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Introduction

Differential Algebraic Equations

As we have meanwhile understood, a model described by state equations is not the
normal form, in which a model of a dynamical system presents itself initially.

We almost always obtain a mixture of differential and algebraic equations.
Furthermore, these equations are formulated implicitly:

f(x, ẋ, u, t) = 0.0

In the last few presentations, we analyzed how such a DAE model can be converted
symbolically to ODE form by the model compiler. In the next few presentations, we
shall discuss, how a DAE model can be simulated directly.

As the derivatives show up in the DAE model implicitly, we shall need to iterate over
the model equations during each function evaluation.
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The Three Iteration Loops

When simulating an implicitly formulated model of a dynamic system using an implicit
DAE solver with step size and order control, we encounter three iteration loops.

� On the innermost level, we need to iterate over each function evaluation in order
to obtain the values of the state derivatives. This iteration is the most expensive
one, as it needs to be performed most frequently.

� On the next higher level, we need to iterate over each integration step, as we
are using an implicit DAE solver for the simulation.

� On the highest level, it may happen that an entire integration step is rejected
and needs to be repeated, because the estimation of the local integration error
indicates that we are using either a step size that is too large or an order that is
too low.
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Are these three separate iteration loops really necessary?

� Do processes that require iterations, really exist in the physical world? Isn’t the
physical world causal, i.e., isn’t it true that each event has one or several causes,
and that a strictly sequential ordering is possible between causes and effects?
Don’t iterations defy the principle of strict causality?

� Mutual causal dependencies do indeed exist in physics and are rather common.
The relationship between voltage and current in a resistor is non-causal. It is not
true that the potential difference at the two ends of the resistor makes current
flow, or that the current flowing through the resistor causes a voltage drop.
These are simply two different facets of one and the same physical phenomenon.

� Yet “causal loops” do not truly exist in the physical world. If we place two
resistors in series, this will create an algebraic loop in our model. The idea of a
loop implies a sequence of execution, i.e., a causes b, which in turn causes c,
which is responsible for a. Physics doesn’t understand the concept of a
“sequence of execution.” Physics is by its very nature completely non-causal.

All phenomena observed are byproducts of the big balance equations that we call
the conservation principles: conservation of energy, conservation of mass, and
conservation of momentum.
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Simulation of Implicit DAEs Using Implicit DAE Solvers

Let us simulate the model:
f(x, ẋ, u, t) = 0.0

using the BDF3 algorithm:

xk+1 =
6

11
h · ẋk+1 +

18

11
xk − 9

11
xk−1 +

2

11
xk−2

We can solve the solver equation for the derivative vector:

ẋk+1 =
1

h

[
11

6
· xk+1 − 3xk +

3

2
xk−1 − 1

3
xk−2

]

We substitute the solver equation in its derivative form into the model equations:

F(xk+1) = f(xk+1,
1

h

[
11

6
· xk+1 − 3xk +

3

2
xk−1 − 1

3
xk−2

]
, uk+1, tk+1) = 0.0

Newton iteration can evidently be applied directly, fusing the two innermost
iteration loops.
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Simulation of Implicit DAEs Using Implicit DAE Solvers II

Where did the concept of a state-space description of physical systems come from?

� It originated with the desire to separate the process of modeling (in a
simple-minded way of looking at things, the process of generating a state-space
model out of physical observations) from that of simulation (the process of
translating the state-space model into trajectory behavior).

� In the context of explicit ODE solvers, this separation comes quite naturally.
The state-space model computes ẋ(tk ) out of x(tk ), and the integration
algorithm in turn computes x(tk+1) out of x(tk ) and ẋ(tk ) – a meaningful and
clean separation of duties.

� By the time implicit integration algorithms were introduced, this separation was
no longer as clean and crisp and beautiful. We now had to deal with causal
loops anyway, since the state-space model and the ODE solver now operated on
the same time instant, i.e., they had to co-operate to find simultaneously
x(tk+1) and ẋ(tk+1).

� However, tradition had imprinted this separation so deeply into the brains of the
simulation practitioners of that epoch that no one bothered to raise the
question whether this separation was still useful, or whether it might not even
be detrimental to our task.
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� By combining the solver equations and the model equations, i.e., by substituting
the solver equations into the model equations, we were able to amalgamate the
two innermost iteration loops into a single loop. This often pays off in terms of
computational efficiency.

� As a by-product, we were able to throw out n equations and unknowns from our
model, where n denotes the order of our model, i.e., the number of individual
integrators, as we eliminated all of the derivatives from the model. They are no
longer computed.

� We shall explore this fruitful idea some more in the context of inline integration.
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BDF Algorithms

A numerical integration algorithm that is applied directly to an implicit model
description is called numerical differential algebraic equation solver or shorter
numerical DAE solver.

We need to analyze the numerical stability properties of numerical DAE solvers.

To this end, we start with the linear implicit DAE model:

A · x + B · ẋ = 0

Let us insert the BDF3 algorithm in its differential form:

A · xk+1 +
11B

6h
·
(

xk+1 − 18

11
xk +

9

11
xk−1 − 2

11
xk−2

)
= 0.0

Thus:

xk+1 =

(
−B − 6Ah

11

)−1

·
(
− 18B

11
xk +

9B

11
xk−1 − 2B

11
xk−2

)
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Let us first discuss the simplest case:

B = −I(n)

In this case, the linear implicit DAE model degenerates to the explicit linear ODE
model:

ẋ = A · x
and the equation used to compute xk+1 degenerates to:

xk+1 =

(
I(n) − 6Ah

11

)−1

·
(

18

11
xk −

9

11
xk−1 +

2

11
xk−2

)

which is identical to the equation that had been used earlier to determine the stability
domain of the BDF3 numerical ODE solver.

� At least in this most simple situation, the stability domain is not at all affected
by the DAE formulation.
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Let us assume next that B is a non-singular matrix. In this case, the implicit DAE
model can be made explicit:

ẋ = −B−1 · A · x

Does the inversion of B have an effect on the stability domain?

We can determine the stability domain of the method in the following way. We choose
the eigenvalues of −B−1 · A along the unit circle of the complex plane, then apply the
so found A- and B-matrices to the F-matrix:

F =

⎛
⎜⎝

O(n) I(n) O(n)

O(n) O(n) I(n)

2
11

(
B + 6

11
Ah

)−1
B − 9

11

(
B + 6

11
Ah

)−1
B 18

11

(
B + 6

11
Ah

)−1
B

⎞
⎟⎠

and determine h such that the dominant eigenvalues of F are on the unit circle.
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� We arbitrarily chose several different non-singular B-matrices of dimensions
2 × 2, and computed the corresponding A-matrices using:

A = −B ·
(

0 1
−1 2 cos(α)

)

� We then plugged these A-matrices into the F-matrix of the numerical DAE
solver, and computed the stability domains.

� In every single case, the stability domain was exactly the same as that of the
corresponding numerical ODE solver.

Non-singular B-matrices do not influence the numerical stability properties of the
method in any way.



Numerical Simulation of Dynamic Systems XVIII

Differential Algebraic Equation Solvers

Multi-step Formulae

Higher Index Models

With a singular B matrix, the DAE model cannot be reformulated in an explicit form
that easily.

We begin by a singular value decomposition of the B matrix:

B = U · Σ · V∗

= · ·

B U V*

r
n

Σ

with:

rank(U) = rank(V) = n

rank(Σ) = rank(B) = r < n

U and V are unitary matrices, whereas Σ is a diagonal matrix.

V∗ is the Hermitian transpose of V.
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Therefore:

A · x + U · Σ · V∗ · ẋ = 0.0

⇒ U∗ · A · x + Σ · V∗ · ẋ = 0.0

and with:
z = V∗ · x

we obtain:
U∗ · A · V · z + Σ · ż = 0.0

or:
Ã · z + Σ · ż = 0.0

r
n

=· ·+
Ã11 Ã12

Ã21 Ã22

z1

z2

ż1

ż2

σi

0

0
0

00 0

0
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Higher Index Models III

r
n

=· ·+
Ã11 Ã12

Ã21 Ã22

z1

z2

ż1

ż2

σi

0

0
0

00 0

0

Ã11 · z1 + Ã12 · z2 + Σ11 · ż1 = 0.0

Ã21 · z1 + Ã22 · z2 = 0.0

If the matrix Ã22 is singular, the model is poorly defined.

On the other hand, if the matrix Ã22 is non-singular, we can write:

z2 = −Ã−1
22 · Ã21 · z1

and consequently:

ż1 = Σ11
−1 ·

(
Ã12 · Ã−1

22 · Ã21 − Ã11

)
· z1
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� Although the system seemed to be of order n, in reality, it is only of order r < n.

� Such a model is called a higher index model.

� We have already learnt that there exist symbolic algorithms for automatic index
reduction. One of these algorithms is the Pantelides algorithm that was
discussed extensively in the previous two presentations.

� The Pantelides algorithm is an algorithm of linear computational complexity.
Thus, it is very efficient.

� Dealing with higher index models directly, i.e., numerically, without prior index
reduction is never worth it. It is always better to first reduce the perturbation
index symbolically down to at least index-1 as part of the model compilation.

� Consequently, the case of singular B matrices is irrelevant.
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Let us analyze now what happens when we implement a DAE algorithm of the AM
class.

Let us start with the AM3 algorithm:

x(tk+1) = x(tk ) +
h

12
(5fk+1 + 8fk − fk−1)

We can solve the solver equation for the derivative vector:

ẋ(tk+1) = fk+1 =
12

5h
(x(tk+1) − x(tk )) − 8

5
fk +

1

5
fk−1

We can substitute that equation into the DAE model:

f(x, ẋ, u, t) = 0.0

thereby eliminating the derivative ẋk+1.
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AM Algorithms II

Unfortunately, the “known” quantities fk and fk−1 are left in the equation. Yet, we
don’t have these values available as we just eliminated the computation of the
derivative vector from the model.

This didn’t happen in the case of the BDF algorithm, because those solvers don’t
make use of the derivatives of the past in their computation.

� Numerical linear multi-step (ODE or DAE) solvers that make use of only a
single derivative in their formulae are called one-legged algorithms.

� The BDF algorithms are thus one-legged algorithms. In contrast, the AM
algorithms are not.
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One way to resolve the problem is to introduce a second Newton iteration:

F1 (x(tk+1)) = f

(
x(tk+1),

12

5h
x(tk+1) −

12

5h
x(tk ) − 8

5
w(tk )

+
1

5
w(tk−1), u(tk+1), tk+1

)
= 0.0

F2 (w(tk+1)) = f (x(tk+1), w(tk+1), u(tk+1), tk+1) = 0.0

� The upper equation determines x(tk+1). In this iteration, u(tk+1), x(tk ), w(tk ),
and w(tk−1) are assumed known.

� The lower equation then evaluates w(tk+1). During that iteration, x(tk+1) can
be assumed known as well. Clearly, w is just another name for ẋ.
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Let us now find the numerical stability domain fo the AM3 algorithm when used in its
DAE form.

Substituting the AM3 formula in its differentiated form into the linear DAE model, we
obtain:

x(tk+1) =

(
B +

5

12
Ah

)−1

·
(

Bx(tk ) +
2

3
Bhw(tk ) − 1

12
Bhw(tk−1)

)

w(tk+1) = − B−1Ax(tk+1)

With the state vector:

zk =

⎛
⎝ xk

wk−1
wk

⎞
⎠

we find the F-matrix:

F =

⎛
⎜⎜⎝

(
B + 5

12
Ah

)−1
B − 1

12

(
B + 5

12
Ah

)−1
Bh 2

3

(
B + 5

12
Ah

)−1
Bh

O(n) O(n) I(n)

−B−1A
(
B + 5

12
Ah

)−1
B 1

12
B−1A

(
B + 5

12
Ah

)−1
Bh − 2

3
B−1A

(
B + 5

12
Ah

)−1
Bh

⎞
⎟⎟⎠
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� Choosing again an arbitrary non-singular B-matrix, we obtain the same
numerical stability domain every time as when using the AM3 algorithm in its
ODE form.

� This result looks a bit strange, because the size of the F-matrix is larger in the
DAE formulation than in the ODE formulation. Consequently, the F-matrix has
more eigenvalues.

� However, w(tk+1) is linear in x(tk+1), and consequently, the F-matrix is singular.
We simply added a few eigenvalues at the origin. These eigenvalues do not
influence the numerical stability domain.

It has become evident that the numerical stability domain of an implicit (index-1)
DAE solver is exactly the same as that of the corresponding ODE solver.
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AB Algorithms

Let us discuss next what happens if we try to convert an explicit solver to DAE form.

We start with the AB3 algorithm:

x(tk+1) = x(tk ) +
h

12
(23fk − 16fk−1 + 5fk−2)

We solve that equation for the derivative vector:

ẋ(tk+1) =
12

23h
(x(tk+2) − x(tk+1)) +

16

23
fk − 5

23
fk−1

Unfortunately, explicit integration formulae are converted to over-implicit
differentiation formulae.

These formulae are useless, as they result in a gigantic iteration over the entire
simulation rather than being limited to a single integration step.
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Over-implicit Numerical Integration Algorithms

This brings us to another idea. How if we were to convert over-implicit integration
algorithms that, until now, had been totally useless to DAE form?

The over-implicit 3rd -order Adams formula:

x(tk+1) = x(tk ) +
h

12
(−f(tk+2) + 8f(tk+1) + 5f(tk ))

can be converted to the explicit derivative form:

ẋ(tk+1) =
12

h
(x(tk−1) − x(tk )) + 8f(tk ) + 5f(tk−1)

� Over-implicit numerical integration formulae are converted to explicit
numerical differentiation formulae.

� Unfortunately, the over-implicit integration algorithm is unstable. Consequently,
also the explicit differentiation formula is unstable.
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Let us now consider over-implicit algorithms of the BDF class.

The over-implicit 3rd -order BDF algorithm:

x(tk+1) =
57

26
x(tk ) − 21

13
x(tk−1) +

11

26
x(tk−2) +

6h

26
f(tk+2)

can be converted to the explicit derivative form:

ẋ(tk+1) =
1

6h
(26x(tk ) − 57x(tk−1) + 42x(tk−2) − 11x(tk−3))

� Unfortunately, also this over-implicit integration algorithm is unstable.
Consequently, also the explicit differentiation formula is unstable.
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� In general, explicit differentiation formulae should not be used because of
their numerical instability.

� In contrast, implicit differentiation formulae are numerically stable if the
corresponding implicit integration formulae are stable as well.

� The numerical stability properties of a linear multi-step algorithm do not
change at all when converted from integral to differential form or vice-versa.
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Accuracy Properties

We should also investigate the accuracy properties of the DAE algorithms.

� We know from our earlier discussions that BDFi formulae are inefficient for use
in non-stiff ODEs due to their poor accuracy properties. This was documented
when we compared the efficiency of different ODE solvers when simulating the
wave equation.

� The problem evidently hasn’t vanished by reformulating the model in a DAE
format. Thus, we may suspect that the AMi formulae will still work better than
the BDFi formulae also in non-stiff DAE simulation. However, whether this is
true or not will depend on the relative cost to be paid for the second Newton
iteration.
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I simulated once more the wave equation using BDF3 and AM3, this time using the
DAE formulation of these algorithms:

h BDF3 AM3
0.1 garbage unstable

0.05 garbage unstable
0.02 garbage unstable
0.01 garbage unstable

0.005 0.9469e-2 0.8783e-8
0.002 0.1742e-6 0.2149e-8
0.001 0.4363e-7 0.2120e-8

� The entries in the above table, displaying the step sizes used, look exactly the
same as the corresponding entries in the table shown earlier.

� This is not surprising, as the DAE formulation doesn’t change the numerical
properties of the methods.

Numerical Simulation of Dynamic Systems XVIII

Differential Algebraic Equation Solvers

Multi-step Formulae

Accuracy Properties III

� Yet the cost of the AM3 algorithm in terms of the number of function
evaluations may be higher in the DAE formulation than in the ODE formulation
due to the need for a second Newton iteration.

� On the other hand, the cost of the BDF3 algorithm in terms of the number of
function evaluations may be lower in the DAE formulation than in the ODE
formulation if the model to be simulated is of index 1, i.e., contains algebraic
loops (which is not the case for the wave equation).
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� The DAE formulation of the
AM3 algorithm turned out to be
indeed a bit more expensive
than the ODE formulation.



Numerical Simulation of Dynamic Systems XVIII

Differential Algebraic Equation Solvers

Conclusions

Conclusions

In this presentation, we looked at the DAE formulation of linear multi-step integration
algorithms, and have reached a number of interesting conclusions:

� The numerical properties of these algorithms, i.e., their numerical stability and
accuracy properties, at least for index-0 and index-1 problems, do not change
when switching from an ODE to a DAE formulation.

� It never pays off to simulate a higher-index problem directly. A problem with a
perturbation index higher than 1 should always undergo symbolic index
reduction first, e.g. using the Pantelides algorithm.

� Whether it pays off to transform an index-1 DAE to explicit ODE form, as we
proposed in the previous few presentations, is not evident. It may, in some
cases, be more efficient to simulate the index-1 DAE problem directly. We shall
talk more about this issue later.
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� We have learnt earlier that linear multi-step algorithms are mostly used for the
simulation of stiff ODE problems, as indeed, implementations of BDF algorithms
are to this day among the most widely used stiff system solvers on the market.

� It makes little difference whether we use a BDF algorithm in its ODE or in its
DAE formulation, and indeed, the most widely used stiff DAE solver today,
DASSL, is an implementation of a variable-step variable-order BDF algorithm.

� Dymola makes use of DASSL, albeit with an ODE interface, as its default
simulation engine, i.e., Dymola converts all DAE models symbolically to explicit
ODE form as part of its model compilation.

� We shall introduce DASSL in the next presentation.
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Conclusions III

� We have seen earlier that linear multi-step algorithms are hardly ever efficient
for the simulation of non-stiff ODE problems.

� An exception to the rule may be the class of linear time-invariant systems,
where the AB algorithms are indeed cost-effective.

� Matlab makes use of AB3 for the simulation of linear time-invariant systems,
which is reasonable.

� A DAE formulation of explicit linear multi-step methods makes no sense
whatsoever.
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� In the past, we only looked at the simulation of index-0 problems, i.e., explicitly
formulated ODE systems without algebraic loops. For those systems, the AM
algorithms were not competitive ever.

� The situation changes, when we look at index-1 problems. Here, the algebraic
loops force us to employ a Newton iteration anyway, and if we do, we might just
as well use a DAE formulation to start with.

� Thus, whereas the AM algorithms are definitely not competitive for the
simulation of non-stiff index-0 problems, they may become competitive for the
simulation of non-stiff index-1 problems, especially in their DAE formulation.
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