
Numerical Simulation of Dynamic Systems XIX

Numerical Simulation of Dynamic Systems XIX

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

April 30, 2013

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

RK Algorithms

Let us now discuss, how we may implement DAE versions of RK algorithms.

For example, we can write the classical RK4 algorithm in DAE form:

f (xk, k1, u(tk ), tk ) = 0.0

f

(
xk +

h

2
k1, k2, u(tk +

h

2
), tk +

h

2

)
= 0.0

f

(
xk +

h

2
k2, k3, u(tk +

h

2
), tk +

h

2

)
= 0.0

f (xk + hk3, k4, u(tk + h), tk + h) = 0.0

xk+1 = xk +
h

6
(k1 + 2k2 + 2k3 + k4)

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

RK Algorithms II

� Every stage of the RK4 algorithm is converted to a Newton iteration.

� In the case of an implicit model, the ODE and DAE formulations of the
algorithm are practically identical.

� In the case of an explicit model, the DAE formulation turns out to be
excessively expensive.

� In general, it often pays off to convert an implicit non-stiff model symbolically
to an explicit form in the process of model compilation to avoid iterations. If
this is not possible due to the non-linear nature of some of the algebraic
loops, we should at least minimize the sizes of the algebraic loops.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

The Radau IIA Algorithms

There exist other classes of stiffly-stable implicit RK algorithms that we haven’t
considered yet.

One such class of algorithms is the class of the Radau IIA algorithms.

The 3rd -order accurate Radau IIA algorithm is characterized by the Butcher tableau:

1/3 5/12 -1/12
1 3/4 1/4
x 3/4 1/4

It is a 3rd -order accurate implicit RK algorithm in two stages. The Radau IIA(3)
algorithm can be formulated as an ODE algorithm in the form:

k1 = f

(
xk +

5h

12
k1 − h

12
k2, u(tk +

h

3
), tk +

h

3

)

k2 = f

(
xk +

3h

4
k1 +

h

4
k2, u(tk + h), tk + h

)

xk+1 = xk +
h

4
(3k1 + k2)



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

The Radau IIA Algorithms II

The Radau IIA(3) algorithm can be formulated as a DAE algorithm in the form:

f

(
xk +

5h

12
k1 − h

12
k2, k1, u(tk +

h

3
), tk +

h

3

)
= 0.0

f

(
xk +

3h

4
k1 +

h

4
k2, k2, u(tk + h), tk + h

)
= 0.0

xk+1 = xk +
h

4
(3k1 + k2)

� The two formulations are practically identical. In both cases, we require a single
Newton iteration that spans over both stages of the algorithm. The iteration
variables are the two vectors k1 and k2.

� In order for the Newton iteration to converge, we need good initial guesses of k1

and k2. We use: k1 = k2 = ẋ(t0), i.e., the user needs to provide at least a guess
for the state derivatives at time zero beside from providing the initial conditions
on the state variables themselves.

� The same is also true for the DAE versions of the AM algorithms, although we
failed to mention this fact in the previous presentation.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

The Radau IIA Algorithms III

Let us now find the numerical stability domain of the Radau IIA(3) algorithm. Since it
doesn’t matter, whether we use the ODE or the DAE version, I prefer to go with the
ODE version, as this turns out to be a bit simpler.

We can write:

k1 = A

(
xk +

5h

12
k1 − h

12
k2

)

k2 = A

(
xk +

3h

4
k1 +

h

4
k2

)

xk+1 = xk +
h

4
(3k1 + k2)

Solving for the unknowns k1 and k2:

k1 =

[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(

I(n) − Ah

3

)
· A · xk

k2 =

[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(

I(n) +
Ah

3

)
· A · xk

xk+1 = xk +
h

4
(3k1 + k2)

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

The Radau IIA Algorithms IV

Therefore:

F = I(n) +

[
I(n) − 2Ah

3
+

(Ah)2

6

]−1

·
(

I(n) − Ah

6

)
· (Ah)

Developing into a Taylor series around h = 0.0, we obtain:

F ≈ I
(n)

+ Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

36

Consequently, the error coefficient is:

ε =
1

72
(Ah)4

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

The Radau IIA Algorithms V

There exists another Radau IIA algorithm characterized by the Butcher tableau:

4−√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225
4+

√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−√
6

36
16+

√
6

36
1
9

x 16−√
6

36
16+

√
6

36
1
9

This is a stiffly-stable 5th-order accurate implicit RK algorithm in three stages with the
F-matrix:

F = I(n) +

[
I(n) − 3Ah

5
+

3(Ah)2

20
− (Ah)3

60

]−1

·
(

I(n) − Ah

10
+

(Ah)2

60

)
· Ah

Developing into a Taylor series around h = 0.0, we obtain:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

(Ah)5

120
+

11(Ah)6

7200

Consequently, the error coefficient is:

ε =
1

7200
(Ah)

6



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

The Lobatto IIIC Algorithm

There exists yet another IRK algorithm of a different class characterized by the
Butcher tableau:

0 1/6 -1/3 1/6
1/2 1/6 5/12 -1/12
1 1/6 2/3 1/6
x 1/6 2/3 1/6

The Lobatto IIIC algorithm is a stiffly-stable 4th-order accurate implicit RK algorithm
in three stages with the F-matrix:

F = I(n) +

[
I(n) − 3Ah

4
+

(Ah)2

4
− (Ah)3

24

]−1

·
(

I(n) − Ah

4
+

(Ah)2

24

)
· Ah

Developing into a Taylor series around h = 0.0, we obtain:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

(Ah)5

96

Consequently, the error coefficient is:

ε =
1

480
(Ah)5

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

Numerical Stability Domains of the IRK Algorithms

We can now plot the numerical stability domains of the three algorithms Radau
IIA(3), Lobatto IIIC(4), and Radau IIA(5).

−4 −2 0 2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

6

8

Radau IIA(3)

Radau IIA(5)

Lobatto IIIC(4)

Stability Domains of IRK

Re{λ · h}

I
m
{λ

·h
}

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

Numerical Stability Domains of the IRK Algorithms II

� All three methods are A-stable, a feature that we have not been able to get for
higher-order stiffly-stable linear multi-step methods.

� As we expect from Runge-Kutta methods, the unstable regions in the right-half
plane grow rather than shrink for higher orders, i.e., not only does the border of
stability approximate the imaginary axis better in the vicinity of the origin, but it
does so also further up and down the imaginary axis.

� The stability domains of all three algorithms look quite promising.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

Damping Plots of the IRK Algorithms

Let us now draw the damping plots of the three algorithms Radau IIA(3), Lobatto
IIIC(4), and Radau IIA(5).

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

Radau IIA(3)

Radau IIA(5)

Lobatto IIIC(4)

−106 −105 −104 −103 −102 −101 −100 −10−1 −10−2
−30

−25

−20

−15

−10

−5

0

Radau IIA

Lobatto IIIC

Damping Plot of IRK Algorithms

Logarithmic Damping Plot of IRK

−σd

−
D

am
p
in

g
−

D
am

p
in

g

log(σd )



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Single-step Formulae

Damping Plots of the IRK Algorithms II

� All three methods are L-stable. The Lobatto IIIC algorithm has slightly better
damping characteristics than the two Radau IIA algorithms for poles far out in
the left-half complex plane.

� All three methods exhibit large asymptotic regions, therefore allowing large step
sizes to be used.

� Radau IIA(3) calls for a Newton iteration spanning over two stages of the
algorithm, whereas both Radau IIA(5) and Lobatto IIIC call for a Newton
iteration spanning over three stages of the algorithm. Consequently, they will
require two and three times more function evaluations per step than the BDF
algorithms. Yet, the much larger step sizes than these algorithms allow us to use
may well offset the additional cost. Consequently, the IRK algorithms are
expected to be quite competitive.

� The IRK algorithms are single-step methods, i.e., they are self-starting, and
step-size control in these methods is much cheaper than in the multi-step
methods. We can therefore expect that these algorithms will beat the BDF
methods by leaps and bounds when dealing with highly non-linear problems that
call for frequent step-size adjustments, or when dealing with problems with
frequent discontinuities.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code

DASSL is one of the most successfull simulation codes on the market today.

DASSL implements the BDF formulae of orders 1..5, i.e., it is a variable-step,
variable-order BDF code.

DASSL was developed for the simulation of implicit models. It offers two user
interfaces, an ODE interface, and a DAE interface.

DASSL is the default simulator used by the modeling and simulation (M&S)
environment Dymola, i.e., if the user doesn’t select another simulation code explicitly,
Dymola chooses DASSL for the simulation of the model.

Dymola makes always use of the ODE interface of DASSL, i.e., it converts the model
symbolically to explicit ODE form before calling upon the simulation engine.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code II

Dymola has a preference for DASSL in spite of the code’s inefficiency in handling
non-stiff models.

Dymola was developed for the simulation of large-scale models. Almost all large-scale
models are inherently stiff, as they focus simultaneously on fast and slow phenomena.

Dymola was developed for users who are not knowledgeable of numerical algorithms.
The large majority of Dymola users knows little if anything about numerical ODE
solvers. Also, they wouldn’t usually know whether their models are stiff or not. As stiff
system solvers can deal (albeit less efficiently) with non-stiff models, whereas non-stiff
system solvers cannot deal at all with stiff models, the use of DASSL promotes
robustness of the M&S environment.

Today’s computers are so powerful that consideration of optimal simulation
efficiency has lost much of its former importance when dealing with typical
engineering problems. An exception are, of course, systems with distributed
parameters.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code III

Dymola has a preference for DASSL in spite of the code’s inefficiency in handling
non-linear models.

Non-linear models and in particular models with discontinuities require frequent
changes in the integration step size. Since step-size changes are expensive in
multi-step algorithms, DASSL isn’t optimally suited for the simulation of systems with
discontinuities.

Almost all engineering systems are described by models with heavy and frequent
discontinuities.

It would therefore be preferable to use a simulation engine that is based on a Radau
IIA algorithm.

A fairly robust Radau IIA code has become available recently. Dymola offers that code
as one of its simulation engines, but the producers of Dymola haven’t made this the
default simulation engine yet. Radau IIA turns out to be often more efficient than
DASSL, but the Dymola developers don’t trust the code’s robustness sufficiently yet
to elevate it to the level of their default algorithm. This will probably happen in one of
the next releases.



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code IV

Let us compare once more, in a little more detail, the difference between the ODE and
DAE formulations of the BDF algorithms.

We begin with the linear explicit system:

ẋ = A · x + B · u

Using the BDF3 algorithm in its ODE form:

xBDF3
k+1 =

6

11
h · ẋk+1 +

18

11
xk −

9

11
xk−1 +

2

11
xk−2

we eliminate the derivatives by inserting the model equations into the solver equations:

xBDF3
k+1 =

6

11
· A · h · xk+1 +

6

11
· B · h · uk+1 +

18

11
xk − 9

11
xk−1 +

2

11
xk−2

We formulate the Newton iteration in the following form:

F(xk+1)
ODE = xk+1 − xBDF3

k+1 = 0.0

where xBDF3
k+1 is the known solution approximated by the solver, whereas xk+1 is the

unknown analytical solution.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code V

With:
F(xk+1)

ODE = xk+1 − xBDF3
k+1

we can calculate the Hessian of the Newton iteration:

H(xk+1)
ODE =

∂F(xk+1)
ODE

∂xk+1
= I(n) − 6

11
· A · h

In the case of a non-linear system:

H(xk+1)
ODE = I(n) − 6

11
· J · h

where J is the Jacobian matrix of the system:

J (xk+1) =
∂f(xk+1)

∂xk+1

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code VI

What happens in the case of the DAE formulation?

We use the BDF algorithm solved for the derivative:

ẋBDF3
k+1 =

1

h

[
11

6
· xk+1 − 3xk +

3

2
xk−1 − 1

3
xk−2

]

We now formulate the Newton iteration in the following form:

F(xk+1)
DAE = ẋmodel

k+1 − ẋBDF3
k+1 = 0.0

where ẋBDF3
k+1 is the derivative approximated by the solver, whereas ẋmodel

k+1 is the
derivative obtained using the model equations.

Therefore:

H(xk+1)
DAE =

∂F(xk+1)
DAE

∂xk+1
= A − 11

6h
· I(n)

In the case of a non-linear system:

H(xk+1)
DAE = J − 11

6h
· I(n)

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code VII

What happens if we use very small integration steps?

in the case of the ODE formulation:

lim
h→0

H(xk+1)
ODE = lim

h→0

(
I(n) − 6

11
· J · h

)
= I(n)

In the case of the DAE formulation:

lim
h→0

H(xk+1)
DAE = lim

h→0

(
J − 11

6h
· I(n)

)
→ ∞

In the DAE formulation with very small integration step sizes, the Hessian of the
Newton iteration is very sensitive to step-size changes. This makes us suspect that
we might have numerical difficulties with the algorithm.



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code VIII

What happens in the case of an implicit model?

Let us consider once more the various BDF formulae:

xk+1 = h · fk+1 + xk

xk+1 =
2

3
· h · fk+1 +

4

3
· xk − 1

3
· xk−1

xk+1 =
6

11
· h · fk+1 +

18

11
· xk − 9

11
· xk−1 +

2

11
· xk−2

etc.

We can generalize these formulae:

xk+1 = h̄ · fk+1 + pre(x)

where h̄ is a normalized step size proportional to the real step size h, and pre(x) is a
function of information from the past that doesn’t influence the Newton iteration.

Therefore:

fk+1 =
xk+1 − pre(x)

h̄

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code IX

Let us now consider the implicit model:

f(x, ẋ, u, t) = 0.0

We can eliminate the derivatives by inserting the solver formula into the implicit
model:

F(xk+1) = f(xk+1 ,
xk+1 − pre(x)

h̄
, uk+1, tk+1) = 0.0

In reality, it isn’t necessary to physically insert the solver formula in the model, as
we can analyze very easily the effects of such an insertion.

We can write:

H(xk+1) = Jx(xk+1) +
1

h̄
· Jẋ(xk+1)

where:

Jx(xk+1) =
∂f

∂x

∣∣∣∣
x=xk+1,ẋ=ẋk+1

Jẋ(xk+1) =
∂f

∂ẋ

∣∣∣∣
x=xk+1,ẋ=ẋk+1

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code X

We can implement the Newton iteration in the following form:

(
Jx +

1

h̄
· Jẋ

)
· δ� = f(x�, ẋ�, u, t)

x�+1 = x� − δ�

ẋ�+1 = ẋ� − 1

h̄
· δ�

or a bit better:

(
h̄ · Jx + Jẋ

) · δ� = h̄ · f(x�, ẋ�, u, t)

x�+1 = x� − δ�

ẋ�+1 = ẋ� − 1

h̄
· δ�

In every iteration step, we must solve a linear system of equations.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code XI

What happens in the case of very small integration steps?

We notice that:
lim
h̄→0

(
h̄ · Jx + Jẋ

)
= Jẋ

However, we already know from the previous presentation that the Jẋ-matrix is
singular in the case of higher index models, because in the linear case:

A · x + B · ẋ = 0.0

we know that Jx = A and Jẋ = B.

DASSL can in general not be used for the simulation of higher-index DAE models.



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code XII

Let us now assume that we are dealing with a model consisting of n differential
equations and k algebraic equations. The model:

f(x, ẋ, u, t) = 0.0

contains n + k equations in n + k variables.

This is not a higher-index model, and yet, the Jẋ-matrix is singular.

DASSL has also problems with the simulation of index-1 DAE systems with small
integration step sizes.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

DASSL

The DASSL Code XIII

For these reasons:

� Dymola doesn’t employ DASSL as DAE algorithm, but rather as ODE algorithm.

� During the model compilation, Dymola first reduces the perturbation index to 1
using the Pantelides algorithm.

� Thereafter, Dymola identifies the iteration variables necessary to solve all
algebraic loops.

� To this end, Dymola uses the Tarjan algorithm to isolate the individual algebraic
loops and minimize their sizes.

� Afterwards, Dymola uses the tearing algorithm to determine a small number of
iteration variables.

� During the simulation, Dymola uses DASSL as default ODE algorithm. DASSL
iterates over the n state variables.

� Inside each iteration step, Dymola evaluates the model. In the model
description, we may encounter small algebraic loops. Every one of them invokes
a Newton iteration to determine the current values of the tearing variables.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration

Until now, we have always distinguished carefully between the model equations on the
one hand, and the solver equations on the other. The reasons for this distinction are
historical. Most users of simulation software know little if anything about numerical
methods, and consequently wish to use the simulation engine as a black box. The less
they need to know about the solver, the happier they are.

Yet, it turns out that this separation can lead to inefficient simulations. For this
reason, we shall now let go of this artificial constraint. Modern model compilers are
able to protect the user from having to know much about the solver and yet, allow to
generate more efficient simulation code.

Inline integration merges the two types of equations. The solver equations are simply
added to the model equations before causalization is attempted.

In this way, the system of differential and algebraic equations is converted to a system
of difference and algebraic equations.

We shall start by inlining BDF algorithms.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration II

We start with an example. To this end, we return once more to our already standard
electrical circuit.

U
0=

10

R=20

C
=1

.0
e-

6

L=
0.

00
15

Ground
R

=1
00

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL u0 = f (t)

u1 = R1 · i1
u2 = R2 · i2
uL = L · diL

iC = C · duC

u0 = u1 + uC

uL = u1 + u2

uC = u2

i0 = i1 + iL

i1 = i2 + iC

iL = pre(iL) + h̄ · diL

uC = pre(uC ) + h̄ · duC



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration III

� We inlined the BDF formulae in their generic form using the normalized step
size h̄.

� The two state derivatives have become algebraic variables.

� Instead of dealing with 10 differential and algebraic equations in 10 unknowns,
we now deal with 12 purely algebraic equations in 12 unknowns.

� The former formulation allowed us in this example to causalize the set of 10
equations directly. The new formulation contains an algebraic loop.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration IV

The model is characterized by the following structure digraph:

u0 = f (t)

u1 = R1 · i1
u2 = R2 · i2
uL = L · diL

iC = C · duC

u0 = u1 + uC

uL = u1 + u2

uC = u2

i0 = i1 + iL

i1 = i2 + iC

iL = pre(iL) + h̄ · diL

uC = pre(uC ) + h̄ · duC

Eq.(1)

Eq.(2)

Eq.(3)

Eq.(4)

Eq.(5)

Eq.(6)

Eq.(7)

Eq.(8)

Eq.(9)

Eq.(10)

Eq.(11)

Eq.(12)

u0

i0

u1

i1

u2

i2
uL

diL

duC

iC
iL
uC

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration V

We causalize as much as we can:

u0 = f (t)

u1 = R1 · i1
u2 = R2 · i2
uL = L · diL

iC = C · duC

u0 = u1 + uC

uL = u1 + u2

uC = u2

i0 = i1 + iL

i1 = i2 + iC

iL = pre(iL) + h̄ · diL

uC = pre(uC ) + h̄ · duC

Eq.(1)

Eq.( )

Eq.( )

Eq.(10)

Eq.( )

Eq.( )

Eq.(9)

Eq.( )

Eq.(12)

Eq.( )

Eq.(11)

Eq.( )

u0

i0

u1

i1

u2

i2
uL

diL

duC

iC
iL
uC

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration VI

We choose a tearing variable and finalize the causalization:

Eq.(1)

Eq.(4)

Eq.(5)

Eq.(10)

Eq.(7)

Eq.(2)

Eq.(9)

Eq.(3)

Eq.(12)

Eq.(6)

Eq.(11)

Res.Eq.

u0

i0

u1

i1

u2

i2
uL

diL

duC

iC
iL
uC

1: u0 = f (t)
2: u1 = u0 − uC

3: u2 = uC

4: i1 = 1
R1

· u1

5: i2 = 1
R2

· u2

6: iC = i1 − i2
7: duC = 1

C
· iC

8: uC = pre(uC ) + h · duC

9: uL = u1 + u2

10: diL = 1
L
· uL

11: iL = pre(iL) + h · diL
12: i0 = i1 + iL

Eq.(2-8) form an algebraic loop in
seven equations with uC serving as
tearing variable.



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration VII

Let us apply variable substitution to find a completely causal set of equations:

uC = pre(uC ) + h · duC

= pre(uC ) +
h

C
· iC

= pre(uC ) +
h

C
· i1 − h

C
· i2

= pre(uC ) +
h

R1 · C
· u1 − h

R2 · C
· u2

= pre(uC ) +
h

R1 · C
· u0 − h

R1 · C
· uC − h

R2 · C
· uC

and therefore: [
1 +

h

R1 · C +
h

R2 · C
]
· uC = pre(uC ) +

h

R1 · C · u0

or:
[R1 · R2 · C + h · (R1 + R2)] · uC = R1 · R2 · C · pre(uC ) + h · R2 · u0

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration VIII

This equation can be solved for uC :

uC =
R1 · R2 · C

R1 · R2 · C + h · (R1 + R2)
· pre(uC ) +

h · R2

R1 · R2 · C + h · (R1 + R2)
· u0

If we let the step size go to zero, we find:

lim
h→0

uC = pre(uC )

which is non-singular.

Since the original DAE problem had been of index 0, this is not further surprising.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration IX

Let us now try an index-1 problem:

U
0=

10

R=20

L=
0.

00
15

Ground

R
=1

00

+

-

R1

R2

R3

L

U0

i0 u1

i1

u2

i2

u3

i3

uL

iL u0 = f (t)

u1 = R1 · i1
u2 = R2 · i2
u3 = R3 · i3
uL = L · diL

u0 = u1 + u3

uL = u1 + u2

u3 = u2

i0 = i1 + iL

i1 = i2 + i3

iL = pre(iL) + h · diL

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration X

After complete causalization:

Eq.(1)

Eq.(2)

Eq.(6)

Eq.(5)

Eq.(9)

Eq.(3)

Eq.(8)

Eq.(4)

Eq.(11)

Res.Eq.

Eq.(10)

u0

i0

u1

i1

u2

i2

uL

diL

u3

i3

iL

1: u0 = f (t)
2: u1 = R1 · i1
3: u3 = u0 − u1

4: u2 = u3

5: i3 = 1
R3

· u3

6: i2 = 1
R2

· u2

7: i1 = i2 + i3
8: uL = u1 + u2

9: diL = 1
L
· uL

10: iL = pre(iL) + h · diL
11: i0 = i1 + iL

Eq.(2-7) form an algebraic loop in six
equations with i1 serving as tearing
variable.



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration XI

Using the variable substitution technique, we can find a closed-form expression for the
tearing variable:

i1 =
R2 + R3

R1 · R2 + R1 · R3 + R2 · R3
· u0

The expression for i1 is not even a function of the normalized step size h̄, i.e., it is
non-singular for any value of h̄.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration XII

Let us now try an index-2 problem:

U
0=

10

R=20

Ground

R
=1

00

+

-

R1

R2

C

L

U0

i0 u1

i1

u2

i2

uC

iC

uL

iL

u0 = f (t)

u1 = R1 · i1
u2 = R2 · i2
uL = L · diL

iC = C · duC

u0 = u1 + uL

uC = u1 + u2

uL = u2

i0 = i1 + iC

i1 = i2 + iL

iL = pre(iL) + h · diL

uC = pre(uC ) + h · duC

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration XIII

After partial causalization (without tearing the algebraic loop):

Eq.(1)

Eq.( )

Eq.( )

Eq.( )

Eq.(11)

Eq.( )

Eq.(9)

Eq.( )

Eq.(12)

Eq.( )

Eq.( )

Eq.(10)

u0

i0

u1

i1

u2

i2
uL

diL

duC

iC
iL

uC

� We found an algebraic loop in seven
equations and seven unknowns.

� Unfortunately, we already got ourselves
into troubles, as Eq.(10) needs to be
solved for duC :

duC =
uC − pre(uC )

h

i.e., we ended up with the step size, h, in
the denominator, which invariably will
cause numerical difficulties, when we try
to simulate the system using a small step
size. We had no choice in the matter, as
the derivative causality on the capacitor
was dictated upon us.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration XIV

After complete causalization:

Eq.(1)

Eq.(2)

Eq.(7)

Eq.(4)

Eq.(11)

Eq.(3)

Eq.(9)

Eq.(5)

Eq.(12)

Res.Eq.

Eq.(6)

Eq.(10)

u0

i0

u1

i1

u2

i2
uL

diL

duC

iC
iL

uC

1: u0 = f (t)
2: u1 = R1 · i1
3: uL = u0 − u1

4: diL = 1
L
· uL

5: u2 = uL

6: iL = pre(iL) + h · diL
7: i2 = 1

R2
· u2

8: i1 = i2 + iL
9: uC = u1 + u2

10: duC = uC−pre(uC )
h

11: iC = C · duC

12: i0 = i1 + iC



Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Inline Integration

Inline Integration XV

Using the variable substitution technique, we can find a closed-form expression for the
tearing variable:

i1 =
L + h · R2

L · (R1 + R2) + h · R2
· u0 +

R2 · L
L · (R1 + R2) + h · R2

· pre(iL)

If we let the step size go to zero, we find:

lim
h→0

i1 =
1

R1 + R2
· u0 +

R2

R1 + R2
· pre(iL)

� At least in the given example, inlining was able to solve also the higher-index
problem directly.

� Also DASSL is able to sometimes simulate index-2 problems directly.

� Yet, inlining the higher-index problem directly came at a price, as we ended up
with the step size, h, in the denominator of one of the model equations.

� Thus, it is usually preferred to first apply the index reduction algorithm by
Pantelides.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

Conclusions

Conclusions

� In this second presentation on DAE solvers, we looked at single-step DAE
solvers based on new classes of implicit Runge-Kutta algorithms not previously
discussed.

� We then discussed DASSL, the most successful DAE code currently on the
market and shed some light on the limitations of that code.

� A third topic concerned a new way of looking at DAE solution, called inline
integration, that merges the model equations with the solver equations. We
demonstrated some of the features of inline integration by discussing the inlining
of BDF algorithms.

Numerical Simulation of Dynamic Systems XIX

Differential Algebraic Equation Solvers II

References

References

1. Elmqvist, H., M. Otter, and F.E. Cellier (1995), “Inline Integration: A New
Mixed Symbolic/Numeric Approach for Solving Differential-Algebraic Equation
Systems,” Proc. ESM’95, SCS European Simulation Multi-Conference, Prague,
Czech Republic, pp.xxiii-xxxiv.

2. Treeaporn, Vicha (2005), Efficient Simulation of Physical System Models Using
Inlined Implicit Runge-Kutta Algorithms, MS Thesis, Dept. of Electr. & Comp.
Engr., University of Arizona, Tucson, AZ.


