
Improvements in BondLib,
the Modelica Bond Graph Library

Alberto de la Calle∗, François E. Cellier†, Luis J. Yebra∗, Sebastián Dormido‡
∗Automatic Control Group, CIEMAT-Plataforma Solar de Almerı́a, Tabernas, Spain

Email: {alberto.calle, luis.yebra}@psa.es
†Institute of Computational Science, ETH Zürich, Zürich, Switzerland

Email: fcellier@inf.ethz.ch
‡Dept. of Computer Science and Automatic Control, UNED, Madrid, Spain

Email: sdormido@dia.uned.es

Abstract—Bond graphs are a natural method for representing
power flows in physical systems and they represent the most basic
graphical paradigm that is still fully object-oriented. This paper
describes a new version of BondLib, the Modelica bond graph
library. The library was created for Modelica with graphical Dy-
mola support, and its object-oriented design allows the wrapping
of bond graph models offering a user-friendly environment for
modeling physical system in multiple energy domains. The new
improvements try to reduce the deployment and training cost for
end-users by making the error diagnostics easier.

Keywords—Modelica; bond graph; energy modeling; balanced
models; error diagnostic;

I. INTRODUCTION TO BOND GRAPHS

The conservation of energy is a common feature in every
physical systems. When modeling a physical system, the
modeler has to ensure that this conservation principle is never
violated. Bond graphs make this check a trivial task because
it is implicit in the formalism [1].

A bond graph is a graphical representation of a physical
system. This representation provides bi-directional information
of the exchanged energy between different elements of the
graph.

Fig. 1. Representation of a bond

A bond depicts the power flow between two elements of a
physical system. It is represented by a harpoon and carries two
adjugate variables: an effort, e, which is an extensive variable,
and a flow, f , which is an intensive variable. The product of
both is defined to be power, P = e · f .

Efforts and flows can represent different physical properties
but bond graphs have, in principle, a neutral modeling domain.
The assignment of two physical variables to an effort and a
flow determines its domain. A bond graph can incorporate
multiple domains seamlessly for representing systems that
operate in multiple energy domains. Beside e and f , there are
two additional physical quantities that play an important role
in the bond graph methodology: the generalized momentum,
p, and the generalized position, p. They are defined as the

TABLE I. USUAL DOMAIN ASSIGNMENTS IN BOND GRAPH
METHODOLOGY

Domain Effort Flow
Generalized Generalized
momentum position

Electrical Voltage Current
Magnetic

Charge
flux

Translational
Force Velocity Momentum Position

mechanics

Rotational
Torque

Angular
Torsion Angle

mechanics velocity

Hydraulics Pressure
Volumetric Pressure

Volume
flow momentum

Thermodynamics Temperature
Entropy

- Entropy
flow

Chemical
Chemical Molar

-
Number

potential flow of moles

TABLE II. BASIC MODELING ELEMENTS OF BOND GRAPH
METHODOLOGY

Name Code Equation

0-junction 0
ei = ei+1

sum(f) = 0

1-junction 1
fi = fi+1

sum(e) = 0

Resistance R e = R(f)

Capacitance C
e = C(q)

der(q) = f

Inductance I
f = I(p)

der(p) = e

Source of effort Se e = e0

Source of flow Sf f = f0

Transformer TF
e1 = m · e2
f2 = m · f1

Gyrator GY
e1 = m · f2
e2 = m · f1

time integrals of e and f , respectively. The most common
assignments of domains are shown in Table I.

The modeler can subdivide every physical system into
small components such that each component exhibits a specific
energy behavior: they can generate, store, transport, transform,
dissipate (convert to heat) and delete energy. In bond graph
terminology, sources and sinks of energy are the source of
effort (Se) or a source of flow (Sf) elements, dissipation is
modeled using resistance (R), whereas the capacitance (C) and



Fig. 2. Relations between bond graph variables

the inductance (I) are used for energy storage. The relations
between the bondgraphic variables e, f , p and q determine the
kind of element that we are dealing with (cf. Fig. 2).

The power flows between elements can be distributed
with two dual junctions, 0-junctions and 1-junctions. In a 0-
junction, the efforts are set equal whereas the flows add up to
zero. Correspondingly in a 1-junction, the flows are set equal,
whereas the efforts add up to zero. These junctions are the
nodes of the model and determine if the elements in the graph
are getting connected in series or in parallel.

In closing, there are two more basic elements in bond graph
methodology; the transformer (TF) and the gyrator (GY). Both
are used in the transformation of energy, either from one
domain to another, or within a domain. Bond graph puritans
argue that these elements (v. Table II) exhaust all of physics
and no other elements should be offered.

II. INTRODUCTION TO BONDLIB, THE MODELICA BOND
GRAPH LIBRARY

BondLib [2] was created by F. E. Cellier and his students
with the aim of modeling bond graphs through the graphical
user interface of Modelica tools. It was presented in Hamburg-
Harburg in the framework of a Modelica Conference (2005)
winning the first award for a free Modelica library. Since its
release, the library has been updated several times to include
new developed models and new wrapped sub-libraries.

In spite of bond graphs being capable of modeling all types
of physical systems, there rarely are the best methodology to
do so. The bond graph elements are the the most primitive
graphical components that are still fully object-oriented; there-
fore when modeling a complex physical system in this way,
the resulting bond graph would be unnecessarily large and
difficult to read. The efficacy of this methodology lies in taking
advantage of the object-oriented paradigm and wrapping bond
graph models at higher abstraction levels. In this way, end-
users can have a domain specific interface with elements that
look familiar to them, but the bottom graphical layer is based
on bond graph technology and is therefore easily maintainable.

The library has been divided in several sub-libraries that
wrap each physical domain included. For modeling electronic
analog circuits, the library offers a partial re-implementation
of the standard analog electrical Modelica library using bond
graph technology. In addition, a complete implementation of
Spice built on bond graphs has been included [3]. Translational
or rotational 1D mechanical systems can be modeled with
the corresponding two sub-libraries. These sub-libraries are
analogous to the standard 1D mechanical Modelica library, but

due to the underlying bond graph technology, the connectors
of both libraries are incompatible with those of the standard
library. The thermal domain without convective heat flows
has been wrapped in a sub-library that re-implements the
standard thermal Modelica library. A sub-library for modeling
and simulating mass and information flows of continuous-
time systems with the System Dynamics methodology is also
available in BondLib. Hydraulic and pneumatic sub-libraries
wrap the hydraulic and pneumatic physical domains and they
have been added in the new library version.

Two more libraries related with BondLib have been devel-
oped. MultiBondLib [4] offers several wrapped sub-libraries
for higher-level descriptions of 2D and 3D mechanical sys-
tems. ThermoBondLib offers graphical support for modeling
convective flows [5] and chemical reactions [6].

III. BONDLIB 2.4

The principal concepts of the previous version of BondLib
(2.4) are described in this section.

A. Bonds

As explained in §I, each bond carries two variables, e
and f , therefore the bondgraphic connectors need to carry at
least these two variables. Another (non-physical) variable that
encodes the direction of the bonds is necessary for processing
the bondgraphic junctions. This variable, d, indicates the
direction of positive power flow. It is encoded d = −1 at the
emanating bondgraphic connector and d = +1 at the receiving.
The bondgraphic connector is defined as follows, where all
variables are of the potential type:
connector BondCon "Bi-directional bondgraphic connector"
Real e "Bondgraphic effort variable";
Real f "Bondgraphic flow variable";
Real d "Directional variable";

end BondCon;

Listing 1. A-causal bondgraphic connector v2.4

The bond is defined as shown in List. 2.
model Bond
"The a-causal bond model of the bond graph library"
Interfaces.BondCon BondCon1 "Left bond graph connector";
Interfaces.BondCon BondCon2 "Right bond graph connector";

equation
BondCon2.e = BondCon1.e;
BondCon2.f = BondCon1.f;
BondCon1.d = -1;
BondCon2.d = +1;

end Bond;

Listing 2. A-causal bond v2.4

Since bonds carry two physical variables, e and f , it is
necessary to generate two equations to compute their values.
This means that, in every case, one of the two variables
is computed at each end of the bond. Modelica is capable
of deciding the computational causality of all equations [7],
but often, the causality of the bondgraphic elements are pre-
defined for improved readability of the bond graph. To this end,
the causal bond side, where the flow variable is computed, is
marked with a vertical stroke (v. Fig. 3) and their connectors
have an input/output prefix for each variable. Causal and a-
causal bonds can be arbitrarily mixed, but it is recommended
to use causal bonds as much as possible to better identify
modeling errors.



Fig. 3. Graphical representation of BondLib bonds

B. Junctions

In BondLib, the junctions, just like other bondgraphic
elements, are defined using two levels. The lower level, called
interface, is encoded as a partial model and defines the efforts
and flows taking incount the directional d variable. The upper
level, the element model, inherits the interface and defines the
element equations.

For example, the 1-junction with three bond connectors is
defined as:
model J1p3 "Model of ThreePort 1-junction"
extends Interfaces.ThreePortOne;

equation
f[2:3] = f[1:2];
sum(e) = 0;

end J1p3;

Listing 3. ThreePort 1-junction model v2.4

partial model ThreePortOne
"Partial model invoking three bondgraphic connectors"
Real e[3] "Bondgraphic effort vector";
Real f[3] "Bondgraphic flow vector";
Interfaces.BondCon BondCon1 "First bond graph connector";
Interfaces.BondCon BondCon2 "Second bond graph connector";
Interfaces.BondCon BondCon3 "Third bond graph connector";

equation
e[1] = BondCon1.d*BondCon1.e;
f[1] = BondCon1.f;
e[2] = BondCon2.d*BondCon2.e;
f[2] = BondCon2.f;
e[3] = BondCon3.d*BondCon3.e;
f[3] = BondCon3.f;

end ThreePortOne;

Listing 4. ThreePortOne interface v2.4

C. Basic elements

All elements in Table II are encoded with four basic
interfaces that depend on the number of connections (one or
two port) and the power flow direction (active or passive).

For example, the linear capacitor (one port and passive) is
defined as:
model C "The bondgraphic linear capacitor element"
extends Interfaces.PassiveOnePort;
parameter Real C=1 "Bondgraphic Capacitance";

equation
f = C*der(e);

end C;

Listing 5. Linear capacitor model v2.4

partial model PassiveOnePort
"Partial model invoking one bondgraphic connector"
Real e "Bondgraphic effort";
Real f "Bondgraphic flow";
Interfaces.BondCon BondCon1 "Bond graph connector";

equation
e = BondCon1.e;
f = BondCon1.d*BondCon1.f;

end PassiveOnePort;

Listing 6. PassiveOnePort interface v2.4

The linear capacitor listing reveals why some elements
have a fixed causality, because, in this case, it is obvious that
this element calculates the effort and uses the flow as an input
variable.

D. Wrapped elements

Since bond graphs offer a low-level interface, it is always
possible to wrap bond graphs inside other models. The rele-
vance of this technique is explained in §II. For this purpose,
two wrappers per domain are defined and used to transform
physical connectors to bondgraphic connectors.

Depending on the domain assignment, there are two kinds
of wrappers: the transformer wrappers whose behavior is like
a transformer (the bondgraphic f variable is the conventional
flow variable in the domain, e.g. the electrical domain) or the
gyrator wrappers whose behavior is like a gyrator (the bond-
graphic e variable is chosen as the conventional flow variable
in the domain, e.g. the translational mechanics domain).

For example in the electrical domain, the wrappers are:

model El2BG "Electrical to bond graph conversion"
Modelica.Electrical.Analog.Interfaces.PositivePin p
"Electrical connector";

BondLib.Interfaces.BondCon BondCon1
"Bond graph connector";

equation
BondCon1.e = p.v;
BondCon1.f = p.i;

end El2BG;

Listing 7. El2BG interface v2.4

model BG2El "Bond graph to electrical conversion"
Modelica.Electrical.Analog.Interfaces.NegativePin n
"Electrical connector";

BondLib.Interfaces.BondCon BondCon1
"Bond graph connector";

equation
BondCon1.e = n.v;
BondCon1.f = -n.i;

end BG2El;

Listing 8. BG2El interface v2.4

Using these wrappers, the electrical linear resistor model (v.
Fig. 4) can be wrapped employing only the graphical interface
(v. Fig. 5) in an easy way.

Fig. 4. BondLib electrical linear resistor

Fig. 5. Graphical wrapping of BondLib electrical linear resistor



IV. BONDLIB 3.0

Despite the numerous advantages of wrapping, the modeler
does sometimes not have choice and develops a model of
a complex physical system in just one bond graph, e.g. [8].
In that kind of a situation, the resulting model contains a
big number of connections and elements, and therefore, one
simple error, such as a bad connection or a structurally singular
element, can cost the modeler hours in debugging his code,
because the only help he receives it is an error message like
“The problem is structurally singular: It has 1103 scalar
unknowns and 1102 scalar equations...”. At other times, the
modeler may have used model wrapping, but the code contains
a simple error in a lower-level model, and the search of that
error can again be tedious because the error message provides
little information of where it is.

The problem is that Modelica is an a-causal language and
in contrast to causal languages, where the use of input/output
blocks make it easy to verify locally that all inputs have been
connected, this local verification is not possible in Modelica.
Structural analysis can only be performed globally after the
model has already been flattened. Olsson et al. [9] have
developed a methodology to provide diagnostics earlier in
Modelica 3.0 or later. Their approach, however, demands a
series of restrictions when a model is being developed. The
main restriction (in normal cases) is that “all non-partial
model or block classes must be locally balanced”, i.e., the
number of equations in the top-level model = number of
unknowns - number of inputs - number of flow variables. As a
consequence, for each flow variable in a connector there must
exist an identical number of non-causal non-flow variables. The
new version of the BondLib library imposes the restrictions of
[9] in all its components with the aim of making error messages
easier for the end-users to interpret.

A. Bonds

The old bondgraphic connectors (v. §III-A) exceeded the
number of non-causal variables of the imposed new restric-
tions. Therefore, f has now been chosen as a flow variable
and e as non-causal potential variable. Although the new f
variable carries the information of the power flow direction,
this is unfortunately not enough information for the junctions
to be correctly processed; therefore, a d variable is still needed.
This, cannot be a non-causal variable in the connector, and
consequently, it needs an input/ouput prefix to determine its
causality.

Two bondgraphic a-causal connectors have been developed.
BondCon a is the male bond connector that must be used only
by the bonds. It computes the value of the d variables on
both ends of the bond. The remaining components in BondLib
must all use BondCon b, the female element connector that
receives the d information from the connecting bond. In this
way, BondCon a (full circle) connectors are always connected
to BondCon b (empty circle) connectors. As an immediate
benefit, it is impossible in BondLib 3.0 to connect two bonds
in series or to attach an element at a junction without placing
a bond in between.

connector BondCon_a "Bond connector"
Real e "Bondgraphic effort variable";
flow Real f "Bondgraphic flow variable";
output Real d "Directional variable";

end BondCon_a;

Listing 9. A-causal bond connector v3.0

connector BondCon_b "Element connector"
Real e "Bondgraphic effort variable";
flow Real f "Bondgraphic flow variable";
input Real d "Directional variable";

end BondCon_b;

Listing 10. A-causal element connector v3.0

The a-causal bond is defined as follows, where the two
bondgraphic connectors of the past have been replaced by two
BondCon a connectors.
model Bond
"The a-causal bond model of the bond graph library"
Interfaces.BondCon_a BondCon1 "Left bond graph connector";
Interfaces.BondCon_a BondCon2 "Right bond graph connector"

;
equation
BondCon2.e = BondCon1.e;
BondCon2.f = BondCon1.f;
BondCon1.d = -1;
BondCon2.d = +1;

end Bond;

Listing 11. A-causal bond v3.0

As in §III-A, the causal bonds are composed with connec-
tors with an input/output prefix for each variable.

B. Junctions

Taking advantage of the object-oriented paradigm, only the
interface level had to be modified in the new BondLib library.
BondCon connectors have been replaced by the BondCon b
connectors in all bondgraphic elements except for the bonds
themselves. The d variable is conveniently used with the e and
f internal variables to obtain the 0-junction and 1-junction.
List. 12 and List. 13 show two examples of the new interface.
partial model ThreePortZero
"Partial model invoking three bondgraphic connectors"
Real e[3] "Bondgraphic effort vector";
Real f[3] "Bondgraphic flow vector";
Interfaces.BondCon_b BondCon1
"First bond graph connector";

Interfaces.BondCon_b BondCon2
"Second bond graph connector";

Interfaces.BondCon_b BondCon3
"Third bond graph connector";

equation
e[1] = BondCon1.e;
f[1] = BondCon1.f;
e[2] = BondCon2.e;
f[2] = BondCon2.f;
e[3] = BondCon3.e;
f[3] = BondCon3.f;

end ThreePortZero;

Listing 12. ThreePortZero interface v3.0

partial model ThreePortOne
"Partial model invoking three bondgraphic connectors"
Real e[3] "Bondgraphic effort vector";
Real f[3] "Bondgraphic flow vector";
Interfaces.BondCon_b BondCon1
"First bond graph connector";

Interfaces.BondCon_b BondCon2
"Second bond graph connector";

Interfaces.BondCon_b BondCon3
"Third bond graph connector";

equation
e[1] = BondCon1.d*BondCon1.e;
f[1] = BondCon1.d*BondCon1.f;
e[2] = BondCon2.d*BondCon2.e;



f[2] = BondCon2.d*BondCon2.f;
e[3] = BondCon3.d*BondCon3.e;
f[3] = BondCon3.d*BondCon3.f;

end ThreePortOne;

Listing 13. ThreePortOne interface v3.0

C. Basic elements

As stated in §IV-B, only the interfaces have been modi-
fied for upgrading the bondgraphic elements. All higher-level
models remain unchanged. The idea is that if one user has
developed his own elements using the old interfaces, these
models are going to be updated without effort when the
BondLib is being updated to the new version.

Although passive and active one-port interfaces could be
combined to just one interface with the new connectors, this
option was rejected in order to guarantee that the direction of
the bond does not affect the global graph. However, the two-
port interfaces have been combined to just one because, in this
case, an error in the bond direction is not possible.

D. Wrapped elements

Once the bondgraphic elements have been updated using
the basic interfaces, only the wrappers still need to be updated.
Unfortunately, this update is not a trivial task. Transformer
wrappers cannot have a 0-junction behavior, as someone might
think, because some components in the BondLib sub-libraries
do not have symmetrical behavior. In order to preserve models
developed by users without modifications, the authors have
decided to continue to allow models with non-symmetric
behavior to exist and update only the wrappers. Examples of
this are the wrappers in the electrical domain.
model El2BG "Electrical to bond graph conversion"
Modelica.Electrical.Analog.Interfaces.PositivePin p
"Electrical connector";

Interfaces.BondCon_b BondCon1 "Bond graph connector";
equation
BondCon1.e = p.v;
BondCon1.f*BondCon1.d = p.i;

end El2BG;

Listing 14. El2BG interface v3.0

model BG2El "Bond graph to electrical conversion"
Modelica.Electrical.Analog.Interfaces.NegativePin n
"Electrical connector";

Interfaces.BondCon_b BondCon1 "Bond graph connector";
equation
BondCon1.e = n.v;
BondCon1.f*BondCon1.d = -n.i;

end BG2El;

Listing 15. BG2El interface v3.0

Gyrator wrappers do not have the same problem, because
here, a lack of symmetry does not make they behave like a
0-junction.

V. ERROR DIAGNOSTICS

The restrictions described in [9] help users in error diag-
nostics. The use of balanced connectors in complex models
guarantees an efficient search of sub-models with structural
singularities at a local rather than global level. Also, as a
consequence of using two different connectors in BondLib
3.0, users obtain one of the most important advantages: the

Fig. 6. Diagnostic example

Fig. 7. First test Dymola message with BondLib v.2.4

fixed causality in the d variable forces users to connect each
bond to an element thereby eliminating an important source of
connection errors right from the start.

In order to demonstrate the different error reporting of
Dymola under certain errors with BondLib 2.4 and 3.0, a series
of located errors were tested using both libraries. The model
used in several diagnostic tests involves a simple RL circuit
(v. Fig. 6).

A. First test: Connecting two elements without a bond in
between

The diagnostic example was modified suppressing B1 and
connecting Se to 0-junction without a bond. After a model
check, Dymola showed different error messages depending
on the library version (v. Fig. 7 and Fig. 8). Both versions
detected the error, but the model that used the new BondLib
version pointed out in the warning dialog where exactly the
error was. Two d variables were left without a value and were
consequently removed from the model.

B. Second test: Connecting two bonds together

An additional bond between Se and B1 was introduced
in the second diagnostic example. The model that used the
2.4 version showed a poorly readable error message similar
to Fig. 7. Using BondLib 3.0, users cannot make this mistake
any longer because Dymola shows an error message box (v.
Fig. 9) as soon as the user tries to connect two bonds. Dymola
does not let users connect two output variables to each other.



Fig. 8. First test Dymola message with BondLib v.3.0

Fig. 9. Bonds connection error in BondLib v3.0

C. Third test: Submodel structural singularity

One equation in R was suppressed. Just like in the first
test, Dymola detected the error with both BondLib versions.
Dymola could not guide the user in locating the error in the
model with BondLib 2.4. However, Dymola was able to point
out the component where the error is (v. Fig. 10) when the
model uses the new library version.

D. Fourth test: Global structural singularity

A structural singularity was added in the model but no
element had it. R was replaced by a second Se, therefore 0-
junction is not able to compute the f and e variables. The
models of both libraries produced poorly readable error mes-
sages, but, at least when using the new library version, Dymola
indicated that the e variable is over-determined whereas the f
variable is under-determined. Following that clue, users could
find the origin of the error. A better solution would be to
use causal bonds instead of a-causal bonds. In that case, the
Dymola error message will be able to point at the under-
determined f variable in B1 and B3.

E. Fifth test: Wrapping sub-models with structural singularity

In this test, with the aim of visualizing the Dymola
reaction to an error in a wrapped model, one equation
was suppressed in BondLib.Thermal.RSth, a model avail-
able in BondLib. Simulating the TwoMasses test exam-
ple offered in BondLib, the tool detected errors with
both libraries. Since thermal connectors observe the re-
strictions imposed by [9], the error was localized at
BondLib.Thermal.HeatTransfer.Passive.ThermalConductor al-
ready when BondLib 2.4 was used. However, Dymola was
able to point to the RSth model as the origin of the error when
BondLib 3.0 was used.

VI. CONCLUSIONS

This paper introduces a new version of BondLib, the
Modelica library for modeling with bond graphs. The new

Fig. 10. Third test Dymola message with BondLib v3.0

improvements are oriented to reduce the deployment and
training cost for end-users making it easier for them to
diagnose errors in their models. These improvements have
been developed trying to preserve most of the existing code,
limiting the modifications to the lower-most levels of the
library architecture, thereby guaranteeing the reuse of models
developed by the users with the latest library version. The
changes in the code have been discussed in this article, and a
series of diagnostic examples have been shown.

ACKNOWLEDGMENTS

The authors would like to thank the CIEMAT research
centre, Spanish Ministry of Economy and Competitiveness and
ERDF funds for financing this work under the National Plan
Project, POWER project, DPI2010-21589-C05-02.

REFERENCES

[1] F. E. Cellier, Continuous System Modeling. Springer-Verlag New York,
Inc. Secaucus, NJ, USA, May 1991.

[2] F. E. Cellier and A. Nebot, “The Modelica bond graph library,” in
Modelica Conference, Hamburg, Germany, 2005, pp. 57–65.

[3] F. E. Cellier, C. Clauss, and A. Urquı́a, “Electronic circuit modeling and
simulation in Modelica,” in EUROSIM, Ljubljana, Slovenia, 2007, pp.
1–10.

[4] D. Zimmer and F. E. Cellier, “The Modelica Multi-Bond Graph Library,”
in Modelica Conference, Vienna, Austria, 2006, pp. 559–568.

[5] F. E. Cellier and J. Greifeneder, “ThermoBondLib–A New Modelica
Library for Modeling Convective Flows,” in Modelica Conference, Biele-
feld, Germany, 2008, pp. 163–172.

[6] J. Greifeneder and F. E. Cellier, “Modeling Chemical Reactions Using
Bond Graphs,” in Intl. Conf. on Bond Graph Modeling and Simulation,
Genoa, Italy, 2012, pp. 110–121.

[7] H. Elmqvist, “A Structured Model Language for Large Continuous
Systems,” Ph.D. dissertation, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden, 1978.

[8] F. E. Cellier, A. Nebot, and J. Greifeneder, “Bond graph modeling of
heat and humidity budgets of biosphere 2,” Environmental Modelling &
Software, vol. 21, no. 11, pp. 1598–1606, Nov. 2006.

[9] H. Olsson, M. Otter, S. E. Mattsson, and H. Elmqvist, “Balanced Models
in Modelica 3.0 for Increased Model Quality,” in Modelica Conference,
Bielefeld, Germany, 2008, pp. 21–33.


