
Numerical Simulation of Dynamic Systems VI

Numerical Simulation of Dynamic Systems VI

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

March 12, 2013

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

Introduction

Introduction

Until now, we have discussed only single-step numerical integration algorithms. The
entire information that the algorithm required was obtained locally.

The price that we paid for this choice was that higher-order single-step methods
require multiple function evaluations during each integration step. We were talking
about the different stages of the algorithm.

Maybe this way of solving the problem is inefficient. At the end of each step, we have
available a lot of valuable information that could be used during the next step. Until
now, we simply threw that information away and started from scratch.

There exist other classes of higher-order numerical ODE solvers that preserve some of
the information gathered during previous steps. As a consequence, they manage to get
away with a single function evaluation in each step. These algorithms are called linear
multi-step integration algorithms.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Newton-Gregory Polynomials

The Newton-Gregory Polynomials

For the analysis of multi-step methods, we require a set of mathematical tools that we
shall now introduce.

Given a function f (t) equidistantly sampled over time, t0, t1 > t0, t2 > t1, The
function assumes the values f0, f1, f2, . . . at the sampling points.

We introduce the forward difference operator, Δ:

Δf0 = f1 − f0

Δ2f0 = Δ(Δf0) = Δ(f1 − f0) = Δf1 − Δf0 = f2 − 2f1 + f0

Δ3f0 = Δ(Δ2f0) = f3 − 3f2 + 3f1 − f0

etc.

In general:

Δnfi = fi+n − n · fi+n−1 +
n(n − 1)

2!
· fi+n−2 − n(n − 1)(n − 2)

3!
· fi+n−3 + . . .

=
(n

0

)
fi+n −

(n

1

)
fi+n−1 +

(n

2

)
fi+n−2 −

(n

3

)
fi+n−3 + · · · ±

(n

n

)
fi

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Newton-Gregory Polynomials

The Newton-Gregory Polynomials II

As we assumed equidistant sampling, we can write: t1 = t0 + h, t2 = t0 + 2h, . . . ,
tn = t0 + n · h.

We now introduce a normalized time variable, s:

s =
t − t0

h

Consequently:
t = t0 ⇔ s = 0.0, t = t1 ⇔ s = 1.0, . . .

It is possible to define an interpolation polynomial of order n that passes through the
n + 1 points f0, f1, . . . , fn:

f (s) ≈
(s

0

)
f0 +

(s

1

)
Δf0 +

(s

2

)
Δ2f0 + · · · +

(s

n

)
Δnf0

This polynomial is called forward Newton-Gregory interpolation polynomial. It is trivial
to show that this polynomial of order n passes through the n + 1 points f0, f1, . . . , fn.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Newton-Gregory Polynomials

The Newton-Gregory Polynomials III

It is important to mention that the variable s is allowed to assume also non-integer
values. For example:

(s

3

)
s=1.5

≡
[

s(s − 1)(s − 2)

3!

]
s=1.5

= − 1

16

Sometimes it is more useful to work with a different interpolation polynomial:

f (s) ≈ f0 +
(s

1

)
Δf−1 +

(s + 1

2

)
Δ2f−2 +

(s + 2

3

)
Δ3f−3 + · · · +

(s + n − 1

n

)
Δnf−n

This polynomial is called backward Newton-Gregory interpolation polynomial. It is
equally easy to demonstrate that this polynomial of order n passes through the n + 1
points f0, f−1, . . . , f−n.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Newton-Gregory Polynomials

The Newton-Gregory Polynomials IV

We introduce now a second operator, the backward difference operator, ∇:

∇fi = fi − fi−1

∇2fi = ∇(∇fi) = ∇(fi − fi−1) = ∇fi −∇fi−1 = fi − 2 fi−1 + fi−2

∇3fi = ∇(∇2fi) = fi − 3fi−1 + 3fi−2 − fi−3

etc.

In general:

∇nfi =
(n

0

)
fi −

(n

1

)
fi−1 +

(n

2

)
fi−2 −

(n

3

)
fi−3 + · · · ±

(n

n

)
fi−n

The backward Newton-Gregory interpolation polynomial can also be written in terms
of the ∇ operator:

f (s) ≈ f0 +
(s

1

)
∇f0 +

(s + 1

2

)
∇2f0 +

(s + 2

3

)
∇3f0 + · · · +

(s + n − 1

n

)
∇nf0

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Newton-Gregory Polynomials

The Newton-Gregory Polynomials V

Another operator is also sometimes useful, namely the displacement operator, E:

Efi = fi+1

E2fi = E(Efi) = E(fi+1) = fi+2

E3fi = E(E2fi) = E(fi+2) = fi+3

etc.

Evidently:

Δfi = Efi − fi = (E − 1)fi

∇fi = fi − E−1fi = (1 − E−1)fi

E(∇fi) = E(fi − fi−1) = fi+1 − fi = Δfi

By abstraction (a bit dangerous!):

Δ = E − 1

∇ = 1 − E−1

Δ = E∇

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Newton-Gregory Polynomials

The Newton-Gregory Polynomials VI

The three operators Δ, ∇, and E are linear operators. Hence they can be used in
algebraic expressions.

In particular:

Δn = (E − 1)n = En − nEn−1 +
(n

2

)
En−2 − + · · · ±

(n

n − 1

)
E ∓ 1

Making use of operator calculus, the derivation of the Newton-Gregory polynomials is
much simplified:

f (s) ≈ Es f0 = (1 + Δ)s f0 =
[
1 +

(s

1

)
Δ +

(s

2

)
Δ2 +

(s

3

)
Δ3 + . . .

]
f0

and:

f (s) ≈ (1 −∇)−s f0 =

[
1 +

(s

1

)
∇ +

(s + 1

2

)
∇2 +

(s + 2

3

)
∇3 + . . .

]
f0

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Newton-Gregory Polynomials

The Newton-Gregory Polynomials VII

Also differentiation is a linear operation. Therefore:

ḟ (t) =
d

dt
f (t) =

∂

∂s
f (s) · ds

dt

≈ 1

h
· ∂

∂s

(
f0 + sΔf0 +

s(s − 1)

2!
Δ2f0 + . . .

)

In particular:

ḟ (t0) ≈ 1

h
·
(

Δf0 − 1

2
Δ2f0 +

1

3
Δ3f0 − · · · ± 1

n
Δnf0

)

It makes sense to introduce yet another operator, the differentiation operator, D:

D =
1

h
·

(
Δ − 1

2
Δ2 +

1

3
Δ3 − · · · ± 1

n
Δn

)

Thus, the second derivative can be obtained in the following manner:

D2 =
1

h2
·
(

Δ − 1

2
Δ2 +

1

3
Δ3 − · · · ± 1

n
Δn

)2

=
1

h2
·
(

Δ2 − Δ3 +
11

12
Δ4 − 5

6
Δ5 + . . .

)

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

Numerical Integration Using Extrapolation Polynomials

Linear Multi-step Integration Methods

All families of numerical linear multi-step integration methods used for the simulation
of dynamic systems can be elegantly derived by means of Newton-Gregory polynomials.

To this end, we either approximate the function itself by a Newton-Gregory polynomial
and differentiate this polynomial with respect to time, or alternatively, we approximate
the first time derivative by a Newton-Gregory polynomial and integrate this polynomial
with respect to time.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

The Explicit Adams-Bashforth Formulae

Let us formulate a backward Newton-Gregory polynomial of the first time derivative ẋ
around the time instant tk :

ẋ(t) = fk +
(s

1

)
∇fk +

(s + 1

2

)
∇2fk +

(s + 2

3

)
∇3fk + . . .

with:
fk = ẋ(tk) = f(x(tk), tk)

We integrate this polynomial over the time interval t ∈ [tk , tk+1]:

tk+1∫
tk

ẋ(t)dt = x(tk+1) − x(tk)

=

tk+1∫
tk

[
fk +

(
s

1

)
∇fk +

(
s + 1

2

)
∇2fk +

(
s + 2

3

)
∇3fk + . . .

]
dt

=

1.0∫
0.0

[
fk +

(
s

1

)
∇fk +

(
s + 1

2

)
∇2fk +

(
s + 2

3

)
∇3fk + . . .

]
· dt

ds
· ds

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

The Explicit Adams-Bashforth Formulae II

Therefore:

x(tk+1) = x(tk) + h

1∫
0

[
fk + s∇fk +

(
s2

2
+

s

2

)
∇2fk

+

(
s3

6
+

s2

2
+

s

3

)
∇3fk + . . .

]
ds

and consequently:

x(tk+1) = x(tk) + h

(
fk +

1

2
∇fk +

5

12
∇2fk +

3

8
∇3fk + . . .

)

If we truncate this infinite series after the quadratic term, we obtain:

x(tk+1) = x(tk) +
h

12
(23fk − 16fk−1 + 5fk−2)

which is the well-known Adams-Bashforth third order algorithm (AB3).

If we truncate the series only after the cubic term, we obtain:

x(tk+1) = x(tk) +
h

24
(55fk − 59fk−1 + 37fk−2 − 9fk−3)

which is the Adams-Bashforth fourth order algorithm (AB4).

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

The Explicit Adams-Bashforth Formulae III

� The Adams-Bashforth algorithms are explicit ODE solvers.

� Every one of them uses a single function evaluation during each step.

� The AB algorithms make use of past values of time derivatives. The AB
algorithm of order n makes use of n − 1 earlier time derivative values.

� The AB algorithm of order n can only be used after n − 1 previous steps. This
means that, except for AB1, these algorithms are not self-starting.

� The step-size control is complicated by the need to use information of the past.
You may remember that the Newton-Gregory polynomials were developed on
the basis of equidistant sampling.

� The AB formulae were derived under the linearity assumption. It is therefore not
guaranteed that AB3 is a third-order accurate algorithm also when used in the
simulation of non-linear systems.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

The Explicit Adams-Bashforth Formulae IV

The AB algorithms can be characterized by a vector α specifying the factor associated
with the time step h and by a matrix β that lists the weights of the derivative values:

α =

⎛
⎜⎜⎜⎜⎜⎝

1
2

12
24

720
1440

⎞
⎟⎟⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
3 − 1 0 0 0 0

23 − 16 5 0 0 0
55 − 59 37 − 9 0 0

1901 −2774 2616 −1274 251 0
4277 −7923 9982 −7298 2877 −475

⎞
⎟⎟⎟⎟⎟⎠

Every row specifies the coefficients of one of these algorithms.

The algorithm AB1 is the algorithm:

x(tk+1) = x(tk) +
h

1
(1fk)

i.e., AB1 = FE.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

The Stability Domain

We would like to draw the stability domain of the AB3 algorithm:

x(tk+1) = x(tk) +
h

12
(23fk − 16fk−1 + 5fk−2)

We apply this algorithm to our standard linear system:

x(tk+1) =

[
I(n) +

23

12
Ah

]
· x(tk) − 4

3
Ah · x(tk−1) +

5

12
Ah · x(tk−2)

By substitution:

z1(tk) = x(tk−2)

z2(tk) = x(tk−1)

z3(tk) = x(tk)

Therefore:

z1(tk+1) = z2(tk)

z2(tk+1) = z3(tk)

z3(tk+1) =
5

12
Ah · z1(tk) − 4

3
Ah · z2(tk) +

[
I(n) +

23

12
Ah

]
· z3(tk)

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

The Stability Domain II

Consequently, we can write:

z(tk+1) =

⎛
⎝ O(n) I(n) O(n)

O(n) O(n) I(n)

5
12

Ah − 4
3
Ah (I(n) + 23

12
Ah)

⎞
⎠ · z(tk)

i.e.:
z(tk+1) = F · z(tk)

with:

F =

⎛
⎝ O(n) I(n) O(n)

O(n) O(n) I(n)

5
12

Ah − 4
3
Ah (I(n) + 23

12
Ah)

⎞
⎠

The F-matrix is three times larger than the A-matrix. Consequently, it contains
three times as many eigenvalues.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

Stability Domains of AB Algorithms

We are now ready to draw the stability domains of the AB algorithms.

−2.5 −2 −1.5 −1 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

2

3
4

5

6

Stability Domains of AB

Re{λ · h}

I
m
{λ

·h
}

Figure: Stability domains of explicit AB algorithms

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

Stability Domains of AB Algorithms II

� Although the stability domains of the higher-order AB algorithms approximate
the imaginary axis better in the proximity of the origin, the size of the numerical
stability domains shrinks with growing orders of approximation accuracy instead
of growing.

� There exist no stable AB algorithms of orders larger than six.

� We would like to use higher-order algorithms to improve the accuracy of the
simulations, while still using larger integration step sizes. In reality, we have to
reduce the step sizes due to problems with numerical stability.

� Although the computational load associated with a single integration step is
much lower for AB algorithms than for RK algorithms, we are forced to employ
much smaller step sizes due to the reduced domains of numerical stability of
these algorithms. For this reason, it is not at all clear that the AB algorithms in
the end are more economical in their use than the RK algorithms.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Explicit Adams-Bashforth Formulae

Stability Domains of AB Algorithms III

What happened?

We were looking for interpolation polynomials of higher orders passing through an
extended number of equidistantly spaced points. Subsequently, we used these
polynomials for an extrapolation.

0 2 4 6 8 10 12
−30

−20

−10

0

10

20

30
Interpolation Polynomial

time

y

Figure: Interpolation polynomial used for extrapolation

This doesn’t work very well.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Implicit Adams-Moulton Formulae

The Implicit Adams-Moulton Formulae

If we use implicit methods instead of explicit algorithms, we are able to interpolate
instead of extrapolating. This may help.

We now formulate a backward Newton-Gregory interpolation polynomial of the first
time derivative ẋ around the time instant tk+1:

ẋ(t) = fk+1 +
(s

1

)
∇fk+1 +

(s + 1

2

)
∇2fk+1 +

(s + 2

3

)
∇3fk+1 + . . .

We integrate this polynomial over the time interval t ∈ [tk , tk+1]. This time around,
this corresponds to the interval s ∈ [−1.0, 0.0].

There results the family of formulae:

x(tk+1) = x(tk) + h

(
fk+1 − 1

2
∇fk+1 − 1

12
∇2fk+1 − 1

24
∇3fk+1 + . . .

)

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Implicit Adams-Moulton Formulae

The Implicit Adams-Moulton Formulae II

If we truncate this infinite time series after the quadratic term, we obtain:

x(tk+1) = x(tk) +
h

12

(
5fk+1 + 8fk − fk−1

)

which is the well-known third-order accurate Adams-Moulton algorithm (AM3).

If we truncate the series only after the cubic term, we obtain:

x(tk+1) = x(tk) +
h

24

(
9fk+1 + 19fk − 5fk−1 + fk−2

)

i.e., the fourth-order accurate Adams-Moulton algorithm (AM4).

The algorithm AM1 is already known under the name BE algorithm.

All AM algorithms can be characterized by a vector α specifying the factor associated
with the time step h and by a matrix β that lists the weights of the derivative values:

α =

⎛
⎜⎜⎜⎜⎜⎝

1
2

12
24

720
1440

⎞
⎟⎟⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
5 8 − 1 0 0 0
9 19 − 5 1 0 0

251 646 −264 106 − 19 0
475 1427 −798 482 −173 27

⎞
⎟⎟⎟⎟⎟⎠

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Implicit Adams-Moulton Formulae

Stability Domains of AM Algorithms

We can draw the stability domains of the AM algorithms.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

1

2

3

4

5
6

Stability Domains of AM

Re{λ · h}

I
m
{λ

·h
}

Figure: Stability domains of implicit AM algorithms

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Implicit Adams-Moulton Formulae

Stability Domains of AM Algorithms II

� The algorithm AM1=BE=BRK1 is L-stable.

� The algorithm AM2=TR is F-stable.

� The numerical stability domains of the higher-order AM algorithms loop in the
left-half complex plane. These algorithms, in spite of being implicit, are not
useful for the simulation of stiff systems.

� We are still facing the same problem as before. The stability domains of the
higher-order AM algorithms, although larger than those of the corresponding AB
algorithms, shrink with growing orders instead of growing.

� There exist no stable AM algorithms of orders larger than six.

� On average, we need three Newton iterations per integration step. Consequently,
we perform on average three function evaluations during each step.

� Because of the larger stability domains of the AM algorithms, we can use step
sizes that are on average three times larger than those used with the
corresponding AB algorithms. The efficiencies of the AB and AM algorithms is
therefore quite similar.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

Adams-Bashforth-Moulton Predictor-Corrector Formulae

Adams-Bashforth-Moulton Predictor-Corrector Formulae

Sometimes a method is used that combines a predictor stage of AB with a subsequent
corrector stage of AM, e.g.:

predictor: ẋk = f(xk, tk)

xP
k+1 = xk + h

12
(23ẋk − 16ẋk−1 + 5ẋk−2)

corrector: ẋP
k+1 = f(xP

k+1, tk+1)

xC
k+1 = xk + h

12
(5ẋP

k+1 + 8ẋk − ẋk−1)

These methods are called Adams-Bashforth-Moulton predictor-corrector algorithms
(ABM).

The combined methods are explicit algorithms.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

Adams-Bashforth-Moulton Predictor-Corrector Formulae

Stability Domains of ABM Algorithms

We can draw the stability domains of the predictor-corrector ABM algorithms.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

3 4 5

6

Stability Domains of ABM

Re{λ · h}

I
m
{λ

·h
}

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

Adams-Bashforth-Moulton Predictor-Corrector Formulae

Stability Domains of ABM Algorithms II

� Two function evaluations are required during each step, one for the predictor
and the other for the corrector.

� Due to the larger stability domains of the ABM algorithms in comparison with
the AB algorithms, we can use steps during ABM simulations that are on
average twice as large as those used during AB simulations. The efficiencies of
the AB and ABM algorithms are very similar.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Backward Difference Formulae

The Backward Difference Formulae

Until now, we have not encountered any family of formulae that could be used for the
simulation of stiff systems. We shall introduce such a family now.

We formulate a backward Newton-Gregory interpolation polynomial of the state vector
x around the time instant tk+1:

x(t) = xk+1 +

(
s

1

)
∇xk+1 +

(
s + 1

2

)
∇2xk+1 +

(
s + 2

3

)
∇3xk+1 + . . .

or:

x(t) = xk+1 + s∇xk+1 +

(
s2

2
+

s

2

)
∇2xk+1 +

(
s3

6
+

s2

2
+

s

3

)
∇3xk+1 + . . .

We differentiate this polynomial with respect to time, t:

ẋ(t) =
1

h

[
∇xk+1 +

(
s +

1

2

)
∇2

xk+1 +

(
s2

2
+ s +

1

3

)
∇3

xk+1 + . . .

]

We evaluate at s = 0.0:

ẋ(tk+1) =
1

h

[
∇xk+1 +

1

2
∇2xk+1 +

1

3
∇3xk+1 + . . .

]

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Backward Difference Formulae

The Backward Difference Formulae II

If we truncate this infinite series after the cubic term, we obtain:

h · fk+1 =
11

6
xk+1 − 3xk +

3

2
xk−1 − 1

3
xk−2

We may solve this differential equation for the state variable at the time instant tk+1:

xk+1 =
18

11
xk − 9

11
xk−1 +

2

11
xk−2 +

6

11
· h · fk+1

There results the well-known third-order accurate backward difference formula (BDF3).

All BDF algorithms can be characterized by a vector α specifying the factor associated
with the time derivative and by a matrix β that lists the weights of the past values of
the state vector:

α =

⎛
⎜⎜⎜⎝

1
2/3

6/11
12/25

60/137

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

1 0 0 0 0
4/3 − 1/3 0 0 0

18/11 − 9/11 2/11 0 0
48/25 − 36/25 16/25 − 3/25 0

300/137 −300/137 200/137 −75/137 12/137

⎞
⎟⎟⎟⎠

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Backward Difference Formulae

Stability Domains of BDF Algorithms

We can draw the stability domains of the backward difference formulae (BDF).

−5 0 5 10 15 20

−10

−5

0

5

10

1

2
3 4

5

Stability Domains of BDF

Re{λ · h}

I
m
{λ

·h
}

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Backward Difference Formulae

Stability Domains of BDF Algorithms II

� The algorithm BDF1=BE=BRK1=AM1 is L-stable.

� The algorithm BDF2 is also L-stable.

� The higher-order BDF algorithms aren’t L-stable. They are not even A-stable. A
region of the complex plane to the left of the imaginary axis is unstable.

� There exist no stable BDF algorithms for orders higher than six.

� Already the BDF6 algorithm may only be used for the simulation of stiff
systems without oscillatory behavior, such as thermal or chemical systems,
because the unstable region to the left of the imaginary axis of the complex
plane is too large.

� The BDF algorithms are implicit methods. It is also possible to derive explicit
BDF algorithms, but unfortunately, they are unstable everywhere.

� Thanks to their suitability for the simulation of stiff systems and due to their
simplicity, the BDF algorithms are among the most widely used numerical
ODE solvers for the simulation of dynamic systems.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Algorithms of Nyström and Milne

The Explicit Nyström Formulae

We start with the same backward Newton-Gregory polynomial that we already used
for the derivation of the AB algorithms:

ẋ(t) = fk +
(s

1

)
∇fk +

(s + 1

2

)
∇2fk +

(s + 2

3

)
∇3fk + . . .

This time, we integrate the polynomial over the time interval t ∈ [tk−1, tk+1], i.e.,
over the interval s ∈ [−1.0, +1.0]. We encounter the family of formulae:

x(tk+1) = x(tk−1) + h

(
2fk +

1

3
∇2fk +

1

3
∇3fk + . . .

)

If we truncate this infinite series after the cubic term, we obtain:

x(tk+1) = x(tk−1) +
h

3
(8fk − 5fk−1 + 4fk−2 − fk−3)

This algorithm is called fourth-order accurate Nyström algorithm (Ny4).

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Algorithms of Nyström and Milne

The Explicit Nyström Formulae II

The Nyström algorithms can be characterized by a vector α specifying the factor
associated with the time step h and by a matrix β that lists the weights of the
derivatives:

α =

⎛
⎜⎜⎜⎝

1
1
3
3

90

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

2 0 0 0 0
2 0 0 0 0
7 − 2 1 0 0
8 − 5 4 − 1 0

269 −266 294 −146 29

⎞
⎟⎟⎟⎠

Unfortunately, all of the algorithms in the Nyström family are unstable.

These algorithms can therefore not be used alone, but they may still be usable for
individual stages within blended or cyclic methods.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Algorithms of Nyström and Milne

The Implicit Milne Formulae

We start with the same backward Newton-Gregory polynomial that we had already
used for the derivation of the AM algorithms:

ẋ(t) = fk+1 +
(s

1

)
∇fk+1 +

(s + 1

2

)
∇2fk+1 +

(s + 2

3

)
∇3fk+1 + . . .

We integrate this polynomial over the time interval t ∈ [tk−1, tk+1], i.e., over the
interval s ∈ [−2.0, 0.0]. We encounter the family of formulae:

x(tk+1) = x(tk−1) + h

(
2fk+1 − 2∇fk+1 +

1

3
∇2fk+1 + 0∇3fk+1 + . . .

)

If we truncate this infinite series after the cubic (or rather quadratic) term, we obtain:

x(tk+1) = x(tk−1) +
h

3
(fk+1 + 4fk + fk−1)

This algorithm is called fourth-order accurate Milne algorithm (Mi4).

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

The Algorithms of Nyström and Milne

The Implicit Milne Formulae II

The Milne algorithms can be characterized by a vector α specifying the factor
associated with the time step h and by a matrix β that lists the weights of the
derivatives:

α =

⎛
⎜⎜⎜⎝

1
1
3
3

90

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 2 0 0 0
1 4 1 0 0
1 4 1 0 0

29 124 24 4 − 1

⎞
⎟⎟⎟⎠

Unfortunately, also all of the algorithms of the Milne family are unstable.

Also these algorithms are sometimes used for individual stages within blended or cyclic
algorithms.

Numerical Simulation of Dynamic Systems VI

Multi-step Integration Methods

Conclusions

Conclusions

� In this presentation, we introduced a systematic way of developing all classes of
linear multi-step integration algorithms for the simulation of dynamic systems.

� We started out with the two families of Adams algorithms. There exists one
family of explicit Adams algorithms and another of implicit Adams algorithms.

� We analyzed their numerical stability properties. We demonstrated their
shortcomings. In practical simulation, these methods aren’t used much except
for the simulation of linear non-stiff systems without discontinuities.

� Matlab’s lsim function makes use of the AB3 algorithm.

� Subsequently, we introduced the family of the backward difference formulae.
These algorithms are widely used for the practical simulation of stiff systems.
They are among the most widely used numerical ODE solvers in modeling and
simulation environments.

� Dymola uses DASSL, an implementation of a variable-step, variable-order BDF
algorithm as its default ODE solver.

