations by the differentiated constraint
equation:

u0 = f (t)

uR = R · i0
i1 = C1 · du1

dt

i2 = C2 · du2

dt

u0 = uR + u1

u2= u1

du2

dt
=

du1

dt

i0 = i1 + i2

� We now have one equation too many. We
need to throw another equation away.

� We throw one of the integrators away, e.g.
the one that computes u2 out of du2

dt
.

� Now, both u2 and du2
dt

are considered
unknowns, and we have eight model
equations in eight unknowns.
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We shall replace du2
dt

by du2 to symbolize that this is now an algebraic variable:

u0 = f (t)

uR = R · i0
i1 = C1 · du1

dt

i2 = C2 · du2

u0 = uR + u1

u2 = u1

du2 =
du1

dt

i0 = i1 + i2

with the partially causalized structure digraph:
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� We are again faced with an algebraic loop in four equations and four
unknowns.
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� In the mathematical literature, structurally singular systems are called
higher-index problems, or more precisely, structurally singular physical systems
lead to mathematical descriptions that present themselves in the form of
higher-index DAEs.

� The perturbation index is a measure of the constraints among equations.

� An index-0 DAE contains neither algebraic loops nor structural singularities.

� An index-1 DAE contains algebraic loops, but no structural singularities.

� A DAE with a perturbation index > 1, a so-called higher-index DAE, contains
structural singularities.
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� The algorithm by Pantelides is a symbolic index reduction algorithm.

� Each application of the algorithm reduces the perturbation index by one. Hence
it may be necessary to apply the Pantelides algorithm more than once.

� For example, a mechanical system with constraints among positions or angles,
such as a motor with a load, whereby the motor and the load are described
separately by differential equations, leads to an index-3 DAE system.

� By applying the Pantelides algorithm once, the original constraint between
positions gets reduced to a constraint between velocities or angular velocities,
which are still state variables.

� By applying the Pantelides algorithm a second time, the constraint involving
velocities gets reduced to a constraint between accelerations or angular
accelerations, which are no longer outputs of integrators, and therefore, are no
longer state variables.

� It is not surprising that, after applying the Pantelides algorithm, we ended up
with an algebraic loop. This is usually the case.
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Let us now return to our original circuit:
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1: u0 = f (t)
3: u0 = v1 − v0

?: u1 = R1 · i1
?: u1 = v1 − v2

?: u2 = R2 · i2
?: u2 = v2 − v0

12: uL = L · diL
dt

10: uL = v2 − v0

11: iC = C · duC
dt⇒: uC = v1 − v0

2: v0 = 0
13: i0 = i1 + iC
?: i1 = i2 + iL

⇒ We need to differentiate the
constraint equation.
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1: u0 = f (t)
3: u0 = v1 − v0

?: u1 = R1 · i1
?: u1 = v1 − v2

?: u2 = R2 · i2
?: u2 = v2 − v0

12: uL = L · diL
dt

10: uL = v2 − v0

11: iC = C · duC
dt⇒: uC = v1 − v0

2: v0 = 0
13: i0 = i1 + iC
?: i1 = i2 + iL

⇒

1: u0 = f (t)
3: u0 = v1 − v0

?: u1 = R1 · i1
?: u1 = v1 − v2

?: u2 = R2 · i2
?: u2 = v2 − v0

13: uL = L · diL
dt

11: uL = v2 − v0

12: iC = C · duC

4: uC = v1 − v0

10: duC = dv1 − dv0

2: v0 = 0
14: i0 = i1 + iC
?: i1 = i2 + iL

� In the process of differentiation, we introduced two new variables, dv0 and
dv1, for which we don’t have equations yet. We need to differentiate the
equations defining v0 and v1 and add them to the set of equations.
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1: u0 = f (t)
3: u0 = v1 − v0

?: u1 = R1 · i1
?: u1 = v1 − v2

?: u2 = R2 · i2
?: u2 = v2 − v0

13: uL = L · diL
dt

11: uL = v2 − v0

12: iC = C · duC

4: uC = v1 − v0

10: duC = dv1 − dv0

2: v0 = 0
14: i0 = i1 + iC
?: i1 = i2 + iL

⇒

1: u0 = f (t)
3: u0 = v1 − v0

11: du0 = dv1 − dv0

?: u1 = R1 · i1
?: u1 = v1 − v2

?: u2 = R2 · i2
?: u2 = v2 − v0

15: uL = L · diL
dt

13: uL = v2 − v0

14: iC = C · duC

4: uC = v1 − v0

12: duC = dv1 − dv0

2: v0 = 0
5: dv0 = 0
16: i0 = i1 + iC
?: i1 = i2 + iL

� In the process of differentiation, we introduced yet a new variables, du0. We
need to differentiate the equation defining u0.
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1: u0 = f (t)
3: u0 = v1 − v0

11: du0 = dv1 − dv0

?: u1 = R1 · i1
?: u1 = v1 − v2

?: u2 = R2 · i2
?: u2 = v2 − v0

15: uL = L · diL
dt

13: uL = v2 − v0

14: iC = C · duC

4: uC = v1 − v0

12: duC = dv1 − dv0

2: v0 = 0
5: dv0 = 0
16: i0 = i1 + iC
?: i1 = i2 + iL

⇒

1: u0 = f (t)

6: du0 =
df (t)
dt

3: u0 = v1 − v0

12: du0 = dv1 − dv0

?: u1 = R1 · i1
?: u1 = v1 − v2

?: u2 = R2 · i2
?: u2 = v2 − v0

16: uL = L · diL
dt

14: uL = v2 − v0

15: iC = C · duC

4: uC = v1 − v0

13: duC = dv1 − dv0

2: v0 = 0
5: dv0 = 0
17: i0 = i1 + iC
?: i1 = i2 + iL

� We are done. We now have an algebraic loop in five equations and five
unknowns.
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Let us now return to the original description of the model without node potentials:
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� We got stuck without finding a constraint
equation.

� We ended up with an algebraic loop in six
equations, but only five unknowns, as the
sixth unknown, ic , doesn’t appear in the
algebraic loop.

� The constraint equation is hidden inside the
algebraic loop.

⇒ In this situation, we need to differentiate the
entire algebraic loop and add the differentiated
equations to the set.
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Eq.(1)

Eq.( )
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Eq.(8)
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1: u0 = f (t)
?: u1 = R1 · i1
?: u2 = R2 · i2
9: uL = L · diL

dt

8: iC = C · duC
dt

?: u0 = u1 + uL

?: uC = u1 + u2

?: uL = u2

10: i0 = i1 + iC
?: i1 = i2 + iL

⇒ We need to differentiate the entire
algebraic loop and remove one of the
integrators that appears inside the loop
equations.
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1: u0 = f (t)
?: u1 = R1 · i1
?: u2 = R2 · i2
9: uL = L · diL

dt

8: iC = C · duC
dt

?: u0 = u1 + uL

?: uC = u1 + u2

?: uL = u2

10: i0 = i1 + iC
?: i1 = i2 + iL

⇒

1: u0 = f (t)
?: u1 = R1 · i1
?: du1 = R1 · di1
?: u2 = R2 · i2
?: du2 = R2 · di2
?: uL = L · diL

dt
14: iC = C · duC

?: u0 = u1 + uL

?: du0 = du1 + duL

15: uC = u1 + u2

13: duC = du1 + du2

?: uL = u2

?: duL = du2

16: i0 = i1 + iC
?: i1 = i2 + iL
?: di1 = di2 + diL

dt

� In the process of differentiation, we introduced yet a new variables, du0. We
need to differentiate the equation defining u0.
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1: u0 = f (t)
?: u1 = R1 · i1
?: du1 = R1 · di1
?: u2 = R2 · i2
?: du2 = R2 · di2
?: uL = L · diL

dt
14: iC = C · duC

?: u0 = u1 + uL

?: du0 = du1 + duL

15: uC = u1 + u2

13: duC = du1 + du2

?: uL = u2

?: duL = du2

16: i0 = i1 + iC
?: i1 = i2 + iL
?: di1 = di2 + diL

dt

⇒

1: u0 = f (t)

2: du0 =
df (t)
dt

?: u1 = R1 · i1
?: du1 = R1 · di1
?: u2 = R2 · i2
?: du2 = R2 · di2
?: uL = L · diL

dt
15: iC = C · duC

?: u0 = u1 + uL

?: du0 = du1 + duL

16: uC = u1 + u2

14: duC = du1 + du2

?: uL = u2

?: duL = du2

17: i0 = i1 + iC
?: i1 = i2 + iL
?: di1 = di2 + diL

dt

� We ended up with 17 equations in 17 unknowns, containing an algebraic loop
of 11 equations and 11 unknowns.
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Let us look at the algebraic loop equations after selection of a tearing variable and a
residual equation:

?: u0 = u1 + uL

?: du0 = du1 + duL

?: u2 = R2 · i2
?: du2 = R2 · di2
?: i1 = i2 + iL
res.eq.: di1 = di2 + diL

dt
?: uL = u2

?: duL = du2

?: u1 = R1 · i1
?: du1 = R1 · di1
?: uL = L · diL

dt

Eq.( )
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A few causalization steps later:
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� We seem to have gotten stuck with another
constraint equation.

� Yet, this is a very different problem from the
one discussed before. This constraint was
caused by a poor selection of a tearing
variable and a residual equation.

� Had we chosen a different tearing variable or
a different residual equation, this problem
would not have occurred.

� Sometimes, our simple heuristics for the
selection of tearing variables and residual
equations maneuver themselves into a corner,
and in those situations, we must be prepared
to backtrack.
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Let us select a different tearing variable from the same residual equation:

?: u0 = u1 + uL

?: du0 = du1 + duL

?: u2 = R2 · i2
?: du2 = R2 · di2
?: i1 = i2 + iL
res.eq.: di1 = di2 + diL

dt
?: uL = u2

?: duL = du2

?: u1 = R1 · i1
?: du1 = R1 · di1
?: uL = L · diL

dt

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Res.Eq.
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Eq.( )
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Eq.( )

Eq.( )
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A few causalization steps later:

Eq.( )
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� We were able to causalize six of the eleven
equations.

� We thus need to select a second residual
equation and a second tearing variable, in
order to complete the causalization of the
algebraic equation system.
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� Dymola implements the Pantelides algorithm essentially in the form explained in
this presentation.

� Yet, Dymola uses a more complex set of heuristics for selecting the tearing
variables, one that has furthermore not been published and is therefore not
available for discussion.

� Dymola often prefers to keep additional tearing variables in order to prevent
divisions by zero from occurring during the simulation.

� Sol employs a different approach. Rather than assuming all state variables to be
known and throwing out individual state variables when constraint equations are
encountered, Sol assumes initially all state variables to be unknown and adds
them one at a time until the number of unknowns matches the number of
equations.
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Conclusions

� In this presentation, we looked at the problem of structural singularities
contained in the set of DAEs extracted from an object-oriented description of
the system to be simulated.

� We discussed a variant of the Pantelides algorithm for the systematic index
reduction in structurally singular (higher-index) models.

� The algorithm is very efficient and has been successfully implemented in
Dymola and also in a number of other object-oriented modeling and simulation
environments.
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