#### Numerical Simulation of Dynamic Systems II

Prof. Dr. François E. Cellier Department of Computer Science ETH Zurich

February 26, 2013

# State-space Models

Models of dynamic systems with concentrated parameters are commonly represented using sets of first-order ordinary differential equations (ODEs). We call these models *state-space models*.

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t)$$

where x is the *state vector*, u is the *input vector*, and t denotes the *time*, the independent variable across which we wish to simulate.

We also require *initial conditions* for the state variables:

$$\mathbf{x}(t=t_0)=\mathbf{x_0}$$

#### Taylor Series Expansion

The model can be simulated using a *Taylor series expansion*. If we know the state vector at a certain instant of time,  $t^*$ , the state vector can be calculated at some later time instant,  $t^* + h$  by means of a Taylor series expansion:

$$x_i(t^* + h) = x_i(t^*) + \frac{dx_i(t^*)}{dt} \cdot h + \frac{d^2x_i(t^*)}{dt^2} \cdot \frac{h^2}{2!} + \dots$$

The state-space model is used to compute the first derivative in the Taylor series:

$$x_i(t^* + h) = x_i(t^*) + f_i(t^*) \cdot h + \frac{df_i(t^*)}{dt} \cdot \frac{h^2}{2!} + \dots$$

The different numerical integration methods differ in their numerical approximations of the derivatives of f.

#### The Truncation Error

Evidently, it is impossible to consider all terms of the Taylor series expansion. All numerical integration methods only approximate a certain number of terms of the Taylor series. This number can be either fixed or variable.

We talk about the *approximation order* of the numerical method. An algorithm that approximates the terms of the Taylor series up to the third derivative:

$$x_i(t^* + h) = x_i(t^*) + f_i(t^*) \cdot h + \frac{df_i(t^*)}{dt} \cdot \frac{h^2}{2!} + \frac{d^2f_i(t^*)}{dt^2} \cdot \frac{h^3}{3!} + o(h^4)$$

is thus an algorithm of third-order.

The  $truncation\ error$  of the method grows proportionally with the fourth power of the  $integration\ step\ size$ , h.

#### The Roundoff Error

There exists a second type of error that results from the finite mantissa of the computer. The effects of this type of error can easily be illustrated graphically:

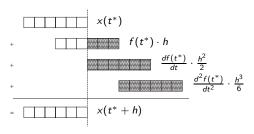


Figure: Effects of the *roundoff error* in single precision

#### The Roundoff Error II

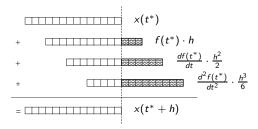


Figure: Effects of the *roundoff error* in double precision

The Roundoff Error III

#### The Approximation Accuracy

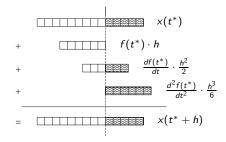


Figure: Effects of the *roundoff error* in 1.5-fold precision

### The Explicit Euler Integration

The most simple numerical ODE solver is based on the explicit so-called "Forward Euler" (FE) formula, a first-order integration method:

$$\mathbf{x}(t^* + h) \approx \mathbf{x}(t^*) + \dot{\mathbf{x}}(t^*) \cdot h$$

$$\Rightarrow \mathbf{x}(t^* + h) \approx \mathbf{x}(t^*) + \mathbf{f}(\mathbf{x}(t^*), t^*) \cdot h$$

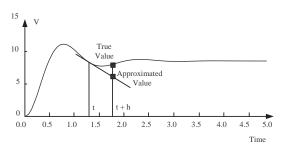


Figure: Numerical integration using the "FE" method

# The Explicit Euler Integration II

When using *explicit integration methods*, the simulation doesn't require any *iteration* within an integration step, unless the model contains *algebraic loops*:

step 1a: 
$$\dot{\mathbf{x}}(t_0) = \mathbf{f}(\mathbf{x}(t_0), t_0)$$
  
step 1b:  $\mathbf{x}(t_0 + h) = \mathbf{x}(t_0) + h \cdot \dot{\mathbf{x}}(t_0)$   
step 2a:  $\dot{\mathbf{x}}(t_0 + h) = \mathbf{f}(\mathbf{x}(t_0 + h), t_0 + h)$   
step 2b:  $\mathbf{x}(t_0 + 2h) = \mathbf{x}(t_0 + h) + h \cdot \dot{\mathbf{x}}(t_0 + h)$   
step 3a:  $\dot{\mathbf{x}}(t_0 + 2h) = \mathbf{f}(\mathbf{x}(t_0 + 2h), t_0 + 2h)$   
step 3b:  $\mathbf{x}(t_0 + 3h) = \mathbf{x}(t_0 + 2h) + h \cdot \dot{\mathbf{x}}(t_0 + 2h)$   
etc.

# The Implicit Euler Integration

Another numerical integration method of first order is the "Backward Euler" (BE) method:

$$\mathbf{x}(t^* + h) \approx \mathbf{x}(t^*) + \mathbf{f}(\mathbf{x}(t^* + h), t^* + h) \cdot h$$

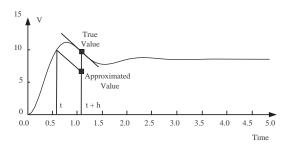


Figure: Numerical integration using the "BE" method

LThe Numerical Stability Domain

# The Numerical Stability Domain

A linear autonomous time-invariant system can be represented using the model:

$$\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x}$$
 ;  $\mathbf{x}(t = t_0) = \mathbf{x_0}$ 

with the analytical solution:

$$\mathbf{x}(t) = \exp(\mathbf{A} \cdot t) \cdot \mathbf{x}_0$$

The solution is analytically stable if:

$$\mathbb{R}e\{\mathrm{Eig}(\mathbf{A})\} = \mathbb{R}e\{\lambda\} < 0.0$$

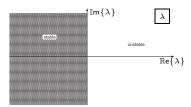


Figure: The region of analytical stability

# The Numerical Stability Domain II

When we use the FE algorithm:

$$\mathbf{x}(t^* + h) = \mathbf{x}(t^*) + \mathbf{f}(\mathbf{x}(t^*), t^*) \cdot h$$

$$\Rightarrow \quad \mathbf{x}(t^* + h) = \mathbf{x}(t^*) + \mathbf{A} \cdot h \cdot \mathbf{x}(t^*)$$

$$\Rightarrow \quad \mathbf{x}(k+1) = [\mathbf{I}^{(n)} + \mathbf{A} \cdot h] \cdot \mathbf{x}(k)$$

Therefore:

$$\textbf{x}_{k+1} = \textbf{F} \cdot \textbf{x}_k$$

with:

$$\boldsymbol{F} = \boldsymbol{I^{(n)}} + \boldsymbol{A} \cdot \boldsymbol{h}$$

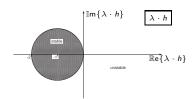


Figure: The numerical stability domain of the FE algorithm

# Simulation With the FE Algorithm

When simulating the linear scalar system:

$$\dot{x} = a \cdot x$$
 ;  $x(t = t_0) = x_0$ 

using the FE algorithm, we obtain:

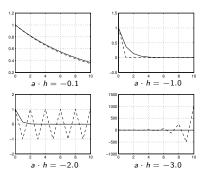


Figure: Simulation of a linear scalar system using the FE algorithm

# Computation of the Largest Numerically Stable Integration Step Size for FE

Given a linear system of second order with two complex eigenvalues,  $\lambda_1$  and  $\lambda_2$ :

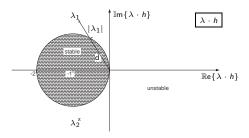


Figure: Largest numerically stable integration step size for FE

$$\Rightarrow h_{max} = \frac{d}{|\lambda_1|}$$

# The Numerical Stability Domain III

When we use the **BE** algorithm:

$$\mathbf{x}(t^* + h) = \mathbf{x}(t^*) + \mathbf{A} \cdot h \cdot \mathbf{x}(t^* + h)$$

$$\Rightarrow \qquad [\mathbf{I}^{(n)} - \mathbf{A} \cdot h] \cdot \mathbf{x}(t^* + h) = \mathbf{x}(t^*)$$

$$\Rightarrow \qquad \mathbf{x}(k+1) = [\mathbf{I}^{(n)} - \mathbf{A} \cdot h]^{-1} \cdot \mathbf{x}(k)$$

Therefore:

$$\mathbf{F} = [\mathbf{I}^{(\mathbf{n})} - \mathbf{A} \cdot h]^{-1}$$

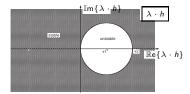


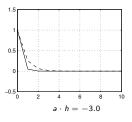
Figure: The numerical stability domain of the BE algorithm

# Simulation With the BE Algorithm

When simulating the linear scalar system:

$$\dot{x} = a \cdot x$$
 ;  $x(t = t_0) = x_0$ 

using the BE algorithm, we obtain:



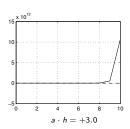


Figure: Simulation of a linear scalar system using the BE algorithm

### Numerical Stability Domain Computation

#### How is the numerical stability domain computed?

We start out with a second-order system with a conjugate complex pair of eigenvalues anywhere on the unit circle. The system with the **A**-matrix:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 2\cos(\alpha) \end{pmatrix}$$

has a pair of conjugate complex eigenvalues located on the unit circle.  $\alpha$  denotes the angle of one of the two eigenvalues counted in the mathematically positive (i.e., counterclockwise) sense away from the positive real axis.

#### In Matlab:

Numerical Stability Domain Computation

# Numerical Stability Domain Computation II

#### We now compute the F-matrix:

```
 \begin{aligned} & \textbf{function} \ [F] &= \textbf{ff}(A, h, algor) \\ & Ah &= A*h; \\ & [n, n] &= \textbf{size}(Ah); \\ & I &= \textbf{eye}(n); \\ & \% & algor &= 1: Forward Euler \\ & \% & \\ & \textbf{if} \ algor &= 1, \\ & F &= I + Ah; \\ & \textbf{end} & \% & \\ & \% \ algor &= 2: Backward Euler \\ & \% & \\ & \text{if} \ algor &= 2, \\ & F &= \textbf{inv}(I - Ah); \\ & \textbf{end} & \end{aligned}
```

Numerical Stability Domain Computation

# Numerical Stability Domain Computation III

We now compute the largest possible value of h, for which all eigenvalues of  $\mathbf{F}$  are inside the unit circle:

```
function [hmax] = hh(alpha, algor, hlower, hupper)
   A = aa(alpha);
   maxerr = 1.0e-6:
   err = 100:
   while err > maxerr,
       h = (hlower + hupper)/2;
       F = ff(A, h, algor);
       Imax = max(abs(eig(F)));
       err = lmax - 1:
       if err > 0.
           hupper = h;
       else
           hlower = h:
       end.
       err = abs(err);
   end
   hmax = h:
return
```

The hh-function, as shown above, works only for algorithms with stability domains similar to that of the FE algorithm. The logic of the if-statement must be reversed for algorithms of the BE type.

# Numerical Stability Domain Computation IV

Finally, we need to sweep over a selected range of  $\alpha$  values, and plot  $h_{max}$  as a function of  $\alpha$  in polar coordinates.

There certainly exist more efficient curve tracking algorithms than the one outlined above, but for the time being, this algorithm will suffice.

### Fixed-point Iteration

When using implicit numerical integration algorithms, we need to iterate on the solution during each step.

One possible approach to iterating on the solution is to start with a *prediction* followed by many *corrections*.

$$\begin{array}{lll} \text{prediction:} & \dot{x}_{k} = f(x_{k},t_{k}) \\ x_{k+1}^{P} = x_{k} + h \cdot \dot{x}_{k} \\ \\ 1^{\text{st}} \text{ correction:} & \dot{x}_{k+1}^{P} = f(x_{k+1}^{P},t_{k+1}) \\ x_{k+1}^{C1} = x_{k} + h \cdot \dot{x}_{k+1}^{P} \\ \\ 2^{\text{nd}} \text{ correction:} & \dot{x}_{k+1}^{C1} = f(x_{k+1}^{C1},t_{k+1}) \\ x_{k+2}^{C2} = x_{k} + h \cdot \dot{x}_{k+1}^{C1} \\ \\ 3^{\text{rd}} \text{ correction:} & \dot{x}_{k+1}^{C2} = f(x_{k+1}^{C2},t_{k+1}) \\ x_{k+1}^{C3} = x_{k} + h \cdot \dot{x}_{k+1}^{C2} \\ \end{array}$$

etc.

# Fixed-point Iteration II

When we apply fixed-point iteration to the linear system, we obtain:

$$\begin{array}{lll} \mathbf{F^{P}} & = \mathbf{I^{(n)}} + \mathbf{A} \cdot h \\ \mathbf{F^{C1}} & = \mathbf{I^{(n)}} + \mathbf{A} \cdot h + (\mathbf{A} \cdot h)^{2} \\ \mathbf{F^{C2}} & = \mathbf{I^{(n)}} + \mathbf{A} \cdot h + (\mathbf{A} \cdot h)^{2} + (\mathbf{A} \cdot h)^{3} \\ \mathbf{F^{C3}} & = \mathbf{I^{(n)}} + \mathbf{A} \cdot h + (\mathbf{A} \cdot h)^{2} + (\mathbf{A} \cdot h)^{3} + (\mathbf{A} \cdot h)^{4} \end{array}$$

After an infinitely large number of iterations:

$$\mathbf{F} = \mathbf{I}^{(\mathbf{n})} + \mathbf{A} \cdot \mathbf{h} + (\mathbf{A} \cdot \mathbf{h})^2 + (\mathbf{A} \cdot \mathbf{h})^3 + \dots$$

Therefore:

$$(\mathbf{A} \cdot h) \cdot \mathbf{F} = \mathbf{A} \cdot h + (\mathbf{A} \cdot h)^2 + (\mathbf{A} \cdot h)^3 + (\mathbf{A} \cdot h)^4 + \dots$$

Subtracting one from the other:

$$[\mathbf{I}^{(\mathbf{n})} - \mathbf{A} \cdot h] \cdot \mathbf{F} = \mathbf{I}^{(\mathbf{n})}$$

we obtain:

$$\mathbf{F} = [\mathbf{I}^{(\mathbf{n})} - \mathbf{A} \cdot h]^{-1}$$

Seemingly we obtain the same F matrix as in the case of the BE algorithm.

# Fixed-point Iteration III

Let us draw the numerical stability domain of this algorithm:

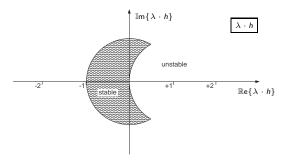


Figure: Numerical stability domain of *predictor-corrector FE-BE technique* 

This evidently didn't work very well.



# Fixed-point Iteration IV

#### What Went Wrong?

The approach didn't work, because the infinite series:

$$\mathbf{F} = \mathbf{I}^{(\mathbf{n})} + \mathbf{A} \cdot \mathbf{h} + (\mathbf{A} \cdot \mathbf{h})^2 + (\mathbf{A} \cdot \mathbf{h})^3 + \dots$$

only converges, if all of the eigenvalues of  $\mathbf{A} \cdot \mathbf{h}$  lie inside the *unit circle*. If this is not the case, the subtraction is invalid.

Inside the unit circle, the numerical stability domain of the predictor-corrector method is identical to that of the BE algorithm, but outside the unit circle, the method is unstable everywhere.

For this reason, the *fixed-point iteration method* is useless.

#### **Newton Iteration**

Newton iteration can be used to determine the zero-crossings of a function:

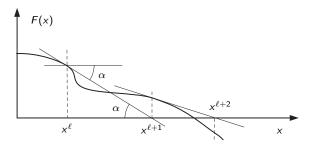


Figure: Newton iteration on a single zero-crossing function

$$\tan \ \alpha = \frac{\partial \mathcal{F}^\ell}{\partial x} = \frac{\mathcal{F}^\ell}{x^\ell - x^{\ell+1}} \quad \Rightarrow \quad x^{\ell+1} = x^\ell - \frac{\mathcal{F}^\ell}{\partial \mathcal{F}^\ell/\partial x}$$

#### Newton Iteration II

The BE algorithm applied to a scalar differential equation can be formulated as follows:

$$x_{k+1} = x_k + h \cdot f(x_{k+1}, t_{k+1})$$

Therefore:

$$\mathcal{F}(x_{k+1}) = x_k + h \cdot f(x_{k+1}, t_{k+1}) - x_{k+1} = 0.0$$

Now, Newton iteration can be applied:

$$x_{k+1}^{\ell+1} = x_{k+1}^{\ell} - \frac{x_k + h \cdot f(x_{k+1}^{\ell}, t_{k+1}) - x_{k+1}^{\ell}}{h \cdot \partial f(x_{k+1}^{\ell}, t_{k+1}) / \partial x - 1.0}$$

#### Newton Iteration III

In the case of a state vector, we can write:

$$\mathbf{x}^{\ell+1} = \mathbf{x}^{\ell} - \left(\mathcal{H}^{\ell}\right)^{-1} \cdot \mathcal{F}^{\ell}$$

where:

$$\mathcal{H} = \frac{\partial \mathcal{F}}{\partial \mathbf{x}} = \begin{pmatrix} \partial \mathcal{F}_1 / \partial x_1 & \partial \mathcal{F}_1 / \partial x_2 & \dots & \partial \mathcal{F}_1 / \partial x_n \\ \partial \mathcal{F}_2 / \partial x_1 & \partial \mathcal{F}_2 / \partial x_2 & \dots & \partial \mathcal{F}_2 / \partial x_n \\ \vdots & \vdots & \ddots & \vdots \\ \partial \mathcal{F}_n / \partial x_1 & \partial \mathcal{F}_n / \partial x_2 & \dots & \partial \mathcal{F}_n / \partial x_n \end{pmatrix}$$

is the Hessian matrix of the Newton iteration.

#### Newton Iteration IV

We can apply the Hessian matrix to the BE algorithm:

$$x_{k+1}^{\ell+1} = x_{k+1}^{\ell} - [h \cdot \mathcal{J}_{k+1}^{\ell} - I^{(n)}]^{-1} \cdot [x_k + h \cdot f(x_{k+1}^{\ell}, t_{k+1}) - x_{k+1}^{\ell}]$$

where:

$$\mathcal{J} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

is the Jacobian matrix of the dynamic system.

#### Newton Iteration V

If the system is linear:

$$\mathcal{J} = \mathbf{A}$$

Therefore:

$$\begin{split} x_{k+1}^{\ell+1} &= x_{k+1}^{\ell} - [\textbf{A} \cdot \textbf{h} - \textbf{I}^{(n)}]^{-1} \cdot [(\textbf{A} \cdot \textbf{h} - \textbf{I}^{(n)}) \cdot x_{k+1}^{\ell} + x_{k}] \\ \Rightarrow & \quad x_{k+1}^{\ell+1} = [\textbf{I}^{(n)} - \textbf{A} \cdot \textbf{h}]^{-1} \cdot x_{k} \end{split}$$

**Newton iteration** does not ever change the numerical stability domain of an ODE solver. This is true not only for the BE algorithm, but rather for all numerical ODE solvers.

#### Conclusions

- ▶ In the analysis of numerical ODE solvers, the *numerical stability of the algorithm* must always be taken into consideration.
- The numerical stability of most ODE solvers can be represented by a *numerical stability domain* drawn in the complex  $\lambda \cdot h$  plane.
- The numerical stability of ODE solvers is usually analyzed for linear autonomous time-invariant systems only.
- ▶ There exists also a *theory of non-linear stability*, but this theory is quite involved, and it is usually not necessary to use it, because the numerical stability of a linearized system is the same as that of the original non-linear system.

#### Conclusions II

- In the analysis of numerical ODE solvers, it is also important to consider the approximation accuracy of the algorithm.
- The numerical accuracy of an ODE solver is subject to a number of error types, such as the truncation error, the roundoff error, and the accumulation error.
- Most important among these error types is the truncation error that is characterized by the order of approximation accuracy of the solver.
- ▶ It is important to analyze the order of approximation accuracy also for *non-linear* and *multi-state* systems, because it can happen that the order of approximation accuracy is higher for linear than for non-linear systems and possibly also higher for scalar than for multi-state systems.