MODELLING AND SIMULATION
FOR HIGH AUTONOMY SYSTEMS

by
Sungdo Chi

Copyright © Sungdo Chi 1991

A Dissertation Submitted to the Faculty of the
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY
WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College
THE UNIVERSITY OF ARIZONA

1991

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Final Examination Committee, we certify that we have read

the dissertation prepared by SungDo Chi

entitled MODELLING AND SIMULATION

FOR HIGH AUTONOMY SYSTEMS

and recammend that it be accepted as fulfilling the dissertation requirement

for the Degree of Doctor of Philosophy
mm €. G0N a]s/a
.E. Cellier Date v

W Qs
Roz&nbljit Date
% 2475/

Schooley ’7 Date

Date

Date

Final approval and acceptance of this dissertation is contingent upon the
candidate's submission of the final copy of the dissertation to the Graduate
College.

I hereby certify that I have read this dissertation prepared under my
direction and recommend that it be accepted as fulfilling the dissertation
requirement.

/&W@“E &Qﬂb 0/ /4

Dissertation Director . Cellier Date

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University Library to
be made available to borrowers under the rules of the Library.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in while or in part may be

granted by the copyright holder.
SIGNED: o /‘Z’”‘j Lo-

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor Frangois E. Cellier and Professor
Bernard P. Zeigler, my co-advisors, for their invaluable guidance, assistance, and support
during my research period. I would also like to thank Professor Jerzy W. Rozenblit and
Professor Larry C. Schooley, who served on my major committee, for their suggestions
and help in completing my degree requirements. I appreciate all their time and effort.

I wish to express my feeling of thankfulness to Drs. Chang-Yeob Park and Sang-Hee
Park at Yonsei University, Korea, who encouraged me to come to The United States to
study Computer Engineering while I completed my undergraduate and M.S. degree under
their direction.

There are many other people who deserve special thanks. Dr. Tag-Gon Kim has been
a good friend and colleague who was always objective when I turned to him for advice.
Mr. Tae-Ho Cho, Mr. Cheng-Jye Luh, Miss. Qingsu Wang, Mr. Jin-Woo Kim, Mr. Ji-
Seung Nam, and many others also have been very helpful. 1 appreciate all their friendship
and assistance.

My sincere appreciation goes to my dear wife, Soon-Young. Without her assistance,
patience, and understanding, I would not have been able to pursue my career. My son,
Min-Su, has supported my efforts with forbearance and goodwill. Finally, I would like
to express my appreciation to my parents, especially to my mother who has passed away
recently, and my wife's parents for their emotional support. To them, my special thanks.

This research was supported by NASA-Ames cooperative agreement No. NCC 2-525,
“A Simulation Environment for Laboratory Management by Robot Organizations.” The
support is gratefully acknowledged.

TABLE OF CONTENTS
page
LIST OF ILLUSTRATIONSooteieiieituimnrernrteneenrennsessossessenaessessesssassseans 8
ABSTRACGT ottt teecenectrecenesnacssessrassnsssesssassrosssssenssanns 11
1. INTRODUCTIONiiiiiiiiiiiciiitiicettneeecrareesssenssesssncesssnserssssssssnsnssns 13
1.1. Motivation and Goalscccccciieiriiiieiiriiiniieiniereeeneeeieneeeesrssensnnns 13
1.2, Basic Methodccciiiiiiiiiiiiriciiticettiiecnrteeeeneeeerenesesnnereenecesens 16
1.3. Organization of the DiSSEItationccceevvieevemeeeeenreeesssseeesessessscosenes 19
2. SYSTEM ENTITY STRUCTURE / MODEL BASEccveeereerecrecenennn 21
2.1, OVEIVIEW ciiiiiiiiiiiiiiiiiiiiiiiiiirittteetensesneasneannesrssesseessserserssesnnesans 21
2.2. System Entity StIUCIUTE ..cceuiiiiniiiiiiiiniiientnireeierrieeentsrsnteresesenseseens 21
2.3. SES Pruning and Model Synthesiscoccoeeieieerieereeieeereermnrerernneenen. 22
2.4. Hierarchical Reusability of Pruned Entity Structuresccocvvevevuveeenne 24
3. DEVS FORMALISM AND DEVS-SCHEMEcccceteemtiimrmeenerrrrenrernnnnnnnnes 27
3.1, OVEIVIEW ciiitiiiiiiiiiiiiiiiieeteciettueensncaeensacsnsnssesesnensnsserssscnsessnsases 27
3.2. DEVS FormaliSm ...ccccciiiiiiiurniieinnieiiuesesnecrnnereesecesseessnsesssessnenee 28
3.3, DEVS-SCheme ..ooiiiiiiiiiiiiiiiciiriii et ctee s teeeeraneennesneenesnnesaesanas 30
4. SYMBOLIC DEVS ettt ccneneettneessnsessnesessnessssnssassnees 33
4.1, OVEIVIEW tiieiiiiiiiiiiiii it i ceieeiteeaeaeenetasesnsasternsassnsnresserncnsnsnsences 33
4.2. Symbolic DEVS CONCePt ...ccciiiimiuiirraeieiietiiiirinceeeetieerreenneennsnnens 33
4.2.1. INtrodUCLION .e.iiiiiuiieiireiiiriireieeerictneeieeneeeaerncsnerncennennsnes 34
4.2.2. Symbolic Simulationcccceeereiiiiinieiiiiiiineereeereernean 35
4.2.3. Example: Symbolic Simulation of Baseballcccceovveueveveeeennnee 38
4.3. Constraint Checking AIZOTithm ...c..cccciiiiiiiiirerieiiierreiiccerreeeeveeees 41
4.3.1. INrOdUCHION .eeciiniiieiiiiiiiinicenirtiicetneerertereneernnerserscesnsesnnns 41
4.3.2. Consistency Checking Algorithmccocoeevrnrreeneeennrennnnnn. eae 44
4.3.3. Feasibility Checking AlgOrithmcccccecevvveeeeiiiiirrnncicennenennnnns 49
4.3.4. Relation to "Commonsense" Arithmetic Reasoningcoeuuu...... 51
4.4, ConClUSIONS iiiiiiiiiiiiiiiiiiiiiiiiii et iieeteeteeteeneenessesneneensessssosnennennan 55

ROBOT-MANAGED LABORATORY IN THE FUTUREccccoceuveeeemennne.. 56
5.1, OVEIVIEW eiiiiiiiiiiiiiiiiiiiiiiiiirnectetterestncnnssesscssssesnssnssesnsanssssnsnnsanes 56
5.2. SES Representation of Space Laboratoryccccccceeeveeervveeeenevennnne 58
MODEL-BASED CONCEPTS FOR HIGH AUTONOMY SYSTEMS 65
6.1, OVEIVIEW oottt et ceeteetereesncsnsecsssnestensesssnsanssssnsenses 65
6.2. Architecture for High Autonomy SyStemscccceeererneeecesneeesssnnne 67
6.3. Model-based ATCHIECIUTEcccccieerieiiiriniirereireeeeeneereeneennesneeseesseenes 69
6.4. Levels Of AUONOMY .c...coviiiiiireunniieiiiiieenneiaeeerereneieeeeersesssseesssssans 71
. DEVS-BASED INTELLIGENT CONTROLcouviimiiiiiririeeninrteeeeenenens 73
7.1, OVEIVIEW ciiiiiiiiiiiiiiiiiiitiieeiireetecnctetaennsncnnsanasnsnsecsnsnsncansnssenssnsns 73
7.2. The Role of DEVS in Event-based Controlcccccceeeeieerirrecvcrnnnnnenns 75
7.3. Example : Space-adapted Mixing Processcccccecreeeerrreerereeenennnnnens 75
7.3.1. DEVS Representation of Mixing Processc..cocoeevvemeereeneneen. 78
7.3.2. Modelling and Simulation Approachcccccccevrirerererieneeneeennnn, 83
7.3.3. Simulation ReSultscccovieiiiiiiiiiiiniiiiiriieeeenie e eenieeernanns 92

T.4. DiISCUSSION iuiiiiiiiitiiiiiniiiiieiaeeeiectnetnesneenessetessnsnssnsssessenssssesns 95
7.5. ConcluSiONS ..i.ieieiiiiiiiieiiiiiiiriiiieeeeneeeisneneseanseanens eerresseeteirnrnas 100
MODEL-BASED TASK PLANNINGcoiiiiiiirrirreereeerrnnesseerssssnsneens 102
8.1. OVEIVIEW eiiiiiiiiiiiiiiiiiitittnrceieeetueenetneencsesansassnsansensasansennes 102
8.2. Viewing Planning as Pruningccccccveeiiiiiiiinniiiiniirennnnneeeneeennee. 103
8.3. Model-based Planning ApPProachccccccccereeiiiiieienieenneieeersieennnns 104
8.4. Model-based Planning Methodologycccoceiiieereeiinnnicirnneereennnnnns 105
8.5. Non-experienced Planning (Initial Planning)cccccccrerereiieirreeeeerennenn. 108
8.6. Experienced Planningccoccocoiiiiiiiiiiiiiiiiiiiiiniieiciereneneennns 112
8.7. Abstraction Related Modellingccoveeriiiiiiiniiiniinnicenenneeeeneneennns 114
8.8. Hierarchical Planning/Execution Structureccccccccececeererecneneeenne. 117
8.9. CONCIUSIONS 1eeciiiiiieeieeiieiieeeiiereeieeeereeeeeereeaer e eesaeeeseseesesares 119
HIERARCHICAL MODEL-BASED DIAGNOSIScocvtiiiiriireeeeereerreeennenns 120

9.1, OVEIVIEW ciiiiiiiiiiiiiiiiiiitiiirrnseereneeteneernnessteneessseessssesssoscennssens 120
9.2. Background of Shallow and Deep Reasoningccceevreeeuveeeveneen. 121
9.3. Local DiagnoSiS ..cccccieciiierieiierneerenniernnreersnieeesecresereessnsssssosnnnans 123
9.4, Global Diagnosis ...cccccceeiiiiieiruiiieiieerennenoreieeeereesoneseresasnnnnnns 125
9.5. Conclusions setteesmsneresesserrnsstsriansenstarasasesesssssssaseres 136
10. MODEL-BASED ARCHITECTURE FOR HIGH AUTONOMY SYSTEMS 138
JO.1. OVETVIEW iiniiiiiiiiiiieiiiieriierueetieeanecnnesateeesnernnesesasseresessnesennses 138
10.2. Model Base Developmentc.ccceeveeieeeeeecieeieieeeneeneensesoneeeeseeens 139
10.2.1. Model-based Planningccoccovrmeeiiiniiiiimeeieeieeeneerneneees 141

10.2.2. Model-based OPperationccccecceeeeeeeeeeermeeeniiereeereennnnnees 142

10.2.3. Model-based Diagnosiscccceeeeeereeememeerciiieieeneensseeeeennnn 142

10.3. Endomorphic System CONCEPLceieeeeiieeerniierneeiereecreenneeernssesenees 143
10.4. Engine-based Design Methodologiesccccoreevererrriiirrieernesrennenns 144
10.5. Hierarchical Development of Intelligent Unitscoceeevvvmiirerieeeeennnne 145
10.6. Example: Robot-managed Fluid Handling Laboratoryc.ccueen.. 149
10.7. COoNCIUSIONS ..ceuiiiiiiiiiiiiiiiiieiieeeiuieeeeeteetneenneeseererseesneerneasssneses 151
11. CONCLUSIONS ittt ctreeeestaneseesanerseesneennesnersocenenns 153
11.1. General SignificanCeccccoiiiiiiiuiiiiiiiiiiiieriiiiieeereereneereeernnes 153
11.2. Contributions and ReSUltScccceviiiirriirreiriinirineninneeniiriesieeeeenens 154
11.3. Future ReSearcChcceciiieiiiiiimmiiiniriiiiineiiiitneentertenesnnesnsesnnenns 158

REFERENCES ..ottt ceece st e ea s e e s ae e aes 160

LIST OF ILLUSTRATIONS

Figure page
2.1. An Example of a System Entity StrucCturecccceeevveeeeevreeeemreeceeerenens 22
2.2. The System Entity Structure / Model Base (SES/MB) Environment 23
2.3. Reusability of Pruned Entity StruCturesccccceeeerieeeeeenivvrneeeeesesssnnenes 25
2.4. Hierarchical Pruning for ReUSEccccccicrrrrrrrnrereniienneeieeieieeiieesscesonnes 25
3.1. Class Hierarchy of DEVS-Schemecccceeeeeununnnee. eeerrseenteresaesanonan 31
4.1. Symbolic Simulation Example: Baseball

(@) Model Structure of Baseballcoccoviriiiiiiiiiiiniiirneereneeeraneenens 39

(b) State Transition GIaphsc.ccciiieiiiiiiiiiieriiieir e eeaneeee 39

(c) Generated Tree Of TrajeCtOTi€scceceveeeereeeeiiiierereeeeennisereeennens 40

(d) Timing Relations ..coiiuiiiiiiiiiiiiieiiiiciiciieeee e eeevseeneeesanrenaens 41
4.2. Knowledge Base System CONCEPLccccciiiureiierimreeneereerrnieerensuneeeeecsnsnns 42
4.3. Knowledge Base System SITUCIUTEccceceeriiiunieeeerreeneiiseeennesineeeernssnens 43
4.4, An ExXample ...ceiiiiiiiiiiiiiiiiiii ettt crreete et et s en e s eeans 44
4.5. Redundancy Checking

(@) Irredundant CaSE ...ccceiiiieveiriiireieieieieereieenireinesresosnsasnsnsenens 46

(b) Redundant Cas€ ...coccccieiiiiieieniinieniiierneeeerenrentineeseeesseeencennes 46
4.6. Redundant Constraints Elimination

(@) Constraint ¢ 1S addedc.cceeeiiiiiiiiiiniiiiiiecirce e e 47

(b) Iterating Redundant Conctraint Checkingcccoeeeereeeereinisrnnnnns 47
4.7. Consistency Checking Algorithmccccoceiieiiiiniiiiiiiiiiiiiniiieeieeeeeeennnn. 48
4.8. Feasibility Checking Algorithmcccceciiiimmiiiiiiinnneiniienieerneieeeeennn 52
5.1. Tele-autonomous SyStem CONCEPL .c..ccceiiiiiuuriieeierrrnnireeeerneeeseeeersssnnnes 58
5.2. Space-borne Chemical Laboratory VIiewcccccceiericiiiivivnneneeneeneeennne 59

5.3.
5.4.
6.1.
6.2.
6.3.
7.1.
7.2.
7.3.
7.4.

7.5.
7.6.
7.7.
7.8.

7.9.

7.10.
7.11.
7.12.

8.1.

Partitioned SES of Robot-Managed Chemical Laboratoryccceeveevvennenene 61
Robot System Organization EXamplecccccoouniemrreecennnnneeeeeensnsseeeeens 62
Components Of AULONOMYcc.eeevevueeruresreerereeuenseessuesssesssesssenesessns 66
Architecture for High Autonomycccccccceiiiiciimrrenreneenerereennneeseenneees 68
Model-based ATCRItECIUTEcccceeeirieiiiiriicirreeerererreeeeereceee e eeeee e ens 70
Space-Adapted MixXing SYStEMcccciiiiimrieiiiiiiiieenenriieeneeeeesnaeesseeenss 76
Dynamic Characteristics of Mixing Systemccccccoceevnireecireeencrrernsnnnes 78
Threshold Type Sensors for Space-adapted Mixing Systemc.u...... 80
DEYVS State Definitions and State Transition Diagrams

(@) DEVS State DefinitiOnScceeiiiveniiuienneeireiiereeneenceceansesoncennesns 82

(b) State Transition Diagramc.ccecccovieieiirmeiieeneiioeeneniieeeenunneens 82

(c) Possible Alternative of State Transition Diagramcceeuunn.... 83
System Entity Structure for a Mixing Systemccccceeeeereveeerinnreeeernnnenen. 84
Abstraction Sequence for Models of Mixing Processcccocevveeeevvevecnnnnn. 85
Layered Architecture of the Mixing Control Systemc.ccccceevevereccireeeannnnne 86
Table Specification of an Internal Model, MIX-O

(@) State Table .ccccceiiviviiiiiiiiiiiiriicteeeneierieereieeraeareresensanes 89

(b) Goal Table e teeeeteetteeeneentereeeraeeraennernnernerreesneanees 89
Fault Diagnosis Rules for MIX-D (partially-Shown)cccccoeeeeeeeecinnneecennns 90
Various Data Types for Fault Diagnosiscccccevccereecrvrnneneeeeccninnneecennnns 92
Initial Values for the Simulation TesStcccccoeiiiiiireimineirieiiecnnnnenneeeennenens 93
Simulation Results

(@) Goal Plan : EMPTY-> A-FULLccccociviiiieiiiiinnniinernenneeesennn. 94

(b) Goal Plan : A-FULL -> MIXEDcuuueeeeeririienernnenrecenneneresennnen. 94

(c) Goal Plan : MIXED -> EMPTY ...riiiriiiiiiiiiiiineniinneneeeeereeeenns 94

(a') Goal Plan : EMPTY -> A-FULL (fault Cas€)ccceeveumruneeceeereerennanne 95

8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.
9.9.
9.10.
10.1.
10.2.
10.3.
10.4.
10.5.
10.6.

Planning Concept: Viewing Planning as Pruning the Goal Structure 106
Autonomous System Generation MethodolOgycccccceeeeeecrrrvnnneerecnrnnee 107
Action FIow Diagramccccceeiriiiiiimiiieierenencierennnnneeeessesecseeesessnses 111
Hierarchical Structure of Partitioned/Indexed PES Family for Reuse 113
Abstraction Related Modelscoeeuecrririiiiiiiiniennnnrniieieiseeeeeseennnnns 115
Abstraction Process from LMI-Os to MMI-O: Sampling Example 115
Hierarchical Planning/Execution Structureccccccceeeeevrveneeeeeeneeennns 118
Mixing Example of Hierarchical Structurecccccceovvivneercecccineneenen. 119
Hierarchical Execution/Diagnosis StruCtureccceeeeeeeeeereereenveiererenenes 123
Local Diagnosis Model Generationccccccecerreeereeeeenenneieeienneneneaenens 125
Global Diagnosis Model Generationccccccceveeeeeeeeeceeeeeesaenaaeaneannnns 127
Sensory Data and Diagnostic Conclusion for Local Diagnoser 128
Causal Propagation Modelling Approachc.cvveerrivvieiiiinnieeeennnennens 129
Causal Diagram of Fault Familyccocvvviviiviniiiiiiiiiiiinnnininnnnnennnnnnnnnnn. 130
Causal Structure of Diagnostic Model Unitcccoevirvvvniniciiceeneinenennnna. 131
Causal Propagation Model Structure: Sampling Exampleccccuveeen.en.. 133
Tree of Trajectories of Example in Figure 9.8ccccooininnvinnnrnrnennenn. 134
Trajectory Tree with Fault Constraints and Its Diagnosis Table 135
Autonomous System Architecture and its Model Base Classcuueun...... 140
Endomorphic System Conceptcceceervenne eterteee sttt sttt e e renbe s 144
Engine-based Modelling Concept for Endomorphic System Design 145
Hierarchical Abstraction and Integration of High Autonomy System 147
Autonomous System Generation Procedureccccceeveevieiierennenennnennnnnn.. 148

Mixing Example of Hierarchical Execution Structureccccceccceeeeeenenns 151

11

ABSTRACT

The basic objective of this research is to develop an architecture for systems capable of
highly autonomous behavior by combining decision (intelligence), perception (sensory
processing), and action (effector) components. The major challenge of this dissertation is
the integration of high-level symbolic models with low-level dynamic (control-theoretic)
models into a coherent model base.

The systematic inclusion of dynamic and symbolic models each dedicated to support a
single function such as planning, operations, diagnosis or perception allows us to extend
existing multi-layered control and information architectures. A knowledge-based
simulation environment is employed to simulate and verify the proposed integrated model-
' based architecture.

The constructed working simulation version of an autonomous robot-managed
laboratory demonstrates the use of multiple model families for experiment planning and
execution. Tools to support the development and integration of such model families are
also developed. The developed model-based architecture is elaborated by incorporating
time-based simulation and causal propagation model families supporting diagnosis, repair,
and replanning. This involves tools to automatically extract such models from more
detailed dynamic models and structural knowledge.

Systems with high levels of autonomy are critical for unmanned, and partially manned,
space missions. The utility of the proposed high autonomy system will be demonstrated
with models of a robot-managed fluid handling laboratory for International Space Station
Freedom to be used for research in life sciences, microgravity sciences, and space

medicine. NASA engineers will be able to base designs of intelligent controllers for such

12

systems on the architecture developed in this dissertation. They will be able to employ our

tools and simulation environment to verify such designs prior to their implementation.

13

CHAPTER 1
INTRODUCTION

1.1. Motivation and Goals

Emerging from the control field, intelligent control is viewed as a new paradigm for
solving control problems [58],[59]. Its relatively narrow interpretation of the “control
problem” does not include, for example, the control needed by a system to diagnose and
repair itself after significant insults to its physical structure. = However, requiring greater
degrees of autonomy from a system forces a more expanded view. Still within the control
perspective, Antsaklis et al. [6] developed a more inclusive framework for autonomous
systems. This dissertation contains an extensive bibliography on intelligent and
autonomous control. To achieve autonomy, artificial intelligence is one, among other,
means to this end.

Although, criteria for artificial intelligence [27],{64] implicitly include autonomy,
robotics research is realizing that autonomy requires the integration of Al decision making
components together with perception and action components [45]. Even some Al
researchers state that problems in Al itself might be better solved by incorporating solutions
from perception and motor control [9].

To include such diverse systems as planetary colonies, self-operating factories, and
telerobotic laboratories along with autonomous land and space vehicles in the autonomy
umbrella, we employ the following definition [63]:

Autonomy is the ability to function as an independent unit or element over an

extended period of time, performing a variety of actions necessary to achieve pre-

designated objectives while responding to stimuli produced by integrally contained
sensors.

14

Saridis [78] developed a three layer hierarchy (execution, coordination and
management) for intelligent control [78] which is supposed to reflect increasing intelligence
with decreasing precision. Antsaklis et al. [6] refine the hierarchy to an arbitrary number of
layers, depending on the particular application. The coupling of control and information
at various layers characterizes the framework recently proposed by Albus [1],[2],[3].
Generalizing the earlier NASREM framework, Albus elaborates an architecture of seven
levels, each of which has its own Task Decomposition and Execution, Sensory Processing,
World Model, Global Memory, and Value Judgement components. Components at one
level communicate with each other and with corresponding components at higher and lower
levels. The Albus architecture is the most general and elaborate attempt to integrate
perception, decision, and action to achieve intelligence/autonomy. However, it leaves
many details unspecified, particularly of interest here, the role of models.

The alternative architecture for autonomous robotics developed by Brooks [8] does not
explicitly incorporate higher level planning and world model perception. This approach
by-passes the computational burden required in the multi-layered architectures. Although
achievements such as robotic “insects” are impressive, it is not clear whether such an
approach “scales up” to systems that for example, operate sophisticated equipment and are
able to detect, diagnose, and repair faults in such equipment. However, the Brooks
alternative makes clear that one major hurdle to overcome in the architectural concepts of
Albus, Saridis, Antsaklis, etc. is the heavy on-line computation times needed for higher
level functions such as planning and diagnosing. The proposed research seeks to reduce
such on-line computation by off-line pre-compilation to produce simplified models
individually matched to the tasks needing to be performed. Such models are to be
attached to generic engines that can interpret them efficiently with reduced processing

times.

15

Models are directly associated with the tasks that are needed to achieve system
objectives. Some of the tasks supported by models are listed under the three primary
control layers [78]:

* management

- action planning (plan development, plan evaluation)
-FDIR (fault detection, diagnosis, isolation, and repair)

* coordination
- path planning
- scheduling
- control
- FDIR

* execution
- object identification
- manipulation
- navigation
- operation
- FDIR

In the proposed model-based architecture, knowledge is encapsulated in the form of
models that are employed at the various control layers to support the predefined system
objectives. The term “model” here refines the “world model” concept: “the system's best
estimate of objective reality” [1]. It recognizes that an autonomous system must maintain
models in a variety of formalisms and at various levels of abstraction. Lower control layers
are more likely to employ conventional differential equation models with symbolic models
more prevalent at higher layers. A key requirement is the systematic development and
integration of dynamic and symbolic models at the different layers. In this way,
traditional control theory, where it is applicable, can be interfaced with AI techniques,

where they are necessary. Antsaklis et al. [6] propose that so-called hybrid modelling

16

methodology must be adopted --- the combination of traditional differential/difference
equation models with more recent symbolic formalisms [108]. The proposed research is

to develop concepts and tools to facilitate such hybrid methodology.

1.2. Basic Method

Note that an autonomous system could, in principle, base various functional aspects
such as operation, diagnosis, repair, planning, and other activities on a single
comprehensive model of its environment. However, such a model would be extremely
unwieldy to develop and lead to intractable computations in practice. Instead, our
architecture employs a multiplicity of partial models to support system objectives. As
indicated, such models differ in level of abstraction and in formalism. The partial models,
being oriented to specific objectives, should be easier to develop and computationally
tractable. However, this approach leads to sets of overlapping and redundant
representations. Concepts and tools are needed to organize such representations into a
coherent whole. Structure and behavior preserving morphisms from model theory
[108],[109],[115] can connect models at different levels of abstraction sb that they can be
developed to be consistent with each other and can be consistently modified.

There are three major formalisms, or short-hands, for dynamig system specification.
Differential and difference equations employed to describe continuous systems have a long
history of development whose mathematical formalization came well before the advent of
the computer. Discrete event modelling is of more recent vintage and is finding ever
more application to analysis and design of complex manufacturing, robotic,
communication, and computer systems, among others [31],[41]. In contrast to continuous
systems simulation, discrete event simulations were made possible by, and evolved with,

the growing computational power of computers. Formalization of the models that

17

underlay discrete event simulations is therefore a relatively new concern [61],[115].
Formalisms that can capture both discrete and continuous behavior are also of increasing
importance [62],[69],[89].

The classical Al knowledge representation schemes, such as rules, semantic nets, and
frames, can be viewed as essentially symbolic formalisms for static models. They
provide organizations for large bodies of facts with mechanisms for inferencing, access
path development, and comparison based on symbol manipulation. = New directions in
Al, for example qualitative modelling and planning, are finding it necessary to take time
into account [5],[88].

On the other hand, while differential/difference equation formalisms are numeric in
character, this is not necessarily true of more recent dynamic systems formalisms.
Discrete event and automata models, for example, usually include state representations of a
symbolic nature. Antsaklis ez al. [6] refer to discrete event models that do not include a
time base explicitly [116] as “logical,” thereby emphasizing their symbolic nature. Narain
[62] has developed a logic-based formalism intended to facilitate reasoning about the
behavior of combined discrete/continuous models.

Qualitative physics has done much to bring qualitative formalisms for dynamic model
specification to attention. Al researchers in qualitative physics envision an ideal

‘formalism which captures commonsense knowledge of dynamic systems without the use of
differential equations [24],[44],[52],[53].[70]. The ability of such models to deal with
incomplete specification is emphasized, although the cost is heavy ambiguity and trajectory
branching. Model-based diagnosis [25],[33],[441,[71] is a related approach that, using
models, seeks to support deeper reasoning than possible in conventional “shallow” expert
system approaches. The diagnostic models in the proposed research will be of both

shallow and deep nature [80] derived from underlying discrete event specifications.

18

Traditional discrete event formalisms incorporate uncertainty in the form of stochastic
processes. Modern views recognize types of uncertainty that cannot be represented in a
probabilistic manner such as ambiguity, lack of relevant factual knowledge, and deliberate
use of linguistic imprecision. Fuzzy set theory is the predominant framework for
representing such uncertainty (although it is not the only one). Incorporating fuzzy set
mechanisms into models is drawing increasing attention [18],[28].

For autonomous systems design, any, and all, of such formalisms are potentially
applicable. Conventional automatic control theory makes heavy use of
differential/difference equation models to capture continuous interaction with the world at
the lower physical level, where “physical” includes aerodynamic, chemical, biological,
ecological, and other processes. ~ Planning and scheduling of manufacturing and other
operations rely on simulation of discrete event models. It is reasonable to seek to
achieve high autonomy by retaining such existing model formalisms and associated
simulation engines as a basis, introducing newer symbolic and qualitative formalisms as
needed.

The event-based control methodology [102],[109] provides an approach to process and -
device control that is especially tuned to the constraints of high-autonomy applications.
It provides a relatively simple and robust real-time control layer that can be linked to higher

level symbolic reasoning layers with the abstraction approach.

1;3. Organization of the Dissertation

Chapter 2 briefly reviews the System Entity Structure / Model Base framework as a
basis of the model-based approach. The specification of the system entity structure and
the concept of model synthesis are presented. In Chapter 3, the discrete event system

specification formalism (DEVS) and its implementation in an object-oriented environment

19

are introduced as a basic tool to analyze and design complex systems. Chapters 2 and 3
review basic concepts that have been previously described by other authors. They are
included in this dissertation solely for the purpose of enhancing the understandability of
subsequent chapters without forcing the reader to digest other documents first. Chapter 4
shows an extension to the DEVS formalism that facilitates the symbolic representation of
event times by extending the time base from real numbers to the field of linear polynomials
over real numbers. This chapter also proposes a linear polynomial constraint checking
algorithm for efficient management of non-determinism in symbolic simulation. In
Chapter 5, a robot-managed laboratory of the future is introduced as an example of a high
autonomy system design. This chapter shows the construction of a space-borne
laboratory environment by means of an entity structure knowledge representation.
Chapter 6 presents the concepts of model-based architectures for high autonomy systems as
an extended paradigm that subsumes both control and Al paradigms. Chapter 7 presents
the concept of DEVS-based intelligent control. This chapter then shows the intelligent
control of a space-adapted fluid mixing example. The relation with other programmable
logic controller (PLC) approaches is also discussed. In Chapter 8, the development of a
model-based task planning system is presented by showing a coherent way of integrating
typical planning paradigms such as “searching” and “representation.” This chapter
proposes a task planning methodology using the system entity structure concept. Chapter 9
presents a hierarchical model-based diagnosis for inferring single or multiple faults from
the knowledge of faulty behaviors of component models and their causal structures. The
chapter shows a local and a global reasoning concepts to extract cause-effect tables from the
faulty component models using symbolic simulation. Chapter 10 presents a systematic
integration of the previously developed methodologies and architectures into a coherent

whole. This chapter then proposes a synthesis methodology for automatically generating

20

an autonomous system architecture. Chapter 11 concludes the dissertation by
summarizing the results, showing the main contributions, and suggesting further research

related to this work.

21

CHAPTER 2
SYSTEM ENTITY STRUCTURE / MODEL BASE

2.1. Overview

The System Entity Structure /| Model Base (SES/MB) framework was proposed by
Zeigler [1071,[109],[112] as a step toward interfacing the dynamic-based formalism of
simulation with the symbolic formalism of Al It consists of two components: a system
entity structure and a model base. The system entity structure, declarative in character
[48],[50], represents the knowledge of decomposition, component taxonomies, coupling
specification, and constraints. The model base contains models that are procedural in

character, expressed in dynamic and symbolic formalisms.

2.2. System Entity Structure.

The System Entity Structure (SES) is a representation scheme that contains the
decomposition, coupling, and taxonomy information of a system [107],[112]. Formally,
the SES is a labeled tree with attached variable types that satisfies six axioms - uniformity,
strict hierarchy, alternating mode, valid brothers, attached variables, and inheritance. A
detailed description of the axioms is given in [109],[112].

The SES contains three types of nodes - entities, aspects, and specializations - which
represent three types of knowledge about systems. The entity node, which may have
several aspects and/or specializations, corresponds to a model component that represents a
real world object. The aspect node (denoted by a single vertical line in the labeled tree of
Figure 2.1) represents one decomposition, out of many possible, of an entity. Thus, the

children of an aspect node are entities, distinct components of the decomposition. The

22

specialization node (denoted by a double vertical arrow in the labeled tree of Figure 2.1)

represents a way in which a general entity can be specialized into entities.

I Il
| | B
A1 A2

Figure 2.1. An Example of a System Entity Structure

A multiple entity is an entity that represents a collection of homogeneous components.
We call such components a multiple decomposition of the multiple entity. The aspect of
such a multiple entity is called multiple aspect (denoted by a triple vertical line in the labeled
tree of Figure 2.1). Note that instead of presenting all Bs for B's components, only one
B is placed in the labeled tree.

Pruning extracts a sub-structure of the SES by selecting one aspect and/or one
specialization for each entity in the SES. The pruning operation also expands multiple
entities as well as values of attributes attached to entities in the SES.

The SES has been realized in the Scheme LISP environment. The realization called
ESP-Scheme was described in [48]. ESP-Scheme has been used as a means of
representing structural knowledge for a simulation model in knowledge-based

modelling/simulation research.

2.3. SES Pruning and Model Synthesis

One application of the SES/MB framework relates to the design of systems [75],[82].
Here the SES serves as a compact knowledge representation scheme of organizing and
generating the possible configurations of a system to be designed. To generate a candidate

design, we use a process called pruning which reduces the SES to a so-called pruned

23

entity structure (PES). Such structures are derived from the governing structure by a
process of selecting from alternatives wherever such choices are presented. Not all choices
may be selected independently. Once some alternatives are chosen, some options become
unavailable while others are enabled. Moreover, rules may be associated with the entity
structure that further reduce the set of configurations to be considered [42]. In the
model-based architecture of high autonomy systems, the pruning is an initial planning
process supporting the selection of the sequenced/planned model.

As shown in Figure 2.2, pruned entity structures can be stored along with the SES in

files forming the entity structure base.

SYSTEMENTITY STRUCTURE BASE

pruned
entity
structures

entity
structures

prune
and

i}

save

transform
I >

retrieve

MODEL BASE

v

model . working

structures memory

Figure 2.2. The System Entity Structure/Model Base (SES/MB) Environment

Hierarchical simulation models may be constructed by applying the transform function

to pruned entity structures in working memory. As it traverses the pruned entity structure,

24

transform calls upon a retrieval process to search for a model of the current entity. If a
model is found, it is used, and the transformation of the entity subtree is aborted. Retrieve
looks for a model first in working memory. As it traverses the pruned entity structure,
transform calls upon a retrieval process to search for a model of the current entity. If no
model is found in working memory, the retrieve procedure searches through model
definition files, and finally, provided that the entity is a leaf of the currently visited SES, it
checks other pruned entity structure files. If another PES is found that defines the currently
investigated leaf entity as its root entity, a new incarnation of the transform process is
spawned to construct a model of that leaf entity. Once this construction is complete, the
main transform process is resumed.

The result of a transformation is a model expressed in an underlying simulation
language such as DEVS-Scheme [109], ready to be simulated and evaluated relative to the
modeler's objective. The fact that the transform process can look for previously developed
pruned entity structures, in addition to basic model files, has an important consequence for

reusability.

2.4. Hierarchical Reusability of Pruned Entity Structures

The power to generate a large collection of models brings with it the need to archive the
collection for reuse. Think of the SES as a powerful “printing press” and the collection
of PESs the “books” to be archived. Properly cataloguing the books rolling of the press
will help us find existing books that meet our current needs. The situation is described in
Figure 2.3. A PES uniquely represents a model in that the PES contains all the
information needed by the transformation process to synthesize it. =~ We assume that the
model base is complete in the sense that it contains models for all the atomic entities

referenced in the PESs.

25

— ENBASE
available for reuse
‘ 1 ‘ MBASE
. Pruned
Entity | prunin i fransform
Structure ——g Entity
Structure

Figure 2.3. Reusability of Pruned Entity Structures

The basic requirement of cataloguing is easy to state: a PES should be catalogued in
such a way as to facilitate subsequent recognition and retrieval. Extensions of PESs can
be used to identify different prunings that all have the same root and therefore represent
different models of the same entity.

The next requirement for reusability is that when a leaf entity is encountered in the
pruning procedure, such versions automatically be available for user selection as shown in
Figure 2.4. This captures the hierarchical sense of model reusability, since existing
versions of leaf entities can be “pulled of the shelf” and “plugged in” as components to a

more encompassing model.

/AN
el V/AVV/2N
N

Entity

Structure

A/
f1

Figure 2.4. Hierarchical Pruning for Reuse
More than one SES may exist in the entity structure base, each one representing a

family of models for its root entity. In principle, every entity might have its own SES but

26

this would lead to extreme fragmentation of the encoded knowledge. Reasons for giving
an entity its own SES include: the large size of its family of possible prunings, its high
likelihood of being modified, and its occurrence in several places of existing SESs. The

role of reusing entity structures for model-based task planning is discussed in chapter 8.

27

CHAPTER 3
DEVS FORMALISM AND DEVS-SCHEME

3.1. Overview

Discrete event modelling is finding ever more applications to analysis and design of
complex manufactuﬁn g, communication, and computer systems, among others.
Powerful languages and environments have been developed for describing such models for
computer simulation [31]. Yet, the general understanding of the hature of discrete event
systems per se is still in its infancy compared to that of continuous systems.

Differential equations employed to describe continuous systems have a long history of
development whose mathematical formalization came well before the advent of the
computer. In contrast, discrete event simulations were made possible by, and evolved
with, the growing computational power of computers. The prime requirement for
conducting such simulations was to be able to program a computer appropriately. Not of
immediate utility, computer-independent model description formalisms for discrete event
systems, paralleling the differential equations for continuous systems, were late in coming.
Yet, it is now being recognized that our understanding of complex systems may be greatly
enhanced with such mathematically based formalisms.

A system can be described as existing in any one of a set of internal configurations or
“states” with discrete inputs and outputs. The state of a system summarizes the information
concerning past inputs that is needed to determine the response of the system to subsequent
inputs [108]. The discrete event formalism focuses on the changes of state variable values

and generates time segments that are piecewise constant.

28

3.2. DEVS Formalism

The Discrete Event System Specification (DEVS) formalism introduced by Zeigler
[108] provides a means of specifying a mathematical object called a system.
~ ADEVS (Discrete Event System Specification) is a structure:

M=<X,S8,Y, 6in, 0oz, A, ta >
where

X is the set of external (input) event types

S is the sequential state set

Y ‘is the output set

Oins - S — S, is the internal transition function

Ot : @ *S — S, is the external transition function, where Q is the total state set
Q={(Ge)lse S, 0<e<ta(s))}

ta:S — R*p ., is the time advance function, where the R+ .. is the non-negative reals
with oo adjoined.

A:S —Y, is the output function

A system has a time base, inputs, states, outputs, and functions for determining next states
and outputs given current states and inputs. The formalism specifies :

1) basic models from which larger ones are built.

2) how these models are connected together in a hierarchical fashion.

A basic model, called atoric model, contains the following information:

» the set of input ports through which external events are received;

« the set of output ports through which external events are sent;

* the set of state variables and parameters: two state variables are usually present -- phase
and sigma (in the absence of external events the system stays in the current phase for the

time given by sigma);

29

» the internal transition function, which specifies to what next state the system will transit
after the time given by a sigma has elapsed;

« the external transition function, which specifies how the system changes state when an
input is received -- the effect is to place the system in a new phase and sigma, thus
scheduling it for a next internal transition;

« the output function, which generates an external 6utput just before an internal transition
takes place;

« the time advance function, which controls the timing of internal transitions -- when the

sigma state variable is present, this function just returns the value of sigma.

The second form of model, called coupled model, tells how several component models are
coupled together to form a new model. This latter model can itself be employed as a
component in a larger coupled model, thus giving rise to hierarchical model construction.
A coupled model contains the following information:

» the set of input ports through which external events are received;

» the set of output ports through which external events are sent;

» the external input coupling, which connects the input ports of the coupled model to one
or more of the input ports of the components -- this directs inputs received by the coupled
model to designated component models;

» the external output coupling, which connects output ports of components to output ports
of the coupled model -- thus, when an output is generated by a component, it may be sent
to a designated output port of the coupled model, and be transmitted externally;

« the internal coupling, which connects output ports of components to input ports of other
components -- when an output is generated by a component, it may be sent to the input

ports of designated components.

30

3.3. DEVS-Scheme

DEVS-Scheme [109], a general-purpose modelling and simulation environment, is an
implementation of the DEVS formalism in SCOOPS, an object-oriented superset of
Scheme (a Lisp dialect), which enables the modeler to specify models directly in DEVS
terms. DEVS-Scheme supports building models in a hierarchical, modular manner
(successively synthesizing systems from component models to form new component
models of a higher hierarchy level), a systems-oriented approach not supported in
conventional languages.

The class specialization hierarchy of DEVS-Scheme is illustrated in Figure 3.1. All
classes are subclasses of the universal class entities, which provides tools for manipulating
objects in these classes. The inheritance mechanism ensures that such general facilities
need only be defined once. Models and processors, the main subclasses of entities,
provide the basic constructs needed for modelling and simulation, respectively. Models is
further specified into the major classes atomic-models and coupled-models, which in turn
are specialized into more specific classes. Class processors, on the other hand, has three
specializations: simulators, co-ordinators, and root-co-ordinators, which serve to handle
all the simulation needs.

The class atomic-models realizes the atomic-level of the DEVS model formalism.
Forward-models and table-models, subclasses of atomic-models, generate models that
inherit all thelinstance variables and methods of atomic-models. However, they generate
more specific models based on a forward-chaining production rule paradigm and a table-

lookup paradigm, respectively.

31

ENTITIES ~Ist

! ! ~name

) I:EI ~processor I
BLS ~parent PROCESSORS
~inport ~parent
~outport ~devs-component
~coll-position ~time-of-last-event
~time-of-next-even

|
ATOMIC-
MODELS ~ind-vars SIMULATORS
~int-transfn COUPLED- CO-ORDINATORS
~ext-transfn MODELS ~*-child
~outputfn ~children ~wait-list
~time-advancefn ~receivers
~influencees

ROOT
I CO-ORDINATORS
~clock

FORWARD-

MODBE.S KERNEL-
DIGRAPH- MODELS

MODELS ~init-cell
~composition-tree ~out-in-coup
~influence-digraph ~class

TABLE- | |

MODELS BROADCAST CONTROLLED
MODELS MODELS

~controlier

HYPERCUBE-

MODELS CELLULAR-MODELS
~ext-coup ~ext-coup
~num-infl ~infl-origin

~structure

* Uppercase Letters: Classes
* Lowercase Letters: Class/Insmniariables

Figure 3.1. Class Hierarchy of DEVS-Scheme

The class coupled-models is a major class, which embodies the hierarchical model
composition constructs of the DEVS formalism. In the DEVS formalism, a coupled-
model is defined by specifying its components and the coupling relations which establish
the desired communication links. A detailed description of DEVS-Scheme is given in

[108],[109].

32

The DEVS formalism is more than just a means of constructing discrete event
simulation models. It provides a formal representation technique for systems that are

capable of mathematical manipulation, just as differential equations serve this role for

continuous systems [102].

33

CHAPTER 4
SYMBOLIC DEVS

4.1. Overview

Extending the discrete event modelling formalism to facilitate its symbol manipulation
capabilities is important in the context of its use for intelligent control and the design of
high autonomy systems. This chapter shows an extension to the DEVS formalism that
facilitates the symbolic representation of event times by extending the time base from the
real numbers to the field of linear polynomials over real numbers. A simulation algorithm
is developed to generate the branching trajectories resulting from the underlying non-
determinism. To efficiently manage symbolic constraints, we developed a consistency
checking algorithm for linear polynomial constraints based on a feasibility checking
algorithm borrowed from linear programming. The extended formalism offers a
convenient means to conduct multiple, simultaneous explorations of model behaviors. In

Chapter 9, we shall show how symbolic DEVS plays a role for fault diagnosis.

4.2. Symbolic DEVS Concept

The discrete event-based control methodology, which will be discussed in greater detail
in Chapter 7, provides an approach to process and device control that is especially tuned to
the needs of high autonomy applications. It provides a relatively simple and robust real-
time control layer that can be linked to higher level symbolic reasoning layers with
appropriate structure and behavior preserving morphisms [41]. A crucial requirement in
discrete event-based control is the coupling of task execution with an error recovery

capability. Such capability is based on diagnosis of faults based on a detected anomalous

34

behavior. The development of symbolic DEVS to be discussed was motivated by the

need for a modelling formalism to support such diagnostic requirements.

4.2.1. Introduction

Until now, the time base of discrete event models has been assumed to be numerical.
To enhance the capability of discrete event models, we extend the DEVS formalism[108]
to be defined on a symbolic time base. In conventional DEVS, and indeed, in most
system formalisms [51],[57],[93], the time base and its operations and relations are
performed over the field of real numbers. In symbolic DEVS, this field is extended to the
linear polynomials over the reals. For example, the expression “5 + 2 * travel_time +
delay_time” is a legal time value and might represent the time taken to make a round trip
journey. When travel_time and delay time are assigned numerical values, this
expression evaluates to a real number. Thus precise knowledge of any event time can be
readily incorporated by setting its symbol to a real value. Therefore symbolic DEVS is
truly an extension of conventional DEVS and reduces to the latter when all times are real
valued. This contrasts with qualitative representations of differential equation models
(e.g., [52]) that move to a coarser grained formalism in which exact timing cannot be
recovered with acquisition of more information.

A network or coupled model[109] of symbolic DEVS components is non-deterministic
since the minimum of a set of next event times is not unique as in a conventional DEVS of
the same kind. Thus trajectories split into tree-like structures. Each minimal element in
a set of next event times represents a possible state transition; in making the choice of such
an element, we generate a set of constraints asserting that it is less than all other minimal
elements. This constraint applies to the trajectory branch just initiated. Likewise

constraints are accumulated and inferenced to constrain minimal next event times in

35

subsequent branchings. For example, asserting “f; < #,” at one branch, and “7; < 3" ata
subordinate one, implies also that “¢; < ¢3” in the latter subtree. Since symbolic times are
linear expressions, we adopt techniques from linear programming to efficiently manage and
inference the constraint sets [15],[67].

One major application of symbolic DEVS is to perform the causal propagation required
for fault diagnosis. Conventional DEVS models can handle such propagation but require
fixing the event times to particular real numbers to do so. By allowing the times to be
expressed symbolically, we generate a family of trajectories that represent all possible
sequences of events resulting in a particular breakdown. Such a family will be employed
to trace a detected anomaly back to the components that might have caused it. The
. symbolic extension allows for both the situations where timings are unknown, or are
known, but can vary. This approach to model-based diagnosis supersedes others
[25],[44],[71] in that it intrinsically represents timing effects. Dynamic models are
necessary in task execution applications where effects of an anomaly occurring in some
task are not apparent until they have propagated, some time later and in some transformed
manner, to a detectable condition. More details will be presented in Chapter 9.

Besides being applicable to fault diagnosis, symbolic DEVS may have a variety of
applications where there is a need for efficient generation of a family of trajectories
characterizing all feasible scenarios of a given model. For illustration, we shall show

how the rules for strikes, balls, and hits in baseball can be generated.

4.2.2. Symbolic Simulation
Often, the basic equivalent of a multicomponent DEVS is not derived by formal
manipulation, but is investigated through simulation. In the case of symbolic

multicomponent models, an appropriate simulation algorithm has to be developed that

36

handles the non-determinism arising due to the symbolic nature of the underlying time set.
Let M = < S, & ;ta > be a non-deterministic symbolic DEVS. The algorithm generates
a branching tree structure of nodes, each representing a generated state of M. Since such
an M represents the basic equivalent of a symbolic multicomponent model, the algorithm is
easily extended to the latter case.

Each node is an object containing slots for:
the time of this event, ¢ (a linear polynomial)
the chosen time advance, T (a non-negative linear polynomial)
the accumulated constraint set, C
the prior state of the DEVS, s
the next state of the DEVS, s’

The symbolic simulation algorithm is:
Initialize the model to its desired initial state, sg, at time, #p. Create the root node:
time = 1y
chosen time advance = unspecified
constraint set = ¢
prior state = unspecified
next state = Sp

(Note: the constraint set may also be initialized to a non-empty set if desired. This could
occur if the initial state is a terminal state of some previous run or if some a priori
constraints need to be established for the simulation.)

Starting at the root node, skip step 1 in the following cycle, and continue with step 2 with
s’ taken as sg.

From the current node with:
time =1¢
chosen time advance = 7
constraint set = C
prior state = s
next state = unspecified

37

Do the following: :
1. Given s and 7, simulate to get s’ = Gj(s, T)
2. Given s’, obtain ta(s’)
3. If ta(s’) = o, then leave this node, else:
For each 7; € ta(s’)
If C'=reduce (CU{{ 7, <t}/j#i€ta(s)})#o
then create a node with
time=t+ T;
time advance = 7;
constraint set = C’
prior state = s’
next state = to be computed
4. Repeat the simulation from each newly created node

Here reduce(C) tests whether a set of constraints, C, is consistent; if so it returns a
subset containing no redundant constraints, otherwise it returns { } [15]. The Reduce
algorithm, which was developed on the basis of a linear polynomial constraint checking
algorithm, will be discussed later.

The abstract simulator implementation in DEVS-Scheme [109] has been expanded to
execute such a simulation for one-level coupled-models with symbolic atomic-model
components. In steps 1 and 2, it employs the existing simulation apparatus to set the
initial state of the model tos. It then performs a one-step simulation to obtain the next
state, s’, and the next time advance set, ta(s’). Step 3 extracts a subset of the latter set --
the minimal set relative to the accumulated constraints C. In other words, for a particular
member, 7; € ta(s’), it checks all inequalities {7; < 73}, j#i for consistency with C.
This tests whether 7; can be made to be the smallest element in za(s’) without violating the
constraints, C. If constraint violation occurs then the assertion that 7; can be made the
smallest element is untenable. In this case, no branch is created for 7;. Otherwise, 7;

can safely be forced to be the minimum of ta(s’), and a branch is created for it. Along this

38

branch the constraint set must be updated to reflect the new set of assertions just made.

Reduce does this while ensuring that the resulting set of constraints is irredundant.

4.2.3. Example: Symbolic Simulation of Baseball

For another illustration of symbolic simulation, consider some timing relations between
pitcher and batter in bdseball. The ball departs from the pitcher and approaches the home
plate providing an opportunity for the batter to swing. If not hit, it reaches the catcher.
On the other hand, the batter waits for the ball to reach a good position and then swings to
hit the ball. Figure 4.1a) shows a coupled model, and Figure 4.1b) shows the symbolic
DEVS state transition graphs of its PITCHER and BATTER as components.

When the PITCHER component receives the szart command, it changes the state from
passive to approaching. After ‘approaching-time has elapsed, it outputs approached to
the UMPIRE and changes its state to chance during ‘chance_time. Then it goes to the
passive state after sending arrived to the UMPIRE. The BATTER has basically the same
state transition, but different states and times. Symbolic simulation generates the tree of
trajectories in Figure 4.1c), which are illustrated in Figure 4.1d). Note that the leaves of
Figure 4.1c) represent all feasible outcomes of the model together with the timing

relationships necessary to generate them.

start

(a) Model Structure of Baseball

Pitcher start

approachin,
”
- e @pproached

arrived

start

waiting

waliting
-time

— Waited

(b) State Transition Graphs

P out

39

40

ol e

a+C

wca a<w @
wW+sS < a @ N12
N3 a < W+s W < a+C a+c < W

£

a W+S a+cC W4+S a+C

a<ws ()1 <2 v @
<
@ a+C<W+$ +S<a+g @ W < a+e
a+C<W+

W+S<a+C

=z
—

c a+c W+S a+C W+S W+S

< NS’
a+
I a
we<e w<a Ia(w w<<v;+c a+c <w
Wis < a a < W+s a+C < W+S| W+S < a+C +e <

SWINGING-STRIKE THIRD-BASE-FOUL HIT HOMERUN FIRST-BASE-FOUL CALLED-STRIKE

Where a : approaching-time, w : waiting-time, ¢ : chance-time,
s : swing-time

Note : Branch is labelled by the time chosen to be set minimum
and constraints of each node are shown in an associated box.

(c) Generated Tree of Trajectories

41

Approaching Chance
i -ti
< me > <tlme >
iswing-time
Waiting-time I
(A) Called-strike
Waiting-time I swing-time
(B) First-basa-foul
swing-time
Waiting-time
(C) Hit
iswing-time
Waiting-time —
(D) Home-run
. . swing-timei
Waiting-time
(E) Third-base-foul
swing-time
Waiting-time
———
(F) Swinging-strike
(d) Timing Relations

Figure 4.1. Symbolic Simulation Example : Baseball

4.3. Linear Polynomial Constraint Inferencing Algorithm
4.3.1. Introduction

We have developed a linear polynomial constraint management algorithm, which is
called Reduce in our symbolic DEVS, for inferencing the constraint sets since symbolic
times are linear polynomial expressions. Such a constraint managing system, as shown in
Figure 4.2, should not only accept equalities/inequalities but also check for consistency of

its constraint sets. It should output the best solution possible with the available data.

42

Thus, as illustrated in Figure 4.3, it should have the capability to reason about consistency
with new data by means of constraint propagation:

» if the new data item is consistent and not redundant, add a new constraint and delete any
redundant constraint.

» if the new data item is inconsistent or redundant, the constraint set is not changed. If the
new data item is inconsistent, this fact is reported to the user.

Queries should be entered in the form of new data items. If a query is consistent and
redundant, then it can be derived from the current knowledge base and the answer is “yes.”
If it is consistent but not redundant, then the answer is “possiblc.”' If it is inconsistent,

the answer is “no.”

KB
C1 yes
L AN c2 —< possible

no
new fact inconsistent
» or redundant

<4
consistent and

not redundant

KB : list of polynomial constraints

Figure 4.2. Knowledge Base System Concept

New constraint

(equality/inequality form)

KNOWLEDGE BASE
CONSTRAINT Make equation KNOWLEDGE
with slack variable ACQUISITION

INFERENCING

ENGINE l
S:encslzir: e Modify existing KNOWLEDGE
algorithgm constraints MAINTENANCE
Feasibility
checking’
algorithm

v
Result

Figure 4.3. Knowledge Base System Structure

43

For example, we can ask our system “Was Raphael born before 1000 ?”, “Did the

Thirty Year War end after 1500 ?”, or “Is the ratio of the width of the house to the width of

the table between 2.5 and 3.5 7.

We can also update the knowledge base with new

facts such as “The starting date of the Thirty Year War was between 1500 and 17007, or

“The length of the house is 5 [m]”. [22],[23]

represented as linear polynomials by introducing slack variables as follows:

Q1 : date_birth_Raphael + slackO = 1000

Q2 : end_date_30_year_war - slackl = 1500

Q3 : 2.5 * width_of_table + slack2 = width_of_house

width_of_house + slack3 = 3.5 * width_of_table

C1 : start_date_30_year_war - slack4 = 1500

All the above constraints can be

44

start_date_30_year_war + slack5 = 1700
C2 : length_house =5 '

We have developed a consistency checking algorithm for linear polynomial constraints
based on a feasibility checking algorithm borrowed from linear programming [67].

4.3.2. Consistency Checking Algorithm

Through an analysis of a few examples that are simple enough to see “what is going
on,” it will be possible to bring out certain general features of consistency problems. As
illustrated in Figure 4.4, consider a consistent set of constraint {C;, Ca, C3, C4} such that:

Ci:x1210
Cy:x225
C3:x1+%x2<20
Cs:-x1+4x2520
where x3,x220

X2
$ C.
207

10

Figure 4.4. An Example

45

The dotted area in Figure 4.4 represents the feasible solution region. Now, let’s add
new constraints, g, @’, b, and c , respectively, such that;
a:x210
a :x3<10
b:x2<75

c:x2<7

Depending on the constraint to be added, there exist four different cases;

e Case 1. inconsistent (example: constraint a) -- knowledge base unchanged, error
reported.

* Case 2. redundant (example: constraint @’) -- knowledge base unchanged.

e Case 3. consistent (example: constraint) -- new constraint is added to the knowledge
base.

» Case 4. consistent (example: constraint ¢) -- new constraint is added to the knowledge
base, but simultaneously, the now redundant previous constraint, C4, is removed from the
knowledge base.

Inconsistency can be checked easily: if the new constraint is infeasible, then it is

inconsistent, otherwise one of the cases 2, 3, or 4 applies.

Redundancy can be detected by considering the negation of the constraint. If the new
constraint is not redundant but consistent, then the negated constraint is also not redundant
but consistent (see Figure 4.5a). However, if the new constraint is redundant, then the
negated constraint is inconsistent (see Figure 4.5b). It can therefore be discriminated using

the previously discussed method.

46

(b) Redundant Case

Figure 4.5. Redundancy Checking

Once a new constraint has been shown to be consistent yet not redundant, we should
remove all constraints from the knowledge base that have meanwhile become redundant.
As shown in Figure 4.6, suppose the new constraint, ¢ (x, < 7), is added to the knowledge
base, then C4 should be eliminated from the knowledge base since it has become
redundant. Thus, we have to test each existing constraint by looking at its negation. In
Figure 4.6, the C;, Cy, and C3 constraints are irredundant since —~Cy, —~C,, and —C3 are

consistent, but C4 has become redundant since —Cj is inconsistent. Figure 4.7 illustrates

47

the overall algorithm for constraint checking, so that only feasibility checking is left to be
discussed.

X2 cg

20—

(b) Iterating Redundant Constraint Checking

Figure 4.6. Redundant Constraint Elimination

New constraint

Inconsistent

Previous list
& error msg.

Feasible ?

.<_<>,

Form negated constraint and test

Redundant
Previous list

Feasible ?

_<<>,

Consistent
Changed list

Check each constraint in previous list

by forming negation and testing with [

respect to new list

Feasible ?

N

Remove the original constraint from the list

%

Finish ?

<

Figure 4.7. Consistency Checking Algorithm

48

49

4.3.3. Feasibility Checking Algorithm

A pivotal algebra algorithm introduced by Orden efficiently replaces Phase I of the
simplex method without reference to artificial variables or an artificial objective
function[67]. Most linear programming methods deal with closed boundary relations
only such as <, =, and 2, not with open boundary relations such as < and > in that most
techniques are based on boundary checking (minimax problem). However, we must be
able to handle open boundary relations due to our desire to evaluate negated constraints.
For example, the negation of the constraint x <aisx >a. However, by introducing a

new slack variable €, the open boundary relation can be replaced by a closed boundary

relation preserving mathematical equivalence. For example, if “statement A is true for all

X < a”, we can equivalently say that “statement A is true forall x <a - ¢ where > 0”.
Brief iption of piv ri
The general linear equality/inequality system can be stated as follows:
Find a vector [xy,, X,] that satisfies
Zjaij Xxj=by i=1,..,m
x;20, j=1,..,n

Note that inequalities can always be converted to equalities using slack variables. The
right hand side (b;) can easily be made non-negative by multiplying both sides of the
equality by -1.

The following definitions will be used:

* “reduced” : The i-th row of matrix A is called “reduced,” if it contains at least one
1 element, e.g. in column j, and if all other elements of the j-th column of matrix A

50

are zero, i.e., if the j-th column of matrix A consists of the i-th unit vector, or if the
i-th row contains only 0 elements.

* [A b]:is called the augmented matrix of the linear system Ax =b.

* “hbmogeneous” : The i-th row of the augmented matrix [A b] is called
“homogeneous,” if the b; element is 0.

* “semi-reduced” : The augmented matrix [A b] is called “semi-reduced” if every
row is either reduced or homogeneous.

If a system can be made semi-reduced, then it has a feasible solution, otherwise it has

an infeasible solution.

Pivot procedure:

As

shown in Figure 4.8, choose a non-reduced row, ip, Ifap;<0, j=1,..,n,

the system is infeasible. Otherwise, find the column and row:

jp=j!Max ajp; where jp is the index of the pivot column.

j=1,..n

ip=1IMin by/ajp where ip is the index of the pivot row.

ap>0

Then pivot at (ip, jp). There are four cases to consider.

e Case 1. (ip = ip) : the driving row is the pivot row. In this case, it becomes a reduced

TOW.

» Case 2. (ip #ip, and at least one a’;p; > 0) : The driving row cannot be reduced. In
this case, repeat the pivot procedure with the driving row unchanged, until it becomes a

reduced row (Case 1), or until either Case 3 or Case 4 applies.

e Case 3. (ip #ip, all a’jp; £ 0, and b’jp = 0) : proceed to another driving row.

51

 Case 4, (ip # ip, all a’;p; <0, and b’jp > 0) : The system is infeasible.

Orden [67] proved the convergence of the algorithm. Its complexity is of order O(nm
2) since at most m rows must be semi-reduced, each requiring at most » positions to pivot,
each pivot requiring at most m operations. This deterministic polynomial complexity
contrasts with the non-deterministic polynomial complexity required for testing satisfiability
of first order logic [32].

4.3.4. Relation to “Commonsense” Arithmetic Reasoning

Simmons has developed the so-called Quantity Lattice to perform a wide range of
“common sense” arithmetic inference operations [83],[84]. The Quantity Lattice
integrates qualitative and quantitative reasoning and combines inequality reasoning with
reasoning about simple arithmetic expressions. It uses five reasoning techniques of i)
graph search, ii) numeric constraint propagation, iii) interval arithmetic, iv) relational
arithmetic and v) constant elimination arithmetic. = Simmons also outlined the advantages
of the Quantity Lattice by comparing it with other approaches such as the temporal

reasoning approach of Allen [5], and the DEVISER planning system by Vere [88].

52

[A b]

!

‘Make [A b] in which all bi >= 0

}

Select "driving row", i

N
reduced ?
next driving row Y Select pivot

4 ip = j| Max aiDj

ip = i| Min b

a..
ijP
&ip >0

v

Pivoting at (ip,ip)

no

irreduced
rows

left

Infeasible

Feasible

Figure 4.8. Feasibility Checking Algorithm

53

In contrast with Simmons' work, our algorithm for linear polynomial constraint
management using linear programming techniques has been developed for the purpose of
symbolic simulation in which the simulation time and the branching constraints due to non-
determinism are represented by linear polynomials. = The proposed algorithm can
efficiently and coherently integrate various reasoning approaches of Simmons for
constraints represented by linear polynomial constraints with >, <, =, 2, and <
relationships.

In the following, we shall briefly describe the five arithmetic reasoning techniques and
corresponding examples introduced by Simmons, and show how they can be handled
using the linear polynomial representation technique employed in our algorithm.

i) Graph Search: Graph search is a qualitative technique to determine the relationship
between two quantities. This technique searches the graph of quantities using a simple

breadth-first search algorithm to find a path between the investigated quantities.
Example : if A=C,C<EthenA<E?
Linear Polynomial Representation:

if A-C=0,C-E +slackl =0,then A-E +slack2=07?

ii) Numeri nstraint Pr ion: This is a quantitative technique to determine the
relationship between two quantities. The ordering between two quantities can be
determined if the intervals associated with the quantities do not overlap, except possibly at

their endpoints, since the value of a quantity is constrained to lie within the interval.
Example :if A<1,B>2,then A<B?
Linear Polynomial Representation :

if A +slackl =1, B - slack2 =2, then A - B +slack3=07?

iii) Interval Arithmetic: This technique computes the value of an arithmetic expression by
“applying the arithmetic operator of the formula to the endpoints of intervals of its

arguments.

54

Example :if 3<A<4,1<B<4,then4<A+B<8?

Linear Polynomial Representation :
if A - slackl =3, A +slack2 =4, B -slack3 =1, B + slack4 =4,
thenA+B -slackS=4,A +B +slack6 =8 ?

iv) Relational Arithmetic: This arithmetic maintains constraints on the qualitative
relationship of an arithmetic expression to its arguments. The relationship depends on the
relationship of the expression or its arguments to the identity value for the arithmetic

operator of the expression.

Example : if X =Y +5,thenX>Y ?

Linear Polynomial Representation :
ifX-Y=5thenX-Y-slackl=0?

v) Constraint Elimination Arithmetic: If the same amount is added to two expressions then

the results are related in the same way as the original expressions are.
‘Example : if A=B+X,C=D+X,B>D,then A>C?
Linear Polynomial Representation :
ifA-B-X=0,C-D-X=0,B-D-slackl =0,
then A-C-slack2=07?

The developed quantity knowledge base system coherently maintains the mathematical
relations in the form of linear polynomial constraints on quantity variables such as times
and duration, etc. and performs inferences on them. The inference mechanism for
handling linear equality/inequality constraints called consistency checking algorithm based
on the feasibility checking algorithm borrowed from linear programming has been
successfully developed and tested. In contrast with other approaches such as the quantity
lattice approach due to Simmons, our algorithm can efficiently and coherently integrate
various reasoning approaches represented by linear polynomial forms with >, <, =, 2, and

< relationships.

55

4.4. Conclusions

An extended discrete event specification formalisms, symbolic DEVS, has been defined
that extends the time base from the real numbers to the linear polynomials over the real
numbers. This permits next event times to be expressed symbolically, although precise
knowledge of any event time can be readily incorporated by setting its symbol to a real
value. Therefore symbolic DEVS is truly an extension of conventional DEVS and reduces
to the latter when all event times are real valued. A network of symbolic DEVS
components is non-deterministic since the minimum of a set of next event times is not
unique as in a conventional DEVS of the same kind. A simulation algorithm was
developed to generate the branching uajectoﬁeé resulting from the underlying non-
determinism. The extended formalism offers a convenient means to conduct multiple,
simultaneous explorations of model behaviors. Since symbolic times are linear
expressions, techniques from linear programming were adapted to efficiently manage and
inference the constraint sets [67].

We have shown how symbolic DEVS can perform the causal propagation required for
diagnosis of fault-prone systems modelled with multicomponent DEVS. By allowing the
event times to be expressed symbolically, we generate a family of trajectories that represent
the possible sequences of events resulting in a particular breakdown. Such a family can
be employed to trace a detected anomaly back to the components that might have caused it.
The approach requires that we represent all failures that could occur and how systems
respond to them. In Chapter 9, we will show how our simulation environment helps to
visualize and discover, via actual execution, anomalies that need to be incorporated as
faults. Guided by morphism preservation principles, we intend to develop tools to
facilitate incorporating new fault types into model units directly from observations of

simulation runs.

56

CHAPTER §
ROBOT-MANAGED LABORATORY OF THE FUTURE

5.1. Overview

As a concrete example of a high autonomy system, let us consider a space-borne fluid
handling laboratory environment to be operated by robot organizations. This generic
laboratory environment may serve as a prerunner of any chemical, or similar, laboratory to
be realized aboard the forthcoming International Space Station Freedom. Laboratory
management includes servicing and calibration of equipment, set-up of experiments in
progress, measurement and recording of data, and finally analyzing of data. However, it
also includes monitoring of laboratory performance, detection and discrimination of faults,
recovery from fault situations, and adjustments of operational plans as a consequence of
unavailable resources due to previously discovered and still uncorrected faults.

The environment should :

¢ support the development of robot cognitive systems and strategies for effective
multi-robot management of laboratory experiments,

e support a study of the trade-off in partitioning tasks between hard and soft forms
of automation, i.e., we could have a robot-free laboratory containing a large
number of special purpose “intelligent” instruments capable of almost complete
self-control or a small number of very flexible robots that can be trained to
manage a small number of general purpose instruments,

® support various degrees of human-robot cooperation, allowing many tasks to be
performed by humans initially that can later be taken over by robots as the
technology for such automation becomes available,

e support the development of workable human-robot cooperation protocols, and

e allow the assessment (through simulation) of the difficulties and risks resulting
from humans and robots sharing the same workspace [109].

57

Time has come to investigate advanced robot-controlled instrumentation schemes.
For example, handling fluids in orbit will be essential to many of the experiments being
planned in space manufacturing and biotechnology. However, the microgravity
conditions of space necessitate radically different approaches to fluid handling than
common on earth. As experience in space accumulates, approaches and instrumentation
used in space will likely undergo continual modification, enhancement, and replacement.
Therefore, instruments used aboard one and the same spacecraft may vary over time, while
the robots operating on these instruments will remain the same. Simultaneously, it may
not always be possible to repair faulty equipment quickly (e.g. on planet Mars) due to the
difficulty to access the equipment from Earth. Thus, robots for managing such equipment
must be highly autonomous and flexible so that they can operate efficiently and effectively
in an environment that is constantly changing due to system degradation and upgrading.

The project is to develop a technology that will allow carefully designed and specially
constructed laboratory robots to perform many routine tasks in a space laboratory under
remote supervision from the ground as shown in Figure 5.1. Therefore the robots must be
able to perform simple operations autonomously, and communicate with the ground only at
the task level and above [4]. Such robots should be able to judge the adequacy of a
proposed action plan on the basis of expectations of its effects on the laboratory, materials,
instruments, etc. For this purpose, it is important that simulation models at various levels
of granularity can be automatically generated at run time from a set of generic master

models [10],[11].

58

a2 Commands
«4—— Results

=\

Scientist

(88

Space-adapted equipment

Figure 5.1. Tele-autonomous System Concept

In designing the robot models, we assume that necessary mobility, manipulative and
sensory capabilities exist so that we can focus on task-related cognitive requirements.
Such capacities, the focus of much current robot research, are treated at a high level of
abstraction obviating the need to solve current technological problems.

In this chapter, we briefly illustrate an overall domain knowledge representation by
using the system entity structure to build a high autonomy system through the model-based

design of a robot-managed laboratory.

5.2. SES Representation of a Space Laboratory

The laboratory environment illustrated in Figure 5.2 is realized on the basis of object-
oriented and hierarchical models of laboratory components within DEVS-Scheme.
Laboratory configurations will be determined by issuing commands that invoke a pruning
operation of the entity structure knowledge representation. The laboratory model is
designed to be as generic as possible. However, as stated earlier, the focus will be upon
fluid handling in microgravity, which presents a variety of problems that are unique to

space.

59

EXPERIMENT TABLE

MIXER HEATER
 STORAGES
TOOL BOX
STORAGE1
SYRINGE1
STORAGE2
WATER
WASTE SYRINGE2

Figure 5.2. Space-borne Chemical Laboratory View

Figure 5.3. illustrates the approach taken. The entity structure for the Space Station
Laboratory (SSL) decomposes this entity into its structure knowledge part and its
experiment (goal) knowledge part; STRUCTURE and EXPERIMENT. The former
relates to the execution structure which is concerned with how to construct the system,
while the latter relates to the goal structure which is concerned with how to achieve a
desired goal efficiently (details are discussed in Chapter 9). After pruning the
STRUCTURE, the entity structure is transformed into a hierarchical model containing
controlled models at two levels. Each of the entities will have one or more classes of
objects (models) expressed in DEVS-Scheme to realize it.

The EXPERIMENT contains a three level abstraction hierarchy distinguishing between
high-level task planning models (HM), middle-level task planning models (MM), and low-
level task planning models (LM) that are associated with so-called model plan units

(MPUs): HMPU, MMPU, and LMPU in the STRUCTURE part, respectively, which are

60

the cognitive control elements of the system. Each level is designed to represent
experimental knowledge needed to decompose a given task into a composition of subtasks.

The SPACE and OBJECTS decomposed from STRUCTURE are designed for the
simulation-oriented knowledge representation. STRUCTURE is implemented as a
controlled model within the DEVS environment. The SPACE is the controller,
whereas the OBJECTS are the controllees of the SSL controlled model. The SPACE is
basically a modelling artifact -- necessitated by the object-oriented, modular modelling
paradigm -- to conveniently represent knowledge of where objects are and with whom they
can communicate and interact. Motion and communication of ROBOTSs are managed by
the SPACE. When a ROBOT moves around, its MOTION system sends its new location
and direction to the SPACE which keeps track of the ROBOT's positions and directions.
When a ROBOT wishes to communicate with other ROBOTs, it sends message via its
SENSE system to the SPACE which relays the message only to those ROBOTSs within the
range of the sender. The range is determined by the channel on which the message is
sent. Thus different transmission media and sensory modalities can be modeled, such as
light and vision, sound and hearing, pressure and touch, etc.

Since the SPACE has complete knowledge of locations, it can detect collisions between
ROBOTs. SPACE is viewed as a kind of resource shared by its occupants so that
collisions represent attempts to occupy the same space more than once at the same time.
The SPACE can report such an event but do nothing to preventit. However, the SPACE
may be given greater intelligence to co-ordinate the ROBOTs, for example to prevent
collisions, and to perform other space resource management tasks. In this case, it

assumes the role of an “actual” system component, at least in part.

— 9:SSL — 6:STR — eROBOT
STR
ssl-dec | ROBOT
str-dec I
SR B I robl-dac
- [|]]
—eEQU SPACE OBXCTS BRAIN MOTION SENSE
EQue i
Il OBJECT brain-dec
equip-spec “
obj-spec
SYRNGE IMPUs SELECTOR
MIXER i
HEATER ROBOT MPU
STORAGE EQUIP
WASTE
— e:MPU
MPU
mpu-spec
i I
HMPU MerU LMFU
mmpu-spec Impu-fpec
1
OBJGETTING NJECTING : ' cOOPER
ACTION VISUAL RATION TASK
OBJ-PUTTING ADDNG M I
SAMPLING FINISHING act-spec coop-spec
WASHING MIXING
: MOVE PWG PLACE ASSIS OFERR
o @:TASK — a:SYRINGE
TAfK SYRINGE
task-dec l
— ol 0
COMM-PROTOCOL TION syringe-spec syrin-size-spec
oper;dec SMALL
SYRIN-O SYRIN-EX SYRIN-D MEDIUM
d’EH‘\Tm DIAGNOSER I
op-dec di-dec syrin-dec
I]
I 1 i] I 1
EQuP CONTRL EQuwp DIAGN MOTION SENSE SYRIN-IM SYRIN-E
— 0 HM — 0:MM = o:LM
EIXP MIM LM
exp-dec -
| mm'-dec mm-spec Im spec
HM |] MOVE SYRINGE
LMs OBJGETTING INJECTING AUG MIXER
hm-dec hm-spec Il OBJ-PUTTING ADDING PLACE HEATER
| LM SAMPLING FINISHING ASSIS STORAGE
MMs MIX1 Mix2 WASHING MIXING CFFER WASTE
|| HEAT1 HEAT2 HEATING VISUAL
MM DILUTE! DILUTE2

Figure 5.3. Partitioned SES of Robot-Managed Fluid Handling Laboratory

62

Space Station Laboratory

— BRAIN1

P

SYRINGE1 MIXER1

Figure 5.4. Robot System Organization Example

Each OBJECT is specialized into ROBOT and EQUIP. Each ROBOT is decomposed
further into MOTION, SENSE, and BRAIN. The EQUIP is a generic entity for the
laboratory equipment that is modeled much in the same way as the ROBOT. However,
EQUIP has no BRAIN, and its MOTION and SENSE subsystems are always passive.
Note that OBJECTS are also defined as a multiple entity. Therefore, any number of
OBJECTS may be generated, and with the pruning discussed earlier, we can have any
desired number of ROBOTSs and EQUIPs in the laboratory.

Each Robot's Cognition-system (BRAIN) is also implemented as a controlled model
containing a SELECTOR as its controller, and several MPUs as its controllees.

The SELECTOR provides the communication channel between the SENSE subsystem
and the MPUs. Essentially it is a bi-state (open/closed) device whose state is determined

by the MPU responses. In its closed state, it passes on the incoming sensory inputs to

63

the activated MPU. Upon completion of the activated plan or upon receiving a
discrepancy alert, it switches to the open state in which MPUs may vie for activation.

The MPUs are specialized into HMPUs, MMPUs, and LMPUs, respectively,
corresi)onding to the EXPERIMENT abstraction hierarchy previously mentioned.
HMPU is a high level MPU that manages the actions of the middle level MMPUs, each of
which performs the same function with respect to the low level LMPUs. The latter
employs event-based control logic to interact with the real world. These three types of
MPUs are represented at the same level in the entity structure but conceptually they reflect
the hierarchical decomposition structure of the EXPERIMENT models.

The LMPUs comprising the robot's brain are of two kinds: those specialized for
carrying out specific tasks, and those specialized for more general tasks involving

communication, motion, vision, cooperation, etc.

® TASK_LMPU: is a LMPU specialized for executing a particular task (i.e., is
further specialized in the SES). 'When help or visual identification of an object is
needed in performing this task, it relinquishes control to the ASSIS_LMPU or
VISUAL_LMPU, respectively. A detailed discussion of the decomposition of the
TASK_LMPU is given in Chapter 7.

® ASSIS_LMPU: is a LMPU specialized for the task of requesting help from other
robots. When it is activated, it initiates a COMM_PROTOCOL which tries to
make contact with ROBOTs within its range and engage one that can provide the
needed assistance.

@® OFFER_LMPU: is a LMPU specialized for the task of dealing with incoming
requests for help emitted from ASSIS_LMPUs of other ROBOTs. When
activated, it decides if help can be offered, and if so, engages in a dialogue with the
ASSIS_LMPU of the help-seeking ROBOT and sets up a rendez-vous. It
relinquishes control to the ACTION_LMPU to bring the ROBOT to the requestor’s
work site.

® ACTION_LMPU: is a LMPU specialized for directing the motion subsystem to
bring the ROBOT to a given destination or position. It requests the current
motion state from the MOTION component, and sends it new parameters (direction,

64

speed, and time-step) for traveling to the vicinity of the destination. Once there, it
directs the MOTION component in physically contacting the object or ROBOT at
the destination. The touch channel is used for judging when contact has been
_established. Three ACTION_LMPUs are being implemented so far;
MOVE_ACTION_LMPU for robot walking, PLUG_ACTION_LMPU for
pull/push motion, and PLACE_ACTION_LMPU for put/get motion.
® VISUAL_LMPU: is a LMPU specialized for the task of visual identification of
objects. It relinquishes control to ACTION_LMPU to bring the ROBOT to new
locations when different viewing distances and perspectives are needed. Once
there, it resumes control to accept a visual image and to identify objects by
consulting its built-in recognition system.

This concludes the description of the structural and experimental decomposition of the
space-borne fluid handling laboratory environment as described by its SES. This
decomposition will be frequently referred to in the subsequent chapters, which also fill in
the details of how the structural decomposition is actually being used for various purposes

such as task planning, intelligent control, and fault diagnosis.

65

CHAPTER 6
MODEL-BASED CONCEPTS FOR HIGH AUTONOMY SYSTEMS

6.1. Overview

Autonomy is an extended paradigm that subsumes both control and Al paradigms, each
of which is limited by its own abstractions. Control theory has run up against the
limitations of its rigorous, but sparsely applicable, mathematical framework. Al research
has lived under the illusion that intelligence can be demonstrated in abstracted symbol
spaces bereft of a rich, continuous coupling to the real world. Autonomy, as a design
goal, offers an arena where both control and Al paradigms can be applied -- and a challenge
to the viability of both as independent entities.

In the last seven years, an approach called intelligent control has begun to take root.
Autonomous control systems must perform well under significant uncertainties in the plant
and environment for extended periods of time and they must be able to compensate for
system failures without external intervention. Advanced planning, learning, and expert
systems, among others, must work together with conventional control systems in order to
achieve autonomy. It is clear that the development of autonomous controllers requires
significant interdisciplinary research efforts as it integrates concepts and methods from
areas such as control, identification, estimation, and communication theories, computer
science, especially Al, and operations research.

Researchers concerned with enhancing robotics beyond pure muscle amplification are

arriving at similar conclusions as in Figure 6.1. [45].

66

@ Brain {(cognition) : reasoning, planning, control
® Eyes (perception) : vision, sensing

O O W Hands (action) : actuators, effectors

Figure 6.1. Components of Autonomy

Intelligent

From a robotics perspective, robotics enables the realization of autonomous systems,
which include three basic components. One is to perceive, understand, and sense inputs
from the outside world. = The second relates to intelligent, sensible, and meaningfui
decision making. The last is concerned with action; it uses manipulation to have an effect
on the outside world. Al techniques are involved in realizing the middle component.

Naturally, we can expect Al researchers to see things differently. Indeed, Minsky
sees the knowledge-based approach adopted by Al as a generalization of the feedback
control paradigm. Although the Al approach is much more crude than classical feedback
control, it can nevertheless work. However, actual research in Al has, since its
inception, not concerned itself with the problems of living in the real world. It has
limited the environment with which its systems must cope to abstract problem spaces such
as chess, word matching, and concept learning. Thus, really interesting problems are
going to involve the integration of symbolic problem-solving with perception in a robotics
environment. Intelligence must not be treated as a separate problem solver using only
abstract knowledge representations. Al researchers have a tendency to formulate
problems abstractly, and ignore the fact that for many of these problems, perception and
motor control may provide useful solutions that can be integrated with planning and

decision making. Not only is high autonomy best viewed as a problem of integration of

67

the three modalities, but the Al subtask itself will, in the long run, be easier to tackle if we

treat it in conjunction with the perception and action subtasks.

6.2. Architecture for High Autonomy Systems
To include such diverse systems as planetary colonies, self-operating factories, and
telerobotic laboratories along with autonomous land and space vehicles in the autonomy

umbrella, we employ a definition as it is used by NASA [63]:
Autonomy is the ability to function as an independent unit or element over
an extended period of time, performing a variety of actions necessary to
achieve pre-designed objectives while responding to stimuli produced by
integrally contained sensors.

In this view, automation and robotics are technologies available to help attain
autonomy.

Saridis, a pioneer in the field, developed a three layer hierarchy for intelligent control
[78], which is meant to reflect increasing intelligence with decreasing precision.
Antsaklis et al. refine the hierarchy to an arbitrary number of layers, depending on the
particular application. A hierarchy with less than three levels seems not meaningful. A
minimal hierarchy, as shown in Figure 6.2, contains the following three hierarchy levels

(in the order of increasing authority):

1. execution layer : contains the systems to control actuators and effectors on the basis
of sensor supplied data and control policies determined at higher levels. Such
control systems include conventional automatic controllers as well as decision
elements based on dynamic and symbolic models operated fast enough for real time
response.

2. coordination layer - links the management and execution layers. It translates the
high level commands generated at the management layer into sequences of actions
executable at the execution layer.

3. management layer : is responsible for deploying the systems in the coordination
layer. It thus determines the overall system goals and resolves conflicts involving

68

lower level goals. It also contains the human communication interface which
supports knowledge engineering (transferral of expertise and other knowledge),
information queries (concerning past, present or expected behavior), and
supervisory commands, including overrides of lower level decisions.

Besides directives flowing from higher to lower layers, there are feedbacks flowing in

the reverse direction reporting the actual system status. There is a disjoint architecture of

information flow;
MANAGEMENT " KNOWLEDGE
COORDINATION INFORMATION
EXECUTION DATA
LAYERS OF LAYERS OF
CONTROL INFORMATION
MANAGEMENT
K
i
D
COORDINATION
K
T
D
EXECUTION
K
]
D

Figure 6.2. Architecture for High Autonomy

1. data layer : this layer contains the components that sense the system environment
(both external to its “skin” as well as internal). Sensors range from direct
measurement devices for environmental variables to sophisticated data transducers
that reduce multivariate sensory signals into meaningful symbols.

69

2. information layer : contains data management systems that keep track of the data
captured at the data layer and organize this data into a complete history of the
physical and operational states of the system. This includes time stamped records
of both environmental conditions and concurrent control and management events to
facilitate subsequent analysis. Such behavioral series may also be compressed in
the from of summary models.

3. Knowledge layer : contain the knowledge base for the system structure and
behavior. Structural knowledge includes decomposition, taxonomic, and
coupling relationships involving the physical, biological, environmental, and
informational components. Behavioral knowledge is represented in simulation
models. Dynamic models stored in a model base can regenerated and predict
dynamic behavior of controlled processes. Symbolic models embody the know-
how needed for management functions such as planning and scheduling of
activities, diagnosing malfunctions, etc.

6.3. Model-Based Architecture

A simplification that has proven fruitful in our work is the model-based architecture.
In this architecture (Figure 6.3), knowledge is encapsulated in the form of models that are
employed at the various control layers to support predefined system objectives. As
suggested above, lower layers are more likely to employ conventional differential equation
models with symbolic models more prevalent at higher layers. A key requirement is the
systematic development and integration of dynamic and symbolic models at different
layers. In this way, traditional control theory, where it is applicable, can be interfaced
with Al techniques, where they are necessary. Antsaklis et al. [6] propose that so-called
hybrid modelling methodology must be adopted -- the combination of traditional
differential/difference equation models with more recent symbolic formalisms [114].
Discrete event models, facilitating event-based control, can be employed to map dynamic to
symbolic models [102],[109]. It is not totally clear yet where, in the design of a high

autonomy system, DEVS and other non-traditional formalisms, such as qualitative models

70

[53],[91] and neural networks, play their most important role, how they are best exploited

individually, and how they can be integrated into a coherent whole.

MANAGEMENT

MODELS

COORDINATION

EXECUTION

Figure 6.3. Model-based Architecture

Note that an autonomous system could in principle, base its operation, diagnosis,
repair, planning, and other activities on a single comprehensive model of its environment.
However, such a model would be extremely unwieldy to develop and lead to intractable
computations in practice [108]. Instead, our architecture employs a multiplicity of partial
models to support system objectives. As indicated, such models differ in level of
abstraction and in formalism. The partial models, being oriented to specific objectives,
should be both easier to develop and better computationally tractable [108]. However,
this approach leads to sets of overlapping and redundant representations. Concepts and
tools are needed to organize such representations into a coherent whole. The SES/MB
environment [108],[109],[115] can connect models at different levels of abstraction so that

they can be consistently modified.

71

Fishwick [29],[30] has extended process abstraction concepts and implemented a
simulation system that is able to switch betweeﬁ levels within simulation runs. However,
although the need for multiple levels of abstraction has been recognized in mainstream Al
[39],[92], there has been little consideration of the importance of the morphism concept to
this issue. Yet, as tools are needed to enable agents to plan, diagnose, and reason
effectively with respect to particular objects, so are tools needed to organize the various
models that support such planning, diagnosis, and reasoning. An organized model base
enables the agent to deal with the multiplicity of objects and situations in its environment
and to link its high level plans with its low level actions. Such a model base is a special

case of a multifacetted model base management system [108].

6.4. Levels of Autonomy
The model-based architecture suggests a hierarchy of achievement levels for an

autonomous system:

e level 1: ability to achieve prespecified objectives, all knowledge being in the form of |
models, as in the model-based architecture.

e level 2: ability to adapt to major changes in the environment. This requires
knowledge enabling the system to perform structure reconfiguration, i.e., it needs
knowledge of structural and behavioral alternatives as can be represented in the
system entity structure [109],[114].

® level 3: ability to develop objectives of its own. This requires knowledge to create
new models to support new objectives, that is, a modelling methodology [109].

6.5. Conclusion

A multidisciplinary team effort is clearly required to design high autonomy systems.
Difficult design issues include trade-offs of function allocation between humans and
robots, and between soft (robotic) and hard (conventional control) automation. In the

following chapters, systematic design methodologies for control, diagnosis, and task

72

planning are introduced. Their purpose is to attain increasingly higher achievement levels

of the high autonomy architecture presented in this chapter.

73

CHAPTER 7
DEVS-BASED INTELLIGENT CONTROL

7.1. Overview

This chapter describes the development of event-based intelligent control systems by
employing the DEVS formalism. DEVS models provide a basis for the design of event-
based logic control. In this control paradigm, the controller expects to receive confirming
sensor responses to its control commands within predefined time windows determined by
its DEVS model of the system under control. In this chapter, the DEVS-based intelligent
control paradigm is applied to a space-adapted fluid mixing system capable of supporting
e.g. the automation of fluid handling laboratories of the International Space Station
Freedom used for research in life sciences, microgravity sciences, and space medicine.

Intelligent control is at the intersection of artificial intelligence, conventional automatic
control, and operations research. The intelligent control paradigm is receiving increasing
attention in both theory and application [58],[59],[60],[79]. An intelligent control system
often employs a hierarchical control structure in which a higher-level intelligent controller
supervises a lower-level conventional controller. The event-based control paradigm,
introduced by Zeigler [109], realizes such intelligent control by employing a discrete
eventistic form of control logic represented by the DEVS formalism [108].

An algorithm to be used by an autonomous system to operate equipment in a partially
unknown environment must be robust with respect to modifications of the environment.
Unfortunately, the robustness and refinement of a control algorithm are usually in
competition with each other. While simple proportional integral (PI) controllers work
reasonably well under varying operating conditions, the more refined control algorithms,

such as multivariable optimal controllers, are highly sensitive to even small variations in

74

plant parameters[21]. Event-based intelligent controllers are good candidates for
implementing more robust co-ordination schemes. = The event-based methodology
provides a relatively simple and robust real-time control layer that can be linked to both
higher level symbolic reasoning layers [89] and lower level traditional control layers.

In conventional sampled-data control, the controller sends commands to the data
acquisition subsystem to sample the process at regular intervals. When the sampled value
returns, it is stored and tested. Depending on the outcome of the test, a corrective action
command is emitted. However, an event-based controller expects to receive confirming
sensor responses to its control commands within predefined time windows determined by
its DEVS model of the system under control. Since the DEVS formalism is at the heart
of event-based control system design, such controllers can be readily checked by computer
simulation prior to their implementation. Thus the DEVS formalism plays the same role in
event-based control that differential and difference equation formalisms play in
conventional control [66]. An advantage of the event-based control logic includes its fault
diagnostic capability. Simulation and real-time implementation of DEVS-based control is
supported by DEVS-Scheme [68],[96],[104],[108].

The chaptef is organized as follows. First it introduces the role of the DEVS
formalism in DEVS-based control and formalizes the dynamics of a mixing process as a
DEVS model. Then it shows hierarchical modelling of an intelligent control system for
space-adapted mixing. This is followed by a discussion of several simulation runs
illustrating the technique. Finally, DEVS-based intelligent control is compared with

conventional sequential control.

75

7.2. The Role of DEVS in Event-based Control

For concreteness, we assume that the process to be controlled is a deterministic
continuous syétem modelled using conventional differential equations. Moreover, we
assume that the process receives input stimulations that are piecewise constant time
functions (sequences of step functions). The approach to be discussed, however, applies
to a much wider class of dynamical systems [108]. Indeed, the characteristics of a system
which permit it to be represented in the DEVS formalism throw light‘on the fundamental

nature of systems that can be viewed as discrete event systems.

7.3. Example: Space-Adapted Mixing Process

In microgravity all fluid handling must be done without creating liquid-gas interfaces
that are not controlled by surface tension. To store fluids, we can use a doubly-contained
bottle, in which the inner chamber (an inflatable bag) is kept under constant gas pressure.
The basic idea of a space-adapted container is that the inner chamber contains fluid only,
whereas the outer container contains the inner container plus compressible gas. When
being filled, the inner container expands to adjust to the influx volume, thereby increasing
the gas pressure in the outer chamber; conversely, when the inner container is emptied, it
contracts, thereby reducing the gas pressure in the outer chamber. Filling and emptying

are performed with a syringe that is injected into the chamber through a septum [89].

76

Syringe-A Syringe-B Syringe-M

Liquid-A&B : Mixed-liquid :
A-filling-rate mixed-concentration
A-concentration emptying-rate
B-filling-rate
B-concentration /
inflatable
bag
L
propeller Container

Figure 7.1. Space-Adapted Mixing System

We shall analyze a system consisting of a space-adapted container stirred by a rotating
propeller as shown in Figure 7.1. The mixing is accomplished in a batch process - some
quantity of fluid with a given concentration is added to a container already filled with a
liquid of another concentration. The container is fed with an incoming liquid-A from the
syringe-A with a constant flow rate of dissolved material, f4, by the control command, fill-
A. When the level of liquid-A reaches its prespecified level, the flow of liquid-A is stopped
by the control command, stop-A. Then, another liquid-B is added into the liquid-A in the
container from the syringe-B with a constant flow rate of dissolved material, fg, until it
receives the control command, stop-B. Both feeds contain dissolved materials. The
propeller is assumed to start working with a constant mixing rate, oy, at the same time as
liquid-B starts to be filled. The propeller ceases its operation when the control command,
stop-mix, is issued. When the propeller stops, the concentration of the mix should have
reached an equilibrium level. The outgoing flow to the syringe-M has a constant flow rate
of mixed material, fap.

The dissolved material balance equations are as follows:

dVA® =Fa(®) - at) Va(®)
dt

17

sLVdam =Fa(1) - a(t) VB(1)
t

dl(’imm =a(t) [VAW + Vp(t)]- Fm(t)
t

where,
Va@), Ve(t): volumes of dissolved materials in liquids A and B, which are not mixed
at time t, respectively, (cm3).
Vm(t): volumes of mixed materials at time t, (cm3).
FA(t), Fp(t), FMm(t): filling rates of dissolved materials in liquids A and B and emptying
rate of their mixed material at time t such that:
Fao()= (fa when liquid-A is filling
0 otherwise
Fe() = (fg when liquid-B is filling
0 otherwise
Fum(t) = (fm when mixed liquid is emptying
0 otherwise
respectively, (cm3/sec)
oyt): Mixing rate at time t such that:
a(t)= (o when liquids are being mixed
0 otherwise

Figure 7.2 illustrates the relationship between dynamic characteristics and
corresponding control commands. Figure 7.2(a) and (b) represent input characteristics:
filling rates, emptying rate, and mixing rate, respectively. Each input parameter is
assumed to have a constant value. Figure 7.2(c) and (d) show output characteristics:
volumes of dissolved material and liquid level, respectively. Volumes of dissolved
materials exponentially approach their equilibrium values. We adopted the ten percent
criterion for reaching an equilibrium level of material concentration, (which can be
computed from the concentration of the liquids and their final volumes). Figure 7.2(¢)

presents corresponding control commands.

78

'm

(a) Filling rates of fa

liquids A,B, and fg

their emptying

rate of the mixture

alphaM

(b) Mixing rate alpha

(alpha)

k % criterion
Cg ferrreeerenees = ‘//

{c) Partial concentrations Ceq ‘

in volumes A and B of

of liquids G

v
B-full-ltevel T

{d) Fluld volume A-full-tevel

In container

empty-level
fill-A fill-B i start-mix s:artt stop
(e) Control commands stop-A fstop-B? stop-mlx?'emp y -empt‘
time

Figure 7.2. Dynamic Characteristics of Mixing System

7.3.1. DEVS Representation of Mixing Process

In DEVS-based control, a DEVS model moves through its check states in concert with
external inputs, as long as those inputs arrive within the expected time windows. The
idea of employing time windows is well known in computer communication systems, and
apparently is also employed in biological systems [85],[89]. Associated with each check
state are a minimum lapse time and a time window. In contrast to conventional sampled
data systems, event-based logic does not require high sensor output precision. Sensors
can have threshold-like characteristics. Only two output states, for example on/off, are
needed for each sensor, although more states may be employed. However, to generate the
time windows, the output states of the sensors must be accurately and reliably correlated

with values of significant process variables.

79

Figure 7.3 shows possible threshold-type sensors. The empty-sensor, A-full-sensor,
and B-full-sensor correspond to specified gas pressure levels in the outer chamber. The
propeller-sensor corresponds to a specified speed level. However, some sensors may be
difficult, or even impossible, to realize; for example, while the amount of liquids A and B
injected into the inner container and the gas pressure of the outer container are easily
measurable at all times, some other quantities such as the partial volumes of the liquids A
and B and the mixture AB inside the bottle are not easily measurable. Therefore, such
quantities must be determined indirectly using state observers. For classical control
purposes, state observers are perfectly acceptable and have been in use for years.
However, state observers can have a disadvantage when used for fault detection. For
example, we can use a model to determine the minimum necessary mixing time as shown in
Figure 7.2. We can then use event-based control to schedule both the start-mix and the
stop-mix events. However, since we use a state predictor, we don't have a feedback that
tells us whether or not the mixing has actually been accomplished. We cannot use the time
window approach to detect a faulty state. If, for example, the propellor-sensor measures
the rotational speed of the propellor axle outside the bottle, as indicated on Figure 7.3, we
may not be able to recognize immediately the situation where the propellor blade has fallen
off the axle and lies motionless at the bottom of the container. Therefore, such a fault may
not be detected immediately, and will then propagate to a measurable state at a later time.
Other quantities can be measured at least indirectly. For example, while we may not be
able to measure the volume of the inner container directly, we can easily measure the gas
pressure of the outer container, and from there, we can derive the volume of the inner
container instantaneously and at all times. For our purposes, we can replace the empty-
sensor, the A-full-sensor, and the B-full-sensor by corresponding threshold-type pressure

sensors. However, contrary to the classical control problem, in which it is assumed that

80

the controlled process operates flawlessly, in the context of intelligent fault tolerant control,
we pay always a price for indirect measurements. For example, a faulty pressure state may
indicate a faulty volume state, but it could equally well indicate a gas leak of the outer
container. A correct pressure reading may indicate a correct volume state, but it could also

be that the bag got perforated, and the fluid and the gas are now mixed.

L Propeller sensor

Propeller sensor : responds when the propeller
speed has reached specified level.
' Angle sensor : responds when angle is between
Angle}sensor 89 and 91 degrees.
B-full sensor B-full sensor : responds when pressure has
: reached specified level.
A-full sensor A-full sensor : responds when pressure has
reached specified levael.
4D Empty sensor : responds when pressure has
Empty sensor reached empty level.

Figure 7.3. Threshold-type Sensors for Space-adapted Mixing System

The DEVS model of the control system performs the control task by changing its state
from an initial position on a given threshold sensor boundary to a predetermined and
desired sequence, possibly cyclic, of other boundaries. More concretely, this means that
we want the system to go through a predetermined sequence of discrete states as reported
by sensor readings. The desired sequence of states is determined by the higher level
planner. Our control logic will, as each boundary crossing is reached, issue a control
action, i.e., send an appropriate input to the system in order to move it toward the next
desired boundary. The controller has a time window in which it expects the appropriate
sensor states to change to confirm the expected boundary crossing. Time windows are
deduced either from previous experience, expert knowledge, previous measurements,

abstraction from the so-called DEVS external model [55],[56], or finally simulation of a

81

continuous-time external model [89]. To represent a real (possibly continuous-time)
system by a DEVS model in a valid fashion, we must derive the time-advance, internal
transition, and external transition functions from the dynamic characteristics of the system.

Figure 7.4(a) presents the DEVS states in terms of a partition of the dynamic state
space. Given the filling, emptying, and mixing rates we can easily compute the time
required to reach to the boundaries of each phase. External transitions occur when the
input rates and mixing rate are changed. Internal transitions can occur while the input rates
and mixing rate remain constant. Figure 7.4(b) shows the state transition diagram and
corresponding control commands. The transition from EMPTY to A-FILLING is caused
by an external event, step-increasing the filling rate from 0 to a non-zero value, by control
command fill-A. The transition from A-FILLING to A-OVER-FILLING is an internal
event whose time advance corresponds to the A-filling-time. This can be directly obtained
from a series of continuous system simulation runs by varying the disturbances and system
parameters of a process model in accordance with normal operating conditions [89]. The
transition from A-OVER-FILLING to A-FULL is an external event caused by shutting off
the influx, by control command stop-A. Mutatis mutandis for the other transitions.

Figure 7.4(b) represents only one of many possible plans of operation (sequences of
control commandsj, namely, a simple plan in which all actions occur sequentially without
overlap, although it is possible to overlap actions in many ways. One plausible alternative
is to let filling of the second liquid and mixing proceed concurrently. The expanded DEVS
model that includes this alternative is shown in Figure 7.4(c). ~'We would expect this
alternative to save time due to earlier mixing. Later it will be shown how a planner can

select an optimal path from an initial state to a goal state.

Empty
A-filling
A-over-filling
Burst

A-full

B-filling
B-over-filling
B-full

Mixing
Over-mixing
Mixed
Emptying

82

level <= empty level

level <= A-full level, A-filing-rate > 0

level > A-full level, A-filling-rate > 0

liquid overflow, level > TOP, A-filling-rate > 0 or B-filling-rate > 0
level > A-full level, A-filling-rate = 0

A-full level < level <= B-fuli-level, B-filling-rate > 0
level >= B-full level, B-filling-rate > 0

level > B-full level, B-filling-rate = 0

Concentration > 10% criterion, mixing-rate > 0
Concentration <= 10% criterion. mixing-rate > 0
Concentration <= 10% criterion. mixing-rate <= 0
empty level < level < B-full level, emptying rate > 0

where, DEVS model state is (q,x) such that q(state) = {level, concentration}
and x(input) = {A-filling-rate, B-filling-rate, mixing-rate, emptying-rate}

A-full-sensor

EMPTY

(a) DEVS State Definitions

STOP-A FILL-B

B-tull-sensor

STOP-MIX No-sensor

Where () = [Tmin, Twindow]

(b) State Transition Diagram

83

STOP-A FILL-B

A-full-sensor

B-full-sensor

A-over-filling

TOP-
FILL-A STOP-B

B-over-filling
& mixing

Empty-sensor

EMPTY

STOP-MIX No-sensor

(c) Possible Alternative of State Transition Diagram

Figure 7.4. DEVS State Definitions and State Transition Diagrams

7.3.2. Modelling and Simulation Approach

The model specification and retrieval in the DEVS-Scheme simulation environment are
mediated by a knowledge representation component designed using the system entity
structure concept discussed in Chapter 2 [95],[104]. Figure 7.5 shows a system entity
structure for the event-based mixing process control.

To achieve realism, models of intelligent control units must be able to represent not
only their decision making capabilities but also the models of the real system, that the
decision making component uses to arrive at its decision.

The simulation test is decomposed into a model representing the real bottle, MIX-E,
the so-called external model of the system, and a coupled model representing the control-
unit. The control-unit is decomposed into an operator for filling, mixing, or emptying a

container and a diagnoser for discovering the causes of any operational faults.

84

TEST
1
TES'!I'-DEC

' 1
MIX-E CONTR(l)L-UNlT

CONTROli-UNIT-DEC

| 1
OPERATOR D'AGTOSER

OPERATOR-DEC DIAGNOSER-DEC

CONTRL MIX-O DIAGN MIX-D

Figure 7.5. System Entity Structure for a Mixing System

There are three types of mixing models used in the simulation that are related to each

other by abstraction:

e MIX-E: external model of the space-adapted mixing system. MIX-E is able to
respond to both operational commands and diagnostic probes. It is external to the
controller.

e MIX-O: operational model of the mixing system used by a controller, CONTRL, to
generate its commands and verify the received sensor responses.

e MIX-D: diagnostic model of the mixing system used by a diagnoser, DIAGN, to
determine the probable source of a breakdown. It is a classification, or expert-
system-like model.

In this configuration, the external model, MIX-E, is able to respond to both operational
commands and diagnostic probes. The advantage in folding different submodels into one
as we have done, is the straightforward sharing of common parameters and state variables.
In contrast, distinct models incur communication overhead required to synchronize such
shared variables.

The various models of the same system can all be derived from the same base model,
which represents the continuous system, by abstraction processes [56],[89],[102]. Figure

7.6 illustrates an abstraction sequence for models of the mixing process. The base model,

85

MIX describes a continuous process as discussed in the previous section. From the base
model, we shall construct a DEVS model, MIX-E, to serve as the external model of the
mixing process in a discrete event simulation. We shall also derive a DEVS model, MIX-
O, from MIX-E, which serves as the internal model used to operate the space-adapted
container. These models are related by abstraction, i.e., by a form of homomorphic

relation where MIX-O is an abstraction of MIX-E, which in turn is an abstraction of MIX.

Internal model

External model

Base model

Figure 7.6. Abstraction Sequence for Models of Mixing Process

Figure 7.7 shows a layered architecture of the mixing control system. Level III is the
lowest level, where the real system under control exists. The external model, MIX-E,
represents the real system in our simulation. It receives input messages such as control
commands and read-sensor commands from the next higher level, Level II. It sends the
sensor readings to the next higher level. Level II corresponds to the control unit shown in
Figure 7.5. It has an abstract model, MIX-O, and a rule-based model, MIX-D, to provide
the necessary pieces of information for the controller and diagnoser, respectively. It also
sends a result message to its next high level, Level I. We call the level “goal agent”. It
corresponds to the highest unit of the control system. Notice that the three level hierarchy
shown on Figure 7.7 is not the same as the three-layer hierarchy discussed in Chapter 6. It
will be shown later how these different types of hierarchy are mapped onto each other.

86

LEVEL Il

Figure 7.7. Layered Architecture of the Mixing Control System

External Model : MIX-E

The external model, MIX-E, can be built to represent a few of the likely problems that
might arise in operation. For example, it allows the syringe to be inserted askew, the tube
be blocked or leakage to occur through the inner chamber wall. These anomalous
conditions can be imposed on the model by assigning it appropriate parameter values.
The controller that operates the container will detect abnormal behavior during operation
and diagnose its source as one of these anomalies.

To implement MIX-E, we use the DEVS-Scheme class forward-models to conveniently
express the transitions and outputs in the form of sensor responses. Forward-models, a
specialized class of atomic-models, generates model objects that inherit all the instance
variables and methods of atomic-models (see Figure 3.1). In addition, forward-models
contains a forward-chaining inference engine that facilitates writing models in a rule based
manner. In general, internal transition rule conditions test the execution phase and the
state variables of the model while external transition rule conditions test also the input
content structure and elapsed time. Once its condition is true, the triggered rule becomes

a candidate to execute its action and then to change the state of the model [109].

87

Internal Model : MIX-O

Having derived an external DEVS model of a continuous system, we are in a position
to further abstract it for use as an internal model within an intelligent agent. For this
purpose we introduce another means of specifying atomic-models, the sub-class table-
models. The information required to specify the transition and other functions of an
atomic-model is provided in the form of tuples in a relation, called the transition table.
For example, as shown in Figure 7.8(a), the first assertion of such a tuple states that if the
current state is EMPTY and the input is fill-A then the next-state is A-FILLING; also the
output in the current state is nil and its time-advance is infinity (ta = inf). The window is
given by two fields: next-ta(21) gives its lower bound, and next-wind(4) gives its width
(so its maximum bound is 25). Every table-model has (beside from the inherited
variables, phase and sigma) state variables for the transition table, a goal table, and a time
window. As with forward-models, the internal and external transition functions, and
output function of table-models implement an interpreter of the transition table.

Let us consider the approach taken to construct the external and internal operational
models, such as MIX-E ‘and MIX-O, respectively. Having the discrete event model,
MIX-E, we can derive a table-model, MIX-O suitable for use by a generic controller to be
discussed later. MIX-O is intended to be a simplified version of MIX-E that is valid in the
region of normal operation of the system. More specifically, MIX-E and MIX-O are
related by an approximate homomorphism, in which corresponding states have the same
outputs and transition to corresponding states; only the time advance values of
corresponding states may differ - however this divergence must lie within predefined time
windows. The time window associated with a state in a table-model, MIX-O, is
determined by bracketing the time advance values of all internal transitions associated with

the corresponding states in its parent model, MIX-E. Thus divergence arises due to

88

variations in parameters and initial states considered to represent normal operation
[14],[109].

A table-model must have a method, input?, which returns the next input required to
‘reach a goal from the current state. Another method, plan, is required to figure out what
this input should be. The planner produces a time optimal path from an initial state to a
goal state. Since discrete event models embody timing it is natural to base optimal
sequencing on predicted execution times. The result is stored as a relation, the goal-table,
as shown in Figure 7.8(b).

The planner works by developing paths backward from the goal until the given initial
state (the starting state of the controlled system) is reached. As each state is encountered,
an entry is made in the goal table for it with the time-to-reach-goal entered. If a state is
encountered again, with a smaller time-to-reach-goal, a new entry replaces the existing one;
otherwise no change is made. When such a replacement occurs, any predecessors of the
state in the goal table must have their time-to-reach-goal downward adjusted accordingly.
This is a form of dynamic programming [65] based on the principle that every subpath of
an optimal path must itself be optimal. = Thus we need to keep track only of the input
required to continue an optimal path from any state, not the whole path itself.

In Figure 7.8(b), we see that the planner has assigned the command fill-B & mix to be
given from state A-FULL as the quickest way to reach the MIXED goal. This reflects the
fact that concurrent mixing and filling is faster than sequential operation as derived from the

underlying continuous model.

state input next-state output ta nextta next-wind
empty fitl-A A-filling 0 int 15 3
A-filling () A-over-filling A-full-sensor 15 14 4
A-over-filling 0 burst 0 14 inf 4]
A-over-filling stop-A A-full 0 14 inf 0
A-full fill-8 B-filling 0 inf 12 3
A-full fill-B&mix B-filling&mixing 0 inf 12 3
B-filling () B-over-filling B-full-sensor 12 6 4
B-filling&mixing () B-over-filling&mixing B-full-sensor 12 6 4
B-over-filling stop-B B-full 0 6 inf 0
B-over-filling 0 burst 0 6 inf 0
B-over-filling&mixing stop-B mixing1 0 6 186 8
B-over-filling&mixing 0 burst 0 6 inf 4]
B-tull mix mixing0 0 inf 206 10
mixing0 0 over-mixing no-sensor 206 10000 20
mixing1 () over-mixing no-sensor 196 10000 20
over-mixing stop-mix mixed 0 10000 inf 0
mixed empty emptying 0 inf 20 4
emptying 0 empty empty-sensor 20 inf (0
(a) State Table

state goal input time-to-reach-goal

empty mixed fill-A 223

A-over-filling mixed stop-A 208

A-full mixed fill-B&mix 208

B-over-filling&mixing mixed stop-B 196

B-full mixed mix 206

over-mixing mixed stop-mix 0

mixed empty empty 20

(b) Goal Table

Figure 7.8. Table Specifications of an Internal Model, MIX-O

Diagnostic Model : MIX-D

89

The diagnostic model, MIX-D, employed by the diagnoser inference engine, is derived

from the external model, MIX-E, but not in a homomorphic fashion.

Indeed, the

diagnostic model is an inversion process going from external effects to underlying causes.

The validity criterion for the diagnostic model is thus the following: the occurrence of every

fault representable in the external model, MIX-E, should be identifiable by the diagnostic

90

model, MIX-D, under the operation of the diagnosing inference engine. The diagnostic
model, MIX-D, is implemented in the forward-models class in DEVS-Scheme. Some of

the diagnostic rules for MIX-D are given in Figure 7.9.

If A-full-backup-sensor is not true and A-full-sensor is true,
then "A-full-sensor is bad".

If B-full-backup-sensor is not true and B-full-sensor is true,
then "B-full-sensor is bad".

If angle-sensor indicates off-angle or tube-angle of vision
is less than 89 or greater than 91,

then "Tube is off-angle”.

If timing is too-late and phase is A-filling and level is
less than 100,

then "Tube is off-angle or leaky".

If tube-constriction of vision is greater than 50,
then "Tube is constricted".

if empty-sensor is true and level is greater than 1,
then "Empty-sensor is bad".

If indicator-sensor is A-full-sensor and indicator-timing is too-late

and phase is A-filling and level of vision is less than 100,
then "Tube is leaky".

Figure 7.9. Fault Diagnosis Rules for MIX-D (partially-shown)

Controller Model : CONTRL

The controller is a generic engine similar to an inference engine that can operate on any
suitable DEVS model of type table-model, such as MIX-O. Using its goal table, the
controller can obtain information from the model relating to commands. Using its state
table, it can obtain information from the model relating to expected response times and
their time windows. The controller issues these commands to the controlled device.

When proper response signals are received, the controller causes the model to advance to

91

its next state corresponding to the one the device is supposedly in. Thus if the model is
valid and if the operation proceeds normally, the underlying homomorphic relation
between the model and the controlled device is maintained. The controller ceases
interacting with the device as soon as any discrepancy occurs in this relationship and calls
on a diagnoser to figure out what has happened. The controller model, CONTRL, is
implemented in the forward-models class of DEVS-Scheme.

Diagnoser Model : DIAGN

The operator and diagnoser are coupled so that once the controller has detected a sensor
response discrepancy, the diagnoser is activated. = Data associated with the discrepancy,
such as the phase in which it occurred, and its timing (TOO-EARLY, TOO-LATE), are also
passed on to the diagnoser. From such data, as well as the information it can gather from
auxiliary sensors, the diagnoser tries to discriminate the fault that occurred. Figure 7.10
shows various data types for fault diagnosis. The indicator used by the controller keeps
track of the container states estimated by the level-sensors. However, auxiliary sensors
such as a backup pressure (volume) sensor, an angle sensor, and a vision sensor provide
more accurate container state information. The diagnosis can be forwarded to a unit that
tries to restore the system to normal operation. For example, if the verification from the
A-FULL sensor was TOO-LATE during A-FILLING, the diagnoser might determine that
the syringe was most likely misaligned and the repair unit would then try to correct the

alignment. 'We shall not discuss modelling of the repair process here.

92

INDICATOR BACKUP-SENSOR
SENSOR | TIMING PHASE
A-full
. B-full
empty-sensor too-early emptying empt
A-full-sensor too-late A-filling Py
B-full-sensor B-filling
mixing
VISION ANGLE-SENSOR
Syringe Constric-] Concent- off-angle
Level | _angle tion ration normal

Figure 7.10. Various Data Types for Fault Diagnosis

7.3.3. Simulation Results

In the DEVS-Scheme environment, a system entity structure such as the one shown on
Figure 7.5 can be transformed into a simulatable test mockup. In this mockup, we can
set the external model, MIX-E, into an initial state and choose a parameter setting that
represents either a normal or an abnormal condition. We set the internal operational
model, MIX-O, to a corresponding phase, assign a goal phase to the control model,
CONTRL, and start the simulation. If MIX-E is started in a normal condition, the
simulation should run to the point where CONTRL achieves its goal. If started in an
abnormal condition, CONTRL should detect this at some point due to a time window
violation and activate DIAGN, which should eventually conclude the responsible fault in
agreement with the one introduced at the start of the simulation. Figure 7.11 shows
initial values for an external model, MIX-E, under normal operation. We assume several
time delays of sensor readings, for example 1 sec for the backup-sensor reading and
100 sec for the visual-sensor reading. These time delays can be taken into account when

deciding which sensors to interrogate [80].

93

A-filling-rate 7 Filling rate of liquid-A
B-filling-rate 5 : Filling rate of liquid-B
emptying-rate 8 . Emptying rate of mixed liquid
A-full-level 100 : Expected level when liquid-A is full
B-fuli-level 167 . Expected level when liquid-B is full
empty-level 1 : Initial level of the container

angle 90 . Syringe angle

constriction 5 . Constriction effect

leakage-rate 0.001 : Leakage rate of the container
A-concentration 0 : Initial concentration of liquid-A
B-concentration 50 : Initial concentration of liquid-B
alpha 1 : Mixing effect coefficient

Figure 7.11. Initial Values for the Simulation Test

The simulation results under normal operation for each goal plan are shown in Figure
7.12(a), (b), and (c), respectively. Figure 7.12(a’) illustrates the simulation results of a
faulty case for a goal plan to proceed from state EMPTY to state A-FULL.

Under normal operation, as shown in Figure 7.12(a), CONTRL issues the control
command, fill-A, to the external model, MIX-E, and also to the internal model, MIX-O,
and then waits for the sensory response to arrive within the scheduled time window of
4 sec. If the sensory response arrives within the prescribed time window, the controller
generates the next command, and so on, until MIX-E reaches its goal state. However, in
the faulty case, where the tube is leaky, the leakage rate is set to 1 instead of 0.001. As
illustrated in Figure 7.12(a"), no response is received from MIX-E prior to time step 25,
the maximum time. Therefore, the controller generates the error command, error, to the
diagnoser. The diagnoser, DIAGN, checks the data associated with the discrcpéncy, such
as the phase in which it occurred and its timing by referring to MIX-E. The expert-
system-like model, MIX-D, concludes that “the tube is leaky” by using the data from
DIAGN. Because the indicator shows that its sensor is A-FULL-SENSOR, its timing is
TOO-LATE, and its current phase is A-FILLING, but the visual sensor shows that the

liquid level has not reached its specified level, 100 (see Figure 7.9).

94

Clock- MIX-E MIX-O CONTRL
time state output state output state output
0 (Afilling 16) 0 (Afilling) (fill-A 15 3) 0 (Fill-A)
15 0 0 0 0 (window 3) 0
16 (A-over-filling 16) (A-full-sensor #T) (A-full) {Stop-A) {Check 1) {)
17 (A-tull) 0 0 0 0 (Stop-A)
(a) Goal Plan : EMPTY -> A-FULL
Clock- MIX-E MIX-O CONTRL
time state output state output state output
17 | (B-filing 12) 0 (B-iling (fil-B 12 3) 0 (Fil-B
& mixing & mixing) &mix &mix)
29 0 0 0 0 (window 3) 0
30 | (B-overdiling 7) (B-ull-sensor #T) (Mixing1) 0 (Check 1) 0
&mixing ‘
30 | (Mixingl 201) 0 (Mixing1) (Stop-B 196 8) 0 (Stop-B)
226 0 0 0 0 (window 8) 0
235 | (over-mixing 10000) 0 (Mixed) (Stop-mix) (Check 1) 0O
236 (Mixed) 0 ¢ (0 (Stop-mix)
(b) Goal Plan : A-FULL -> MIXED
IClock- MIX-E MiIX-0 CONTRL
time state output state output state output
236 (Emptying 21) 0 (Emptying) (Empty 20 4) 0 (Empty)
256 0 0 0 0 (window 4) 0
256 (Empty) (Empty-sensor #T) (Empty) 0 {Check 0) {Finished)

{c) Goal Plan :

MIXED -> EMPTY

95

7.4. Discussion

Figure 7.12. Simulation Results

Clock- MIX-E MiX-O CONTRL MIX-D DIAGN
ime [~ ate | output | state | output | state | output | state | outeut | state | output
A-filling A- Fill-A Fill-A
0 19 filing] 15 8
Wind
15 3
Error | Too- Start
18 late 1
Read- Wait-
19 ing 1 sensor
Read- | In- Wait-
20 ing 10} between sansor
Visual Wait-
30 100 Normal sensot]
Finish | Vision Wait-
130 -read | -info. sensor
1
Pass- Start- | Sensor
131 ive Done diagn] -data
1
Pass- | Tube is | Pass- | Tube is
132 ive leaky ive | leaky
(a') Goal Plan EMPTY -> A-FULL (fault case)

The DEVS formalism was introduced in the 1970's to help specify simulation models

in a rigorous, system-theory based manner [108],[115]. Since then, other approaches to

modelling DEDS (Discrete Event Dynamic Systems) have emerged. Most are algebraic or

graphical in character and do not include the time element that DEVS inherits from its

system theoretic origins. The most closely related formalisms are found under the

framework of Generalized Semi-Markov Process (GSMP), in which we can include the

stochastic generalizations of Petri Nets [77].

GSMP, as formulated by Glynn [35] and

96

Cassandras and Strickland [9], attempt to formalize discrete event simulation models as
Markov processes with countable state sets that are amenable to mathematical analysis.
However, Zci'glcr [109] showed that fundamental DEVS behaviors require a continuous
state space and cannot be expressed by tractable GSMPs. Indeed, merely having a
component keep its scheduled event time despite interruption is impossible without a
continuous state set. Zeigler [109] concludes that DEVS appears to be more powerful
than GSMP, trading mathematical tractability for expressive power.

At the process control level, limitations have been recognized in recent years in the
ladder specification technique used by programmable logic controllers (PLC), an approach
that is wide spread in industry. Ladder networks are limited to combinatorial logic, are
difficult to understand, and provide an inadequate basis for fault recovery [54]. In the
mid 1980s, artificial intelligence and expert systems were being suggested as approaches to
overcome such limitations [58],[59],[60],[79],[87] stimulating the knowledge-based
approach adopted in our DEVS-based intelligent control methodology [102].
Independently of our efforts, methods of low level programmable control specification
were also being developed. In particular, the GRAFCET language [47],[54] provides a
graphical specification of sequential dynamic behavior similar to Petri nets and other
conventional state-transition diagrams [20],[38],[116). The strengths and limitations in
expressive power of GRAFCET are discussed in [26] with the motivation to develop more
expressive graphical languages for PLC-based process control and real-time parallel
computing applications.

In contrast to such specification languages, the DEVS methodology does not aim to
provide improved graphical sequential logic specification languages. First of all, it
resides at a more abstract level as a mathematical, set theory based formalism. Moreover,

as indicated, the DEVS formalism has been shown to have full expressive power for

97

discrete-event simulation modelling [108],[109],[115], and it is capable of providing sound
semantics for such graphical languages. Recent work has also shown how the event-
based control systems developed in DEVS-Scheme can be readily migrated to actual real-
time operation by interfacing the simulation environment with the plant and driving the
model state transitions with a real-time clock [96].

The emphasis in this chapter is on application to intelligent control where low level
conventional controllers are being interfaced with high level symbolic decision making
[102]. Such “hybrid” modelling methodology has been shown to be an important problem
in the theory of autonomous and intelligent control [6]. Indeed, to design intelligent,
autonomous systems, many control aspects come into play, such as planning, operation,
diagnosis, and recovery. Graphical sequential specification languages are concerned
mainly with normal operation. While an improved language such as GRAFCET facilitates
maintenance and trouble shooting, the DEVS approach goes one step further: it is
concerned with an integrated approach in which models can be developed to support all
control aspects.

Generally, a state correspondence between base and lumped models must be preserved
under transitions and outputs. Morphisms differ in such details as the nature of the state
correspondence and the lengths of microstate transition sequences corresponding to
macrostate transitions [108],{115]. Choice of a particular morphism establishes the
criterion of validity for simplification. In our approach to model development based on
such morphisms, a relatively complex simulation base model is abstracted into simplified
models that are oriented to the needs of a particular task such as planning, operation, or
diagnosis. Strategies derived from simplified models can be tested against the base model

by simulation before actual implementation.

98

This approach needs some discussion as objections have been raised that it consists of
degrading the mathematical information one has on the system and is completely at odds
with what the standard control theorists are wont to do: one of their constant goals being to
improve the mathematical description of the control problem. In answer, we emphasize
that base model formulation is entirely in keeping with the attempt to improve mathematical
description: here one wants to be as rigorous and comprehensive as necessary to deal with
all of the control aspects of interest. However, for application to a particular aspect, such
as operation, it is advantageous to abstract the base model to a simplified lumped model that
provides crucial computational complexity reduction especially as needed under real-time
operational constraints. Of course, the model should not be arbitrarily “degraded”:
indeed, the criterion for assuring that a lumped model remains valid and exhaustive within
the scope of its intended operation is the homomorphism criterion just mentioned.

Although much research remains to be done on the abstraction of continuous base
models to discrete-event lumped models, some preliminary answers can be given to more
fundamental questions:

How does the size of the discrete-event “automaton” increase with the number of
sensors and actuator thresholds? As indicated, the partitioning of the continuous state-
space is determined by the output map, which is contained in the cross-product of the
sensor states. In theory, all such combinations of sensor states are possible, but in
practice, due to correlations and redundancy, a relatively small percentage will occur in
normal operation. Sensor states should therefore be introduced only as needed so that,
using a minimal sensor set, the resulting partition represents the coarsest valid continuous
state reduction.

Will such a combinatorial dependency not lead to very large automata in realistically

dimensioned examples? This would be true if a monolithic approach were adopted. In

99

contrast, as indicated earlier, the DEVS formalism supports the specification of coupled
models, closure under coupling, and the resulting hierarchical, modular model construction
capability. Thus, complex continuous systems can be hierarchically decomposed to a
level where the resulting atomic components can be represented as discrete-event systems
in the manner just described. The resulting control structure is a hierarchical one in which
higher level supervisors coordinate the actions of lowest level controllers. Concurrency
in operation is naturally handled in such a representation as opposed to the graphical state-
based approaches mentioned above. Description of such hierarchical control is described
in Chapter 10.

Can the generation of the DEVS automaton from the continuous representation be
automated? As described earlier, several approaches can be taken to such generation.
The DEVS-Scheme environment has been extended to support continuous model
specification and the automatic abstraction of event-based control models including the
essential time-window information [55],[56],[89]. Of course, the user must specify the
sensor partitions and the parameter variations characterizing normal operation, but from
there on the DEVS model is algorithmically generated.

If one is interested in diagnostics, does abnormal behavior introduce new states? We
have indicated that event-based control provides TOO-EARLY/TOO-LATE information that
can be used in the diagnostic process. However, this is a side-benefit that need not
result in increased states of the operational model. This is so since the lumped operational
model represents normal behavior and does not in itself include diagnostic aspects. It is
the base model that must be sufficiently refined to represent all abnormal behavior of
interest. The base model abnormal behavior information is mapped into the diagnostic
model, dimensioning its state space, so to speak, rather than that of the normal operation

model.

100

How does the complexity of simulation and diagnostic ability compare with standard
techniques based on estimator, observer and decision theory ? The estimator concept,
available to standard linear control theory, is needed where the process state must be
identified in the presence of noise. In this paper, we are assuming noise free, highly
non-linear systems so that the comparison is not germane. However, general system

reduction and morphism concepts underlie both approaches [51],[571,[93].

7.5. Conclusions

This chapter has shown how suitably operating on the structure of such DEVS models
provides a basis for design of event-based logic control. In this control paradigm, the
controller expects to receive confirming sensor responses to its control commands within
predefined time windows that are determined by the DEVS model of the system under
control.

A space-adapted mixing control process was advantageously represented as a family of
discrete event models by employing techniques based on the DEVS formalism. Several
fluid handling models have been successfully tested in the DEVS-Scheme environment.

An essential advantage of DEVS-based control is that the error messages it issues can
bear important information for diagnostic purposes. This possibility arises when a DEVS
model is developed for the process and used to determine the time windows for sensor
feedback. As a side benefit, causes for other responses may also be deduced.

Since the DEVS formalism is at the heart of event-based control system design, such
controllers can be readily checked by computer simulation prior to implementation. Thus
the DEVS formalism plays the same role with respect to event-based control that differential
and difference equation formalisms play to conventional control. This principle and its

applicability implemented using the DEVS-based control paradigm were illustrated by

101

means of a space-adapted fluid mixing system capable of supporting the automation of fluid
handling laboratories as they will be built as part of the International Space Station Freedom

to be used for research in life sciences, microgravity sciences, and space medicine.

102

CHAPTER 8
MODEL-BASED TASK PLANNING

8.1. Overview

Originally, task planning developed as a subfield of artificial intelligence. However,
task planning has yet to find a coherent theory. Moreover, task planning should not be
considered independent of task execution. Recently, task planning has been referred to
in the context of a variety of techniques ranging from hierarchical control of robots to the
solution of constraint satisfaction problems to expert systems.

The automation of reasoning about actions is useful in many practical problems with
significant commercial potential. Research on reasoning about actions is generally
published and presented as part of a subfield of Al labeled “planning.” Nilsson originally
specified problem solving and planning as being one of the four fundamental application
areas of AI. However, the weak methods, employing little domain knowledge, originally
used in Al for problem solving and planning, proved inadequate for tackling complex real
world problems. Thus in seeking solutions in this area, larger amounts of knowledge
have since been utilized. The net result has been that the knowledge engineering
methodology used for expert systems has been adapted for use in problem solving and
planning. Thus the boundary between problem solving, planning, and expert systems has
faded [34].

Most Al applications can be considered as examples of problem solving, which are well
covered in other Al application areas such as expert systems, computer vision, and
language understanding. Planning can be defined as the design process for selecting and
stringing together individual actions into sequences in order to achieve desired goals [34].

It also can be viewed as reasoning about how actions affect the world [92]. From the

103

point of view of learning systems, planning can furthermore be defined as the integration of
a model of dynamic memory, learning, and planning into a single system that learns about
planning by creating new plans and analyzing how they interact with the world [37],[73].

Faced with the overwhelming complexity of planning, a model-based approach strives
to integrate key ideas of existing planning paradigms; the hierarchical abstraction approach
(SIPE) [92], the time constraints approach (DEVISER) [88], and the dynamic memory
retrieval approach (CHEF) [37],[73].

Model-based planning can provide an extended planning paradigm, in which it can
support not only the initial planning problem (searching problem) but also the dynamic
memory retrieval problem (representation problem). Moreover, it provides dynamical
reaction with a simulation (execution) through planning, operation, diagnosis, and repair
[13].

This chapter introduces an extended planning paradigm, in which existing paradigms
can be integrated with some focus on a model-based approach. This model-based
planning methodology is described in detail to develop high autonomy system. The
chapter is organized as follows. First it shows a model-based planning methodology
using the SES/MB environment. It then introduces an abstraction process to build a

hierarchical planning/execution structure coherently as an extended planning paradigm.

8.2. Viewing Planning as a Pruning Activity

In our model-based planning employing the SES/MB environment, the pruning of an
SES to select a PES from alternatives can be viewed as an initial planning process. This
pruned entity structure (initial plan) is in turn transformed into a simulation model (for
execution). The PES may be catalogued to facilitate subsequent recognition and retrieval

(experienced plan). The SES/MB environment with the DEVS formalism supports

104

various concepts useful in the context of planning such as causality, time constraints, and
nonlinearity [13],[76],[88],[92]. Figure 8.1 illustrates an analogy between existing
planning issues and the SES/MB environment. A more detailed discussion is available in

[13],{17].

Key issues of existing planning systems SES/MB environment
Hierarchical Hierarchical, modular system design
Time constraint Handled by event-based control logic

within SES/MB environment

Causal theory MB simulator includes a time scheduler
such as time-of-next-event

Nonlinear (parallel planning) Layered intelligent agent can handle
nonlinear and/or parallel planning

Replanning during execution Repruning of SES during simulation
(variable structure)

Dynamic memory (save and retrieve): Save/retrieve to/from ENBASE:
indexing of resultant plan cataloguing of PES

Domain-independent SES is based on its formalism

Extended paradigm: integrated in event-based control unit

self-diagnostic, self-repairing

Figure 8.1. Analogy Between Existing Planning Systems and SES/MB Environment

8.3. Model-based Planning Approach

An autonomous, intelligent system needs not just one, but many, models on which to
base its operation, diagnosis, repair, and planning activities [6],[58],[105]. These models
differ in levels of abstraction and in formalism. Concepts and tools are needed to

organize the models into a coherent whole. An organized model base helps the intelligent

105

formalism. Concepts and tools are needed to organize the models into a coherent whole.
An organized model base helps the intelligent unit to cope with the multiplicity of objects
and situations in its environment and to link its high level plans with its actual low level
actions.

In the model-based approach, the planner first retrieves from the memory, ENBASE, a
plan that might be used to achieve a given goal. It then generates a new trial plan if no
existing plan is suitable. In the sequel, this candidate plan is projected forward via
simulation to observe the outcome. This outcome is finally exanﬁned to see if there are
any conflicts with other goals if this plan is pursued.

In planning a course of action to achieve a set of goals, time is often a key parameter.
The need to account for time explicitly in Al planners has been recognized for a long time.
Vere's DEVISER synthesizes plans to achieve goals that may have time restrictions on
when sets of goals should be achieved and on how long the goal conditions should be
preserved [vere]l. The planning paradigm with time constraints can also be accomplished
during execution (simulation) within the model-based approach. The time window and
duration (as discussed in the event-base control of Chapter 7) can be directly obtained from
a series of continuous system simulation runs by varying the disturbances and system
parameters of a process model in accordance with normal operating conditions [wang-celi].
In the planning hiemchy, these segmented time windows should be aggregated according

to the abstraction level.

8.4. Model-based Planning Methodology

Cnce the DEVS model base is developed and a system entity structure has been
constructed on the basis of the model-based hierarchical system structure, we should know
how to relate such a structure with a given goal. In other words, once we know locations

(structural states) and characteristics (behavioral states) of resources (models), we have to

106

know how to allocate (plan) resources to accomplish a task (goal). Figufe 8.2 denotes a

planning concept to build autonomous systems.

How to construct the system ? How to achieve goal ?
- hard-form - soft-form
- goal independent - go_al driven
System - resources Goal - skill (how to use
Structure - include controt Structure resources)

- include planning
and scheduling
components

Knowledge and diagnosis

componess

Knowledge

Pruning (Selection)

Planned
Structure

Model synthesis

Execution

Figure 8.2. Planning Concept: Viewing Planning as Pruning the Goal Structure

In our SES/MB framework, planning is viewed as a pruning operation that generates a
candidate structure. =~ As shown in Figure 5.3 of Chapter 5, the STRUCTURE entity
represents an execution structure that contains all possible configurations of a system. Any
one of these configurations can be generated by pruning. On the other hand, the
EXPERIMENT entity represents a goal structure that describes the possible alternative
goals. The execution structure is pruned by the goal structure. After issuing a
command, the system can autonomously interpret the command, plan an activation
sequence, select models, execute the plan, and save the plan. Figure 8.3 depicts a model-

based methodology for generating an autonomous system.

_ Replaq

Structure

Retrieve

Structure

Knowledge -Knowledge
l lPruning Task y External
Fomulation task

Planned

Structure
Synthesis
N |
Execution
Structure 3
y —
\ Save states Save PES
(rzf;:‘ttérsce (experience
update
Y Save change) pdate)
Finish
Where,

SES: System Entity Structure
PES: Pruned Entity Structure
MBASE: Model Base

ENBASE: Entity Structure Base

Figure 8.3. Autonomous

System Generation Methodology

The overall procedures shown in Figure 8.3 are as follows:

107

1. Load the system entity structure of the space station laboratory (SSL) that organizes all
available domain knowledge including experiment knowledge and structure knowledge.

108

2. Interpret natural-language-like task commands (objectives) in order to map them into the
predefined domain knowledge (SSL).

3. Check whether there are already existing plans (pruned entity structures): if such
structures exist (whole or partial PESs) use them, if not generate a sequence of actions
by querying the goal knowledge part of the system entity structure (EXPERIMENT).

4. Construct a model structure by pruning the execution knowledge part of the system
entity structure (STRUCTURE) according to the goal knowledge.

5. Transform the model structure into an autonomous system architecture by synthesizing
component models from the model base, MBASE.

6. In the faulty case, reprune the SES after issuing the new goal and repeat from step 3.

7. Save the results for reuse; the states of each model into MBASE, and the PES into
ENBASE.

8.5. Non-experienced Planning (Initial Planning)

The initial planning, where no previously experienced plans exist, can be achieved by a
hierarchical search process employing a rule-based approach, in which the task sequence
can be selected depending on goal commands and predefined constraints by checking pre-
conditions and post-conditions of the state transition diagram.

The task formulation module interprets a natural-language-like command, which
consists of a list containing the task name (i.e., the fluid operation name) and its variables
(i.e., the liquid name and its amount), and use it to select subplanning models.

Let us consider the following external commands: (mix ((liquid-A 100ml) (liquid-B
100ml))) and (mix ((liquid-A 100ml) (liquid-B 200ml))). Suppose that three different
sizes of syringes are available; small (< 100ml), medium (< 200ml), and large (> 200ml).
In the case of the former external command, it suffices to employ one small syringe that can
be used to handle both liquids. It is not necessary to put the syringe down in between
and pick it up again. However in the latter case, two different syringes may be used: a

small and a medium sized syringe. In that case, the robot needs to let go of one syringe

109

and grab another. However, it would also be possible to use one medium sized syringe
from the beginning and fill it only half with liquid-A, or we could use a small sized syringe
throughout and fill it twice with liquid-B. Which task plan is best depends on other factors
such as the price of disposing of non-reusable parts, the price of cleaning used syringes,
the time allowed for task completion, or the accuracy available for filling syringes only half
(maybe, no appropriate threshold sensors are available for such operation). In both cases,
two types of liquids, liquid-A and liquid-B, are required.

Based on these pieces of information, that can be formulated in a rule base, the task
formulation module can sequence its subgoals. The formulated goal command can be
indexed and catalogued into a high level model (HM) for later reuse if the initial plan is
executed successfully. Faulty command execution can be handled within the task
formulation module using the feedback (replanning) loop. For this purpose, the task
formulation module would have to consider not only external commands but also internal
commands generated as a consequence of faults detected during execution of the initial or a
previous task plan. However, this feature is not currently implemented yet.

Unlike the high level external (user) commands that cannot easily be categorized, most
(medium level) fluid handling laboratory procedures consist of basically fixed sequences of
common steps [hurst]. These building blocks are called middle level models (MMs).
They link the external (user) commands to the low level dynamic resources. It is through
some combination of these MMs that any laboratory procedure may be outlined. Each
MM consists of subplans, so-called low level models (LMs). The following is an

exemplary (partial) list of MM classes with their definitions and required tools [hurst].

Target MMs
1. Weighing (WEIGHING): Quantitative measurement of sample mass. The autonomous
system must be capable of interfacing with common laboratory electronic scales, i.e.,

110

opening the scale door, taring a suitable container, delivering the desired amount of
sample, and recording the actual weight of the sample.

2. Conditioning (MIXING, HEATING, COOLING): Modifying and controlling the
sample environment. For example: shaker, heater, cooler.

3. Separation (SEPARATING): Coarse mechanical and precision separations. Several
subclasses that fit into this category include: solid phase extraction, liquid/liquid
extraction, precipitation, filtration, and centrifugation. For example: centrifuge,
chromatograph, electrophoretic instrument.

Auxiliary MMs

1. Manipulation (OBJECT-GETTING, OBJECT-PUTTING): Physical handling of
laboratory materials, e.g., the transfer of samples from a rack to the nozzle of a diluter
station or to a sipper on a spectro-photometer. Pouring, capping, and crimping also fit
into this category. For example: robot gripper.

2. Liquid-handling (SAMPLING, WASHING, FLUID-INJECTING, FLUID-ADDING,
FLUID-EXTRACTING): All physical handling of liquids -- reagents and samples.
The autonomy system must be able to handle and control the necessary stations to
perform the desired pipetting, dispensing, and diluting called for in an application. For
example: syringe, container.

As demonstrated in Figure 8.4, the action flow graph (state transition graph) implies
some possible robot action flows in the fluid handling laboratory environment. Each MM
has its cause-effect relation using an attribute called pre-post-Ist. For example, the MM
“fluid-injecting” has a pre-post-Ist attribute ((sampling heating) (sampling washing)).
That is, if the previous action was “sampling,” then the next action should be either
“heating” or “washing.” The MM sequence depends on the target MM and other system
requirements such as the number of syringes in use. Once a target MM and necessary
instruments are selected, a proper sequence can be determined by chaining MMs in
backward and forward manner starting from the target MM. Conflict resolution can be
accomplished within the task formulation module. For example, if “mixing” MM and

one syringe are selected as a target MM and system requirement, respectively, then the

111

resultant sequence are: “object-getting,” “sampling,” “fluid-injecting,” “washing,”
“sampling,”‘ “fluid-adding,” “mixing,” “washing,” “object-putting,” and “finishing.” On
the other hand, if two syringes are selected, then the resultant sequence are: “object-

?” ¢

getting,” “sampling,” “fluid-injecting,” “washing,” “object-putting,” “object-getting,”
“sampling,” “fluid-adding,” “mixing,” “washing,” “object-putting,” and “finishing.”
With this MM sequence and other specified resources/constraints such as the number of
required instruments and their sizes, the planning system can prune the STRUCTURE into
a desired execution structure. This pruned entity structure is then transformed to the

simulation environment by synthesizing necessary models from the model base.

TARGET MM

fluid-adding

heating

fluid-injecting

m : washing
obj-getting obj-putting

start

end

Figure 8.4. Action Flow Diagram between MMs

The MM is again decomposed into a sequence of low level models (I.Ms) specified at a
higher resolution. For example, the “sampling” MM consists of four LMs sequence:
“MOVE,” “PLUG,” “SYRINGE,” and “PLUG,” with the subgoals: storage-A, push, fill-

it, and pull, respectively. In this way, high level goals and constraints can be

112

hierarchically mapped and integrated with low level dynamic models. Each LM can be
developed using the goal table of the internal operational model (see Figure 7.8(b)) in the
LMPU as discussed in Chapter 7.

8.6. Experienced Planning |

As discussed in Chapter 3, more than one SES may exist in the entity structure base
(ENBASE), each one representing a family of models for its root entity. In principle,
every entity might have its own SES but this would lead to extreme fragmentation of the
encoded knowledge. Reasons for giving an entity its own SES include: the large size of
its family of possible prunings, its high likelihood of being modified, and its occurrence in
several places of existing SESs [109]. Figure 8.5 represents a partitioned SES and its
- indexed PES family for reuse. The partitioned PES is crucial to achieve dynamic

planning (retrieve and update old plans).

113

HM@mIix1
HM@mix2
HM@dilute
HM@heat
MM@obj-getting
MM@obj-putting

MM@sampling
MM@mixing
MM@injecting
MM@finishing
LM@mpu1
p:EQUIP@1 LM@msz
p:EQUIP@2 LM@mpu3
: e:EQUIP -
: LM@mpu25
pEQUIP@9 pu
p:MPU@1
p:MPU@2
. e:MPU
p:-MPU@25

Figure 8.5. Hierarchical Structure of Partitioned/indexed PES family

in Figure 5.3 for reuse

For example, suppose we already have experience with the “HEAT” but not the
“MIX1” HM. As presented in Figure 8.4, the “MIX1” HM requires the “fluid-adding”
and “mixing” MMs in addition to the MMs used in the “HEAT” HM except for the
“heating” MM. Thus, we can develop a new “MIX1” HM by using previously generated
partial plans from the “HEAT” HM and by generating new plans for the “fluid-adding” and
“mixing” MMs.

114

In the following sections, we describe how the planning and execution structures are
coherently integrated as an extended planning paradigm using the abstraction related models
on the execution hierarchy corresponding to hierarchical planning models.

8.7. Abstraction-Related Modelling

Once a plan is generated, the execution hierarchy is constructed in accordance with the
plan hierarchy. A model for event-based control discussed in Chapter 7 must represent
not only a decision making component, but also the model of the real system, which is
used by a decision making component to arrive at its decisions. Such abstraction is based
on homomorphic preservation of the equipment input-output behavior where inputs are
operation commands to the equipment and outputs are responses of finite state sensors
attached to the equipment to observe its state. Selection of controls and sensors must
reflect the operation objectives. An atomic DEVS model abstracts incremental micro-state
transitions from the continuous model and replaces them by time windows taken for macro-
state transitions (which correspond to crossing of sensor thresholds) [55],[56]. A coupled
DEVS model similarly abstracts the behavior of the composition of lower level DEVS
models.

Figure 8.6 represents abstraction related models. At the bottom, MB is a continuous
state model of the system being controlled (the most refined model considered for it).
Other models are related by abstraction, i.e., some form of homomorphic relation. ME is
a discrete event model derived from MB whereas LMI-O and LMI-D are two different
abstraction models of MI (for operation and diagnosis, respectively) which in turn is an
abstraction of ME. Each abstraction is governed by an underlying morphism. @ ME
serves as the external model of each device whereas LMI-O and LMI-D serve as the internal

models of the lowest level event-based control unit (LMPU).

115

(high-leve! internal model) HMIO HMI-D HVPU

., R W R weuwweReaenwae

(DEVS internal model) M+1 M;’ ------- MF

(DEVS external model) ME1 ME2 MEn
................ %.---_----.}--------,---f----------.
(continuous base model) MB1 MB2 o, MBn real world

Figure 8.6. Abstraction Related Models

Sets of LMI-Os and LMI-Ds can be composed into higher level models (MMI-Os and
MMI-Ds) and abstracted to represent more global state transitions (used by MMPU).
Likewise, the HMI-Os and HMI-Ds are the highest level models, which represent the
global state transitions (used by HMPU). In this way, the higher level execution
elements use their own models, which are abstractions of compositions of lower level
models, to control their subordinates. The abstraction process of the operational models
is achieved by aggregating states and windows of lower level models. The abstraction
process of the diagnostic models is discussed in the following chapter.

Figure 8.7 uses a “sampling” MMI-O example in our robot-managed laboratory to
depict the abstraction relation between different levels, where segmented sub-states and
time windows of lower levels are aggregated/abstracted from a bottom-up viewpoint. To

perform a fluid sampling unit action in a space-borne laboratory, a robot should act

116

according to the following steps: 1) move to the target storage, 2) push a syringe in the
storage receptacle, 3) wait for the liquid to fill the syringe, and 4) pull out the syringe.
Such action sequences (state transitions) can be abstracted by retaining only the global state
transitions achieved by lower level units. ~ As shown in Figure 8.7, the robot starts from
an initial location with an empty syringe and ends up at the location of storage-A with a full
syringe. The global time consumed and its window are an appropriate summation of the
time windows of the component actions. While the summation of the minimum times is
always appropriate, summation of the time windows may lead to overly conservative
assumptions about the system behavior. Yet, this is a very simple and straightforward
approach that was used in our work.

The levels of abstraction just illustrated can be formalized using system morphism
concepts [56],[108],[109]. By generating a hierarchical structure with models of different
levels of abstraction we can systematically integrate highest level goal commands with the

most refined dynamic models.

117

MMPU : SAMPLING WINDOW

GOAL : Liquid-A [105,18)
ROB : here * ‘ ROB : storage-A
SYRIN : emp! YRIN : full

LMPU : MOVE

SUBGOAL : STORAGE-A{60, 10]

LMPU : PLUG
SUBGOAL :PUSH [15,3)

%%UGO%P&#,

LMPU : PLUG

SUBGOAL : [10,2]

Figure 8.7. Abstraction Process from LMI-Os to MMI-O: sampling example

8.8. Hierarchical Planning/Execution Structure

The robot's cognition system (BRAIN) exemplifies a hierarchical planning / execution
structure as shown in Figure 8.8. Once a plan is generated by using EXPERIMENT
knowledge (i.e., HMs, MMs, and LMs) in a top-down manner, corresponding internal
models for MPUs can be retrieved from the model base or automatically generated by using
the abstraction process in a bottom-up manner, and by attaching a controller to each model,
the hierarchical execution structure can be constructed.

At each level, the control unit has its own internal model and controller to supervise its
sub-component units. There are two types of mesSages in the hierarchy: the goal
(command) and done (response) messages. The goal is divided into a set of subgoals
in a top-down manner, whereas, the done messages are gathered in a bottom-up manner.

There are three types (+,0,-) of done messages: + stands for success, - represents failure,

118

and 0 denotes undecisiveness. The last message may be due to a lack of relevant sensors
or a complex fault associated with other units in the hierarchy, a topic being discussed in
the following chapter.

As a concrete illustration, let us set up a mixing experiment: “mix x amount of liquid-A
with 'y amount of liquid-B” . To perform such a task, a robot must identify a syringe
required to sample a liquid-A, then bring that syringe to the identified storage in which
liquid-A is stored, perform the sampling from the storage, and so on. As presented in
Figure 8.9, the HMPU manages such activation sequences (MMPUSs), whereby each action
unit (MMPU) is further divided into yet smaller dynamic model units (LMPUs).

‘ HMPU
HMI-O ' Controller
4@(-&.0,')
MMPU MMPU MO mod MMPU
MMI-O mode Controller MMI-O model Controller, -+ mode Controller,
Done (+,0.-)
LMPU LMPU LMPU
LMI-O model Controller LMI-O model Controller LMI-O modei Controller
Command Sensor

External World

Figure 8.8. Hierarchical Planning/Execution Structure

119

Mix x amount of liquid-A
HMPU MiX with y amount of liquid-B
Activation >
sequence
MMPU JOBJ-GETTH o SAMPLING(x SAMPLING(y
LMPU

A inge-A) STORAGE(A) STORAGE(B) MOVE(home)

Figure 8.9. Mixing Example of Hierarchical Structure

8. 9. Conclusions
The key concepts and issues of an extended planning paradigm including execution

(simulation) are categorized as follows:
1. Abstraction-related hierarchical planning.
2. Reusability of old plans.
3. Time constraints (goal condition checking).
4. Replanning.

In this chapter, we have described how the above concepts can be formulated and
integrated within the model-based planning approach. Building on the basis of the
SES/MB framework, we have extended the ability of our knowledge/model base tools to
support hierarchical model-based planning system design through the ability to generate
families of planning alternatives, reusability of models, and model base coherence and

evolvability.

120

CHAPTER 9
HIERARCHICAL MODEL-BASED DIAGNOSIS

9.1 Overview

The diagnostic procedure presented in this chapter is model-based, inferring single or
multiple faults from the knowledge of faulty behavior of component models and their
causal structure.

The overall goal of this chapter is to develop a hierarchical diagnostic system that
exploits knowledge of structure and behavior. We have proceeded by building a
software environment that uses such knowledge to reason about faults using advanced
simulation modelling techniques. The main focus is on model-based diagnostic
capabilities of high autonomy systems. We have implemented such a system based on a
number of new ideas and tools using the SES/MB framework.

We use two types of diagnosers, local and global diagnosers, to find single or multiple
faults using knowledge of structure and behavior. By local diagnosis we mean the
diagnostic description of a component model: once a symptom is detected, the local
diagnoser can discover a fault that has occurred within the currently active model unit. In
contrast, by global diagnosis we mean the diagnostic description of a coupled model
[16],[100]. The global diagnoser uses a symbolic simulation as discussed in Chapter 4
to generate all possible causal trajectories of its component models.

This chapter is organized as follows. First it reviews the basic concepts of local and
global diagnosis. This discussion is followed by a hierarchical diagnosis of an

autonomous system that has been implemented for our space-borne laboratory.

121

9.2. Background of Shallow and Deep Reasoning

The diagnostic process is defined as the recognition of diseases or faults and their
causes. A diagnoser remains a passive observer of its system until it detects an
anomaly. For this purpose, the diagnoser assumes that its model of the system is correct,
and looks for discrepancies between the behavior of its internal model and the behavior of
the real system. If such a discrepancy has been detected, it assumes that the system has
undergone some change, which is considered a fault or disease.

Once an anomaly has been detected, the diagnoser switches from a passive to an active
mode. Its next task must be to come up with a set of hypotheses as to what might have
gone wrong. It can do this by shallow reasoning, i.e., using a rule-based approach. In
this scenario, the diagnoser will traverse a cause-effect matrix in reverse direction. The
anomaly is treated as an effect (symptom), and the diagnoser checks which causes coﬁld
possibly be made responsible for the observed symptom. Alternatively, it can do this by
deep reasoning, i.e., using a model-based approach. In this scenario, the diagnoser will
make use of fault models to match tﬁe observed anomalous behavior of the system. Each
model can then be used to generate one or several hypotheses. Shallow reasoning has the
advantages of being generally faster and of aiming directly at potential causes of the
observed anomaly, while deep reasoning uses an indirect approach to determine potential
causes. Deep reasoning has the advantage of being theoretically able to r¢cognizc even
unforeseen causes, whereas shallow reasoning cannot hypothesize beyond the scope of the
previously determined set of potential problems, which are hard-coded into the cause-effect
table.

Shallow reasoners find single faults usually faster than deep reasoners. However,
the fault tree (a refined hierarchical version of the cause-effect matrix) grows exponentially

with the number of simultaneous faults being considered. This is not the case with deep

122

reasoners, although computation time may grow in the same manner. Also, deep
reasoners are much less vulnerable to missing data than shallow reasoners. They are
therefore more robust. Consequently, both types of reasoners have their place, and a
hierarchical combination of the two may often be the best solution [80].

In our model-based diagnosis approach, shallow and deep reasoning concepts are
coherently developed and integrated in the form of a hierarchical model structure for local
and global diagnosis, respectively. To do this, we attach diagnostic engines and
associated models to the nodes of the task execution hierarchy discussed in Chapter 8.
As illustrated in Figure 9.1 (see also Figure 8.8), there are two types of nodes, leaves and
higher level nodes, which require local and global diagnosers, respectively. A local
diagnoser detects faults caused within a monolithic model (action) unit, whereas global

diagnosers detect faults propagated through an execution sequence.

123

Start (Goal)

DD
N
N
N

v Real World
Base Mode!
g P —— -
Internal External
to , o
Autonomous Autonomous
g. System 5,' System

Figure 9.1. Hierarchical Execution/Diagnosis Structure

9.3. Local Diagnosis
By local diagnosis we mean the diagnostic description of a component model: once a
symptom has been detected, the local diagnoser can discover a fault that has occurred

within the currently activating model unit.

124

In the event-based control logic, the operator and diagnoser are directly coupled so that,
once the operator has detected a sensor response discrepancy, the local diagnoser is
activated. Data associated with the discrepancy, such as the phase in which it occurred
and its timing (e.g., too-early, too-late), are also_passed on to the local diagnoser. From
such data, as well as information it can gather from auxiliary sensors, the local diagnoser
tries to discover the fault that has occurred.

The local diagnostic model employed by the local diagnoser can be derived from the
external model. Indeed, the local diagnostic model is an inversion process going from
external effects to underlying causes. Figure 9.2 represents a local diagnostic model
generation where the cause-effect table can be directly obtained by associating each model
state depending on its parameter range (potential cause) with its resulting output (expected
symptom). The validity criterion for the local diagnostic model is thus the following: the
occurrence of every fault representable in the external model should be identifiable by the
local diagnostic model, under the operation of the diagnosing inference engine. = The
inference engine implements a basic forward chaining approach in which all diagnostic
sensor readings are requested first, and afterwards the diagnostic model is exercised until a
diagnosis is made or all rules are fired without a conclusion being reached. = A more

detailed description of local diagnosis was given in Chapter 7.

125

parameter
ranges

»

Local

Fault

Diagnoser

Output (Effect) Model (Cause)
o1 M1
o2 M2
o3 M3

Where Mg = normal model and M; (j > 0) = fault model

Figure 9.2. Local Diagnostic Model Generation

9.2.2. Global Diagnosis

Our approach to global diagnosis is compatible with Reiter's General Theory of
Diagnosis from First Principles [71] based on earlier work by de Kleer and Williams [25].
Intuitively, a diagnosis is a conjecture that a set of components of a system are faulty and

the rest are normal. Reiter invokes a principle of parsimony to restrict attention to the

126

subfamily of minimal diagnoses. However, Zeigler [100] shows that non-minimal
diagnoses may exist where information is available to restrict the class of possible faulty
versions of components and that the diagnosis process is severely impaired by not taking
such non-minimal diagnoses into account. Thus the full family of diagnoses, although
potentially much more computationally demanding than the set of minimal diagnoses,
should be taken as the basis for trouble shooting. Our approach to global diagnosis
generates such a full family of diagnoses.

The global diagnostic engine is activated by receiving a symptom (the detected
anomaly). It activates a symbolic simulation to generate all possible trajectories, and
marks those that reach states exhibiting the detected symptom. Alternatively for small
models, such trajectories can be pre-compiled off-line for faster on-line use. Each such
trajectory represents a hypothetical sequence of fault injections and activations that could
have resulted in the observed symptom. The diagnoser investigates each trajectory by
testing components in which the faults were injected for presence of such faults.
Additional sensory probes may be used for this purpose. A trajectory for which all
injected faults are found to exist is confirmed as an acceptable explanation of how the
anomaly may have been caused. Trajectories are investigated in priority order based on
the number of faults involved -- singletons first, pairs next, etc. Figure 9.3 shows the
global diagnostic model generation where symbolic simulation is employed to generate

every possible causal trajectory of its component models.

127

Coupled Models

Input !%@ Outp‘t

L

Gilobal

Fault —
Diagnoser

\

\

Output (effect) Models {causes)
o1 M1t M32
02 M22

Where Mj o = normal model and M; (j > 0) = fault model

Figure 9.3. Global Diagnostic Model Generation

As a concrete example of the interaction between local and global diagnosers, consider

that our desired plan is to sample a small amount of liquid-A from storage-A. To achieve

this, a robot should act in the following sequence: move to the syringe desk, pick up the

128

small syringe, move to storage-A, plug the syringe into storage-A, fill the liquid-A into the
syringe, and so on. However, suppose a robot picks up a large syringe instead of a
small syringe for some reason such as “arm motor abnormal” or “mobile motor abnormal,”
etc. If such an abnormal condition is not out of range of its action unit, then such an
abnormality may be propagated to the filling action where the timing should not be on time,
i.e., too-late, because the actual syringe is large while the robot considers it to be small.
In such a situation, the local diagnoser for the syringe is activated. = As described in
Chapter 7, the local diagnoser uses two types of sensory information: indicator (expected
sensor, timing, phase) and vision (level, angle, constriction). In our example, the
sensory information will look as follows: sensor = full-sensor, timing = too-late,
phase = filling, angle = normal (i.e., 89 < angle <91), constriction = normal
(i.e., constriction < 10), and level 2 100 (where 100 is the full level of a small syringe).
Therefore the local diagnostic conclusion will be “don’t know™ as shown in Figure 9.4.
Consequently, the global diagnoser will be activated.

indicator vision .
— —y conclusion
timing sensor phase | angle | constriction level
2 100 don't know
normal
too full o normal < 100 leaky
-late | -sensor | filling - -
constricted don't carel constricted
normal don't care off angle
off "
. . constricted
constricted don't care| . o angle

Figure 9.4. Sensory Data and Diagnostic Conclusion for Local Diagnoser
(partially shown)

129

Once the global diagnoser has been activated, it first builds a simulation environment,
i.e., it collects its children models and attaches corresponding fault generators, and then
simulates to discover the actual faults. If this unfortunately fails again, which means that
the cause of the fault must be propagated further from the previous action unit, a yet higher
level diagnoser is being activated that will use the previously active lower-level global
diagnoser as well as other lower-level diagnosers to check faults associated with previously
as well as newly activated models.

Figure 9.5 shows the concept of our fault modeling approach. The injected fault
from the fault generator to the fault model changes the world status and propagates it to the
next model. 'When the world status value reaches its detection boundaries, the model is

passivated in a faulty state (effect).

Cause Propagation Effect
world
b;eak status detect
-down change
ex) position-changed eXx) location-status ex) too-late
bad-angle robot-status too-early
leakage syringe-status

Figure 9.5. Causal Propagation Modeling Approach

Fault generators and fault models have symbolic times so that a symbolic simulation of
a network of such components will generate all state trajectories consistent with such a set

of imposed constraints. Four types of constraints on faults can be considered:

130

1. State dependent faults: once a model state is entered, a fault should be activated;
conversely, when a state has been left, a fault should be de-activated.

2. Causally dependent faults: once a fault is activated, another fault should be activated.

3. Mutually exclusive faults: once a fault is activated, another fault cannot be activated.

4. Timing related faults: a fault is to be activated before another fault is activated.

Figure 9.6 illustrates the causal relation between faults of our space-borne laboratory
application, for example, the faults “bad-angle-to-ssyringe” and “bad-angle-to-1syringe”
have mutually exclusive characteristics. =~ Those two faults obviously cannot co-exist.
The faults “move-to-wrong-desk™ and “move-to-wrong-storage” could have a causally
dependent relation because both may be caused by the same motor abnormality. The fault
“bad-angle-to-storage™ should precede the fault “needle-bent” when both faults co-exist,
because the needle will be bent only as a consequence of plugging in the syringe at an odd

angle.
Basic Faults

vision
abnormal

power
abnormal

resource
proble

M
obstacle

G
bad-angle
lo-ssyrin -:‘

F

F

obile m
broken

otol nositi ’
”
'

Where M1: Movel, G: Getting, M2: Move2, P: Plug, F: Filling, and U: Unplug mode! unit

Figure 9.6. Causal Diagram of Fault Family

131

Figure 9.7 shows how components of a multicomponent model are modelled for fault
propagation analysis. Each component is abstracted into a unit consisting of one, or
more, fault generators and a fault model. An anomalous condition is sent by a fault
generator to the fault model that changes its state accordingly. Activation and de-
activation of fault generators is accomplished by appropriately coupling the output ports of
its influencing components to its activate/de-activate input ports. Timing constraints on
fault generation are supplied as initial elements of the constraint sets that are built up along
the trajectories. Such explicit representation of causal relations between multiple faults
and/or fault models strongly support the analysis of complex structural diagnostic

problems.

Causal Diagnostic Model Unit

Causal
Diagnostic
Model

propagate propagate

Fault S Fault
Generator1 ML Generator2

activate activate——

—> activate L—9 activate

Figure 9.7. Causal Structure of Diagnostic Model Unit

132

Using pseudo-code, the causal diagnostic model can be described as:
when receive world-status on “propagate” or “fault” port,
if world-status values are within detectable range,
then change its state into faulty state and passivate,
else, propagate the previous world-status to next model,

and “inhibit” the activation of latent fault generator related to
previously activated fault model.

The fault generator can be described in pseudo-code as:
when receive “propagate,”
wait a given time (fault injecting time) and send “fault” to its diagnostic model,

and if there exist causally dependent faults, then send “activate” to them,
if there exist mutually exclusive faults, then send “inhibit” to them.

when receive “activate,”
set fault injecting time < model activation time.

when recei\fe “inhibit,”
passivate.

Figure 9.8 presents a multicomponent model for event-based execution of an
elementary laboratory task. The MOVE component represents a robot travelling from one
location to another. An associated fault generator generates the occurrence of an obstacle
in the way. The fault model abstraction for MOVE should represent the effect of the
obstacle on its state -- perhaps to lengthen its time to reach its destination. The effect of
the fault on other components is modelled by passing a world status description along as
output from a component to its influencees. = For example, if the obstacle causes the
MOVE component to arrive at its destination slightly askew, this departure from the normal
state will be passed on in the world status description to subsequent fault model
components. Fault models include transitions to faulty (dead) states that represent
detectable anomalous conditions. An anomalous condition is detectable at a fault model
component if there is a sensor affected by this condition in the corresponding operational

model and a time window in which the sensor is expected to respond. For example, a

133

slight delay in arrival at destination at a skewed orientation may not be detectable by the
MOVE component itself. However, the skewed orientation may cause the robot to select
the wrong type of syringe and this might be detected subsequently by the SYRINGE model

due to a mismatch in filling time.

Too-late
Tog-early
2.

bad-angle-to-ssyringe position-changed2
Figure 9.8. Causal Propagation Model Structure: Sampling Example

In the mixing example shown above, the symptom too-early in model SYRIN-A can
be caused by a combination of two faults: “position-changed1” and “bad-angle-to-
ssyringe”. Similarly, the symptom foo-late in model SYRIN-A can also be caused by a
combination of “position-changed1” and “bad-angle-to-lsyringe” or by a combination of
“position-changed2” and “bad-angle”, or finally by a mix of both combinations.

As illustrated in Figure 9.9, the searching space can be greatly reduced by adding
constraints between faults discussed earlier. By specifying a mutually exclusive relation
between F-B (bad-angle-to-ssyringe) and F-C (bad-angle-to-Isyringe) and a causal
dependency relation between F-A (position-changed1) and F-B or F-C, and also between
F-D (position-changed?2) and F-E (bad-angle), we obtain the relatively simple tree structure
shown in Figure 9.10. From the generated trajectories, we finally get the cause-effect
table. For example, in the too-early case, the table shows that the robot position first

obtains a wrong value (fault) during its move toward the syringe-A, which then causes the

134

;\\\\\ eliminated tree due to mutual excluslveness

i) eliminated tree due to causal dependency

Root

place-a 4

move-b

plug-a {472)

syrin-g

NN

.

\b

FrSIIAIYS:

7
/!/"

\\\ SR

Figure 9.9. Tree of Trajectories of Example in Figure 9.8.

a
syrin-3

135

Root

move-b
plug-a
syrin-a
too-early #F
too-late #F plug- plug-a move-bo
syrin-ao syrin-a X {-e
too-early #F too-early #T oo-early #F]
too-late #T too-late #F plug-al, oo-late #T plug-
syrin-ao syrin-ao
too-early #F too-early #F
too-late #F too-late #T

first fault : small size
second fault : bad angle

Detected Anomaly Fault Trajectories

. ((MOVE-A position-changedt) (PLACE-A bad-angle-to-ssyringe)
SYRIN-A in too-early (MOVE-B ()) (PLUG-A ()

{(MOVE-A ()) (PLACE-A ()) (MOVE-B position-changed2)
(PLUG-A bad-angle))

SYRIN-A in too-late {(MOVE-A position-changed1) (PLACE-A bad-angle-to-isyringe)
(MOVE-B ()) (PLUG-A ()))

((MOVE-A position-changed1) (PLACE-A bad-angle-to-Isyringe)
(MOVE-B position-changed2) (PLUG-A bad-angle))

Figure 9.10. Trajectory Tree with Fault Constraints (state dependant, mutually exclusive,

causally dependant) and Its Diagnosis Table of Example in Figure 9.8.

136

robot to pick up the small syringe, which is smaller than its expected size (subsequent fault)
so that finally the full-sensor of syringe-A résponses faster than expected (registered
symptom). Notice the special case in which a too small syringe was injectcd at an odd
angle. The effects of the two faults cancel each other out, and therefore, this fault

combination goes undetected.

9.5. Conclusions

A hierarchical model-based diagnosis system has been developed. Local diagnosers
can diagnose faults whose effects occur within the same component as the detected
discrepancy. Faults whose effects are propagated to other components are not locally
diagnosable. To diagnose such faults we can use a global diagnostic engine And its
associated model class. To do this, we adopted a symbolic simulation technique
stemming from linear programming to support automatic generation of all trajectories that
are consistent with a detected operation anomaly. In contrast to Reiter’s theory [71], we
represent faults occurring in time, and analyze how systems respond to fault occurrences.

This research has made several contributions: First, this approach to model-based
diagnosis supersedes other approaches in that it intrinsically represents timing effects.
Second, the system is able to diagnose failures related to multiple faults. Third, it can
discover all fault models as well as injected fault types that are consistent with the observed
faulty behavior. Fourth, a clear separation is drawn between diagnostic engines and
diagnostic models, resulting in a domain (and inference procedure) independent diagnostic
procedure. Fifth, a separation of local and global diagnosers ensures a proper mapping
onto the hierarchical nature of our intelligent system design, resulting in efficient diagnostic

procedures. Sixth, the system is developed under the SES/MB modeling and simulation

137

environment, resulting in a direct cooperation with other intelligent units such as the task

planner, the event-based controller, and the repairer (replanner).

138

CHAPTER 10
MODEL-BASED ARCHITECTURE FOR HIGH AUTONOMY SYSTEMS

10.1 Overview

To cope with complex objectives, an autonomous system requires integration of
symbolic and numeric data, qualitative and quantitative information, reasoning and
computation, robustness and refinement, discrete event system specification and
continuous system specification.

In general, the AI approach is too qualitatively oriented to handle quantitative
information very well. For example, classic Al planning approaches [65],[76],[86] do
not consider the timing effects, which should be of primary concern in representing our
dynamic world. On the other hand, control researchers have a fairly narrow view-point,
so that they mainly focus on refinement rather than robustness of a system [89], and they
usually consider only the normal operational aspects of a system [54],[87]. However,
autonomous systems have to deal with abnormal behavior of a system as well. Thus, it
is crucial to have a strong formalism and an environment that allows coherent integration of
symbolic and numeric informations in a valid representation process to deal with our
complex dynamic world [111].

This chapter presents a coherent methodology to integrate planning, operation, and
diagnosis as developed in previous chapters. The chapter is organized as follows: First
it briefly reviews each functional aspect of a high autonomy system. Then it describes a
systematic methodology to integrate those aspects in a hierarchical fashion. This is then
followed by an automatic system generation methodology illustrated by means of the

example of our robot-managed space-borne laboratory.

139

10.2. Model Base Development

Figure 10.1 presents a model-based autonomous system architecture to integrate
decision, action, and prediction components. The architecture features a model base at
the center of its planning, operation, diagnosis, and fault recovery strategies. In this
way, it integrates Al symbolic models and control-theoretic dynamic models into a coherent
system.

Approaches to design various autonomous component models for planning, operation,
and diagnosis have previously been developed in their respective research fields so that
there are many overlaps as well as inconsistencies in assumptions. In an integrated
system, such components cannot be considered independently. For example, planning
requires execution, and diagnosis is activated when anomalies are detected during
execution.

Planning is defined as “Reasoning about how to achieve a given goal.” It employs a
suitable model to map a connecting sequence of states from an initial state to a goal state
within a normal operation envelope. Once a plan is set up, it should be faithfully
executed. “Execution with verification” maps from the input command and its expected
normal responses to success/failure. As long as the execution is successful, it continues
until the goal is achieved. However, if it fails, the diagnosis function will be activated.
Diagnosis is defined as “discovering the cause of a failure.” It maps back from one or
several observed symptoms to one or several plausible anomalies that may have caused the
observed symptom(s). Having identified the causes, the autonomous system should be
able to recover, i.e., plan a path from the faulty state of the real system to a normal state on

the original plan.

140

PLANNING, SCHEDULING, AND REASONI NG

REPAIRMODELS

Figure 10.1. Autonomous System Architecture and its Model Base Class

141

10.2.1 Model-based Planning

There are two major approaches to task planning: one considers planning as searching
and the other considers planning as a representation problem. The former deals with the
initial planning problem where no prior experience is employed. In contrast, the latter, s0-
called case-based planning, views planning as remembering, i.e., retrieving and modifying
existing plans for new problems [37].

In our model-based approach, planning is achieved by pruning a SES to select PESs
from alternatives [17]. The PESs are in turn transformed into simulation model
structures for execution. The non-experienced initial planning, which means the pruning
of SES alternatives, can be achieved by using a rule-based approach. Every action (or
state) node has several rules associated with system constraints, pre-conditions, and post-
conditions. The resultant PES is saved with an index into an ENBASE for reuse. In
contrast with non-experienced planning, the experienced planning is done by retrieving
PESs from the ENBASE. The planner first retrieves a plan that might be used to achieve
a given goal, or generates a new trial plan from partial plans if no existing plan is suitable.
This candidate plan is then projected forward via simulation by attaching component
models in a MBASE, where low level planning is embedded.

Once an execution model is synthesized, a lower level planner produces a goal table that
is a list of 4-tuples: state, goal, command, and time-to-reach-goal. = From these, a time
optimal path from an initial state to a goal state is readily derived. Since discrete event
models embody timing it is natural to base optimal sequencing on predicted execution time.
The planner works by developing paths backward from the goal until the given initial states

(possible starting states of the given system) are reached[14],[109].

142

10.2.2 Model-based Operation

The event-based control paradigm realizes intelligent control by employing a discrete
eventistic form of control logic represented by the DEVS formalism [14],{102]. In this
control paradigm, the controller expects to receive confirming sensor responses to its
control commands within defined time windows determined by its model of the system
under control. An essential advantage of the event-based operation is that the error
messages it issues can bear important information for diagnostic purposes.

The operational model used by event-based operation has a state transition table that is
abstracted from a more detailed model that represents both normal and abnormal behavior.
The state transition table keeps a knowledge of states, commands, next states, outputs, and
time windows. The window associated with a state is determined by bracketing the time-
advance values of all transitions associated with the corresponding states in the more
detailed model. This divergence arises due to variations in parameters and initial states
considered to represent normal behavior.

The operator uses the goal-table from the planner and the state-table of its operational
model to issue commands to the controlled device. When proper response signals are
received the operator causes the model to advance to the next state cbrrcsponding to the one
in which the device is supposed to be. The operator ceases interacting with the device as
soon as any discrepancy, such as a too-early or too-late sensor response, occurs and calls

on an associated fault diagnoser.

10.2.3. Model-based Diagnosis
A model-based diagnoser assumes that its model of the system is correct, and looks for
discrepancies between the behavior of its model and the behavior of the real system. If

such a discrepancy has been detected, it assumes that the system has undergone some

143

change which is considered a fault. In our approach, the diagnoser will make use of a
fault model to match the observed anomalous behavior of the system. Diagnosis in the
model-based architecture is performed by local and global diagnosers, to find single or
multiple faults using knowledge of structure and behavior.

By local diagnosis we mean the diagnostic description of a component model: the local
diagnoser looks for a fault that might have occurred within the currently activated model
unit. Once the controller has detected a sensor response discrepancy, the local diagnoser is
activated. Data associated with the discrepancy, such as the state in which it occurred, and
its timing, are also passed on to the local diagnoser. = From such data, as well as
information it can gather from auxiliary sensors, the local diagnoser tries to discover the
fault that occurred.

If the local diagnosis fails, the global diagnoser is activated to analyze the enclosing
coupled model . The global diagnostic model is a cause-effect table obtained by symbolic
simulation to generate all fault-injected trajectories that reach states exhibiting the detected

symptom. Faults injected in such trajectories represent candidate diagnoses [16].

10.3. Endomorphic System Concept

Endomorphism refers to the existence of a homomorphism from an object to a sub-
object within it, the part (sub-object) then being a model of the whole [109]. As
illustrated in Figure 10.2, in order to control an object, a high autonomy system needs a
corresponding model of the object to determine the particular action to take. The internal
model used by the system and its world base model are related by abstraction, i.e., some
form of homomorphic (i.e., endomorphic) relation. The inference engine asks its internal

model for the necessary information for interacting with the real world object. By “world

144

base model” we mean the most comprehensive model of the world available to the system

whether it exists as a single object or as a family of partial models in the model base.

Figure 10.2. Endomorphic System Concept

10.4. Engine-based Design Methodologies

Typical expert systems comprise a domain-independent inference engine and a domain-
dependent knowledge base. The inference engine examines the knowledge base and
decides the order in which inferences are made. The engine-based modelling approach
provides a clear separation between the domain-dependent model base and the domain-

independent inference engine. It facilitates the automatic generation of a model base using

145

endomorphisms. Figure 10.3 shows the engine-based modelling concept and examples

of autonomous system components realized using the concept.

1o

:

Engine-based
MODEL Modelling Concept
- Domain dependent - Domain independent
PLANNING Planning
& MODEL ‘ Structure
Goal Table
.."’~ CONTROL Operation
o - MODEL Structure
World " State Transition
Base Table
Model Tee.,,
., “**ee..] DIAGNOSTIC | DIGNOSER Diagnosis
., MODEL Structure
", Cause-effect
™, Table
] RECOVERY Recovery
........ abstraction MODEL Structure

———— jnterrogation

Fault Recovery
Table

Figure 10.3. Engine-based Modelling Concept for Endomorphic System Design

10.5. Hierarchical Development of Intelligent Units
The autonomous system components described above have to be coupled within a unit
in order to interact with each other. We use the term “intelligent unit” to denote the

smallest unit that encapsulates all engine-based components as depicted in Figure 10.4.

146

To cope with complex problems, an autonomous system requires multiple intelligent
units coupled in a hierarchical fashion. Models in the hierarchy must have valid abstraction
relations to eacil other. Figure 10.4 illustrates an autonomous system development based
on hierarchical abstraction and integration. Intelligent units at the leaf nodes of the
execution structure employ internal models directly abstracted from the world base model.
Units at higher levels employ internal models that are abstractions of coupled models
composed of immediately inferior internal models.

The overall methodology for autonomous system generation in a model-based
simulation environment is shown in Figure 8.3 of Chapter 8. The task formulation module
receives an objective. It then retrieves an SES from the ENBASE and generates a plan
structure by using the goal sub-SES of the SES (for initial planning) or partitioned PESs
(for experience-based planning). A simulation structure is obtained by synthesizing the
models in MBASE, where models can exist in advance or be generated automatically.

The initial environment for generating an autonomous system can be obtained using the
layered development concept of DEVS-Scheme [109]. The first layer is the Lisp-based,
object-oriented programming system that provides the foundation on which the system is
built. The next layer is the SES/MB system where the behavioral and structural models
can be built and saved in the MBASE and ENBASE, respectively. Models in MBASE

are base models as well as internal models abstracted from base models.

Phase I: Plan generation
Once the basic environment is built, the next phase is the planning structure generation.
When receiving a goal command, the task hierarchy is generated in a top-down fashion

(task decomposition) as shown in Figure 10.5(a).

HIERARCHICAL EXECUTION STRUCTURE

147

Where,

IU: intelligent Unit

PIE: Pianner (Planning Inference Engine)
OIE: Operator (Operating inference Engine)
DIE: Diagnoser (Diagnostic Inference Engine)
RIE: Recoverer (Recovery Inference Engine)
PM: Planning Model

OM: Operational Model

DM: Diagnostic Model

RM: Recovery Model

RULE-BASED MODEL
7 §

DISCRETE EVENT MODEL

T

CONTINUOUS MODEL

(Possible Abstraction Sequence)

Figure 10.4. Hierarchical Abstraction and Integration of High Autonomy System

Phase II: Model construction

The next phase is the model base construction illustrated in Figme 10.5(b), where the

necessary models can be retrieved from MBASE or automatically generated from the lower

level models. This multi-layered hierarchical model generation and abstraction can be

148

done in a bottom-up fashion. = The resultant structure represents the domain dependent

knowledge base structure.

é)

planning layer

(a) PHASE | §,~:IZ~,}

;] i'.]-.:
R G A A S 2 &
..... \ A 4 .’ Exa:
k SEQUENCE)
(" HIERARCHY)
recovery layer
{/ »diagnosis layer
4 operation layer
~— planning layer
(b) PHASE 1i
~lp. EXECUTION
SEQUENCE
.
™\
(c) PHASE 1il
J

Figure 10.5. Autonomous System Generation Procedure

149

Phase III: Engine attachment/integration

By attaching domain independent engines such as a planner, an operator, a diagnoser,
and a recoverer which are able to interrogate corresponding models, we have a multi-agent
structure. Now by coupling those agents, we can obtain the autonomous system

architecture shown in Figure 10.5(c).

10.6. Example: Robot-managed Fluid Handling Laboratory

As a concrete illustration, let us set up a mixing experiment (i.e., mix x amount of
liquid-A with y amount of liquid;B) in the space-borne laboratory environment. To
perform such a task, a robot must identify a syringe required to sample a liquid-A, then
bring that syringe to the identified storage in which liquid-A is stored, and perform the
sampling from the storage, and so on.

By either pruning the SES (no prior experience) employing the rule-based approach or
retrieving existing PESs (experienced) in the EXPERIMENT part of the SES (see Figure
9), we can obtain a simulatable execution structure as depicted in Figure 10.6, where each
MPU block shows its model name and its goal, respectively.

The execution is achieved by employing event-based control logic where it compares
the expected time from the operational model with the observed time from the sensory
response of the real system to be controlled. In this mixing example, after several
successful executions, i.e. MOVE, PLACE, MOVE, and PLUG, suppose the actual filling
time during the fill-it operation in SYRINGE LMPU is 12 seconds, but the operational
model indicates 8 to 10 (minimum time is 8 seconds and window time is 2 seconds) as its
normal timing, then we are in a fault situation and the detected fault timing is roo-late.

Once the controller detects the fault, then the local diagnoser is activated, where it can
use two types of sensory information: indicator (expected sensor, timing, phase) and vision

(liquid-level, needle-angle, tube-constriction). If the sensory feedback information

150

indicates: sensor = full-sensor, timing = too-late, phase = filling, angle = normal (i.e. 89 <
angle < 91), constriction = normal (i.e. constriction < 10), and level < 7100 (where 100 is
the full level value for the small size syringe), then the local diagnosis in the SYRINGE
unit would be “Syringe is leaky”.

Note that our desired sub-plan of the SAMPLING unit is to sample a small amount of
liquid-A from the storage-A. However, suppose a robot picks up a large size syringe
instead of a small size syringe for some reason such as “arm motor abnormal” or “mobile
motor abnormal” or “by obstacle”, etc. If such an abnormal condition was not out of the
detectable range within its action (model) unit, then such an abnormality would be
propagated until the filling action where timing should be foo-late because the actual
syringe is the large size contrary to the intention. In this case, the sensory information
would look as follows: sensor = full-sensor, timing = too-late, phase = filling, angle =
normal, constriction = normal, and level 2 100. Therefore the local diagnoser for the
SYRINGE unit would not be able to conclude a fault. It would activate the global
diagnoser in the SAMPLING unit. The global diagnoser uses the global diagnostic table
that is compiled from the symbolic simulation of every possible fault case. It would
conclude that the detected fault is caused by (1) position is changed during moving action to
syringe desk so that robot position is in bad angle to pickup the large syringe during
picking-up action or (2) position is changed during moving action to the liquid-A storage so
that robot position is in bad angle to plug it in during plugging action, or (3) combination of
both cases (see Figure 9.10). Among those possibilities, suppose case (1) has a higher
priority (the priority may depend on the system requirements, objectives, etc.) than the
other possibilities, then the recoverer would set up the new goal, for example, “remove
obstacle,” or “check power line,” and then continue the remaining plan by picking up the

small syringe.

151

MiX

HMPU (small liquid-A and
medium liquid-B)
OBJECT-GETTING SAMPLING

MMPU
(liquid-A)

(small syringe)

LMPU (synnge (pu:kup smal (Ilqutd -A (push (pull
table) syringe) storage) syringe) (fl” it) syrings)

Figure 10.6. Mixing Example of Hierarchical Execution Structure

10.7. Conclusions

The main characteristics of the developed model-based architecture are as follows:

1.

The time-based formalism (DEVS) provides coherent integration between symbolic and
numeric models.

. The SES/MB environment provides a hierarchical modularity, reusability, and

testability.
Model-based deep reasoning supports a powerful diagnostic capability.

. The endomorphism concept supports intelligent unit design and a consistent model

base.

. The engine-based design builds a domain-independent architecture instantiated with

compiled models for application under real time constraints.

. The intelligent unit encapsulates various autonomous components such as planning,

operation, diagnosis, and recovery coherently to cope with complex problems.

152

7. Model-based planning supports the reusability of experienced plan structures.
8. The event-based control logic guarantees robustness, reduced sensor complexity, and
increased diagnostic capability.

The framework has been implemented in the space-borne laboratory system as a proof

of the concept.

153

CHAPTER 11
CONCLUSIONS

Building on the SES/MB framework as implemented in DEVS-Scheme, we have
extended the ability of our knowledge/model base tools to support model-based design of
high autonomy systems through the ability to build coherently a multi-agent, multi-
function, multi-abstraction, multi-level architecture. = 'We have developed a coherent
methodology for constructing high autonomy systems by integrating high level symbolic
models with low level dynamic models. The utility of the model-based approach for
autonomous system design is demonstrated by means of models of a robot-managed fluid
handling laboratory proposed for International Space Station Freedom.

The main advantages of the developed architecture in this dissertation are as follows:

A. The time-based formalism (DEVS) provides coherent integration between
symbolic and numeric models.

B. The SES/MB environment provides hierarchical modularity, reusability, and
testability.

C. Model-based deep reasoning supports a powerful diagnostic capability.

D. The endomorphism concept supports intelligent unit design and a consistent
model base.

E. The engine-based design builds a domain-independent architecture instantiated
with compiled models for application under real time constraints.

F. The intelligent unit encapsulates various autonomous components such as
planning, operation, diagnosis, and recovery coherently to cope with complex
problems.

G. Model-based planning supports the reusability of experienced plan structures.

H. The event-based control logic guarantees robustness, reduces sensor
complexity, and increases diagnostic capability.

154

11.1. General Significance

Applications of autonomous systems such as flexible manufacturing systems,
autonomous land and space vehicles, manned and unmanned planetary expeditions, and
telerobotics are becoming an important factor in the technology of the future.
Implementing systems autonomy is ultimately a systems engineering challenge: that of
reducing the need for human intervention and supervision of systems. Space applications,
where systems are to be deployed in remote hazardous environments, are a source of great
scientific and industrial potential. They not only require high levels of autonomy to work
but also have none of the job displacement side effects of robotics and automation on earth.

This research showed to develop architectural principles for design of autonomous
systems whose behavior is based on models that support the various tasks that need to be
performed. We proposed a model-based, hierarchical architecture aimed at reducing the
computational demands required to integrate high level symbolic models with low level
dynamic models. We sought to reduce on-line computation by off-line pre-compilation to
produce simplified models individually matched to the tasks needing to be performed.
Event-based control provided the basic methodology underlying model development and
abstraction. Such models are to be attached to generic engines that can interpret them
efficiently with short processing times.

The constructed working simulation version of an autonomous robot-managed
laboratory demonstrates the use of multiple model families for experiment planning and
execution including diagnosis. Tools to support development and integration of such
model families are also developed. The developed model-based architecture is elaborated
by incorporating time-based simulation and causal propagation model families supporting
diagnosis, repair, and replanning. This involves tools to automatically extract such

models from more detailed dynamic models and structural knowledge.

155

The utility of the proposed high autonomy system is demonstrated with models of a
robot-managed fluid handling laboratory for International Space Station Freedom to be
used for research in life sciences, microgravity sciences, and space medicine. = NASA
engineers will be able to base designs of intelligent controllers for such systems on our
architectures developed in this dissertation. They will be able to employ our tools and

simulation environment to verify such designs prior to implementation.

11.2. Contributions and Results

1. An extended discrete event specification formalism, symbolic DEVS, has been
deﬁned that extends the time base from the reals to the linear polynomials over the reals.
This permits next event times to be expressed symbolically, although precise knowledge of
any event time can be readily incorporated by setting its symbol to a real value. Therefore,
symbolic DEVS is truly an extension of conventional DEVS and reduces to the latter when
all times are real valued. A network of symbolic DEVS components is non-deterministic
since the minimum of a set of next event times is not unique as in a conventional DEVS of
the same kind. The extended formalism offers a convenient means to conduct multiple,
simultaneous explorations of model behaviors.

2. To efficiently manage the symbolic DEVS, we have developed a linear polynomial
constraint management algorithm for inferencing the constraint sets since symbolic times
are linear polynomial expressions. The inference mechanism for handling linear
equality/inequality constraints called consistency checking algorithm, based on the
feasibility checking algorithm borrowed from linear programming, has been successfully
developed and tested. In contrast with other reasoning approaches [831,[84],[88], our
algorithm can efficiently and coherently integrate various reasoning approaches represented

by linear polynomial forms with >, <, =, 2, and < relationships.

156

3. We have shown how symbolic DEVS can perform the causal propagation required
for diagnosis of fault-prone systems modelled with multicomponent DEVS. By allowing
the times to be expressed symbolically, we generate a family of trajectories that represent
the possible sequences of events resulting in a particular breakdown. Such a family can
be employed to trace a detected anomaly back to the components that might have caused it.
The symbolic extension allows for both the situations where timings are unknown, or are
known, but can vary. This approach to model-based diagnosis supersedes others [25],
[44],[71] in that it intrinsically represents timing effects. Besides being applicable to fault
diagnosis, symbolic DEVS may have a variety of applications where there is a need for
efficient generation of a family of trajectories characterizing all scenarios of a given model.

4. We have shown how suitably operating on the structure of DEVS models provides
a basis for the design of event-based logic control. In this control paradigm, the controller
expects to receive confirming sensor responses to its control commands within predefined
time windows determined by its DEVS model of the system under control. A space-
adapted mixing control process was advantageously represented as a family of discrete
event models by employing techniques based on the DEVS formalism. Several fluid
handling models have been successfully tested in the DEVS-Scheme environment. An
essential advantage of DEVS-based control is that the error messages it issues can bear
important information for diagnostic purposes. ~ Since the DEVS formalism is at the heart
of event-based control system design, such controllers can be readily checked by computer
simulation prior to implementation. Thus the DEVS formalism plays the same role with
respect to event-based control that differential and difference equation formalisms play to
conventional control. In contrast to other advanced control approaches {26],[38],[47],
[54].[87], the DEVS methodology does not aim to provide improved graphical sequential

logic specification languages that are concerned mainly with normal operation. While an

157

improved language such as GRAFCET [47],[54] facilitates maintenance and trouble
shooting, the DEVS approach goes one step further: it is concerned with an integrated
approach in which models can be developed to support all control aspects: planning,
operation, diagnosis, and repair [14].

5. The SES/MB environment with the DEVS formalism provides various facilities to
solve planning problems such as abstraction-related hierarchy, reusability, time constraints,
replanning, and other extended planning issues [76],[88],[92]. The developed model-
based planning system based on the SES/MB environment provides an extended planning
paradigm, in which it can support not only the initial planning problem (searching problem)
but also dynamic memory retrieval problems (representation problems). Moreover, it
allows dynamic interaction with a simulation (execution) through operation and diagnosis.
| Building on the basis of the SES/MB framework, we have extended the ability of our
knowledge/model base tools to support hierarchical model-based planning system design
through the ability to generate families of planning alternatives, reusability of models, and
model base coherence and evolvability.

6. The hierarchical model-based diagnosis system has been developed using
simulation techniques. = The local diagnoser can diagnose faults whose effects occur
within the same component as the detected discrepancy. Faults whose effects propagate
to other components are not locally diagnosable. To diagnose such faults we can use the
global diagnostic engine and its associated model class. To do this, we adapted a
symbolic simulation technique from linear programming to support automatic generation of
all trajectories that are consistent with a detected operation anomaly. In contrast to
Reiter’s theory, we represent faults occurring in time, and analyze how systems respond to
fault occurrences. This research has made several contributions: First, this approach to

model-based diagnosis supersedes other approaches in that it intrinsically represents timing

158

effects. Second, the system is able to diagnose failures related to multiple faults.
Third, it can discover all fault models as well as injected fault types that are consistent with
the observed féulty behavior. Fourth, a clear separation is drawn between diagnostic
engines and diagnostic models, resulting in a domain (and inference procedure)
independent diagnostic procedure. Fifth, a separation of local and global diagnosers
ensures a proper mapping onto the hierarchical nature of our intelligent system design,
resulting in efficient diagnostic procedures. Sixth, the system is developed under the
SES/MB modeling and simulation environment, resulting in a direct cooperation with other
intelligent units such as the task planner, the event-based controller, and the repairer

(replanner).

11.3. Future Research

Research needs to be continued to extend the developed methodology and environment
to provide more powerful support for high autonomy system design. The following are
suggested future research topics:

1. Extend the symbolic DEVS simulation capability such that it allows simulation of
multi-level coupled-models. The abstract simulator implementation in DEVS-Scheme has
been expanded so far to execute a symbolic simulation for single-level coupled-models with
symbolic atomic-model components. The extended environment can serve as a deep
reasoning basis for a variety of applications where there is a need of efficient generation of
a family of trajectories characterizing all scenarios of a given model structure.

2. Develop error recovery strategies to enable to recover from a faulty state to a normal
state. The functional aspects of high autonomy systems have been so far developed and
implemented only for planning, operation, and diagnosis. However, the error recovery

function will be needed to increase the levels of autonomy.

159

‘3. Provide a variable structure modelling and simulation environment to support a
dynamic structuring capability. This facility will permit the creation, destruction, and
modification of components during simulation runs. For example, modelling of high
autonomy systems may require components within a model to be assembled and
disassembled. = Exchange of components within different sub-trees of a model may be
involved [109].

4. Enhance the design capability by integrating real-time DEVS [96] for applicable
interactions with sensors and actuators, the morphism preserving abstraction process [56]
for the automated model generation, and the continuous system interface [89] for obtaining

discrete eventistic characteristics of a system.

(1]

[2]

[3]

(4]

(5]

[6]

{7

[8]

[9]

[10]

[11]
[12]

[13]

[14]

160

REFERENCES

Albus, J1.S., “A Theory of Intelligent Systems,” Proc. IEEE Conf. on Intelligent
Control, September, Philadelphia, PA, 1990.

Albus, J.S., “Hierarchical Interaction Between Sensory Processing and World
Modeling in Intelligent Systems,” Proc. IEEE Conf. on Intelligent Control,
September, Philadelphia, PA, 1990.

Albus, J.S., “The Role of World Modeling and Value Judgment in Perception,”
Proc. IEEE Conf. on Intelligent Control, September, Philadelphia, PA, 1990.

Albus, J.S., H.G. McCain, and R. Lumia, NASA/NBS Standard Reference Model
for Telerobot Control System Architecture (NASREM), NBS Technical Note 1235,
Robot Systems Division, Center for Manufacturing Engineering, National Technical
Information Service, Gaithersburg, MD, 1987.

Allen, J.F., “Toward a General Theory of Action and Time,” Artificial Intelligence,
Vol. 23, pp. 123-134, 1984.

Antsaklis, P.J., K.M. Passino and S.J. Wang, “Towards Intelligent Autonomous
control Systems: Architecture and Fundamental Issues,” J. Intelligent and robotics
systems, Vol.1, No.4, pp. 315-342, 1989.

Buchanan, H.G. and E.H. Shortliffe, Rule-Based Expert Systems, Addison-
Wesley, CA, 1984.

Brooks, R.A., “AA Robust Layered Control System for a Mobile Robot,” IEEE J.
of Robotics and Automation, Vol. RA2, pp. 14-23, 1986.

Cassandras, C.G. and S.G. Strickland, “Sample Path Properties of Timed Discrete
Event Systems,” Proc. of the IEEE, Vol. 77, No. 1, pp. 59-71, Jan., 1989.

Cellier, F.E., “Combined continuous/Discrete simulation Application, Techniques
and Tools,” proc. of the 1986 winter simulation conference Washington D.C. 1986.

Cellier, F.E., Continuous System Modeling, Springer-Verlag, NY, 1991.

Chandrasekaran, B., A roundtable discussion: Present and Future directions: trends
in Artificial Intelligence, OE Reports, SPIE, September, 1989.

Chi, S.D., J.W. Na, and J.W. Kim, “Planning Methodologies: Survey and Model-
based Approach,” Term Paper, ECE576 Class, Dept. of Electrical and Computer
Engr., University of Arizona, Spring, 1990.

Chi, S.D. and B.P. Zeigler, “DEVS-based intelligent Control of Space Adapted
Fluid Mixing,” Proceeding of Sth conf. on Artificial Intelligence for Space
Applications, May, 1990.

[15]

[16]

(17}

[18]

[19]

[20]

[21]

[22]

[23]

(24]

[25]

[26]

[27]

[28]

[29]

161

Chi, S.D. and B.P. Zeigler, “Linear Polynomial Constraints Checking Algorithm
for Symbolic Reasoning,” in preparation for Artificial Intelligence.

Chi, S.D. and B.P. Zeigler, “Model-based Hierarchical Diagnosis for High
Autonomy System,” in preparation.

Chi, S.D., B. P. Zeigler, and F. E. Cellier, “Model-based Task Planning System
for a Space Laboratory Environment,” SPIE Conference on Cooperative Intelligent
Robotics in Space, Boston, Nov., 1990.

Chien, G., “Dynamic System Modeling and Simulation in Product Design,” Master
Thesis, Ilinois Inst. of Tech., 1989.

Cohen, P.R. and E.A. Feigenbaum, The Handbook of Artificial Intelligence, Vol. 3,
Los Altos, CA: W. Kaufmann, 1982.

Combacau, M. and M. Courvoiser (1990), “A Hierarchical and Modular Structure
for FMS Control and Modelling,” Proc. Al, Simulation, and Planning in High
Autonomy Systems, IEEE Press, Tucson, March 26-27, pp. 204-211, 1990.

D'Azzo, J. and C.H. Houpis, Linear Control System Analysis and Design:
Conventional and Modern 3rd Ed., McGraw Hill, York, 1988.

Davis, E., “Constraint Propagation with Interval Labels”, Artificial Intelligence, Vol.
32, pp. 281-331, 1987.

Davis, R., “Diagnostic reasoning based on structure and behabior”, Artificial
Intelligence, Vol. 24, pp. 347-410, 1984.

DeKleer, Y., “Qualitative Physics, A Personal View,” In: Readings in Qualitative
Physics (eds. D. Weld and Y. dekleer), Morgan Kaufman, Palo Alto, 1989.

DeKleer. Y. and B.C. Williams, “Diagnosing multiple faults”, Artificial Intelligence,
Vol. 32, pp. 97-130, 1987.

Fanard, A.G., M.C. Lobelle, and E.B. Mulemangabo, “G++, A Graphical
Language Intended to Help the Development of Industrial Process Control
Applications,” 2nd Int. Conf. on Software Engineering for Real Time Systems, pp.
85-89, Sept., 1989.

Fischler, M.A. and O. Firshein, Intelligence, The Eye, The Brain, and The
Computer, Addison-Wesley Pub. Co., Reading, MA, 1987.

Fishwick, P.A., “Fuzzy Simulation: Specifying and Identifying Qualitative Models,”
Special Issue on Modelling and Simulation for High Autonomy Systems, /nz. J.
Gen. Sys. (to be appear).

Fishwick, P.A., “A Taxonomy for Process Abstraction in Simulation Modelling,”
IEEE Int. Conf. Sys. Man & Cyb., Vol. 1, pp. 144-151, 1987.

(301

[31]

[32]

[33]

[34]
[35]

[36]

[37]
[38]

[39]

[40]

[41]

(42}

[43]

[44]

[45]

162

Fishwick, P.A., “Abstraction Level Traversal in Hierarchical Modelling,” In:
Modelling and Simulation Methodology: Knowledge Systems Paradigms (eds.:
M.S. Elzas, T.I. Oren, B.P. Zeigler), North Holland Pub. Co., Amsterdam, pp.
393-430, 1989.

Garzia, R.F., M.R. Garzia, and B.P. Zeigler, “Discrete Event Simulation,” IEEE
Spectrum, Decomber, pp. 32-36, 1986.

Genesereth M.R. and Nilsson, N.J., Logical Foundations of Artificial Intelligence,
Morgan Kaufmann Pub. Los Altos, CA, 1987.

Gensereth, M.R., “The Use of Design Descriptions in Automated Diagnosis,”
Artificial Intelligence, Vol. 23, pp. 411-436, 1984.

Gevarter, W.B., Intelligent Machines, Prentice-Hall, New Jersey, 1985.

Glynn, P.W., “A GSMP Formalism for Discrete Event Systems,” Proc. of the
IEEE, Vol. 77, No. 1, pp. 14-23, Jan., 1989.

Greiner, R., B.A. Smith and R.W. Wilkerson, “A correction to the algorithm in
Reiter’s theory of diagnosis”, Artificial Intelligence, Vol. 41, pp. 79-88, 1989.

Hammond, K.J.,Case-Based Planning, Academic Press, 1989.

Harel, D., “On Visual Formalisms,” Comm. of ACM, Vol. 31, No. 5, pp. 514-530,
May, 1988.

Hamscher W. and R. Patil, “Tutorial on Model-based Diagnosis,” Proc. of 11th
IJCALI, Detroit, 1989.

Hawker, J.S. and R.N. Nagel, “World Models in Intelligent control Systems,”
IEEE Int. Symposium on Intelligent control, pp.482-488, 1987.

Ho, Y. “Editors Introduction,” Special Issue on Dynamics of Discrete Event
Systems, Proceeedings of IEEE, Vol. 77, No. 1, 1989.

Hu, J. and J.W. Rozenblit, “Knowledge Acquisition Based on Representation for
Design Model Development,” In: Knowledge-based Simulation methodology and
Applications (eds.P.A. Fishwick and R.D.Modkeski), Springer Verlag, Berlin,
1989.

Hurst, W.J. and Mortimer, J.W., Laboratory Robotics : A Guide to Planning
Programming and Applications, VCH Publishers, 1987.

Iwasaki, Y., “An Integrated Scheme for Using First-Principle Physical Knowledge
for Knowledge-based Simulation,” Proceedings of Fourth AAAI Workshop on Al
and Simulation, pp. 57-59, 1989.

Kanade, T., A roundtable discussion: Present and Future directions: trends in
Artificial Intelligence, OE Reports, SPIE, September, 1989.

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

(60]

163

Kapila, A.K., Asymptotic Treatment of Chemically Reacting Systems, Pitman
Publishing Inc., Marshfield, Massachusetts, 1983.

Keller, W.L., “GRAFCET, A Functional Chart for Sequencial Processes,” Proc.
on 14th Annual Int. Programmable Controllers, pp. 71-96, Detroit, Michigan, April,
1985.

Kim, T.G. and B.P. Zeigler, “ESP-Scheme: A realization of system Entity Structure
in a LISP Environment,” Proc. in 1989 SCS Eastern Multiconference, Tempa,
Florida, March, 1989.

Kim, T.G. and B.P. Zeigler, “Hierarchical Scheduling in an Intelligent
Environmental Control System,” Proc. 2nd Int. Conf. on Industrial and Engineering
Applications of Al and Expert Systems, 1988.

Kim, T.G., “A knowledge-based Environment for Hierarchical Modelling and
Simulation,” Ph.D Dissertation, Univ. of Arizona, 1988.

Klir, G., Architecture of Systems Problem Solving, Plenum Press, NY, 1985.

Kuipers, B.J., “Qualitative Reasoning with Causal Models in Diagnosis of Complex
Systems,” In: Artificial Intelligence, Simulation and Modelling (eds. L.A. Widman,
K.A. Loparo, and N. Nielsen), J. Wiley, NY, pp. 257-274, 1989.

Kuipers, B.J., “Qualitative Simulation,” Artificial Intelligence, pp. 289-338, 1986.

Lioyd, M., “GRAFCET - Graphical Function Chart Programming,” Proc. of the
Conf. on Programmable Controllers '85, pp. 51-56, London, Olympia, July, 1985.

Luh, C.J., “Abstraction Morphisms for High Autonomy Systems,” Ph.D.
Dissertation, Univ. of Arizona, 1991.

Luh, C.J. and B.P. Zeigler, “Abstraction Morphisms for Muitifacetted
Methodolody: Application to Model-Based Autonomous Systems,” (submitted to
IEEE. Trans. Sys. Man. & Cyber.), 1990.

Mesarovic, M.D. and Y. Takahara, General Systems Theory: Mathematical
Foundations, Academic Press, NY, 1975.

Meystel, A., “Intelligent Control: A Sketch of the Theory,” J. Intelligent and Robotic
Systems, vol.2, No.2&3, pp.97-107, 1989.

Meystel, A., “Intelligent Control: Highlights and Shadows,” Proc. IEEE on
Intelligent Control, Philadelphia, Jan., 1987.

Meystel, A., “Planning/Control Architecture for Master Dependent Autonomous
Systems with Nonhomogeneous Knowledge Representation,” Proc. IEEE on
Intelligent Control, Philadelphia, Jan., 1987.

[61]

[62]

[63]

[64]

[65]

[66]
(671

[68]

[69]

[70]

[71]

(72}
[73]

[74]

[75]

[76]

164

Nance, R.E., “A Conical Methodology: A Framework for Simulation Model
Development,” Proc. Conf. on Methodology and Validation, SCS Pubs. San Diego,
pp. 38-43, 1987.

Narain, S. “An Approach to Reasoning about Hybrid Systems,” Special Issue on
Modelling and Simulation for High Autonomy Systems, Int. J. Gen. Sys. (to
appear).

NASA, The Space Station Program, NASA Pub., 1985.

Newell, A., “Putting it All together,” In: Complex Information Processing: The
Impact of Herbert A. Simon (eds: D. Klahr, K. Kotovosky), Lawerence Erlbaum,
Hillsdale, NJ, 1988.

Nilsson, N.J., Principles of Artificial Intelligence, Tioga Pub. Co., Palo Alto, CA,
1981.

Ogata, K., Modern Control Engineering, Prentice-Hall, 1970.

Orden, A., “On the Solution of Linear Equation/inequality Systems”, Mathematical
Programming, Vol.1, pp. 137-152, 1971.

Oren, T.I,, “Taxonomy of simulation model processing,” in Encyclopedia of
Systems and Control, M. Signh, Ed. New York, NY : Pergamon Press.

Prachofer, H., “System Theoretic Formalisms for Combined Discrete-Continuous
System Simulation,” Special Issue on Modelling and Simulation for High Autonomy
Systems, Int. J. Gen. Sys. (to appear).

Rajagopalan, R., “The role of Qualitative Reasoning in Simulation,” In: Artificial
Intelligence in Simulation (eds. G.C. Vansteenkiste, E.J.H. Kerckhoffs, & B.P.
Zeigler), SCS Pub., San Diego, CA, 1986.

Reiter, R., “Theory of diagnosis from first principles”, Artificial Intelligence, Vol.
32, pp. 57-95, 1987.

Rich, E., Artificial Intelligence, 1986.

Riesbeck, C.K. and R.C. Schank, Inside Case-Based Reasing, Lawrence Erlbaum
Associates, Inc., Hillside, New Jersey, 1989.

Rozenblit, J.W. and B.P.Zeigler, “Design and Modelling Concepts,” Encyclopedia
of robotics, John Wiley, N.Y.,1987.

Rozenblit, J.W., S. Sevinc and B.P. Zeigler, “Knowledge-Based Design of LANs
Using System Entity Structure Concepts,” Proc. Winter Simulation Conf.,
Washington D.C., 1986.

Sacerdoti, E.D., A Structure for Plans and Behavior, Elsevier North-Holland, Inc.,
1977.

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

165

Sanders, W.H., Construction and Solution of Performability Models based on
Stochastic Activity Networks, Doctoral Diss., University of Michigan, Ann Arbor,
1988.

Saridis, G.N., “Intelligent Robotic controls,” IEEE Trans. on Auto. control., AC-
28, No.5,1983.

Saridis, G.N., “Knowledge Implementation: Structure of Intelligent Control
System,” Proc. IEEE on Intelligent Control, Philadelphia, Jan., 1987.

Sarjoughian, H.S., F.E. Cellier and B.P. Zeigler, “Hierarchical Controllers and
Diagnostic Units for Semi-Autonomous Teleoperation of a Fluid Handling

Laboratory,” Proc. Int. Pheonix conf. on Computer and communication, Scottdale,
March, 1990.

Scarl, E., “Sensor Failure and Missing Data: Further Inducements for Reasoning
with Models,” (personal communication), 1989.

Sevinc, S and B.P. Zeigler, “Entity Structure Based Design Methodology: A LAN
Protocol Example,” IEEE Trans. on Software Engineering, Vol. 14, No. 3, March,
pp- 375-383, 1988.

Simmons, R. “Integrating Multiple Representations for Incremental, Causal
Simulation,” Proc. Al, Simulation and Planning in High Autonomy Systems, pp.
88-95, Cocoa Beach, FL, April, 1991.

Simmons, R. “Commonsense Arithmetic Reasoning,” Proc. AAAI-86, pp. 118--
124, Philadelphia, PA, August, 1986.

Soucek, B. and A.D. Carlson, “Brain Window Language of fire-flies,” J. Theor.
Biol., vol. 125, pp. 93-103, 1987.

Steel, S., “Topics in Planning,” in Lecture Notes in Artificial Intelligence, J.
Siekmann eds., Springer-Verlag, 1987.

Struger, O.J., “Programmable Controllers - Past and Future,” Proc. of the Conf. on
Programmable Controllers '85, pp. 1-6, London, Olympia, July, 1985.

Vere, S.A., “Planning in Time : Windows and Durations for Activities and Goals,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-S, No. 3,
pp- 246-267, May, 1983.

Wang, Q. and F.E. Cellier, “Time Windows : An approach to Automated
Abstraction of Continuous-Time Models into Discrete-Event Models,” Int. J. of
General Systems, special issue on modeling and simulation of high autonomy
systems, to appear, 1991.

Waterman, D.A., A Guide to Expert Systems, Addison-Wesley Publishing Co.,
1985.

166

[91] Widman, L.E., “Semi-Qualitative "Close-Enough" Dynamic Systems Models: An
Alternative to Qualitative Simulation,” In: Artificial Intelligence, Simulation and
Modelling (eds.: L.A. Widman, K.A. Loparo, and N. Nielsen), J. Wiley, NY, pp.
159-188.

[92] Wilkins, D.E., Practical Planning, Morgan Kaufmann Inc., 1988.

[93] Wymore, A.W., A Mathematical Theory of Systems Engineering: The Elements,
Wiley, NY, 1967.

[94] Zadeh, L.A. and C.A. Desoer, Linear System Theory, The State Space Approach,
McGraw Hill, NY, 1963.

[95] Zeigler, B.P. and G. Zhang, “Formalization of the System Entity Structure
Knowledge Representation Scheme : Proofs of Correctness of Transformations,” In
: Al, Simulation, and Modelling, L. Widman, D. Reidel (Eds.), 1987.

[96] Zeigler, B.P. and J. Kim, “Extending The DEVS-Scheme Knowledge-Based
Simulation Environment For Real-Time Event-Based Control,” (submitted to JEEE
Trans. Aut. and Rob.), 1991.

[97] Zeigler, B.P. and S. D. Chi, “Symbolic Discrete Event System Specification,” Proc.
on Al, Simulation and Planning in High Autonomy Systems, pp. 130-141, IEEE
Press, April, 1991. :

[98] Zeigler, B.P. and S.D. Chi, “Hierarchical Systems Architecture for Artificial
: Intelligence,” Proc. on 34th Int. Soc. System Sciences Conf., Portland, July, 1990.

[99] Zeigler, B.P. and S.D. Chi, “Model-Based Architectures for Autonomous
Systems,” Proc. 1990 IEEE Symp. on Intelligent Control, Philadelphia, PA, pp.
27-32, 1990.

[100] Zeigler, B.P. “Systems Formulation of a Theory of Diagnosis from First
Principles,” in preparation.

[101] Zeigler, B.P., C.J. Luh, and T.G. Kim, “Model Base Management for Multifacetted
Systems,” Proc. Al, Simulation and Planning in High Autonomy Systems, pp. 25-
35, IEEE Press, Tucson, March, 1990.

[102] Zeigler, B.P., “DEVS Representation of Dynamical Systems: Event-Based
Intelligent Control,” IEEE proc. Vol.77, no.1, pp.72-80, Jan., 1989.

[103] Zeigler, B.P., F.E. Cellier and J.W. Rozenblit, “Design of a simulation
Environment for laboratory management by Robot organizations,” J. Intelligent and
Robotic systems, vol.1, pp. 299-309, 1988.

[104] Zeigler, B.P., “Hierarchical, modular discrete event modelling in an object oriented
environment,” Simulation, Vol. 49, no.5, pp. 219-230, 1987.

[105] Zeigler, B.P., “High Autonomy systems: Concepts and Models,” Proc. on Al,
simulation and Planning in High autonomy Systems, Tucson, march, 1990.

167

[106] Zeigler, B.P., “Implementation of Methodology Based Tools in the DEVS-Scheme
Environment,” In : Modelling and Simulation Methodology : Knowledge System
Paradigms, M. S. Elzas, T. 1. Oren, B. P. Zeigler (Eds.), North-Holland,
Amsterdamm, 1988.

[107] Zeigler, B.P., “Knowledge Representation from Minsky to Newton and Beyond,”
Applied Artificial Intelligence, vol. 1, pp 87-107, Hemisphere Pub., Co., 1987.

[108] Zeigler, B.P., Multifaceted Modelling and discrete Event simulation, Academic
press, 1984.

[109] Zeigler, B.P., Object-Oriented simulation with Hierarchical, Modular Models:
Intelligent Agents and Endomorphic systems, Academic Press, 1990.

[110] Zeigler, B.P., R. Doyle, E. Scarl, F. Lacklinger, S.D. Chi, and S. Feycock,
“Model-Based Sensor Selection, Monitoring, and Diagnosis,” IEEE Expert, 1992
(to appear).

[111] Zeigler, B.P., S.D. Chi, and F.E. Cellier, “Model-based Architecture for High
Autonomy Systems,” Proc. European Robotics and Intelligent Systems Conf.,
Corfu, Greece, June, 1991.

[112] Zeigler, B.P., “System-theoretic representation of simulation models,” IIE Trans.,
pp. 19-34, Mar., 1984.

[113] Zeigler, B.P., Systems Simulateable by the Digital Computer: Discrete Event
Representable Models, Tech. Rept. 199, Dept. Computer Sci., University of
Michigan, Ann Arbor, M1, 1977.

[114] Zeigler, B.P., “Toward a Simulation Methodology For Variable Structure
Modelling,” in Modelling and Simulation Methodology in the Artificial Intelligence
Era, M.S. Elzas, B. P. Zeigler, and T. I. Oren Eds., North-holland, 1986.

[115] Zeigler, B.P.,Theory of Modelling and Simulation, New York, NY : Wiley, 1976
(reissued by Krieger Pub. Co., Malabar, FL,1985).

[116] Zhong, H. and M.J. Wonham, “Hierarchical Coordination,” Proc. 5th EEE Symp.
on Intelligent Control, Philadelphia, PA, pp. 8-14, 1990.

