
Numerical Simulation of Dynamic Systems IV

Numerical Simulation of Dynamic Systems IV

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

March 5, 2013



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Stiff Systems

Stiff Systems

� We call a linear system stiff, if it is stable and its eigenvalues vary a lot in terms
of their real parts.

� Non-linear systems are called stiff, if they are stable and exhibit both fast and
slow modes in their behavior. The linearization of such systems leads to stiff
linear systems.

� These systems cannot be simulated efficiently by means of any explicit RK
algorithm, because we would need very small time steps to move those
eigenvalues (of either the system itself or of its linearization) that are located

most to the left in the complex λ · h plane into the numerical stability domain.

� In fact, this is not only a problem of the explicit RK algorithm, but of all explicit
numerical ODE solvers in general.

� For the efficient simulation of stiff systems, implicit integration algorithms are
required.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Extrapolation Methods

Richardson Extrapolation

One way to obtain higher-order algorithms is by combining various approximations of
lower-order algorithms.

Let us start with the FE algorithm, repeating the step from t∗ until t∗ + h four times
using different step sizes: h, h/2, h/3, and h/4.

We apply this idea to the linear system, leading to four different predictors:

xP1(k + 1) = [I(n) + A · h] · x(k)

xP2(k + 1) = [I(n) +
A · h

2
]2 · x(k)

xP3(k + 1) = [I(n) +
A · h

3
]3 · x(k)

xP4(k + 1) = [I(n) +
A · h

4
]4 · x(k)

We now use the following parameterized corrector formula:

xC(k + 1) = α1 · xP1 (k + 1) + α2 · xP2 (k + 1) + α3 · xP3 (k + 1) + α4 · xP4 (k + 1)



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Extrapolation Methods

Richardson Extrapolation II

Thus, we obtain:

xC(k + 1) =[(α1 + α2 + α3 + α4) · I(n)

+ (α1 + α2 + α3 + α4) · A · h

+ (
α2

4
+

α3

3
+

3α4

8
) · (A · h)2

+ (
α3

27
+

α4

16
) · (A · h)3 +

α4

256
· (A · h)4] · xk

What we would like to obtain, is:

xC(k + 1) = [I(n) + A · h +
(A · h)2

2
+

(A · h)3

6
+

(A · h)4

24
] · xk

By comparing the parameter values, we obtain four equations in four unknowns:
⎛
⎝

1 1 1 1
0 1/4 1/3 3/8
0 0 1/27 1/16
0 0 0 1/256

⎞
⎠ ·

⎛
⎝

α1
α2
α3
α4

⎞
⎠ =

⎛
⎝

1
1/2
1/6
1/24

⎞
⎠

Therefore:

α1 = −1

6
; α2 = 4 ; α3 = −27

2
; α4 =

32

3



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Extrapolation Methods

Richardson Extrapolation III

We just encountered another way to implement an explicit RK4 algorithm, but:

� it isn’t guaranteed that this algorithm will also be 4th-order accurate when
applied to non-linear systems, and

� it isn’t an efficient implementation of an RK4 algorithm, as it makes use of 10
stages instead of only 4.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Extrapolation Methods

Richardson Extrapolation IV

The approximation order of the algorithm wouldn’t be all that important, if we could
use very small step sizes.

We can write:

xk+1(η) = xk+1 + e1 · η + e2 · η2

2!
+ e3 · η3

3!
+ . . .

where xk+1 is the true yet unknown value of the state vector at time t∗ + h, whereas
xk+1(η) is the numerical approximation of the same vector obtained using integration
with a step size of η. We develop the numerical value into a Taylor series around the
true value. The vectors ei are error vectors.

We perform four separate experiments, using the same four step sizes as before:

xP1 (η1) ≈ xk+1 + e1 · h +
e2

2!
· h2 +

e3

3!
· h3

xP2 (η2) ≈ xk+1 + e1 · h

2
+

e2

2!
· (

h

2
)2 +

e3

3!
· (

h

2
)3

xP3 (η3) ≈ xk+1 + e1 · h

3
+

e2

2!
· (

h

3
)2 +

e3

3!
· (

h

3
)3

xP4 (η4) ≈ xk+1 + e1 · h

4
+

e2

2!
· (

h

4
)2 +

e3

3!
· (

h

4
)3



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Extrapolation Methods

Richardson Extrapolation V

In a matrix-vector form:⎛
⎜⎝

xP1

xP2

xP3

xP4

⎞
⎟⎠ ≈

⎛
⎝

h0 h1 h2 h3

(h/2)0 (h/2)1 (h/2)2 (h/2)3

(h/3)0 (h/3)1 (h/3)2 (h/3)3

(h/4)0 (h/4)1 (h/4)2 (h/4)3

⎞
⎠ ·

⎛
⎝

xk+1
e1

e2/2
e3/6

⎞
⎠

Solving for the unknown xk+1, we obtain:

xk+1 ≈ (− 1
6

4 − 27
2

32
3 ) ·

⎛
⎜⎝

xP1

xP2

xP3

xP4

⎞
⎟⎠

These are the same parameter values that we obtained before.

Each of the two derivations has its advantages and disadvantages.

� The former approach guaranteed that the resulting algorithm is indeed 4th-order
accurate (at least for linear systems). The latter technique doesn’t offer that
guarantee.

� On the other hand, the former approach was derived explicitly using the FE
algorithm for its internal stages. The latter technique doesn’t make this
assumption. The same parameter values will result for any numerical ODE
solver used for its internal stages.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Extrapolation Methods

The IEX4 Method

We can use Richardson extrapolation to develop an implicit 4th-order RK algorithm by
employing BE steps for its internal stages:

1st predictor: k1 = xk + h · f(k1, tk+1)

2nd predictor: k2a = xk + h
2
· f(k2a, t

k+ 1
2

)

k2 = k2a + h
2
· f(k2, tk+1)

3rd predictor: k3a = xk + h
3
· f(k3a, t

k+ 1
3

)

k3b = k3a + h
3
· f(k3b, t

k+ 2
3

)

k3 = k3b + h
3
· f(k3, tk+1)

4th predictor: k4a = xk + h
4
· f(k4a, t

k+ 1
4

)

k4b = k4a + h
4
· f(k4b, t

k+ 1
2

)

k4c = k4b + h
4
· f(k4c, t

k+ 3
4

)

k4 = k4c + h
4
· f(k4, tk+1)

corrector: xk+1 = − 1
6
· k1 + 4 · k2 − 27

2
· k3 + 32

3
· k4

We shall call this method IEX4.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Extrapolation Methods

The IEX4 Method II

Let us draw the numerical stability domain of the IEX4 method:

−2 0 2 4 6 8 10 12 14

−6

−4

−2

0

2

4

6

Stability Domain of IEX4

Re{λ · h}

I
m
{λ

·h
}

Figure: Numerical stability domain of IEX4 method



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Marginally Stable Systems

Marginally Stable Systems

If the dominant eigenvalues of a system are complex and are located near the
imaginary axis, we’ll run into problems with the simulation.

On the one hand, explicit algorithms require very small step sizes to include these
eigenvalues in the numerical stability domain of the method. On the other hand,
stiffly-stable implicit algorithms, like IEX4, will dampen the contributions of these
eigenvalues out too fast.

What is needed are algorithms, whose numerical stability domain coincides with the
analytical stability domain, i.e., whose border of numerical stability coincides with the
imaginary axis.

We call such algorithms F-stable (faithfully stable).



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Backinterpolation Methods

Let us consider once more the BE algorithm:

xk+1 = xk + h · ẋk+1

It is possible the reformulate the BE algorithm in the following way:

xk = xk+1 − h · ẋk+1

This means that using the BE algorithm with a step size of h is identical to using the
FE algorithm with a step size of −h.

This idea brings about a new way of implementing implicit algorithms. We start with
an estimate of the value xk+1 and integrate backward through time with a step size of
−h, iterating on the value xk using Newton iteration.

This is another way to obtain higher-order implicit algorithms based on the set of FRK
algorithms. We call these algorithms BRK.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

The BRK Algorithms

The BRK algorithms of orders 1..4 are characterized by:

F1 = [I(n) − A · h]−1

F2 = [I(n) − A · h +
(A · h)2

2!
]−1

F3 = [I(n) − A · h +
(A · h)2

2!
− (A · h)3

3!
]−1

F4 = [I(n) − A · h +
(A · h)2

2!
− (A · h)3

3!
+

(A · h)4

4!
]−1

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

1

2

3

4

Stability Domains of BRK

Re{λ · h}

I
m
{λ

·h
}

Figure: Numerical stability domains of BRK algorithms



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

The BRK Algorithms II

The BRK4 algorithm is usually considered superior to the IEX4 algorithm, because:

� it only requires 4 stages instead of 10,

� it is guaranteed to preserve its order of approximation accuracy also in the case
of non-linear systems, and

� it doesn’t require the development of a new code, as any existing FRK
algorithm can be used inside the Newton iteration.

The IEX4 algorithm may still have its place in a multi-processor architecture, as the
four predictor steps of the method can be easily parallelized and computed on four
separate processors in parallel. In this way, we only need to compute four stages in
series, and furthermore, each of these stages uses only a simple BE algorithm.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

The BI Algorithms

The backinterpolation idea can also be implemented differently. To this end, we
develop a cyclic method consisting in a half-step of FRK followed by a half-step of
BRK. We iterate on the difference between the two values xk+ 1

2
:

F(xk+1) = xright

k+ 1
2

− xleft
k+ 1

2

= 0.0

using Newton iteration.

The BI1 algorithm can be implemented in the following way:

1st stage: xk+ 1
2

= xk + h
2
· ẋk

2nd stage: xk+1 = x
k+ 1

2
+ h

2
· ẋk+1

This algorithm is also known under the name trapezoidal rule. The method can be
represented by:

FTR = [I(n) − A · h

2
]−1 · [I(n) + A · h

2
]

Just by chance, the trapezoidal rule happens to be 2nd -order accurate.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

The BI Algorithms II

In general, the BI algorithms can be characterized by:

FTR =[I(n) − A · h

2
]−1 · [I(n) + A · h

2
]

FBI2 =[I(n) − A · h

2
+

(A · h)2

8
]−1 · [I(n) + A · h

2
+

(A · h)2

8
]

FBI3 =[I(n) − A · h

2
+

(A · h)2

8
− (A · h)3

48
]−1·

[I(n) + A · h

2
+

(A · h)2

8
+

(A · h)3

48
]

FBI4 =[I(n) − A · h

2
+

(A · h)2

8
− (A · h)3

48
+

(A · h)4

384
]−1·

[I(n) + A · h

2
+

(A · h)2

8
+

(A · h)3

48
+

(A · h)4

384
]

All of the BI algorithms are F-stable.

The BI2 algorithm isn’t very useful, as already the TR algorithm, which is more
economical, is 2nd -order accurate.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Implementation of BI1 (TR) Algorithm

xleft
k+ 1

2

= FE(xk, tk , h
2
)

x0
k+1 = xleft

k+ 1
2

J0
k+1 = J (x0

k+1, tk+1)

xright 1
k+ 1

2

= FE(x0
k+1, tk+1, − h

2
)

H1 = I(n) − h
2
· J0

k+1

x1
k+1 = x0

k+1 − H1−1 · (xright 1
k+ 1

2

− xleft
k+ 1

2

)

ε1
k+1 = ‖x1

k+1 − x0
k+1‖∞

J1
k+1 = J (x1

k+1, tk+1)

xright 2
k+ 1

2

= FE(x1
k+1, tk+1, − h

2
)

H2 = I(n) − h
2
· J1

k+1

x2
k+1 = x1

k+1 − H2−1 · (xright 2
k+ 1

2

− xleft
k+ 1

2

)

ε2
k+1 = ‖x2

k+1 − x1
k+1‖∞

etc.

where J denotes the Jacobian.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Implementation of BI2 Algorithm

xleft
k+ 1

2

= Heun(xk, tk , h
2
)

x0
k+1 = xleft

k+ 1
2

J0
k+1 = J (x0

k+1, tk+1)

xright 1
k+ 1

2

= Heun(x0
k+1, tk+1,− h

2
)

J0

k+ 1
2

= J (xright 1
k+ 1

2

, t
k+ 1

2
)

H1 = I(n) − h
4
· (J0

k+1 + J0

k+ 1
2

· (I(n) − h
2
· J0

k+1))

x1
k+1 = x0

k+1 − H1−1 · (x
right 1
k+ 1

2

− xleft
k+ 1

2

)

ε1
k+1 = ‖x1

k+1 − x0
k+1‖∞

J1
k+1 = J (x1

k+1, tk+1)

x
right 2
k+ 1

2

= Heun(x1
k+1, tk+1,− h

2
)

J1

k+ 1
2

= J (xright 2
k+ 1

2

, t
k+ 1

2
)

H2 = I(n) − h
4
· (J1

k+1 + J1

k+ 1
2

· (I(n) − h
2
· J1

k+1))

x2
k+1 = x1

k+1 − H2−1 · (xright 2
k+ 1

2

− xleft
k+ 1

2

)

ε2
k+1 = ‖x2

k+1 − x1
k+1‖∞

etc.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Implementation of BI Algorithms

If we assume that the Jacobian remains basically unchanged during one integration
step (modified Newton iteration), we can compute both the Jacobian and the Hessian
at the beginning of the step, and we find for BI1:

J = J (xk, tk )

H = I(n) − h

2
· J

and for BI2:
J = J (xk, tk )

H = I(n) − h

2
· J +

h2

8
· J2

Thus:

H1 = I(n) − J · h

2

H2 = I(n) − J · h

2
+

(J · h)2

8

H3 = I(n) − J · h

2
+

(J · h)2

8
− (J · h)3

48

H4 = I(n) − J · h

2
+

(J · h)2

8
− (J · h)3

48
+

(J · h)4

384



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

One-legged Algorithms

The sequence in which we execute the forward and the backward semi-steps can be
interchanged. The F-matrix of the interchanged BI1 algorithm is:

FMP = [I(n) + A · h

2
] · [I(n) − A · h

2
]−1

which corresponds to the algorithm:

xk+1 = xk + h · ẋ
k+ 1

2

which is the well-known implicit midpoint rule, the one-legged twin of the trapezoidal
rule.

In the same manner, it is possible to generate algorithms of higher orders as well. The
two twins are identical in their linear properties, but they behave differently with
respect to their non-linear characteristics. The original BI algorithms are a little more
accurate than their one-legged twins, since we read out the value of the state at the
end of the iteration rather than after the forward semi-step. On the other hand, the
one-legged variety has somewhat better non-linear stability (contractivity) properties.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Tustin’s Method

Given the linear autonomous time-invariant system:

ẋ = A · x

The analytical solution is:
x(t) = exp(A · t) · x0

The analytical solution after one time step, h, is:

x1 = exp(A · h) · x0

After two time steps:

x2 = exp(A · 2h) · x0

= (exp(A · h))2 · x0

= exp(A · h) · exp(A · h) · x0

= exp(A · h) · x1



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Tustin’s Method II

Thus:
xk+1 = Fanal · xk

where:
Fanal = exp(A · h)

This method (only applicable to linear systems) is often referred to as Tustin’s method.

For a linear time-invariant autonomous system, Tustin’s method generates the exact
analytical solution at the sampling instants.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Padé Approximations

Padé approximated numerically the Fanal matrix. He applied the following technique.

Fanal = exp(A · h)

= exp(A
h

2
) · exp(A

h

2
)

= [exp(A(−h

2
))]−1 · exp(A

h

2
)

He found polynomial approximations for the two expressions:

Fanal ≈ D(p, q)−1 · N(p, q)

where:

D(p, q) =

q∑
j=0

(p + q − j)! q!

(p + q)! j! (q − j)!
· (−Ah)j

N(p, q) =

p∑
j=0

(p + q − j)! p!

(p + q)! j! (p − j)!
· (Ah)j



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Padé Approximations II

For p = q, we obtain the algorithms:

FTR =[I(n) − A · h

2
]−1 · [I(n) + A · h

2
]

FP4 =[I(n) − A · h

2
+

(A · h)2

12
]−1 · [I(n) + A · h

2
+

(A · h)2

12
]

FP6 =[I(n) − A · h

2
+

(A · h)2

10
− (A · h)3

120
]−1·

[I(n) + A · h

2
+

(A · h)2

10
+

(A · h)3

120
]

FP8 =[I(n) − A · h

2
+

3(A · h)2

28
− (A · h)3

84
+

(A · h)4

1680
]−1·

[I(n) + A · h

2
+

3(A · h)2

28
+

(A · h)3

84
+

(A · h)4

1680
]

The Padé algorithms are very similar to the BI algorithms. All of these algorithms are
also F-stable. For the same computational effort, it is possible to double the order of
approximation accuracy of this type of algorithm.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Padé Approximations III

One might be tempted to conclude that the Padé algorithms are superior to the BI
algorithms due to their higher order of approximation accuracy for equal
computational effort.

Unfortunately, this is not true. Whereas the BI4 algorithm is 4th-order accurate for all
systems, the P8 algorithm is 8th-order accurate for linear systems, but only 2nd -order
accurate for non-linear systems.

For this reason, Padé algorithms (just like Tustin’s algorithm) should be used for
the simulation of linear systems only.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Algorithms for the Simulation of Stiff Systems

An eigenvalue:
λ = σ + j · ω

causes a trajectory with a damping factor of −σ and a oscillation frequency of ω.

For this reason, the trajectory contributions resulting from eigenvalues located far to

the left of the imaginary axis of the complex λ · h plane should rapidly decay.

� Unfortunately, F-stable algorithms don’t exhibit this behavior. These algorithms
are marginally stable along the imaginary axis all the way to infinity, and
therefore, they exhibit marginal stability everywhere at infinity, irrespective of
the direction of approach.

� Instead of offering very large damping for eigenvalues far out to the left, they
offer hardly any damping at all.

� For this reason, F-stable algorithms are not suitable for the simulation of stiff
systems.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

Properties of Numerical Stability

Algorithms that work well for the simulation of stiff systems should have numerical
stability domains similar to that of the BE algorithm, i.e., the stability domain should

be closed in the right half complex λ · h plane.

� An algorithm that contains the entire left half complex λ · h plane in its
numerical stability domain is called A-stable (absolute stable).

� Algorithms that work well for the simulation of stiff systems should be A-stable.
However, this property is only necessary, but not sufficient.

� An algorithm that is A-stable and furthermore exhibits an infinitely large
damping factor at infinity is called L-stable.

� F-stable algorithms are also A-stable, but they are never L-stable.

� We need L-stable algorithms for the simulation of stiff systems.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

BI Algorithms for the Simulation of Stiff Systems

It is possible to generate algorithms of the BI class with numerical stability domains
similar to that of the BE algorithm.

Instead of computing the FRK semi-step all the way to the center followed by a BRK
semi-step of equal length, we can reduce the length of the FRK semi-step to ϑ · h with
ϑ < 0.5. The shortened FRK semi-step is then followed by an extended BRK
semi-step of length (1 − ϑ) · h:

FBI1(ϑ) =[I(n) − A(1 − ϑ)h]−1 · [I(n) + Aϑh]

FBI2(ϑ) =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
]−1 · [I(n) + Aϑh +

(Aϑh)2

2!
]

FBI3(ϑ) =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
− (A(1 − ϑ)h)3

3!
]−1·

[I(n) + Aϑh +
(Aϑh)2

2!
+

(Aϑh)3

3!
]

FBI4(ϑ) =[I(n) − A(1 − ϑ)h +
(A(1 − ϑ)h)2

2!
− (A(1 − ϑ)h)3

3!
+

(A(1 − ϑ)h)4

4!
]−1·

[I
(n)

+ Aϑh +
(Aϑh)2

2!
+

(Aϑh)3

3!
+

(Aϑh)4

4!
]



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

BI Algorithms for the Simulation of Stiff Systems II

With:
ϑ = 0.4

we obtain the algorithms:

−2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

1

23

4

Stability Domains of BI0.4

Re{λ · h}

I
m
{λ

·h
}

Figure: Numerical stability domains of BI0.4 algorithms

All of these algorithms with the exception of BI40.4 are A-stable, but unfortunately,
none of them is L-stable.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Backinterpolation Methods

BI Algorithms for the Simulation of Stiff Systems III

To obtain L-stable algorithms, it is necessary to let the order of the denominator
polynomial of the F-matrix be at least one higher than that of the numerator
polynomial.

One way to obtain L-stable BI algorithms is to increase the order of approximation
accuracy of the BRK algorithm by one.

A very good method of this type is the BI4/50.45 algorithm. This algorithm starts with
an FRK4 semi-step of length 0.45 · h followed by a BRK5 semi-step of length 0.55 · h.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

Conclusions

Conclusions

� In this presentation, we introduced the Runge-Kutta algorithms. These are
single-step methods with multiple function evaluations within one integration
step.

� Some RK algorithms are explicit whereas others are implicit.

� We talked about the numerical stability properties of simulation algorithms,
such as F-stability, A-stability, and L-stability.

� We introduced a number of blended algorithms that consist in multiple FRK
and/or BRK partial steps, such as the Richardson extrapolation methods.

� We finally introduced a class of cyclic algorithms that consist also in multiple
FRK and/or BRK partial steps, such as the backinterpolation methods.



Numerical Simulation of Dynamic Systems IV

Single-step Integration Methods II

References

References

1. Xie, Wei (1995), Backinterpolation Methods for the Numerical Solution of
Ordinary Differential Equations and Applications, MS Thesis, Dept. of Electrical
& Computer Engineering, University of Arizona, Tucson, AZ.

http://www.inf.ethz.ch/personal/fcellier/MS/wei_ms.pdf
http://www.inf.ethz.ch/personal/fcellier/MS/wei_ms.pdf

	Single-step Integration Methods II
	
	
	
	
	
	




