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Given a mechanical system:
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Figure: Mechanical model of a sitting human body
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We can obtain a set of differential equations using Newton’s law:

M1 · ẍ1 = k1 · (x2 − x1) + B1 · (ẋ2 − ẋ1)

M2 · ẍ2 = k2 · (x3 − x2) + B2 · (ẋ3 − ẋ2) + k3 · (x4 − x2)

+B3 · (ẋ4 − ẋ2) − k1 · (x2 − x1) − B1 · (ẋ2 − ẋ1)

M3 · ẍ3 = −k2 · (x3 − x2) − B2 · (ẋ3 − ẋ2)

M4 · ẍ4 = F − k3 · (x4 − x2) − B3 · (ẋ4 − ẋ2)

Typically, DAE models derived from mechanical systems contain second derivatives.

In general, we can obtain models of the form:

ẍ = f(x, ẋ, u, t)
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Although it is always possible to convert such models to state-space form by
augmenting the state vector by the velocity vector v = ẋ:

ẋ = v

v̇ = f(x, v, u, t)

this may not necessarily be desirable.

It may be worthwhile to investigate whether we could find numerical ODE solvers
that can deal with second-derivative models directly. This is the purpose of today’s
presentation.
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We can reformulate the human body model in a matrix vector form using the partial
state vector x = (x1, x2, x3, x4)

T :

M · ẍ + C · ẋ + K · x = f

where:

M =

⎛
⎜⎜⎝

M1 0 0 0
0 M2 0 0
0 0 M3 0
0 0 0 M4

⎞
⎟⎟⎠ ; C =

⎛
⎜⎜⎝

B1 −B1 0 0
−B1 (B1 + B2 + B3) 0 0

0 −B2 B2 0
0 −B3 0 B3

⎞
⎟⎟⎠

K =

⎛
⎜⎜⎝

k1 −k1 0 0
−k1 (k1 + k2 + k3) 0 0
0 −k2 k2 0
0 −k3 0 k3

⎞
⎟⎟⎠ ; f =

⎛
⎜⎜⎝

0
0
0
F

⎞
⎟⎟⎠

M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and f is the
vector of (generalized) forces.
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The mass matrix turned out to be a diagonal matrix in this example, but this is only
true, because no rotational motions were considered in the given example. Generally,
this will not be the case.

Assuming that the mass matrix is non-singular, i.e., there are as many mechanical
degrees of freedom in the system as were formulated into second-order differential
equations, i.e., there are no structural singularities in the model, the model can be
solved for the highest derivatives:

ẍ = A2 · x + B · ẋ + u

where:

A =
√

−M−1 · K
B = −M−1 · C
u = M−1 · f
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Of special interest is the case of the conservative (i.e., friction-less) systems with the
second-derivative form:

ẍ = A2 · x + u

and especially, we may want to look at homogeneous, conservative, linear systems
with the second-derivative model:

ẍ = A2 · x

Numerical Simulation of Dynamic Systems IX

Second Derivative Systems

Velocity-free Models

Velocity-free Models

We shall define a velocity-free model as one that satisfies, in the linear case, the
differential vector equation:

ẍ = A2 · x + u

and, in the non-linear case, the differential vector equation:

ẍ = f(x, u, t)

Every conservative system leads to a velocity-free second-derivative model. Yet,
not every velocity-free second-derivative model is conservative.
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Given a linear, time-invariant, homogeneous state-space model of the form:

ẋ = A · x

Depending on the eigenvalues of A, the system is either damped or undamped, stable
or unstable.

We can differentiate the state-space model, leading to:

ẍ = A · ẋ = A2 · x

Any linear, time-invariant, homogeneous state-space model can also be written in
the form of a velocity-free second-derivative model, irrespective of where its
eigenvalues are located. Yet, a conservative linear system has its eigenvalues spread
up and down along the imaginary axis of the complex plane.
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How can the special structure of a velocity-free second-derivative model be
exploited by a simulation algorithm?

We start by developing the solution vector at time (t + h) into a Taylor series around
time t:

xk+1 = xk + h · ẋk +
h2

2
· ẍk +

h3

6
· xk

(iii) +
h4

24
· xk

(iv) + . . .

We also need to develop the solution vector at time (t − h) into a Taylor series around
time t:

xk−1 = xk − h · ẋk +
h2

2
· ẍk −

h3

6
· xk

(iii) +
h4

24
· xk

(iv) ∓ . . .

Adding these two equations together, we obtain:

xk+1 + xk−1 = 2 · xk + h2 · ẍk +
h4

12
· xk

(iv) + . . .
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Truncated after the quadratic term:

xk+1 = 2 · xk − xk−1 + h2 · ẍk

We just found a 3rd–order accurate explicit linear multi-step method that makes use
of the second derivative directly. In some references, the method is referred to as
Godunov’s method (GE3).

Plugging in the homogeneous linear second-derivative model:

xk+1 = 2 · xk − xk−1 + (A · h)2 · xk

Let:

ξk =

(
xk−1

xk

)

Then:

ξk+1 ≈ F · ξk ; F =

(
Z(n) I(n)

−I(n)
[
2 · I(n) + (A · h)2

]
)
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Stability and Damping of GE3

Before we attempt to draw a stability domain of GE3, we shall draw the linear
damping plot:
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Figure: Linear damping plot of GE3 algorithm

How very disappointing! The scheme is unstable in the left half plane!

The result should not surprise us too much. Since the F-matrix is an even function in
A · h, the damping properties must be symmetric to the imaginary axis. Thus there
cannot exist an asymptotic region around the origin, as we would expect of any
well-behaved integration algorithm.
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To gain a better understanding of the damping properties of the algorithm, let us plot
the damping order star.
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Interesting is the line segment stretching from −2j to +2j along the imaginary axis.
Evidently, there is zero damping along this line segment, which is exactly, what it
should be. To verify the results, let us plot the linear damping properties once more,
but this time along the imaginary rather than the real axis.
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Figure: Linear damping properties of GE3 along imaginary axis

The GE3 algorithm is only useful for strictly conservative systems.

In order to obtain marginally stable results, the largest absolute eigenvalue multiplied
by the step size must be smaller than or equal to 2:

|λ|max · h ≤ 2
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Let us now plot the linear frequency properties of GE3 along the imaginary axis.
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Figure: Linear frequency plot of GE3

The algorithm produces results that are decently accurate for:

|λ|max · h ≤ 1
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We can draw the following conclusions:

� Since the GE3 algorithm is numerically unstable everywhere in the left-half
complex plane, the method cannot be used for the simulation of damped
mechanical systems.

� The algorithm is therefore only useful for the simulation of linear conservation
laws, i.e., either linear mechanical systems that are strictly conservative or linear
hyperbolic partial differential equations (PDEs), i.e., the wave equation. We
shall deal with the simulation of distributed parameter systems in the next
chapter.

� These results are unfortunately not very exiting, because the restrictions are too
severe. How often will it happen that I wish to simulate a pure linear wave
equation or a strictly conservative linear mechanical system?
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Given:
ẍ + B · ẋ = f(x, u, t)

We apply the following variable transformation:

ξ = exp

(
B · t
2

)
· x

Therefore:

x = exp

(−B · t
2

)
· ξ

ẋ = −B

2
· exp

(−B · t
2

)
· ξ + exp

(−B · t
2

)
· ξ̇

ẍ =
B2

4
· exp

(−B · t
2

)
· ξ − B · exp

(−B · t
2

)
· ξ̇ + exp

(−B · t
2

)
· ξ̈
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With the abbreviation:

E = exp

(−B · t
2

)

we find:

x = E · ξ
ẋ = −B

2
· E · ξ + E · ξ̇

ẍ =
B2

4
· E · ξ − B · E · ξ̇ + E · ξ̈

Plugging these expressions into the linear-velocity second-derivative model:

ξ̈ = E−1 · B2

4
· E · ξ + E−1 · f(E · ξ, u, t)

we convert this model to a velocity-free second-derivative model.
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We draw the following conclusions:

� Although it is possible to convert any linear velocity model mathematically into
an equivalent velocity-free model, the conversion is not helpful, because the
resulting velocity-free model is not strictly conservative, i.e., does not have the
eigenvalues of its Jacobian located on the imaginary axis at all times.

� Yet, we cannot simulate arbitrary velocity-free models using the GE3 algorithm,
but only the small sub-class of linear conservation laws.

� Godunov was justified in his approach, because he was explicitly and exclusively
interested in the simulation of linear conservation laws, and for this special
problem, the GE3 algorithm is ideally suited.
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� In this presentation, we have started to look at a new class of linear multi-step
algorithms, specifically designed for the simulation of second derivative systems,
i.e., models that contain the second derivatives of the partial state vector
explicitly in their model equations.

� Although it is always possible to convert such models to state-space form and
deal with them using any of the numerical ODE solvers introduced in earlier
presentations, it could possibly be advantageous to simulate the
second-derivative system directly.

� Unfortunately, the GE3 algorithm turned out to be a disappointment, because it
cannot be used to simulate systems with damping.

� The method is numerically unstable everywhere in the open left-half complex
plane, because its F-matrix turned out to be an even function in A · h.

� We’ll definitely need something better.
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