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Abstract 
 In this paper, a new methodology is being discussed 
that aids the numerical simulation of discontinuous systems 
involving switching events. 

Many object-oriented models containing switches 
require a change in the selection of state variables as a 
function of the switch position.  Such systems are classified 
as variable-structure systems.  Their simulation leads to a 
division by zero at switching time. 

Until now, such systems were usually simulated using 
non-ideal switches.  However, this approach invariably 
leads to stiff models.  Also, the simulation results obtained 
in this fashion may be too inaccurate. 

This paper proposes a different approach, involving 
inline integration, that tackles the problem without requiring 
the introduction of spurious components. 
 
1. INTRODUCTION 
 Physical systems that involve switching events 
frequently cause problems in their simulation.  To 
demonstrate these problems, let us consider a simple 
electrical circuit containing an electrical switch.  The circuit 
diagram is shown in figure 1. 
 

 
 

Figure 1. Circuit diagram of switching circuit 

A sinusoidal input voltage of 10V and 50Hz was 
chosen.  The diode causes the switching events. The circuit 
was modeled in Dymola [3] using the standard electrical 
library, and could be simulated without any problems.  The 
simulation results are depicted in figure 2. 

 

 
 

Figure 2. Simulation results of circuit simulation 
 
To demonstrate that switching circuits can lead to 

numerical difficulties during simulation, we modified the 
circuit slightly. To this end, we replaced the source resistor 
by an inductor.  The modified circuit is shown in figure 3. 

 

 
 

Figure 3. Circuit diagram of modified switching circuit 
 

This circuit could not be simulated using an ideal diode.  
The simulation died with a division by zero.  The reasons 
for this division by zero shall become clear in due course. 

These problems occur frequently in the simulation of 
switching models, and therefore, Dymola replaces by 



default the ideal switch by a non-ideal switch, in which the 
resistance of the closed switch is being increased to 1.0e-5 
Ω, whereas the conductance of the closed switch is being 
increased to 1.0e-5 mho.  Using the modified switch model, 
the circuit can be simulated without any problems, but the 
resulting circuit is very stiff, requiring a stiff system solver, 
and the simulation results may be inaccurate, as shall be 
demonstrated in due course. 

 
2. BOND GRAPH MODELING OF 

SWITCHING CIRCUITS 
 In order to understand what went wrong in the modified 
circuit, it may be advantageous to look at the bond graph 
models of the two circuits.  Figure 4 shows the bond graph 
model of the original circuit.  The circuit was modeled in 
Dymola using its BondLib library [2]. 
 

 
 

Figure 4. Bond graph of switching circuit 
 

The D-element represents an ideal diode.  For enhanced 
convenience and compactness of the graphical 
representation, BondLib offers a number of basic bond 
graph elements that are not contained in the standard set.  
The ideal diode represents an internally modulated ideal 
switch element. 

It can be recognized that the computational causality of 
the diode and of the source resistor are not completed by the 
normal causality assignment, i.e., these two elements form 
an algebraic loop.  In BondLib, the modeler can choose 
between causal and a-causal bonds.  Dymola is perfectly 
capable of determining the computational causality of all 
equations on its own, i.e., a-causal bonds can be used 
always, but the authors of this paper recommend to use 
causal bonds whenever possible for increased readability 
and interpretability of the bond graph. 

In contrast, when the source resistor is replaced by an 
inductor, as shown in figure 5, the preferred (integral) 
causality of the inductor determines the causality also on the 
diode.  

 

 
 

Figure 5. Bond graph of modified switching circuit 
 

It turns out that this was precisely the problem, as 
shown below.  Whenever the computational causality on a 
switching element is fixed, a division by zero will occur 
during the simulation.  In contrast, when all switching 
elements are contained within algebraic loops, the 
simulation will not exhibit any such difficulties. 

 
3. THE COMPUTATIONAL CAUSALITY 

OF SWITCHING ELEMENTS 
An ideal switch can be modeled as follows: 
 

0  = sw $ f  C (1 K sw )$e
 

 
where sw is a binary variable that assumes a value of 1.0, 
when the switch is open, and a value of 0.0, when the switch 
is closed.  Notice that, in Dymola, equations are a-causal by 
default.  They are only causalized in the process of 
compilation. 

If the causality stroke of the bond to which the diode is 
attached is fixed as in figure 5, the switch needs to compute 
the effort, i.e.: 

 

e  = sw
sw K 1

$f  

 
This equation can be simulated without any problems as 
long as the switch is closed.  Yet, a division by zero is 
obtained as soon as the switch opens. 

If the causality stroke of the bond to which the diode is 
attached is fixed in the opposite position, the switch needs 
to compute the flow, i.e.: 

 

f  = sw K 1
sw

$e  

 
This equation can be simulated without any problems as 
long as the switch is open.  Yet, a division by zero is 
obtained as soon as the switch closes.  Hence a diode that is 



attached to a causal bond will invariably lead to a division 
by zero in one of the two switch positions. 

If the ideal switch is replaced by a non-ideal switch 
including small but non-vanishing leakage resistors, the 
division by zero is replaced by a division by a small 
number.  Hence some variables will temporarily assume 
large values.  Since the analytical solution of the ideal 
model does not contain any variables assuming large values, 
these artificial transients will die out quickly, i.e., the 
resulting model is stiff and becomes increasingly stiff, as the 
leakage resistors are made smaller. 

Let us now look at the equations generated from the 
circuit containing a resistor instead of an inductor.  We can 
compute two variables at once: 

 

U0  = 10 $ sin(100π $ t )  

                      
iR2  = 

uC
R2  

 
since uC is a state variable.  Then we have an algebraic loop 
in three equations and three unknowns: 
 

0  = uR1 K R1$iD 
 

0  = sw $ iD  C (1 K sw )$uD 
 

0  = U0 K uD K uR1 K uC  

and finally, we have two more equations that can be 
computed once the algebraic loop has been solved: 
 

iC  = iD K iR2  
 

  
duC
dt

 =  
iC
C

 
 

 
Using the tearing method [4], we choose iD as the tearing 
variable and the switch equation as the residual equation, 
and we substitute the other variables from the other two 
equations.  In this way, we obtain a set of causalized 
equations: 
 

iD  = 
(sw  K 1 ) $ 0U0  K uC1

sw  C (sw K 1 )$R1

 

     
uR1  = R1$iD  

 
      

uD  = U0 K uR1 K uC   

 
It can be easily verified that this set of equations can be 
computed correctly in both switch positions, i.e., does not 
lead to a division by zero ever.  Dymola performs the 
required symbolic formula transformation automatically at 
compile time. 

It was shown by Krebs [7] that: 
• A necessary condition for simulatability of the switch 

equations is that all switch elements are included in 
algebraic loops. 

• If the causality strokes of all bonds attached to switch 
elements can be moved independently of each other, 
the condition is also sufficient. 

• Sometimes it is not necessary that all switches can 
change their causality independently, because it 
happens frequently in switching models that not all 
combinations of switch positions are physically 
meaningful. 

 
4. INLINE INTEGRATION AND 

COMPUTATIONAL CAUSALITY 
 The preferred (integral) causality associated with 
capacitors and inductors is a relic from the times, when 
most continuous system models were integrated using 
explicit integration algorithms.  When an implicit 
integration algorithm is being used, there is numerically no 
difference any longer between numerical integration and 
numerical differentiation [6]. 

There may still be a computational advantage in using 
an explicit state-space form, although even that advantage 
gets blurred by the use of the tearing method [4].  In the 
end, the number of state variables doesn’t truly matter.  
What matters is the number of tearing variables that need to 
be selected to break all algebraic loops, as these will be the 
iteration variables in the Newton iteration that must be 
carried out at each implicit integration step. 

One way to preserve the explicit equation structure as 
much as possible is by the use of inline integration [5].  
Inline integration inserts the implicit equation describing the 
integration algorithm symbolically into the set of model 
equations, thereby eliminating the strict separation between 
model equations and solver equations, which again is a relic 
from old times, when the symbolic formulae manipulation 
capabilities built into model compilers were poor. 

Let us demonstrate the approach by means of the 
modified circuit while inlining the integrator used by the 
inductor.  Partial inlining leads to a mixed-mode integration 
scheme [1]. 

For simplicity, we shall use the implicit backward Euler 
algorithm [1] for inlining the inductor.  Thus, we now have 
two separate equations for the inductor: 

 

       
uL  = L$diD   

 
 

where the first equation represents the model equation, and 
the second equation is the inlined solver equation.  iL and diL 
are now two separate independent algebraic variables, and h 

iD  = pre0 iD 1   C   h $ di D    



is the integration step size.  We added one more equation 
(the solver equation) and one more unknown (iD) to the set 
of equations. 

Hence we now have an algebraic loop in four equations 
and four unknowns: 
 

 

    
 

 
0  = sw $ iD  C (1 K sw )$uD  

 
This time, we choose again the switch equation as the 

residual equation, but now, we select uD as the tearing 
variable, since we prefer to compute iD from the solver 
equation to avoid an unnecessary division by h. 

Solving the residual equation for the tearing variable, 
we obtain the following replacement equation: 

 

 
 
which is again valid in both switch positions.  Once we have 
computed uD, we can compute the other three variables from 
the original equations: 
 

      
uL  = U0 K uD  K uC  

 

      
diD  = 

uL
L

  
 

 
 

The bond graph helps us identify, which storage 
elements fix the causality at any of the switch elements.  
The corresponding integrators will need to be inlined in 
order to remove the constraint on the causality at the switch.  
Hence the bond graph tells us immediately, which of the 
integrators need to be inlined. 

If the causality constraint of a switch cannot be 
removed, because the causality is fixed by a source element 
rather than by a storage element, this means that the model 
is non-physical.  In that case, we either short-circuit a 
voltage source or disconnect a current source by throwing 
the switch.  Clearly, this makes no physical sense. 

 
5. IMPLEMENTATION IN DYMOLA 

Dymola offers inline integration as one of its features.  
Unfortunately, the implementation, as it is currently being 
offered, does not solve the problem for several reasons. 

 
1. An earlier version of Dymola offered mixed-mode 

simulation as an option.  The modeler could choose 
which integrators should be inlined.  This feature was 
removed again by Dynasim, as the company decided 
that the feature was too difficult to use.  Hence in the 
current version, either all integrators are being inlined 
or none. 

 
2. Even if both integrators are being inlined using 

Dymola´s “inline” compiler switch, the division by 
zero remains.  This is due to the way, how the inline 
algorithm has been implemented in Dymola.  Whereas 
Dymola knows that switch equations that appear 
inside an algebraic loop must be chosen as residual 
equations, it does not do so in the context of inline 
integration.  It still chooses the solver equation as the 
residual equation, and thereby, the division of zero in 
the switch equation remains, because all loop 
equations, except for residual equations, retain fixed 
causality. 

 
3. Not all integration algorithms offered by Dymola were 

implemented to deal with discrete events correctly.  
The ones that do are DASSL and LSODAR.  Yet, 
neither of those two algorithms is currently available 
as an inlined algorithm.  Therefore, inline integration, 
as currently implemented in Dymola, cannot be used 
for simulating switching circuits. 

 
For these reasons, the inlining algorithm had to be 
implemented manually, which was problematic also, as 
shall be shown in due course. 

Figure 6 depicts the circuit with the inductor once 
more, this time using a special model, I2, implementing the 
inlined inductance element.  In this model, the inlining 
algorithm is programmed manually, rather than relying on 
the inlining algorithm offered by Dymola through a 
compiler switch. 

 

 
 

Figure 6. Bond graph of inlined switching circuit 
 

0   =   U 0   K   u D   K   u L  K   u C   

0   =   u L   K   L $ diD       

0   =   i D   K   pre 0 i D 1   K   h $ di D     

u D   =   
sw 

( sw   K   1 ) $ L   K   sw $ h   
$   [   L $ pre ( i D )   C   h $ ( uC K U0 )  ]

i D   =   pre 0 i D 1   C   h $ di D     



The model of the inlined inductance element is shown 
in figure 7. 

 

 
Figure 7. Model of inlined inductance element 

 
In this model, Dymola´s built-in pre() operator could 

not be used, because the solver equation forms part of the 
algebraic loop, and Dymola doesn’t currently support the 
inclusion of discrete variables in algebraic loops.  Hence all 
loop variables had to be made continuous variables. 

Furthermore, the only one of its internal variables that 
Dymola propagates out to the modeler is the variable Time.  
The modeler cannot make use of the internal step size that 
Dymola employs.  Thus, the inlined inductor was 
implemented using a fixed-step algorithm, because 
otherwise, its step-size control algorithm would also have to 
be user implemented. 

Finally, the algorithm is not aware when an event is 
taking place.  Hence the algorithm will integrate blissfully 
across events, which is numerically problematic. 

 
6. SWITCHING EVENTS AND 

SIMULATION ACCURACY 
To check the accuracy of the simulation results, we also 

modeled the circuit using a regular inductor and a leaking 
diode, using the method that is advertised in Dymola.  The 
circuit is shown in Figure 8. 

The leaking diode uses a default value of R0 = 1e-5 Ω 
for the resistance value of the closed switch, and one of G0 
= 1e-5 mho for the conductance of the open switch. 

Figure 9 compares the voltage across the capacitor as a 
function of time using the inlined switching circuit of Figure 
6 with the leaking switching circuit of Figure 8. 

 

 
Figure 8. Bond graph of circuit with leaking diode 

 

 
Figure 9. Comparison of simulation results 

 
There is a large difference between the two curves.  The 

curve with the larger oscillation was produced by the 
leaking diode circuit, whereas the curve with the smaller 
oscillation was produced by the inlined circuit. 

In order to judge the quality of the results obtained, the 
leakage resistance, R0, and the leakage conductance, G0, 
were reduced to 1e-10 Ω and 1e-10 mho, respectively.  
Now, the simulation results of the leaking circuit are no 
longer visibly distinguishable from those of the inlined 
circuit.  Hence the inlined solution represents more correctly 
the behavior of the ideal switching circuit. 

Although the default leakage resistors of the diode 
model offered in Dymola´s standard electrical library of 1e-
5 Ω and 1e-5 mho, respectively, seem to be very small, the 
resulting simulation results are very different from those of 
the ideal switching circuit.  Using fudge parameters is 
clearly a dubious undertaking, as they burden the modeler 
with selecting appropriate values of parameters, for which 
no physical interpretation can be offered.  Since most 
modelers do not understand the significance of these 
parameters, they will almost invariably rely of the default 
values provided in the standard library, and thereby may 
receive vastly incorrect simulation results. 



7. CONCLUSIONS 
In this paper, we have introduced a new method for 

dealing symbolically and numerically with variable 
structure systems, i.e., with systems that change their state 
variables at event times. 

Such systems are encountered frequently in practice, 
especially in the mechanical domain.  A typical example 
might be the shift-gear box of a car or the ejection seat in a 
military aircraft [8]. 

The variable structure system was analyzed using the 
bond graph approach, and the causality constraint of storage 
elements that determine the causality of neighboring 
switches was removed using the inlining technique [5]. 

The new algorithm was implemented in Dymola, and it 
was shown that avoiding the fudge parameter approach of 
leaking diodes helps in avoiding numerical simulation 
errors. 
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