
Numerical Simulation of Dynamic Systems XXV

Numerical Simulation of Dynamic Systems XXV

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

May 21, 2013

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Introduction

Introduction

All of the solvers that we studied until now have the following property in common:

Given the time instant tk+1, the solvers perform a polynomial
extrapolation to calculate the values of all state variables at that time
instant.

Now we shall study what happens when we reformulate the problem in a reverse
fashion. We shall determine when a state variable reaches a predetermined value, or
more precisely:

Given that the state variable xi currently assumes the value xi (tk), we
would like to determine the shortest time distance h, such that
xi (tk + h) = xi (tk) ± ΔQi .

where ΔQi is a predetermined state quantum associated with the state variable xi .

As we are simulating a continuous system on a digital computer, we need to
discretize something, as no digital computer can compute infinitely many state
changes within a finite time interval.

Until now, we always discretized the time axis, while keeping the state variables
continuous. In the sequel, we shall discretize (quantize) the state variables, while
keeping the time axis continuous.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Introduction

Introduction II

If we can construct a solver based on this principle, it follows that:

� The integration method will use a variable step size, and the step size in use will
depend on the gradient of that state variable.

� The step size h will be different for each state variable x.

� We shall no longer be able to represent the discretized system by a set of
difference equations, and we shall lose the linearity of the discretized system
when approximating a linear continuous system.

ẋ = A · x �⇒ xk+1 = F · xk

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Space Discretization: A Simple Example

Space Discretization: A Simple Example

Let us start by considering the following first-order system:

ẋa(t) = −xa(t) + 10 · ε(t − 1.76)

with initial condition xa(t0 = 0) = 10.

Rather than simulating this model directly, we shall analyze the following related
model:

ẋ(t) = −floor[x(t)] + 10 · ε(t − 1.76)

or:
ẋ(t) = −q(t) + 10 · ε(t − 1.76)

where q(t) � floor[x(t)] is the integer part of the variable x(t) > 0.

The latter model can be simulated very easily.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Space Discretization: A Simple Example

Space Discretization: A Simple Example II

ẋ(t) = −q(t) + 10 · ε(t − 1.76) ; q(t) = floor[x(t)] ; x(0) = 10

1/9

10

9

8

7

x(t)

q(t)

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Space Discretization: A Simple Example

Space Discretization: A Simple Example II

ẋ(t) = −q(t) + 10 · ε(t − 1.76) ; q(t) = floor[x(t)] ; x(0) = 10

1/9 1/8

10

9

8

7

x(t)

q(t)

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Space Discretization: A Simple Example

Space Discretization: A Simple Example II

ẋ(t) = −q(t) + 10 · ε(t − 1.76) ; q(t) = floor[x(t)] ; x(0) = 10

1/2

4

3

2

1

x(t)

q(t)

t = 1.329 t = 1.829

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Space Discretization: A Simple Example

Space Discretization: A Simple Example II

ẋ(t) = −q(t) + 10 · ε(t − 1.76) ; q(t) = floor[x(t)] ; x(0) = 10

4

3

2

1

x(t)

q(t)

t = 1.76

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Space Discretization: A Simple Example

Space Discretization: A Simple Example III

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

11
Simulation of Quantized System

x(t)

q(t)

Time

q
(t

),
x
(t

)

� We were able to complete the
simulation in 17 very simple steps,
thereby obtaining the exact solution
of the quantized system.

� The solution of the quantized system
is similar to that of the original
continuous system.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Space Discretization: A Simple Example

Space Discretization: A Simple Example IV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

11
Simulations of Quantized and Original Systems

x(t)

xa(t)

Time

x a
(t

),
x
(t

)

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Discrete Event Systems and DEVS

Discrete Event Systems

� Clearly, the quantized system is a discrete system. However, it cannot be
represented by a set of difference equations, i.e., it is not a discrete-time system.

� We recognize easily that it may be represented as a discrete-event system.

� The model can be encoded using the DEVS formalism.

� DEVS stands for Discrete EVent System specification. The formalism was first
introduced in the 1970s by Bernard Zeigler.

� All systems, the input/output behavior of which can be described by sequences
of discrete events, can be represented using the DEVS formalism.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Discrete Event Systems and DEVS

The Definition of DEVS
Atomic DEVS Models

A DEVS model processes a sequence of input events and, in reaction to those events
and its own initial discrete state, generates a sequence of output events.

DEVS

An atomic DEVS model is defined by the structure:

M = (X , Y , S, δint , δext , λ, ta)

� X is the set of input values.

� Y is the set of output values.

� S is the set of state values.

� δint(), δext(), λ(), and ta() are functions defining the dynamics of the system.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Discrete Event Systems and DEVS

The Definition of DEVS II
The Behavior of an Atomic DEVS Model

X

Y

S

s1

s2 = δint(s1)

s3 = δext(s2, e, x1)

s4 = δint(s3)

y1 = λ(s1)

y2 = λ(s3)

x1

eta(s1) ta(s3)

� δint(s) is the internal
transition function.

� δext(s, e, x) is the external
transition function.

� λ(s) is the output function.

� ta(s) is the time advance
function.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Discrete Event Systems and DEVS

The Definition of DEVS III
The Specification of an Atomic DEVS Model

� Each possible state s (s ∈ S) has an associated time advance calculated by the
time advance function ta(s) (ta(s) : S → �+

0). The time advance is a
non-negative real number, determining how long the system remains in a given
state in absence of input events.

� If the state adopts the value s1 at time t1, after ta(s1) units of time (i.e., at
time t1 + ta(s1)), the system performs an internal transition, taking it to a new
state s2. The new state is calculated as s2 = δint(s1). Function δint

(δint : S → S) is called the internal transition function.

� When the state changes its value from s1 to s2, an output event is produced
with the value y1 = λ(s1). Function λ (λ : S → Y) is called the output
function. In this way, the functions ta, δint and λ define the autonomous
behavior of a DEVS model.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Discrete Event Systems and DEVS

The Definition of DEVS IV
The Specification of an Atomic DEVS Model

� When an input event arrives, the state changes instantaneously. The new state
value depends not only on the value of the input event, but also on the previous
state value and the elapsed time since the last transition. If the system assumes
the state value s2 at time t2, and subsequently, an input event arrives at time
t2 + e < ta(s2) with value x1, the new state is calculated as s3 = δext(s2, e, x1).
In this case, we say that the system performs an external transition. Function
δext (δext : S × �+

0 × X → S) is called the external transition function. No
output event is produced during an external transition.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Discrete Event Systems and DEVS

The Definition of DEVS V
The Specification of an Atomic DEVS Model

Let us consider the following simple example: A system receives positive numbers in
an asynchronous way. After it received a number x , it generates an output event with
the number x/2 after 3 · x time units.

A DEVS model that correctly represents this behavior is the following:

MF = (X , Y , S, δint , δext , λ, ta), where

X = Y = S = �+

δint (s) = ∞
δext (s, e, x) = x

λ(s) = s/2

ta(s) = 3 · s

Observe that the state can assume a time advance equal to ∞. When this occurs, we
say that the system is in a passive state, since it will no longer change its state, unless
and until it receives an input event.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Discrete Event Systems and DEVS

The Definition of DEVS VI
The Specification of an Atomic DEVS Model

Let us analyze what happens with the model M1 when it receives an input event
trajectory. Consider for instance that input events occur at times t = 1, t = 3, and
t = 10 with the values 2, 1, and 5, respectively. Suppose that initially we have t = 0,
s = ∞ and e = 0.

Then, the following behavior would be observed:

time t = 0:
s = ∞
e = 0
ta(s) = ta(∞) = ∞

time t = 1− :
s = ∞
e = 1

time t = 1:
s = δext (s, e, x) = δext (∞, 1, 2) = 2

time t = 1+:
s = 2
e = 0
ta(s) = ta(2) = 6

time t = 3− :
s = 2
e = 2

time t = 3:
s = δext (s, e, x) = δext (2, 2, 1) = 1

time t = 3+:
s = 1
e = 0
ta(s) = ta(1) = 3

time t = 6:
output event with value λ(s) = λ(1) = 0.5
s = δint (s) = δint (1) = ∞

. . .

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Coupled DEVS Models

Coupled DEVS Models

Atomic DEVS models can be coupled to form more complex models. The most simple
manner for defining the coupling between DEVS models is through the use of input
and output ports.

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

Ma

Mb

N

We notice the following couplings:

� from the input port in0 of model N
to the input port in0 of model Ma,

� from the output port out1 of model
Ma to the input port in0 of model
Mb,

� from the output port out0 of model
Ma to the output port out0 of model
N,

etc.

The resulting coupled model N can be used as if it were a new atomic
model.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Coupled DEVS Models

Example: DEVS Model of a Static Function

Let us consider a system that calculates a static function f (u0, u1), where u0 and u1

are real-valued piecewise constant trajectories generated by other subsystems. We can
represent piecewise constant trajectories by sequences of events, if we relate each
event to a change in the trajectory value.

Using this idea, we can build the following atomic DEVS model:

MF = (X , Y , S, δint , δext , λ, ta), where

X = Y = � × N0

S = �2 × �+
0

δint(s) = δint (u0, u1, σ) = (u0, u1, ∞)

δext (s, e, x) = δext (u0, u1, σ, e, xv , p) = s̃

λ(s) = λ(u0, u1, σ) = (f (u0, u1), 0)

ta(s) = ta(u0, u1, σ) = σ

where:

s̃ =

{
(xv , u1, 0) if p = 0
(u0, xv , 0) otherwise

Some considerations concerning this model:

� The input and output events carry, beside
from the value of the signal itself, an integer
number that indicates the corresponding port.

� The discrete state contains three
components: u0, u1, and σ. The first two
maintain the last value received for u0(t) and
u1(t), whereas σ indicates the time interval
until the next output event.

� When an input event arrives, it is assigned
the value σ = 0. In this way, an immediate
output event is being scheduled.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Simulation of DEVS Models

Simulation of DEVS Models

DEVS models can be simulated with a simple ad-hoc program written in any
language. In fact, the simulation of a DEVS model is not much more complicated
than that of a discrete-time model.

A basic algorithm that may be used for the simulation of a coupled DEVS model can
be described by the following steps:

1. Identify the atomic model that, according to its time advance and elapsed time,
is the next to perform an internal transition. Call the system d∗, and let tn be
the time of the aforementioned transition.

2. Advance the simulation clock t to t = tn and execute the internal transition
function of model d∗.

3. Propagate the output event produced by d∗ to all atomic models connected to
it through its output ports while executing the corresponding external transition
functions. Then return to step 1 above.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Simulation of DEVS Models

Simulation of DEVS Models II

One of the simplest ways for implementing these steps is by writing a program with a
hierarchical structure equivalent to the hierarchical structure of the model to be
simulated.

A routine called DEVS-simulator is associated with each atomic DEVS model, and a
different routine called DEVS-coordinator is related to each coupled DEVS model. At
the top of the hierarchy, there is a routine called DEVS-root-coordinator that manages
the global simulation time.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

atomic1 atomic2 atomic3

coupled1

coupled2

simulator1 simulator2

simulator3coordinator1

coordinator2

root − coordinator

There exist several software tools that support directly the simulation of DEVS
models. The one that we shall be using is called PowerDEVS. It was developed by
Ernesto Kofman at the Universidad Nacional de Rosario (Argentina). It is the DEVS
modeling and simulation environment that is most suitable for our purposes.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

DEVS and Continuous System Simulation

DEVS and Continuous System Simulation

In the example of the DEVS model of the static function, we represented piecewise
constant trajectories as sequences of events. The same idea can also be used to
approximate continuous systems using DEVS.

We can divide the quantized continuous system into:

a dynamic system:

ẋ(t) = dx (t)

q(t) = floor[x(t)]

and a static function:

dx (t) = −q(t) + u(t)

where u(t) = 10 · ε(t − 1.76).

The system can be represented using the following
block diagram:

q(t)u(t) x(t)dx (t) ∫

Each of the two subsystems has input and output trajectories that are piecewise
constant. It is thus possible to represent them through DEVS models.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

DEVS and Continuous System Simulation

DEVS Models of Quantized Systems

The static function can be represented using the DEVS model MF introduced earlier.

The dynamic system can be represented by the following DEVS model:

MQI = (X , Y , S, δint , δext , λ, ta), where

X = Y = � × N

S = �2 × Z × �+
0

δint (s) = δint (x, dx , q, σ) = (x + σ · dx , dx , q + sign(dx),
1

|dx |
)

δext (s, e, x) = δext (x, dx , q, σ, e, xv , p) = (x + e · dx , xv , q, σ̃)

λ(s) = λ(x, dx , q, σ) = (q + sign(dx), 0)

ta(s) = ta(x, dx , q, σ) = σ

where:

σ̃ =

⎧⎪⎨
⎪⎩

q+1−x
xv

if xv > 0
q−x
xv

if xv < 0

∞ otherwise

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

DEVS and Continuous System Simulation

PowerDEVS Model of a Quantized System

The DEVS models MF (called static function) and MQI (called quantized integrator)
are graphically represented as PowerDEVS blocks.

The blocks can then be graphically coupled to each other:

Step1
Static1 NHIntegrator

iss2disk1

Scope1

∫

∫

and the system can be simulated easily.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

DEVS and Continuous System Simulation

Quantized Systems: Generalization

We can generalize this idea:

Given the time-invariant continuous system
(state-space model):

ẋa1 = f1(xa1 , xa2 , · · · , xan , u1, · · · , um)
.
..

ẋan = fn(xa1 , xa2 , · · · , xan , u1, · · · , um)

The system can be approximated by the
following quantized system:

ẋ1 = f1(q1, q2, · · · , qn, u1, · · · , um)
..
.

ẋn = fn(q1, q2, · · · , qn, u1, · · · , um)

which can be represented by the following
block diagram:

q

u
x1

xn

f1

fn

q1

qn

...

∫

∫

We can model a generic time-invariant quantized system using DEVS models of the
static function and quantized integrator types.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

DEVS and Continuous System Simulation

Quantized Systems: Illegitimacy

Unfortunately, there is a problem with the legitimacy of the resulting DEVS model.

A DEVS model is said to be illegitimate if it performs an infinite number of
transitions in a finite interval of time.

Let us consider the quantized system:

ẋ(t) = −q(t) + 9.5 ; q(t) = floor [x(t)]

with initial condition x(0) = 10:

� At t = 0, we have q = 10 and thus ẋ(0) = −10 + 9.5 = −0.5.

� Consequently, at t = 0+, we have x(t) = 9.999 . . . and therefore q(t) = 9.

� This means that ẋ(0) = −9 + 9.5 = +0.5.

� As a consequence, we get immediately x(t) = 10 and thus return to the initial
situation.

We notice that q(t) oscillates between 10 and 9 with infinite frequency. For this
reason, the DEVS model enters an infinite loop, and the simulation cannot advance.

Luckily, this problem can be solved easily by adding hysteresis.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Quantized State Systems

Quantization Functions with Hysteresis

If we add hysteresis to the relationship between x(t) and q(t), the oscillations in q(t)
can only be produced by large oscillations in x(t) that cannot occur instantaneously,
as long as the magnitude of the state derivatives remains bounded.

Definition (Function of Quantization with Hysteresis)

Given an ordered sequence of increasing real-valued numbers (. . . , Q−1, Q0, Q1, . . .),
we say that q(t) is related to x(t) through a quantization function with hysteresis, if:

q(t) =

⎧⎪⎪⎨
⎪⎪⎩

Qm if t = t0 ∧ Qm ≤ x(t0) < Qm+1

Qk+1 if x(t) = Qk+1 ∧ q(t−) = Qk

Qk−1 if x(t) = Qk − εk ∧ q(t−) = Qk

q(t−) otherwise

The discrete values Qk are called quantization levels, and the distance Qk+1 − Qk is
called quantum. The quantum is often chosen constant. εk is the hysteresis width.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Quantized State Systems

Quantization Functions with Hysteresis II

The graph depicted below shows a quantization function with hysteresis with a
uniform quantum.

Qk

Qk

Qk+1

Qk+1 εk

q(t)

x(t)

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Quantized State Systems

QSS Method: Definition

Given the time-invariant continuous
system:

ẋa1 = f1(xa1 , xa2 , · · · , xan , u1, · · · , um)
...

ẋan = fn(xa1 , xa2 , · · · , xan , u1, · · · , um)

approximated by the quantized state
system (QSS):

ẋ1 = f1(q1, q2, · · · , qn, u1, · · · , um)
.
..

ẋn = fn(q1, q2, · · · , qn, u1, · · · , um)

where each qi is related to xi by a
hysteretic quantization function.

The QSS can be represented by the
following block diagram:

q

u
x1

xn

f1

fn

q1

qn

...

∫

∫

As before, the QSS can be subdivided into
static functions and quantized integrators.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Quantized State Systems

DEVS Representation of a QSS

The DEVS models of the static functions are the same as before (MF).

The DEVS model of the quantized integrators changes a bit due to the presence of
hysteresis:

MHQI = (X , Y , S, δint , δext , λ, ta), where

X = Y = � × N; S = �2 × Z × �+
0

δint (s) = δint (x, dx , k, σ) = (x + σ · dx , dx , k + sign(dx), σ1)

δext (s, e, xu) = δext (x, dx , k, σ, e, xv , p) = (x + e · dx , xv , k, σ2)

λ(s) = λ(x, dx , k, σ) = (Qk+sign(dx), 0)

ta(s) = ta(x, dx , k, σ) = σ

with:

σ1 =

⎧⎪⎪⎨
⎪⎪⎩

Qk+2−(x+σ·dx)

dx
if dx > 0

(x+σ·dx)−(Qk−1−ε)

|dx | if dx < 0

∞ if dx = 0

σ2 =

⎧⎪⎪⎨
⎪⎪⎩

Qk+1−(x+e·dx)

xv
if xv > 0

(x+e·dx)−(Qk−ε)

|xv | if xv < 0

∞ if xv = 0

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Quantized State Systems

Simulation with QSS

� In order to simulate a model using the QSS algorithm, we begin by choosing the
quantum to be used by each state variable, i.e., by each hysteretic quantized
integrator.

� We then would need to program the static functions and the hysteretic
quantized integrators.

� However, PowerDEVS already comes with a library of pre-coded models of
hysteretic quantized integrators (the user only needs to choose the quantum)
and many different frequently used static functions (summers, limiters, etc.).

� It usually suffices to graphically construct the block diagram describing the
system, choosing the quantum used by each of the state variables, and dragging
the appropriate static functions from the graphical library and dropping them
into the diagram window.

� It should be mentioned, however, that the QSS algorithm is independent of
DEVS. We chose DEVS for the implementation of the QSS method, because
DEVS simplified our work. However, we could have programmed the QSS
method also independently of DEVS using any other event description
formalism.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Quantized State Systems

Simulation with QSS: An Illustrative Example

Let us consider the following second-order system and its QSS approximation:

ẋa1 (t) = xa2 (t)
ẋa2 (t) = 1 − xa1 (t) − xa2 (t)

ẋ1(t) = q2(t)
ẋ2(t) = 1 − q1(t) − q2(t)

To simulate this system, we simply construct the block diagram using the hysteretic
quantized integrator and the appropriate static functions of PowerDEVS:

+K
Step1

WSum1 Integrator1Integrator2

iss2disk1 iss2disk2

Scope1

∫

∫∫

∫

� The initial conditions are parameters
of the integrators (in our case:
x1(0) = x2(0) = 0).

� The quantum and the hysteresis are
parameters of each integrator (here:
Qk+1 − Qk = ΔQ = εk = 0.05).

� The QSS method intrinsically
exploits sparsity (events are only
propagated between directly
connected blocks).

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Quantized State Systems

Simulation with QSS: An Illustrative Example II

The simulation results are shown below:

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Results of the QSS Simulation

time

q
i(

t)
,
x i

(t
)

x1(t), q1(t)

x2(t), q2(t)

� The trajectories of the state
variables xi (t) are piecewise
linear.

� The trajectories of the
quantized states qi (t) are
piecewise constant.

� The presence of the
hysteresis is easy to observe
where the signs of the state
derivatives ẋi (t) change.

� The obtained solution is
quite close to the analytical
solution.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

Conclusions

Conclusions

� In this presentation, we introduced a new type of discretization. Instead of
discretizing the time, we proposed a quantization of the state variables.

� We then outlined a new numerical integration algorithm based on this idea, the
QSS algorithm, that operates on quantized states with hysteresis.

� QSS simulations are intrinsically asynchronous. Each state variable changes its
value independently of the other state variables.

� The QSS algorithm exploits the sparsity of the model topology. Events are
propagated only between blocks that are directly connected.

� Unfortunately, the QSS algorithm cannot be easily programmed as a Matlab
function. Instead, we also introduced a new tool, PowerDEVS, that has been
specifically designed for the numerical simulation of continuous systems using
QSS algorithms.

Numerical Simulation of Dynamic Systems XXV

Discrete Event Simulation

References

References

1. Cellier, F.E., E. Kofman, G. Migoni, and M. Bortolotto (2008), “Quantized
State System Simulation,” Proc. GCMS’08, Grand Challenges in Modeling and
Simulation, part of SCSC’08, Summer Computer Simulation Conference,
Edinburgh, Scotland, pp. 504-510.

2. Wang, Q., and F.E. Cellier (1990), “Time Windows: An Approach to
Automated Abstraction of Continuous-time Models into Discrete-event
Models,” Intl. J. General Systems, 19(3), pp. 241-262.

3. Wang, Qingsu (1989), Management of Continuous System Models in
DEVS-Scheme: Time Windows for Event-Based Control, MS Thesis, Dept. of
Electr. & Comp. Engr., University of Arizona, Tucson, AZ.

http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/scsc_08.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/scsc_08.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/ijgs_91.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/ijgs_91.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/DEVS/ijgs_91.pdf
http://www.inf.ethz.ch/personal/fcellier/MS/wang_ms.html
http://www.inf.ethz.ch/personal/fcellier/MS/wang_ms.html

	Discrete Event Simulation
	
	
	
	
	
	
	
	
	

