
Numerical Simulation of Dynamic Systems III

Numerical Simulation of Dynamic Systems III

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

March 5, 2013



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Introduction

Analysis of Truncation Error

We would like to perform an analysis of the truncation error of the explicit numerical
integration algorithm consisting in a prediction step using FE followed by a single
correction step using BE:

prediction: ẋk = f(xk, tk )
xP
k+1 = xk + h · ẋk

correction: ẋP
k+1 = f(xP

k+1, tk+1)

xC
k+1 = xk + h · ẋP

k+1

We obtain:
xk+1 = xk + h · f(xk + h · fk, tk + h)

We wish to develop the non-linear expression into a multi-dimensional Taylor series:

f (x + Δx , y + Δy) ≈ f (x , y) +
∂f (x , y)

∂x
· Δx +

∂f (x , y)

∂y
· Δy

Therefore:

f(xk + h · fk, tk + h) ≈ f(xk, tk ) +
∂f(xk, tk)

∂x
· (h · fk) +

∂f(xk, tk )

∂t
· h



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Introduction

Analysis of Truncation Error II

We obtain the approximation:

xk+1 ≈ xk + h · f(xk, tk) + h2 · (∂f(xk, tk )

∂x
· fk +

∂f(xk, tk)

∂t
)

Let us compare this approximation to the Taylor series truncated after the quadratic
term:

xk+1 ≈ xk + h · f(xk, tk) +
h2

2
· ḟ(xk, tk )

where:

ḟ(xk, tk ) =
df(xk, tk )

dt
=

∂f(xk, tk )

∂x
· dxk

dt
+

∂f(xk, tk )

∂t

y:
dxk

dt
= ẋk = fk

Therefore:
xPC(k + 1) ≈ xk + h · f(xk, tk ) + h2 · ḟ(xk, tk)



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Introduction

The Heun Integration Algorithm

Comparing the two approximations of FE and of PC:

xFE(k + 1) ≈ xk + h · f(xk, tk)

xPC(k + 1) ≈ xk + h · f(xk, tk ) + h2 · ḟ(xk, tk)

we notice that these two approximations can be easily combined in such a way that a
second-order approximation results:

x(k + 1) = 0.5 · (xPC(k + 1) + xFE(k + 1))

that is:

prediction: ẋk = f(xk, tk )
xP
k+1 = xk + h · ẋk

correction: ẋP
k+1 = f(xP

k+1, tk+1)

xC
k+1 = xk + 0.5 · h · (ẋk + ẋP

k+1)

This numerical integration method is called Heun integration algorithm.



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

Second-order Explicit Runge-Kutta Methods

We can check if it is possible to combine more than two different approximations with
the aim of obtaining higher-order numerical integration algorithms.

Let us start with a single correction term as before, but this time around
parameterized as follows:

prediction: ẋk = f(xk, tk)
xP = xk + h · β11 · ẋk

correction: ẋP = f(xP , tk + α1 · h)
xC
k+1 = xk + h · (β21 · ẋk + β22 · ẋP)

Developing into a Taylor series as before, we obtain:

xC
k+1 = xk + h · (β21 + β22) · fk +

h2

2
· [2 · β11 · β22 · ∂fk

∂x
· fk + 2 · α1 · β22 · ∂fk

∂t
]



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

Second-order Explicit Runge-Kutta Methods II

This approximation:

xC
k+1 = xk + h · (β21 + β22) · fk +

h2

2
· [2 · β11 · β22 · ∂fk

∂x
· fk + 2 · α1 · β22 · ∂fk

∂t
]

can be compared to the Taylor series expansion truncated after the quadratic term:

xk+1 ≈ xk + h · fk +
h2

2
· [∂fk

∂x
· fk +

∂fk
∂t

]

In this fashion, we obtain general conditions that guarantee that the resulting
algorithms are second-order accurate methods.

β21 + β22 = 1

2 · α1 · β22 = 1

2 · β11 · β22 = 1



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

Second-order Explicit Runge-Kutta Methods III

Evidently, the Heun algorithm with:

α =

(
1
1

)
; β =

(
1 0

0.5 0.5

)

satisfies the three non-linear equations in four unknowns. α2 represents the time at
which the correction is to be evaluated. Evidently, this must always be 1, as the
integration step must end at t∗ + h.

The Runge-Kutta methods may alternatively be characterized by a so-called Butcher
tableau:

0 0 0
1 1 0
x 1/2 1/2

where the first row represents the initial evaluation of the derivative at time t∗, the
second row denotes the prediction step, i.e., the first stage of the algorithm, whereas
the last row denotes the correction step, i.e., the approximation of the value of the
state vector at time t∗ + h. The column to the left indicates the time instants of each
stage, whereas the additional columns specify the weights used in each stage.



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

The Explicit Midpoint Rule

Another algorithm that satisfies the three equations is characterized by:

α =

(
0.5
1

)
; β =

(
0.5 0
0 1

)

that is be the Butcher tableau:

0 0 0
1/2 1/2 0
x 0 1

This algorithm is called the explicit midpoint rule.

The algorithm can be implemented in the following fashion:

prediction: ẋk = f(xk, tk)

xP
k+ 1

2

= xk + h
2
· ẋk

correction: ẋP
k+ 1

2

= f(xP
k+ 1

2

, tk+ 1
2
)

xC
k+1 = xk + h · ẋP

k+ 1
2

This method is a bit more economical than the Heun algorithm, because its Butcher
tableau contains one additional zero entry.



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

The Family of Explicit Runge-Kutta Methods

If we allow more than one prediction stage, it is possible to obtain higher-order
integration algorithms:

stage 0: ẋP0 = f(xk, tk )

stage j: xPj = xk + h · ∑j
i=1 βji · ẋPi−1

ẋPj = f(xPj , tk + αj · h)

last stage: xk+1 = xk + h · ∑�
i=1 β�i · ẋPi−1

The best known algorithm from this class of numerical integration methods is the
4th-order accurate Runge-Kutta (RK4) algorithm characterized by:

α =

⎛
⎜⎜⎝

1/2
1/2
1
1

⎞
⎟⎟⎠ ; β =

⎛
⎜⎜⎝

1/2 0 0 0
0 1/2 0 0
0 0 1 0

1/6 1/3 1/3 1/6

⎞
⎟⎟⎠



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

The RK4 Algorithm

Therefore:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0
x 1/6 1/3 1/3 1/6

The RK4 algorithm can be implemented in the following way:

stage 0: ẋk = f(xk, tk )

stage 1: xP1 = xk + h
2
· ẋk

ẋP1 = f(xP1 , t
k+ 1

2
)

stage 2: xP2 = xk + h
2
· ẋP1

ẋP2 = f(xP2 , t
k+ 1

2
)

stage 3: xP3 = xk + h · ẋP2

ẋP3 = f(xP3 , tk+1)

stage 4: xk+1 = xk + h
6
· [ẋk + 2 · ẋP1 + 2 · ẋP2 + ẋP3 ]

It is therefore an explicit 4th-order accurate single-step method in four stages.



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

History of Explicit Runge-Kutta Methods

Developer Year Order # of Stages
Euler 1768 1 1
Runge 1895 4 4
Heun 1900 2 2
Kutta 1901 5 6
Huťa 1956 6 8
Shanks 1966 7 9
Curtis 1970 8 11

Table: History of Explicit Runge-Kutta Algorithms

� The number of non-linear equations grows rapidly with the order of the methods.
Already for RK methods of order 5, there no longer exists a solution in 5 stages.
More stages must be added in order to increase the number of parameters.

� Because of the many non-linear equations to be solved, it took a long time
before higher-order RK methods were found.

� In recent years, a sequence of yet higher-order RK methods were developed
quite rapidly using computer algebra methods (Maple, Mathematica).



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

Additional Constraints

We may wish to impose more constraints on the parameters characterizing desirable
RK methods.

� Obviously, we want to request that, in an �–stage algorithm:

α� = 1.0

since we wish to end the step at tk+1.

� Also, we usually want to make sure that:

αi ∈ [0.0, 1.0] ; i = {1, 2, . . . , �}
that is, all function evaluations are performed at times between tk and tk+1.

� If we wish to prevent the algorithm from ever “integrating backward through
time,” we shall add the constraint that:

αj ≥ αi ; j ≥ i

� If we want to disallow micro-steps of length 0, we make this condition even
more stringent:

αj > αi ; j > i

The previously introduced classical RK4 algorithm violates the latter constraint.



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

Higher Derivatives

While we were able to develop Heun’s method using a matrix-vector notation, this
technique won’t work anymore as we proceed to third-order algorithms.

We found that:
df

dt
=

∂f

∂x
· dx

dt
+

∂f

∂t

or, in shorthand notation:
ḟ = fx · f + ft

When we proceed to third-order algorithms, we need an expression for the second
absolute derivative of f with respect to time. Thus, we are inclined to write formally:

f̈ = (fx · f + ft )̇

= ḟx · f + fx · ḟ + ḟt

= (ḟ)x · f + fx · (ḟ) + (ḟ)t

= (fx · f + ft)x · f + fx · (fx · f + ft) + (fx · f + ft)t

= fxx · (f)2 + 2 · (fx)2 · f + 2 · fxt · f + 2 · fx · ft + ftt



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

Higher Derivatives II

Unfortunately, it is not clear, what this is supposed to mean. Obviously, f̈ and ftt are
vectors, but what is fxx · (f)2 supposed to mean? Is it a tensor multiplied by the square
of a vector? Quite obviously, the formal differentiation mechanism doesn’t extend to
higher derivatives in the sense of familiar matrix-vector multiplications. Evidently, we
must treat the expression fxx · (f)2 differently.

John Butcher developed a new syntax and a set of rules for how these higher
derivatives must be interpreted. In essence, it turns out that, in this new syntax:

1. sums remain commutative and associative,

2. derivatives can still be computed in any order, i.e., (ḟ)x = (fx )̇, and

3. the multiplication rule can be generalized, thus: (fx · f)x = fxx · f + (fx)2.

It is not necessary for us to learn Butcher’s new syntax. It is sufficient to know that
we can basically proceed as before, but must abstain from interpreting terms involving
higher derivatives as consisting of factors that are combined by means of the familiar
matrix-vector multiplication.



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Runge-Kutta Algorithms

Higher Derivatives III

Prior to Butcher’s work, all higher-order RK algorithms had simply been derived for
the scalar case, and were then blindly applied to integrate entire state vectors.
Butcher discovered that several of the previously developed and popular higher-order
RK algorithms drop one or several orders of accuracy when applied to a state vector
instead of a scalar state variable.

The reason for this somewhat surprising discovery is very simple. Already when
computing the third absolute derivative of f with respect to time, the two terms
fx · fxx · (f)2 and fxx · f · fx · f appear in the derivation. In the scalar case, these two
terms are identical and can be combined, since:

a · b = b · a

Unfortunately this rule does not extend to the vector case.

Our new animals in the mathematical zoo of data structures and operations exhibit a
property that we are already quite familiar with from matrix calculus, namely that
multiplications are usually not commutative:

A · B = (B′ · A′)′ �= B · A



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Numerical Stability Domains of Explicit RK Methods

Numerical Stability Domains of Explicit RK Methods

Let us start by applying the Heun algorithm to a linear system:

prediction: ẋk = A · xk

xP
k+1 = xk + h · ẋk

correction: ẋP
k+1 = A · xP

k+1
xC
k+1 = xk + 0.5 · h · (ẋk + ẋP

k+1)

that is:

xC
k+1 = [I(n) + A · h +

(A · h)2

2
] · xk

Therefore:

F = I(n) + A · h +
(A · h)2

2



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Numerical Stability Domains of Explicit RK Methods

Numerical Stability Domains of Explicit RK Methods II

The algorithms must approximate the analytical solution:

F = exp(A · h) = I(n) + A · h +
(A · h)2

2!
+

(A · h)3

3!
+ . . .

up to the term that corresponds to the approximation order of the method. Therefore,
all nth-order methods in n stages have identical stability domains.

−5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

1

2

3

4

Stability Domains of FRK

Re{λ · h}

I
m
{λ

·h
}

Figure: Numerical Stability Domains of Explicit RK Methods



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Numerical Stability Domains of Explicit RK Methods

Numerical Stability Domains of Explicit RK Methods III

Starting from the fifth-order RK methods, different RK algorithms of the same order
may have slightly different stability domains. The reason is that these algorithms use
additional stages.

An RK5 algorithm in 6 stages contains in its F-matrix a term in (A · h)6, albeit with
the incorrect coefficient. This term contributes to the stability domain. Different
6-stage RK5 algorithms differ in their coefficients of the term in (A · h)6, and
consequently, their stability domains differ as well.

Some of these higher-order RK algorithms exhibit small stable islands somewhere in

their right-half complex λ · h plane.



Numerical Simulation of Dynamic Systems III

Single-step Integration Methods I

Conclusions

Conclusions

� Explicit Runge-Kutta algorithms of various orders of approximation accuracy
were developed.

� All FRK algorithms except FE are multi-stage algorithms that require internal
function evaluations.

� FRK algorithms do not preserve any information across multiple steps, i.e., these
algorithms are self-starting and start afresh with each new integration step.

� The class of explicit RK algorithms are among the most widely used numerical
ODE solvers on the market today.

� For most engineering problems, 4th-order FRK algorithms offer a good
compromise between the needed accuracy and the economy of simulating across
a single step.

� Professional FRK codes usually offer step-size control, i.e., they adjust the step
size from one integration step to the next.


	Single-step Integration Methods I
	
	
	
	




