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In the previous presentation, we have created a numerical framework for safely dealing
with discontinuities in model descriptions.

In the current presentation, we shall analyze how this framework can be embedded in
an object-oriented modeling environment, i.e., how we can formulate model
descriptions containing discontinuities in such a way that the model compiler can
generate from that description simulation code that can be executed in a robust and
efficient manner.
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Let us discuss the function:

x
x1 x2

y

y = a1 · x + b1

y = a2 · x + b2

y = a3 · x + b3

left center right

Functional description:

if x < x1 then y = a1 · x + b1
else if x < x2 then y = a2 · x + b2
else y = a3 · x + b3;

Event description:

case region
left : y = a1 · x + b1;

schedule Center when x − x1 == 0;
center : y = a2 · x + b2;

schedule Left when x − x1 == 0;
schedule Right when x − x2 == 0;

right : y = a3 · x + b3;
schedule Center when x − x2 == 0;

end;

event Left
region := left;

end Left;

event Center
region := center ;

end Center ;

event Right
region := right;

end Right;
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� The functional description is very compact, but if the model is being simulated
in this form, the simulation will include the discontinuities, and we shall need to
rely on the step-size control algorithm to detect and isolate these discontinuities.

� The event description is safe from a numerical point of view; it does not include
discontinuities within the model equations; yet it is not compact, and it is
anything but object oriented.

� Furthermore, the event description, as presented, is not even complete. The
variable region, which changes its value only at event times, is a discrete state
variable that needs to be initialized. Somewhere in the section containing the
initial equations we’ll need a statement:

if x < x1 then region := left;
else if x < x2 then region := center ;
else region := right;
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Can the augmented event description be correctly simulated in all situations?

� Let us assume that:

x(t) =
x2 − x1

2
· sin(t) +

x1 + x2

2

� x(t) stays thus always in the center region. However, it may happen that
x = x2 exactly at the end of a step. In that case, the Right event gets
scheduled, and the region switches to right.

� x becomes immediately smaller than x2 again, but as the value x2 is not reached
a second time, the Center event doesn’t get scheduled, and the model remains
in the wrong region.

� To avoid this problem, we need to build a hysteresis around each threshold and
schedule two events, each time we pass through a threshold: an arrival event,
and a departure event.

� This is how Dymola tackles this problem.
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Does the hysteretic event description cover all cases?

� Unfortunately, this is still not the case.

� It can happen that one event triggers immediately a second event in another
discontinuity, which in turn triggers immediately another event back at the
original discontinuity.

� Thus, we may be confronted with algebraic loops formed by chains of
simultaneous events.

� For this reason, we need to iterate after each event to ensure that we once again
have a consistent set of initial conditions for the subsequent continuous
simulation segment.

It becomes evident that manual coding of discontinuous models by means of event
descriptions is a hopeless undertaking in all but the most trivial cases. We
definitely need something better.
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What is wrong with the compact and convenient functional description of the
discontinuous function formulated originally?

� The functional description contains the complete information of what needs to
happen.

� The only problem with this description is that it cannot be safely simulated.

� However, since the description contains the complete information, what prevents
us from formulating the model in this fashion and leave it up to the model
compiler to decompose the functional description into a complete and consistent
event description?
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� We had already seen in the last few presentations that the Dymola model
compiler performs a lot of symbolic preprocessing, before it generates the code
that is to be numerically simulated.

� For example, it performs symbolic index reduction by implementing the
Pantelides algorithm.
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What is wrong with the compact and convenient functional description of the
discontinuous function formulated originally?

� The functional description contains the complete information of what needs to
happen.

� The only problem with this description is that it cannot be safely simulated.

� However, since the description contains the complete information, what prevents
us from formulating the model in this fashion and leave it up to the model
compiler to decompose the functional description into a complete and consistent
event description?

� This is precisely what Dymola does.

Numerical Simulation of Dynamic Systems XXII

Simulation of Discontinuous Systems II

Object-oriented Descriptions of Discontinuities

Object-oriented Descriptions of Discontinuities II

� We had already seen in the last few presentations that the Dymola model
compiler performs a lot of symbolic preprocessing, before it generates the code
that is to be numerically simulated.

� For example, it performs symbolic index reduction by implementing the
Pantelides algorithm.

� It also tackles algebraic loops by automatically placing a Newton iteration
around each algebraic loop.

� In some cases, the model compiler even generates multiple sets of simulation
models with different state variables together with code to automatically toggle
between them to avoid dynamic singularities (divisions by zero) in the model.

� We now realize that the model compiler does even considerably more work. It
takes arbitrary object-oriented descriptions of discontinuous models and
automatically decomposes them into series of event descriptions that can be
safely and robustly simulated.

Numerical Simulation of Dynamic Systems XXII

Simulation of Discontinuous Systems II

Object-oriented Descriptions of Discontinuities

Object-oriented Descriptions of Discontinuities III

In Dymola, we code the discontinuous function using the following functional
description:

y = if x < x1 then a1 · x + b1
else if x < x2 then a2 · x + b2
else a3 · x + b3;

� The Dymola description is slightly different from the functional description
proposed earlier.

� Here, the dependent variable, y , is taken out of the if-clause, i.e., it applies to
all branches of the if-clause.

� This is necessary, because otherwise, Dymola cannot vertically sort the
if-statement together with the other model equations.
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Is the causality of the if-statement fixed?

� Does the if-statement always compute the variable y , or can this statement also
be solved for x?

� To answer this question, we must understand how the model compiler deals
with this statement.

� We introduce three integer variables, ml , mc , and mr , whose values are linked
to the linguistic discrete state variable, region, in the following way:

region ml mc mr

left 1 0 0
center 0 1 0
right 0 0 1
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We can now reformulate the discontinuous function as follows:

y = ml · (a1 · x + b1) + mc · (a2 · x + b2) + mr · (a3 · x + b3);
case region

left : schedule Center when x − x1 == 0;
center : schedule Left when x − x1 == 0;

schedule Right when x − x2 == 0;
right : schedule Center when x − x2 == 0;

end;

together with the three discrete event descriptions:

event Left
region := left;
ml = 1; mc = 0; mr = 0;

end Left;

event Center
region := center ;
ml = 0; mc = 1; mr = 0;

end Center ;

event Right
region := right;
ml = 0; mc = 0; mr = 1;

end Right;
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In this way, the former if-statement has been converted to the algebraic statement:

y = ml · (a1 · x + b1) + mc · (a2 · x + b2) + mr · (a3 · x + b3)

which can be turned around in the usual way:

x =
y − ml · b1 − mc · b2 − mr · b3

ml · a1 − mc · a2 − mr · a3

Consequently, if-statements can also be horizontally sorted, just like other model
equations.

Numerical Simulation of Dynamic Systems XXII

Simulation of Discontinuous Systems II

Object-oriented Descriptions of Discontinuities

Multi-valued Functions

The if-statements that we have introduced so far don’t allow the description of
multi-valued functions, such as the dry hysteresis function shown below:

x
x1

x2

y

y1

y2
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A possible event description for the dry hysteresis function could look as follows:

y = ylast ;
case region

up : schedule Down when x − x1 < 0;
down : schedule Up when x − x2 > 0;

end;

together with the two discrete event descriptions:

event Up
region := up;
ylast := y2;

end Left;

event Down
region := down;
ylast := y1;

end Center ;

In this code, ylast is a discrete state variable that needs to be initialized.
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Since the if-statement cannot describe a multi-valued function, Dymola offers also a
when-statement that can be used for such purpose.

The semantics of the if-statement is as follows:

y = if x > 0 then . . .

means: if x is larger than zero, then . . . .

In contrast, the semantics of the when-statement is as follows:

when x > 0 . . .

means: when x becomes larger than zero, then . . . , or in other words, when x crosses
zero in the positive direction, then . . . .
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Compare also:

y = if x == 0 then . . .

which means: if x is exactly equal to zero, then . . . (not a very meaningful condition
for a real-valued variable x).

In contrast:

when x == 0 . . .

means: when x becomes equal to zero, then . . . , or in other words, when x crosses
zero in either direction, then . . . (very meaningful and frequently used).
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We might thus be inclined to code the dry hysteresis function in the following way:

when x < x1
y = y1;

end when;

when x > x2
y = y2;

end when;

Unfortunately, this won’t work, because Dymola doesn’t check that the conditions of
all when-statements are mutually exclusive. The Dymola model comiler associates
each equation inside a when-statement with its condition, and sorts all of these
equations both vertically and horizontally together with all other model equations.

Consequently, we cannot specify two separate equations to compute the variable y .
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One way to avoid this pitfall would be to code:
when x < x1 or x > x2

y = if x < 0 then y1 else y2;
end when;

which will work fine, except that y is still a discrete state variable that must be
initialized in the initial equation section of the model.

The current version of the Modelica Standard Library codes this particular function
even without use of a when-statement using a simple Boolean expression:
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u

i
� The electrical switch is characterized

by two variables, the voltage u and
the current i .

� We already know that the equations that we obtain from an object-oriented
description of physical systems are initially acausal.

� In Dymola, the electrical switch can be modeled using the following implicit
equation:

0 = if switch == open then i else u;

� The electrical switch can, however, also be described by an algebraic equation:

switch mo

open 1
closed 0

0 = mo · i + (1 − mo) · u
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For the algebraic switch equation:

0 = mo · i + (1 − mo) · u

there exist two possible causalizations:

i =
mo − 1

mo
· u

u =
mo

mo − 1
· i

Unfortunately, both of them result in a division by zero in one of the two switch
positions.

The computational causality of the switch equation depends on the switch position.

The only way to get a free computational causality is to include the switch equation
inside an algebraic loop.
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Let us start with an example. We shall simulate a simple electrical circuit containing a
switch.

+

-

R1

R2

U0

u1i1

u2

i2is U0 = f (t)

u1 = R1 · i1
u2 = R2 · i2
U0 = u1 + u2

i1 = is + i2

0 = mo · is + (1 − mo) · u2
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U0 = f (t)

u1 = R1 · i1
u2 = R2 · i2
U0 = u1 + u2

i1 = is + i2

0 = mo · is + (1 − mo) · u2

Eq.(1)

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Eq.( )

U0

u1

i1

u2

i2

is

All switch equations must be included in the list of the residual equations.

Eq.(1)

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Res.Eq.

U0

u1

i1

u2

i2

is

Eq.(1)

Eq.(4)

Eq.(2)

Eq.(3)

Eq.(5)

Res.Eq.

U0

u1

i1

u2

i2

is
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Eq.(1)

Eq.(4)

Eq.(2)

Eq.(3)

Eq.(5)

Res.Eq.

U0

u1

i1

u2

i2

is

U0 = f (t)

i2 =
1

R2

· u2

u1 = U0 − u2

i1 =
1

R1

· u1

is = i1 − i2

u2 =
mo

mo − 1
· is

We use substitution:

u2 =
mo

mo − 1
· is

=
mo

mo − 1
· (i1 − i2)

=
mo

(mo − 1) · R1

· u1 − mo

(mo − 1) · R2

· u2

=
mo

(mo − 1) · R1

· U0 − mo

(mo − 1) · R1

· u2 − mo

(mo − 1) · R2

· u2

=
mo

(mo − 1) · R1

· U0 − mo · (R1 + R2)

(mo − 1) · R1 · R2

· u2
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Solving for u2, we obtain:

u2 =
mo · R2

mo · (R1 + R2) + (mo − 1) · R1 · R2

· U0

This equation doesn’t lead to a division by zero in either of the two switch positions.

The model equations can thus be written in the following form:

U0 = f (t)

u2 =
mo · R2

mo · (R1 + R2) + (mo − 1) · R1 · R2

· U0

i2 =
1

R2

· u2

u1 = U0 − u2

i1 =
1

R1

· u1

is = i1 − i2

These model equations don’t contain either an algebraic loop or a division by zero.
Thus, they can be simulated without any problems.
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Ideal diodes are ideal electrical switches complemented by an internal logic for
determining the switch position.

An ideal diode closes its switch, when the voltage across the diode from the anode to
the cathode becomes positive, and it opens its switch again, when the current through
the diode passes through zero, if at that time the voltage across the diode is negative.

An ideal diode can be modeled in Dymola as follows:

0 = if OpenSwitch then id else ud ;
OpenSwitch = ud <= 0 and not id > 0;

OpenSwitch is here a Boolean variable, the value of which is computed in the above
Boolean expression. If OpenSwitch is true, the switch is considered open.
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Unfortunately, the model:

0 = if OpenSwitch then id else ud ;
OpenSwitch = ud <= 0 and not id > 0;

while being very elegant, is problematic from a numerical point of view.

Remember that if-statements get translated into event descriptions by the model
compiler. In the process, the conditional expression gets converted to a zero-crossing
function.

In the above example, we obtain the zero-crossing function:

f = if OpenSwitch then 1 else − 1
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� The function f indeed crosses through zero, whenever the switch changes its
position, but it is anything but smooth. In fact, its derivative is zero everywhere
except at the switching point itself, where it is infinite.

� Hence we cannot use any higher-order iteration algorithm, such as cubic
interpolation, to iterate on this zero-crossing function. In fact, the only one
among the iteration methods introduced in the previous presentation that will
work half-way efficiently on this zero-crossing function is golden section.

� We definitely need something better.
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We parameterize the diode characteristic in a new variable s as shown below:

diode blocking di
od

e 
co

nd
uc

tin
g

s = 2

s = 1

s = 0

s 
= 

-1

s 
= 

-2

ud

id
� In the blocking mode s = ud .

� In the conducting mode s = id .

Thus, we can code the diode model as follows:

ud = if OpenSwitch then s else 0;
id = if OpenSwitch then 0 else s;
OpenSwitch = s < 0;
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� The Dymola model compiler is smart enough to translate the Boolean
expression to the zero-crossing function:

f = s

which is as smooth as smooth can be.

� Consequently, we can apply any one of the iteration methods introduced in the
previous presentation to this model.

An algebraic version of that model can be written as:

ud = mo · s;
id = (1 − mo ) · s;
mo = if s < 0 then 1 else 0;

which is the version that we shall work with here, as these equations are easier to
analyze.
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Let us illustrate the use of the ideal diode model by means of the simple half-way
rectifier circuit shown below:

+

-

R=10

R
=5

0

C
=0

.0
01

Ri

RLCU0

i0

u1

u2

ud
iC iR

u0 = f (t)

u1 = Ri · i0
u2 = RL · iR
iC = C · du2

dt

u0 = u1 + ud + u2

i0 = iC + iR

ud = mo · s
i0 = (1 − mo) · s
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U0 = f (t)

u1 = Ri · i0
u2 = RL · iR
iC = C · du2

dt

u0 = u1 + ud + u2

i0 = iC + iR

ud = mo · s
i0 = (1 − mo) · s

Eq.(1)

Eq.( )

Eq.(2)

Eq.(8)

Eq.( )

Eq.(7)

Eq.( )

Eq.( )

u0

iR

iC
ud

du2/dt

i0

u1

s
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In order to avoid divisions by zero, we need to choose s as our first tearing variable.

Eq.(1)

Eq.( )

Eq.(2)

Eq.(8)

Eq.( )

Eq.(7)

Eq.( )

Res.Eq.

u0

iR

iC
ud

du2/dt

i0

u1

s

Eq.(1)

Eq.(5)

Eq.(2)

Eq.(8)

Eq.(4)

Eq.(7)

Eq.(3)

Res.Eq.

u0

iR

iC
ud

du2/dt

i0

u1

s
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Eq.(1)

Eq.(5)

Eq.(2)

Eq.(8)

Eq.(4)

Eq.(7)

Eq.(3)

Res.Eq.

u0

iR

iC
ud

du2/dt

i0

u1

s

U0 = f (t)

iR =
1

RL
· u2

ud = mo · s
u1 = u0 − ud − u2

i0 =
1

Ri
· u1

s =
1

1 − mo
· i0

iC = i0 − iR

du2

dt
=

1

C
· iC

Numerical Simulation of Dynamic Systems XXII

Simulation of Discontinuous Systems II

Object-oriented Descriptions of Discontinuities

Parameterized Curve Descriptions VII

Substitution yields:

s =
1

mo + (1 − mo) · Ri
· (u0 − u2)

which does not lead to a division by zero in
either switch position.

Thus the model equations can be written
in the following form:

u0 = f (t)

iR =
1

RL
· u2

s =
1

mo + (1 − mo) · Ri
· (u0 − u2)

ud = mo · s
u1 = u0 − ud − u2

i0 =
1

Ri
· u1

iC = i0 − iR

du2

dt
=

1

C
· iC
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A single zero-crossing function accompanies the model equations:

f = s

with the associated event action:

event Toggle
mo := 1 − mo ;

end Toggle;

The correct initial value of the discrete state variable, mo , is assigned to that variable
in an appropriate initialization section of the simulation program.

The model can now be simulated without any difficulties using any numerical
integration algorithm with a root solver.
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Simulation results:
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Conclusions

� In this presentation, we first discussed the event description of models
containing discontinuities. We demonstrated that manually reducing a
discontinuous model to a simulation code at the level of event descriptions
accompanying model equations can be highly challenging and is, in fact, a
hopeless undertaking except in the simplest of cases.

� We then showed how discontinuous models can be described in an
object-oriented fashion, and how the model compiler can compile that
object-oriented description down to an event description in an algorithmic and
systematic fashion.

� We then looked at multi-valued functions and showed how these can be
modeled.

� The presentation ended with a description of the switch equation, i.e., an
equation, the computational causality of which changes as a function of the
switch position. Ideal diodes were discussed as an application of the switch
equation, and we introduced the notion of parameterized curve descriptions as a
means to obtain simulation code that is numerically better behaved during event
iterations.
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