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Introduction

This 27th and final presentation of the class on the Numerical Simulation of Dynamic
Systems deals with “Chapter 13 of a 12-chapter book,” i.e., it discusses a number of
issues related to Quantized State System (QSS) solvers that were discovered only
after the book went to print.

� Until now, we have always controlled the absolute integration error. It may be
more robust to control the relative integration error, as this quantity doesn’t
need to be set for each simulation separately. Hence being able to specify the
relative error tolerance makes the software more robust and user-friendly.

� Until now, we have only dealt with non-stiff QSS-based integrators. Yet, we
know from the earlier presentations that large systems are almost invariably stiff,
and consequently, we shall need also stiff QSS-based integrators. Such
algorithms have meanwhile been developed and shall be discussed in this
presentation.

� Also of importance are special solvers for dealing with marginally stable systems,
and indeed, an F-stable QSS-based solver has also been developed since the
book went to press.
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� A type of models that we haven’t dealt with in this class is models that contain
delays. We call a set of ordinary differential equations with delays a delay
differential equation (DDE) model, and we call algorithms that are suitable for
the simulation of DDE models numerical DDE solvers. A QSS-based DDE
solver has meanwhile also been developed and shall be discussed.

� Finally, a few remarks shall be offered on the use of QSS-based algorithms in
real-time simulations.
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Choosing the Quantum Size

Let us suppose that we wish to simulate a system in which a state variable x1 grows
from 0 to 1000, while x2 grows from 0 to 1.

� Using QSS, if we use a quantum of ΔQ1 = ΔQ2 = 0.1, variable q1 will change
10, 000 times, while variable q2 will change only 10 times.

� Using QSS2 or QSS3, the number of steps differs in a less dramatic way, but it
still depends on the amplitude of the signals to be integrated.

� Consequently, an appropriate value of the quantum used for each state variable
depends on the variability of that state variable.

� Unfortunately, before performing the simulation, we normally do not know, how
the state variables will develop over time.

We need some mechanism to adjust the size of the quantum automatically during
the simulation in accordance with the values that the state variable assumes over
time.
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We shall set the quantum proportional to the absolute value of each state. Also, to
avoid problems around zero, we shall limit the minimum quantum value.

Thus, we shall express the quantum size as:

ΔQi (t) = max(ΔQreli · |xi (tk )|, ΔQmini
)

where tk is the time of the last change of qi (t).

The parameters Qrel and Qmin can be specified for each hysteretic quantized
integrator separately.

This idea can be applied to all QSS methods.

Numerical Simulation of Dynamic Systems XXVII

Logarithmic Quantization

Logarithmic Quantization

Logarithmic Quantization II

Logarithmic Quantizer

ΔQmin

x(t)

q(t)
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Perturbed Representation

Recall that the QSS approximation of a linear time-invariant ODE:

ẋa(t) = A · xa(t) + B · u(t)

can be written as:
ẋ(t) = A · q(t) + B · u(t)

Defining Δx(t) � q(t) − x(t), we have:

ẋ(t) = A · (x(t) + Δx(t)) + B · u(t)

This perturbed representation does not depend on the type of quantization. However,
with logarithmic quantization, the upper bound of |Δx(t))| depends on the state value
x(t).
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Stability and Error Bound

Assume that matrix A = V · Λ · V−1 is Hurwitz, and define:

R � |V| · |Re(Λ)−1Λ| · |V−1|

Let ΔQrel be a diagonal matrix with entries ΔQreli , and let ΔQmin be a column vector
with components ΔQmini

. Then, provided that all eigenvalues of the matrix R · ΔQrel

lie inside the unit circle, it can be shown that:

|e(t)| ≤ (I(n) − R · ΔQrel)
−1 · R · max(ΔQrel · xmax,ΔQmin)

where xmax is the column vector of the maximum absolute values reached by each
component of the analytical solution xa(t).
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� Generally, ΔQrel is chosen small, which ensures that all eigenvalues of R · ΔQrel

lie inside the unit circle.

� In this case, we can approximate (I(n) − R · ΔQrel)
−1 ≈ I(n).

� Also, xmax is normally much bigger than ΔQmin.

� Usually, we shall choose ΔQreli = tolrel for all i .

In this case, we obtain:

|e(t)| ≤ (I(n) − R · ΔQrel)
−1 · R · max(ΔQrel · xmax,ΔQmin) ≈ R · tolrel · |xmax|

The use of logarithmic quantization yields an intrinsic control of the relative error.
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QSS Methods and Stiff Systems

The linear time-invariant system:

ẋ1(t) = 0.01 x2(t)

ẋ2(t) = −100 x1(t) − 100 x2(t) + 2020

has eigenvalues λ1 ≈ −0.01 and λ2 ≈ −99.99, and consequently, the model is stiff.

The QSS method approximates this system by:

ẋ1(t) = 0.01 q2(t)

ẋ2(t) = −100 q1(t) − 100 q2(t) + 2020

Let us simulate this system using the QSS solver with initial conditions x1(0) = 0 and
x2(0) = 20 and with the quantization ΔQ1 = ΔQ2 = 1.
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QSS Methods and Stiff Systems II
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QSS Methods and Stiff Systems III
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� Stiff systems usually provoke fast oscillations on the QSS solutions.

� Consequently, the number of steps is very large.

� In the simulated example, there were 21 changes in q1 and 15, 995 changes in
q2 for a final simulation time of tf = 500 seconds .

Evidently, the QSS method is not appropriate for the simulation of stiff systems.
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Backward QSS: Basic Idea

How can we prevent oscillations?

� In classical solvers, we had to use future values of state derivatives, i.e., implicit
methods, in order to obtain stiff system solvers.

� Let us try to do the same also in QSS-based methods. We shall choose qj such
that it represents a future value of xj .

� In QSS, after a step in qj , we set qj (t) = xj(t). Now, we shall set
qj (t) = xj (t) ± ΔQj depending on the sign of ẋj (t).

� It may happen that ẋj(t)
∣∣
xj +ΔQj

< 0 and ẋj (t)
∣∣
xj−ΔQj

> 0. In that case, we

cannot choose a suitable value for qj . However in that case, there must exist a
value q̂j ∈ (xj − ΔQj , xj + ΔQj ) for which ẋj = 0.

� If this happens, we keep qj (t) = xj(t), but set ẋj(t) = 0, i.e., no further internal
transition gets scheduled for the state variable in question.

This is an implicit algorithm, but it does not require a Newton iteration, as qj (t) can
only assume one of two values at each step. The method is called Backward QSS
(BQSS) solver.
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Backward QSS Method

Backward Quantization

Backward Quantizer

ΔQ

Input

Output
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� In non-stiff QSS solvers, the trajectories of q(t) and x(t) at the beginning of the
step always move away from each other. The next internal transition is
scheduled to occur at time t̂, where |q(t̂−) − x(t̂)| = ΔQ. At that time, q(t) is
reset to q(t̂+) = x(t̂).

� In stiff QSS solvers, the trajectories of q(t) and x(t) at the beginning of the
step always move toward each other. The next internal transition is scheduled
to occur at time t̂, where |q(t̂−) − x(t̂)| = 0. At that time, q(t) is reset to
q(t̂+) = x(t̂) ± ΔQ.

� In BQSS, if q(t̂+) cannot be chosen such that the trajectories move toward
each other, then no internal transition is scheduled, i.e., the time advance
function is set to ∞, and ẋ(t) is set to ẋ(t) = 0 irrespective of the current value
of the input signal to the hysteretic quantized integrator.

� Higher-order stiff QSS solvers need additional provisions that shall be discussed
in due course.
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Backward QSS: An Example
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Quantization Functions in BQSS

xi

qi

ΔQi

ε

� BQSS uses a lower and
an upper hysteretic
quantization function
for each state.

� They compute a lower
and an upper quantized
state, q

j
and qj .

� The quantized state qj

is chosen from them in
accordance with the
sign of ẋj .
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BQSS Definition

Given the system:
ẋ(t) = f(x(t), u(t))

BQSS approximates it as:
ẋ(t) = f(q(t), u(t)) + Δf

where the components qj of q take the values of either the lower quantized state q
j
(t)

or the upper quantized state qj (t), such that:

fj(q(t), u(t)) · (qj (t) − xj (t)) > 0

∨

∃q̂j ∈ (q
j
(t), qj (t))

∣∣
fj (q̂

(j)(t),u(t))
= 0

with q̂(j)(t) = [q1, . . . , q̂j , . . . , qn]T .
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In the BQSS approximation:

ẋ(t) = f(q(t), u(t)) + Δf

the terms Δfj will satisfy:

Δfj =

{
0, if fj (q(t), u(t)) · (qj − xj) > 0
−fj(q(t), u(t)), otherwise
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Algorithm to Obtain q(t)

When a state xi (t) reaches the quantized state qi (t), we proceed as follows:

Algorithm:

1. We update q
i
and qi and choose qi = qi or qi = q

i
depending on the sign of

ẋi (t
−).

2. We evaluate the functions fj depending on qi .

3. If some fj changes its sign:

� We change qj according to the new sign of ẋj .

Otherwise

� End of the Algorithm.

4. We evaluate the functions fj depending on the quantized states qi that changed
and we return to step 3.

Restriction: We do not allow any qj to change more than once in the process.

Numerical Simulation of Dynamic Systems XXVII

QSS Methods for Stiff Systems

Backward QSS Method

BQSS and PowerDEVS

� The block diagram structure of BQSS is the same as that of QSS.

q1(t)

qn(t)

.

.

.

u(t)

q(t)

d1(t)

dn(t)

f1(·)

fn(·) Int. BQSS

Int. BQSS

� The static functions are the same as for QSS.

� The hysteretic quantized integrators are similar, but:

� they compute qi in accordance with the algorithm just outlined,

� when the calculated value of qi does not agree with the sign of ẋi , they

act as if ẋi = 0.
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Stability and Error Bound of BQSS

BQSS is very similar to QSS, but it has an additional perturbation term that enforces
that ẋi = 0 when a consistent value for qi cannot be found.

ẋ(t) = f[q(t), t] + Δf(t) = f[x(t) + Δx(t), t] + Δf(t)

where |Δxi | ≤ ΔQi + εi .

As a consequence:

� The global error formula of BQSS for linear time-invariant stable systems now
becomes:

|xa(t) − x(t)| ≤ |V| · |Re(Λ)−1V−1| · |A| · (ΔQ + ε) ; ∀t ≥ 0

� The hysteresis width ε should now be chosen smaller than the quantum, so it
does not introduce unnecessary errors.

� The simulation trajectories are numerically stable for any quantum adopted.
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Example: Second-order Linear System

� Eigenvalues

λ1 = −0.01;
λ2 = −99.99

� Initial states

x1(0) = 0; x2(0) = 20

� Quantization
S1 ΔQ1,2 = 1
S2 ΔQ1,2 = 0.1
S3 ΔQ1,2 = 0.01

� Number of Events
S1 x1 : 20; x2 : 22
S2 x1 : 201; x2 : 201
S3 x1 : 2006; x2 : 2024

� Error Bound
S1 e1 ≤ 3; e2 ≤ 5
S2 e1 ≤ 0.3; e2 ≤ 0.5
S3 e1 ≤ 0.03; e2 ≤ 0.05

ẋ1(t) = 0.01 x2(t)

ẋ2(t) = −100 x1(t) − 100 x2(t) + 2020
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Example: Second-order Linear System II

Some remarks:

� As there are no oscillations, the number of events is the division between each
signal amplitude and the corresponding quantum.

� Consequently, the number of steps grows inversely proportional to the
quantization.

� The simulation reaches a stable situation some time before t = 500 seconds ,
and after that, the simulation stops, as no further events are being scheduled.

� The theoretical error bound is conservative in this example.
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Main Features of BQSS

Advantages:

� BQSS solves the problem of high-frequency oscillations exhibited when
simulating stiff systems using explicit QSS methods.

� BQSS does not require Newton iterations, which permits the efficient numerical
simulation of many stiff systems.

� BQSS is also efficient for discontinuity handling.

� BQSS can be used for real-time simulation of stiff systems.

Disadvantages:

� Spurious equilibrium points may appear in nonlinear systems due to the terms
Δfi .

� The number of steps grows linearly with the accuracy. Unfortunately, we have
not found any way to extend the BQSS algorithm to higher orders of
approximation accuracy.
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LIQSS: Basic Idea

The Linearly Implicit QSS (LIQSS) algorithm is based on an idea very similar to that
of BQSS.

� Just as in BQSS, we shall choose qj such that it represents a future value of xj .

� Just as in BQSS, we set qj (t) = xj(t) ± ΔQj depending on the sign of ẋj(t).

� The main difference with BQSS is that, when we cannot find qj such that xj

moves towards it, we now attempt to determine the value of q̂j that makes
ẋj = 0, instead of enforcing ẋj = 0 by adding a perturbation term Δfj .

� The search for q̂j is done in a linear manner.

� Contrary to BQSS, once we have computed a new value for qj , no further
internal transition will be scheduled, until xj has advanced by ±ΔQj , even if the
sign of ẋj changes during the step.
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LIQSS and PowerDEVS

� The block diagram structure of LIQSS is the same as that of QSS and BQSS.

q1(t)

qn(t)

.

.

.

u(t)

q(t)

d1(t)

dn(t)

f1(·)

fn(·) Int. LIQSS

Int. LIQSS

� The static functions are the same as for QSS and BQSS.

� The hysteretic quantized integrators are similar, but:

� before they output a new value for qi , they estimate the value of the

derivative ẋi that each of the two options would produce;

� if one of them has the correct sign, i.e., xi → qi , that value is chosen;

� otherwise, the value q̂i is estimated that makes ẋi = 0.
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Stability and Error Bound of LIQSS

Given the system:
ẋ(t) = f(x(t), u(t))

Its LIQSS approximation is governed by the same expression as that of QSS:

ẋ(t) = f(q(t), u(t)) = f(x(t) + Δx(t), u(t))

However, qi can now differ from xi by an amount of 2 · ΔQi (after sign changes in ẋi ).

The properties of LIQSS are almost identical to those of QSS, but the error bound
is twice the error bound of QSS.
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Example: Second-order Linear System

� Eigenvalues

λ1 = −0.01;
λ2 = −99.99

� Initial states

x1(0) = 0; x2(0) = 20

� Quantization
S1 ΔQ1,2 = 1
S2 ΔQ1,2 = 0.1
S3 ΔQ1,2 = 0.01

� Number of Events
S1 x1 : 21; x2 : 25
S2 x1 : 201; x2 : 203
S3 x1 : 2006; x2 : 2026

� Error Bound
S1 e1 ≤ 2; e2 ≤ 6
S2 e1 ≤ 0.2; e2 ≤ 0.6
S3 e1 ≤ 0.02; e2 ≤ 0.06

ẋ1(t) = 0.01 x2(t)

ẋ2(t) = −100 x1(t) − 100 x2(t) + 2020
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Example: Second-order Linear System II

Some remarks:

� As there are no oscillations, the number of events is the division between each
signal amplitude and the corresponding quantum.

� Consequently, the number of steps grows inversely proportional to the
quantization.

� The simulation reaches a stable situation some time before t = 500 seconds ,
and after that, the simulation stops, as no further events are being scheduled.

� The theoretical error bound is conservative in this example.
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Main Features of LIQSS

Advantages:

� LIQSS shares the main advantages of BQSS.

� LIQSS solves the problem of spurious equilibrium points of BQSS.

Disadvantages:

� The number of steps still grows linearly with the accuracy. However, it is
possible to obtain higher-order LIQSS methods.

� LIQSS only looks at the main diagonal of the Jacobian matrix, allowing it
sometimes to happen that ẋj changes its direction without causing a
modification of qj . In such cases, LIQSS can provoke oscillations depending on
the system structure, i.e., the algorithm may lose its stiffly-stable nature.
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Linearly Implicit QSS Methods

LIQSS2: Basic Idea

� LIQSS2 is similar to QSS2. The quantized variables qj (t) are piecewise linear.

� Each section of qj (t) starts at xj(t) ± ΔQj with a slope of q̇j (t) = ẋj(t)|qj (t).

� We shall attempt to ensure, just as in the case of LIQSS, that xj (t) moves
toward qj (t). That is, we demand that ẍj(t) · (qj (t) − xj (t)) > 0.

� When this is not possible, we shall use a linear approximation to find the value
q̂j (t) with slope q̇j (t) = ẋj (t)|q̂j (t), for which ẍj(t) = 0.

� Although this is an implicit algorithm, there is no need for Newton iterations to
take place, as only three possible trajectories can be chosen for qj (t).
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Linearly Implicit QSS Methods

LIQSS2: Trajectories
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LIQSS2 and PowerDEVS

� The block diagram structure of LIQSS2 is the same as that of QSS2.

q1(t)

qn(t)

.

.

.

u(t)

q(t)

d1(t)

dn(t)

f1(·)

fn(·) Int. LIQSS2

Int. LIQSS2

� The static functions are the same as for QSS2.

� The hysteretic quantized integrators are similar, but:

� before they output a new value for qi , they estimate the value of the

second derivative ẍi that each of the two options would produce;

� if one of them has the correct sign, i.e., xi → qi , that value is chosen;

� otherwise, the value q̂i is estimated that makes ẍi = 0.
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Linearly Implicit QSS Methods

Stability and Error Bound of LIQSS2

Given the system:
ẋ(t) = f(x(t), u(t))

Its LIQSS2 approximation is governed by the same expression as that of QSS:

ẋ(t) = f(q(t), u(t)) = f(x(t) + Δx(t), u(t))

However, just as in the case of LIQSS, qi can now differ from xi by an amount of
2 · ΔQi (after sign changes in ẍi ).

The properties of LIQSS2 are identical to those of LIQSS.
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Linearly Implicit QSS Methods

Example: Second-order Linear System

� Eigenvalues

λ1 = −0.01;
λ2 = −99.99

� Initial states

x1(0) = 0; x2(0) = 20

� Quantization
S1 ΔQ1,2 = 1
S2 ΔQ1,2 = 0.1
S3 ΔQ1,2 = 0.01

� Number of Events
S1 x1 : 5; x2 : 8
S2 x1 : 18; x2 : 22
S3 x1 : 57; x2 : 65

� Error Bound
S1 e1 ≤ 2; e2 ≤ 6
S2 e1 ≤ 0.2; e2 ≤ 0.6
S3 e1 ≤ 0.02; e2 ≤ 0.06

ẋ1(t) = 0.01 x2(t)

ẋ2(t) = −100 x1(t) − 100 x2(t) + 2020
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Linearly Implicit QSS Methods

Example: Second-order Linear System II

Some remarks:

� The number of steps grows inversely proportional to the square root of the
quantization.

� The theoretical error bound is conservative in this example.
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Main Features of LIQSS2

Advantages:

� LIQSS2 shares all the advantages of LIQSS.

� LIQSS2 is second-order accurate.

� The number of steps grows with the square root of the accuracy.

� Recent results indicate that LIQSS2 is particularly well suited for simulating
power electronics circuits.

Disadvantages:

� LIQSS2 only looks at the main diagonal of the Jacobian matrix, allowing it
sometimes to happen that ẍj changes its direction without causing a
modification of qj . In such cases, LIQSS2 can provoke oscillations depending on
the system structure, i.e., the algorithm may lose its stiffly-stable nature.
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LIQSS3: Basic Idea

� LIQSS3 is similar to QSS3. The quantized variables qj (t) are piecewise
parabolic.

� Each section of qj (t) starts at xj(t) ± ΔQj with a slope of q̇j (t) = ẋj(t)|qj (t)

and a second derivative of q̈j (t) = ẍj(t)|qj (t).

� We shall attempt to ensure, just as in the cases of LIQSS and LIQSS2, that
xj(t) moves toward qj (t). That is, we demand that

...
x j(t) · (qj (t) − xj (t)) > 0.

� When this is not possible, we shall use a linear approximation to find the value
q̂j (t) with slope q̇j (t) = ẋj (t)|q̂j (t) and with second derivative q̈j (t) = ẍj (t)|q̂j (t),

for which
...
x j (t) = 0.

� Although this is an implicit algorithm, there is no need for Newton iterations to
take place, as only three possible trajectories can be chosen for qj (t).
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Linearly Implicit QSS Methods

Main Features of LIQSS3

Advantages:

� LIQSS3 shares all the advantages of LIQSS2.

� LIQSS3 is third-order accurate.

� The number of steps grows with the cubic root of the accuracy.

� Recent results indicate that LIQSS3 is particularly well suited for simulating
power electronics circuits.

Disadvantages:

� LIQSS3 only looks at the main diagonal of the Jacobian matrix, allowing it
sometimes to happen that

...
x j changes its direction without causing a

modification of qj . In such cases, LIQSS3 can provoke oscillations depending on
the system structure, i.e., the algorithm may lose its stiffly-stable nature.
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QSS and BQSS and Marginally Stable Systems

Marginally Stable Systems

The following system is known as the harmonic oscillator:

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)

The harmonic oscillator is the simplest marginally stable system.

If we consider, for instance, the initial states x1(0) = 4 and x2(0) = 0, we obtain the
analytical solution:

x1(t) = 4 cos(t)

x2(t) = 4 sin(t)

We already know that F-stable methods are needed to properly integrate such systems.

Let us check what happen with QSS and BQSS.
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QSS, BQSS and Marginally Stable Systems
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QSS and BQSS and Marginally Stable Systems

QSS, BQSS and Marginally Stable Systems II

The results are consistent with what we know about classic time-slicing methods:

� The numerical solution with the forward QSS method gains energy and
generates output trajectories that are numerically unstable, just as Forward
Euler would.

� The numerical solution with the backward QSS method loses energy and
generates output trajectories that are asymptotically stable, just as Backward
Euler would.

Evidently, neither of the two methods is suited for the simulation of marginally
stable systems.
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Centered QSS Method

Centered QSS Method

The simplest F-stable time-slicing method is the trapezoidal rule, which combines
Forward and Backward Euler. So, it may make sense to try some combination of QSS
and BQSS.

Recall that:

� In QSS, we take qj as the last quantized value intersected by xj .

� In BQSS, we take qj as the next quantized value intersected by xj .

Let us see what happens if we take qj as the mean value between the last and the
next quantized values, i.e., if we choose qj in the middle of the quantization interval.
We shall call this new method Centered QSS (CQSS) solver.
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Centered QSS Method

Centered Quantization

Centered Quantizer

ΔQ

Input

Output
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Centered QSS Method

CQSS Simulation of the Harmonic Oscillator
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Centered QSS Method

CQSS Features

� CQSS preserves the periodical behavior of the harmonic oscillator.

� It has been proven that CQSS preserves the geometrical properties of general
Hamiltonian (conservative, frictionless) systems: the method is symmetric,
symplectic, and it preserves ρ-reversibility.

� Just like QSS and BQSS, the method does not call for Newton iterations. In
fact, it is the only known solver that exhibits F-stability while terminating the
computations associated with a single step in a fixed amount of real time that
can be calculated beforehand.

� Consequently, CQSS is well suited for real-time simulation of marginally stable
systems with low to modest accuracy requirements.

� Unfortunately, CQSS is only first-order accurate. There are reasons to believe
that higher-order CQSS methods cannot be constructed.

� It is certainly possible to design higher-order QSS-based solvers that are
decently well suited for the simulation of marginally stable systems, e.g., by
creating a cyclic method, in which steps of QSSi toggle with steps of LIQSSi .
Unfortunately, these methods will not preserve the geometric properties of
CQSS in a strict sense, and they will not be truly F-stable.
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DQSS Methods

Delay Differential Equations

Delay differential equations (DDEs) are similar to ODEs, but their right-hand
functions also depend explicitly on past state values.

ẋ(t) = f(x(t), x(t − τ1(x, t)), ..., x(t − τm(x, t)), u(t))

The delay functions τj (·) can be constant, or they can depend on time and/or the
state itself. Instead of an initial state, DDEs need an initial history to be solvable.

� DDEs require numerical integration algorithms similar to those for ODEs.

� The algorithms are however more complex, as they must look backward in time
in order to compute the state derivatives.

� From the point of view of the numerical integration, DDEs have some features
in common with discontinuous ODEs.
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DQSS Methods

DDEs and QSS Methods

Recently obtained results show that QSS methods provide an efficient and
comparatively simple solution to the numerical integration of DDEs.

Given a DDE:

ẋ(t) = f(x(t), x(t − τ1(x, t)), ..., x(t − τm(x, t)), u(t))

The so-called DQSS methods (DQSS1, DQSS2, or DQSS3) approximate it as:

ẋ(t) = f(q(t), q(t − τ1(q, t)), ...,q(t − τm(q, t)), u(t))

where the components of q and x are related by quantization functions of the given
approximation order.
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DQSS Methods

DQSS and PowerDEVS

The block diagram of a DQSS
contains:

� hysteretic quantized
integrators to compute
qi (t),

� static functions to compute
ẋi (t),

and also:

� static functions to compute
τj (t), and

� a new type of delay blocks
that compute qi (t − τj (t))
given qi (t) and τj (t).
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DQSS Methods

DQSS and PowerDEVS II

Each of the PowerDEVS blocks can be implemented as a DEVS model.

� We already have seen the DEVS models for the hysteretic quantized integrators.

� We also have seen the DEVS models for static functions.

� We only need to still build a DEVS model for the delay block.

D
d(t) = y(t − τ(t))

τ(t)

y(t)
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DQSS Methods

The Delay Block

The inputs of the delay block y(t) and τ(t) and the output d(t) = y(t − τ(t)) are
piecewise polynomial trajectories. The maximum order of the polynomials depends on
the approximation order of the method.

� The first input y(t) will be represented as a sequence of events at times ty
k ,

carrying values y0,k , y1,k , y2,k , so that:

y(t) = y0,k + y1,k · (t − ty
k ) + y2,k · (t − ty

k )2; for ty
k < t < ty

k+1

� The second input τ(t) will be represented as a sequence of events at times tτ
j ,

carrying values τ0,j , τ1,j , τ2,j , so that:

τ(t) = τ0,j + τ1,j · (t − tτ
j ) + τ2,j · (t − tτ

j )2; for tτ
j < t < tτ

j+1

� The DEVS delay model computes the corresponding event sequences of
d(t) = y(t − τ(t)).
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DQSS Methods

The Delay Algorithm

]

]
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DQSS Methods

Theoretical Properties of DQSS

Given a DDE with constant delays of the form:

ẋ(t) = A · x(t) +
m∑

i=1

Ai · x(t − τi )

where the analytical solution x(t) = 0 corresponding to the trivial initial history is
asymptotically stable, then:

� The absolute global error committed by any DQSS method is bounded for any
quanta adopted.

� The error goes to zero when the quantization goes to zero.

There is a similar property for general nonlinear DDE models with state and time
dependent delays. In that case, a stronger condition (input-to-state stability) is
required for the original system, and the global error boundedness is only guaranteed
for sufficiently small quanta.

Numerical Simulation of Dynamic Systems XXVII

QSS Methods for Delay Differential Equations

DQSS Methods

DQSS Features

� The usage of QSS methods for DDE simulations provides highly efficient
algorithms that often improve on the results obtained by classic time-slicing
methods.

� While conventional methods for ODEs must be almost entirely reformulated to
deal with DDEs, QSS methods reduce the problem of the delays to polynomial
manipulations locally managed by a new atomic DEVS block. The static
functions and hysteretic quantized integrators remain unchanged.

� DQSS solvers have strong theoretical properties regarding stability, convergence,
and accuracy that guarantee the correctness of the results.
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QSS Methods in Real Time

QSS Methods in Real Time

QSS methods have features that make them particularly suitable for running
simulations in real time:

� They detect and handle discontinuities without iterations.

� They can integrate many stiff systems in predetermined time, i.e., without
requiring Newton iterations.

� If real-time speed cannot be attained, accuracy can be sacrificed by increasing
the quantum. This would only affect accuracy, whereas stability will be
preserved.

� They offer dense output. Thus, the simulation outputs can be communicated at
any instant of time.

� These algorithms are naturally asynchronous. Hence distributing QSS
simulations across a parallel multi-processor architecture is trivial.
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PowerDEVS in Real Time

PowerDEVS in Real Time

A version of PowerDEVS runs on a real-time operative system called Linux RTAI,
with the following features:

� Simulations can be synchronized with the real-time clock with a precision of
roughly 1μs .

� PowerDEVS-RT offers special modules to detect and process hardware
interrupts.

� PowerDEVS-RT permits to communicate with input and output hardware ports
in a very simple fashion.

� PowerDEVS-RT has been successfully used in the real-time simulation of power
electronic converters, working at frequencies where most real-time simulation
tools fail.



Numerical Simulation of Dynamic Systems XXVII

QSS Methods and Real Time Simulation

Conclusions

Conclusions

� A broad palette of different QSS-based algorithms has been presented in the last
three presentations.

� QSS-based algorithms have meanwhile proven themselves to offer an interesting
and innovative new approach to numerical ODE, DAE, and DDE solutions for
many different problems.

� QSS-based algorithms can be highly competitive when used for applications
with low to average accuracy requirements. Problems calling for high-order
algorithms cannot be dealt with effectively using QSS-based solvers.

� Already QSS4 is rarely more cost-effective than QSS3, because the increased
overhead eats into the benefit to be reaped from the larger step sizes. Already
QSS5 will require iterations in every step, because a fifth-order polynomial will
have to be solved, which can only be done iteratively.
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Conclusions

Conclusions II

� QSS-based algorithms are of particular interest for the simulation of systems
exhibiting frequent discontinuities, as state events can be handled much more
efficiently by state-quantization algorithms than by time-slicing algorithms.

� The benefit of QSS-based solvers becomes even more pronounced when the
discontinuous system to be simulated is furthermore stiff. A typical application
of stiff discontinuous systems are models of switching power electronic circuits.

� QSS-based solvers are very promising for the simulation of large-scale models, as
they exploit the sparsity inherent in these models naturally and directly.

� QSS-based solvers perform equally well as classical solvers when dealing with
small-scale models of systems without discontinuities. Yet in those cases, there
is nothing that the QSS solvers can exploit that would make them more
attractive than the much simpler classical ODE solvers.
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Conclusions

Conclusions III

� QSS-based algorithms are of particular interest for real-time simulation.

� Since QSS solvers are naturally asynchronous, they can be easily distributed
over a multi-processor architecture.

� The communication band-width is minimized, because communication between
two processors only takes place at event times. As long as not much is
happening, there is no need to communicate at all. Thus, also the
communication occurs in a naturally asynchronous fashion.

� The communication band-width is furthermore minimized, because only a single
bit needs to be communicated between processors to indicate a state change. A
message of “1” means that the sending state incremented its level, whereas a
message of “0” means that it decremented its level. As long as the state
variable doesn’t change its level, it doesn’t send an output event through its
output channel.
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