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Abstract. The object-oriented modeling language Dymola allows the physical modeling of large inter-
connected systems based on model components from di�erent engineering domains. It generates symbolic

code for di�erent target simulators. In this paper, a Dymola class library for the e�cient generation of the

equations of motion for multibody systems is presented. The library is based on an O(n) algorithm which

is reformulated in an object-oriented way. This feature can also be interpreted as a bond graph oriented

modeling of multibody systems. Furthermore a new algorithm for a certain class of variable structure multi-

body systems, such as systems with Coulomb friction, is presented, which allows the generation of e�cient
symbolic code.
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1. Introduction

Dymola [6, 8, 4, 5] is an object-oriented modeling language for modeling of large dynamical systems.

Models are hierarchically decomposed into submodels which are connected in accordance with the

physical coupling of the components. The features of Dymola allow the development of domain

speci�c class-libraries for e.g. electronic circuits, control systems, hydraulic systems, thermodynamics

systems, bond graphs and others, which can all be used in conjunction for generating a speci�c multi-

domain application model. Dymola generates e�cient symbolic code for several target simulators1.

It can handle ordinary di�erential equation models as well as di�erential-algebraic equation (DAE)

models. If a DAE is of higher index, certain parts of the equations are symbolically di�erentiated

according to the algorithm of Pantelides [27].

In this paper it is shown how variable structure multibody systems can be modeled by Dymola.

For this purpose a Dymola library based on the recursive O(n) algorithm of [1] is explained in detail.

The algorithm was modi�ed in order to arrive at an object-oriented formulation as encouraged by

Dymola. This means that physical objects of the multibody system are mapped to corresponding

Dymola objects, which are connected in accordance with the physical coupling of the system (this is

no block-diagram representation of input/output blocks). The class description of an object contains

the equations that describe the object, and the cut-de�nitions, i.e., de�nitions of the interfaces

of that object to other objects. Due to this procedure, the equations of motion of a multibody

system are determined by Dymola using only the connection structure of objects and the local

information about objects. It turns out that this description form has close relations to the bond

1Presently, Dymola supports ACSL[22], DESIRE[17], SIMNON[7], SIMULINK[20] and Fortran in either Simnon-
or DSblock-format[24]
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graph methodology [16, 4]. In fact, this object-oriented de�nition of a multibody system can be

interpreted as a multibody bond graph2.

Besides a reformulation of an O(n) algorithm, a new enhancement of this algorithm is presented

that allows the e�cient treatment of a certain class of variable structure systems, i.e., systems with

varying degrees of freedom. In the last years, methods to handle multibody systems with variable

structure have been considerably improved [18, 28, 13, 12]. Usually, such systems are modeled by

numerical multibody programs. This is due to the fact that, if n independent switches are present

to remove or add one degree of freedom, 2n di�erent con�gurations are possible. For example, if

dry friction is present in the joints of a 6 degree-of-freedom (dof) robot, 26 = 64 con�gurations

are possible, since every joint can either be in sliding (= 1 dof) or in sticking (= 0 dof) mode.

Numerical multibody programs are designed to handle a large class of multibody systems with the

same program. If such a feature is present, it is not principally di�cult to change the con�guration

(i.e., the multibody system) during integration. On the other hand, a symbolic multibody program

generates code for a speci�c multibody system only. Therefore, 2n di�erent codes have in general to

be generated, if there are 2n possible con�gurations (= multibody systems). Even for a modestly

sized multibody system, such as a 6 dof robot with dry friction, this would be quite impractical. It

will be shown that a simple modi�cation of the recursive O(n) algorithm circumvents this di�culty

and will allow the symbolic generation of compact and e�cient code for variable structure systems.

Dymola together with its multibody library is comparable to commercially available multibody

programs both in terms of e�ciency and ease-of-use. However as already noted, Dymola can easily

model components from other engineering domains in conjunction with the multibody components

by invoking them from other already available class libraries. For example, a sophisticated library for

electronic components corresponding to the SPICE electronics program [23] (diodes, Zener diodes,

tunnel diodes, BJTs, etc.) is being developed at the University of Arizona [14]. In contrast to

other multibody programs, Dymola supports multidisciplinary modeling within one environment |

the multibody part being just one model component among other equally important engineering

disciplines.

2. Detailed robot model

Dymola is introduced by means of a detailed dynamic model of the industrial robot Manutec r3

described in [11]. The structure of this \multidisciplinary"model is shown in Figure 1. The 6 degree-

of-freedom robot consists of a system of rigid bodies connected by ideal revolute joints. Every joint

is driven by a torque, produced by the electro-magnetic �eld of a current-controlled DC-motor and

transformed by gear-boxes. The motors are controlled by decentralized cascade controllers. The

block \rotor+gear" in Figure 1 contains the mechanical part of a motor and of its gear-box.

Dymola supports a hierarchical decomposition of models. The Dymola model can therefore be

designed such that it directly reects the model structure as shown by the de�nition of the robot

in the Dymola model language in Figure 1 (\..." indicates similar items that have been omitted in

order to shorten the text).

According to the di�erent block component types of Figure 1, model classes are de�ned in a

library that is made available to the model (object) de�nition through the command @r3.lib (the @

operator tells Dymola to include the �le r3.lib). New models (or objects) of these class de�nitions

are instantiated by the command:

submodel (class-name) object-name (parameters) ...

For example the statement \submodel (R3control) c1, c2, c3, c4, c5, c6" instantiates six identical

objects of the same class R3control. This is meaningful since, in the r3 robot, six identical cascade

2Someone not familiar with the bond graph methodology can just skip related paragraphs in this paper.
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@r3.lib fuse library r3.libg
model R3robot

submodel (R3control) c1, c2, c3, c4, c5, c6

submodel (R3motor) m1 (Ci=5.22E-7,...), ...

submodel (R3drive1) d1 (i=i1,...), ..., d3(...)

submodel (R3drive2) d4 (i=i4,...), ..., d6(...)

submodel (R3mbs) rob fmultibody systemg

constant i1=�105, i2=210, ..., i6=�99
input rq1, rq2, ..., rq6 frequired anglesg
input rw1, rw2, ..., rw6 frequired angular vel.g

connect c1 to m1 to d1 to rob:j1

connect c2 to m2 to d2 to rob:j2

connect c3 to m3 to d3 to rob:j3

connect c4 to m4 to d4 to rob:j4

connect c5 to m5 to d5 to rob:j5

connect c6 to m6 to d6 to rob:j6

fController input = gear-ratio � model-inputg
c1.rq = i1�rq1
c2.rq = i2�rq2

: : :

c6.rw = i6�rw6
end

rigid body
mechanics
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Figure 1: Model structure of Manutec r3 robot

controllers are used. In contrast, the six motors of the robot have the same structure but di�erent

parameters. Therefore the class R3motor is used to describe the motor structure, whereas a speci�c

motor is de�ned by supplying appropriate values for the motor parameters. Since the robot em-

ploys gear-boxes of two structurally di�erent kinds, two di�erent classes (R3drive1, R3drive2) are

provided. Finally an object of the multibody description (i.e., the robot itself without the motors,

gear-boxes and controllers) is instantiated from class R3mbs.

With the statement \constant i1=�105,..." the gear ratios ii are de�ned as constants. They

are used in two di�erent places (gear-box and input of controller). With the statements \input

rq1,..." the input signals of the overall model are de�ned. These are the required angles and angular

velocities of the joints as input to the controllers.

All the objects are assembled by the connect statements. The meaning of a connect statement

such as \connect c1 to m1" is de�ned in the corresponding class description, as will be explained

below. Note, that there is no signal direction associated with a connect statement. It is therefore

not an input/output block-diagramdescription! Instead, the connect statement reects the physical

coupling of components. If an object has several di�erent interfaces, also called cuts, the notation

object:cut is used. For example, \connect d1 to robot:j1" states that gear-box 1 is attached at cut

j1 (= joint 1) of object robot. At the end of the model description, the connections between the

global input signals and the model are speci�ed. For example, \c1.rq = i1�rq1" states that the

input variable rq of controller c1 is the required angle rq1 multiplied by the gear-ratio i1.

To this point, the topmost model components have been assembled. We shall now look at the

component models themselves. Motors are described by objects of class R3motor, which makes use

of a basic Dymola library for electrical components such as resistors, capacitors, and operational

ampli�ers. Let us �rst have a look at one of the classes of this library in order to familiarize

ourselves with some important concepts of Dymola. In Figure 2 the de�nition of a capacitor from

the aforementioned library is shown.

A capacitor is an element with two cuts A and B, through which it can be connected to other

elements. With each cut two variables are associated, the potential at the wire (Va, Vb) and the
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model class capacitor

parameter C

cut A (Va / i), B (Vb / �i)
main cut cAB [ A, B ]
main path pAB <A � B>

local u

Va � Vb = u
C�der(u) = i

end

E1

E2

E2.i

E1.i E3.i

cut A

E1.Va = E2.Va
E1.Va = E3.Va

E1.i + E2.i + E3.i = 0

E3

-E3.i

cut B

Figure 2: Capacitor de�nition and Dymola connection rules

current owing into the component through the wire (i, �i). Dymola distinguishes between two

types of variables: across and through variables. In a cut declaration, all variables to the left of the

slash operator (\/") are de�ned to be across variables, whereas all variables to the right of the slash

operator are de�ned to be through variables. Accordingly, the potentials Va, Vb are considered

to be across variables, whereas the current i is a through variable. The di�erence between these

two variable types becomes apparent in a connection only. Assume for example, that three electric

elements E1, E2, E3 are connected at one node as indicated in Figure 2. The Dymola built-in rules

will generate the shown equations, i.e., the across variables at a node are set equal, whereas the

through variables at a node are summed up to zero. For electrical circuits, these rules correspond to

Kirchho�'s voltage law and Kirchho�'s current law, respectively. The statements \main cut ..."

and \main path ..." in the capacitor de�nition state the default connections that are used if no

cut-names are explicitly speci�ed in the connect statement. For example, the statement \connect

C at (n1,n2)" is equivalent to the longer speci�cation \connect C:A at n1, C:B at n2.

The physical laws of the capacitor are programmed in the last two statements using the cut-

variables and the der operator that characterizes a derivative. An important feature of Dymola

is that no direction is associated with variables. Based on the connection structure of the overall

model and the problem description, Dymola will determine on its own for which variable each of the

equations needs to be solved, and apply symbolic formula manipulation to transform the equations

to the desired form, if necessary. Due to this feature, Dymola supports the use of true equations

rather than simple assignment statements.

Let us now return to the robot example. Using the aforementioned library of basic electrical

components, the motor shown in Figure 3 can be de�ned in the following way:

model class R3motor

submodel (Resistor) Rd1(R = 100), Rd2(R = 100), Rd3(R=100), Rd4(R = 100)
submodel (Resistor) Ri (R = 10) , Rp1(R = 200), Rp2(R= 50) , Ra (R = 250)

submodel (Capacitor) Ci (C = Ci)
submodel (Inductor) La (L = La)

submodel (Emf) emf(k=k) felektro-motoric forceg
submodel (Hall) hall fHall sensorg
submodel (OpAmpIdeal) di�, I; power fideal operational ampli�erg
submodel (Ground) g

parameter Ci, La, k

cut control (q, qd, Vd)

cut rotor (q, qd, qdd / f)

main cut mc [control, rotor]
main path mp < control � rotor >

node n0; n1; n2; n3; n4; n5; n6; n7; n8; n9

connect Rd1 at (n2; n5); Rd2 at (n1; n2); Rd3 at (n4; n3); Rd4 at (n3; n0);
Ri at (n5; n6); Rp1 at (n8; n9); Rp2 at (n8; n0); Ci at (n6; n7);
g at n0, di� at (n3; n2; n5); I at (n0; n6; n7); power at (n7; n8; n9);
n9 to Ra to La to emf to hall to n0, hall:m at n4, rotor at emf :mech

Vd = Rd2:a

end
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Figure 3: Model structure of Manutec r3 motors

The Dymola model reects directly the underlying electrical circuit. Dymola supports a variety of

di�erent formats to de�ne the connection of components. A statement of the form \connect Rd1

at (n2,n5)" means, that object Rd1 is placed between the two nodes n2, n5. In the same way, the

other classes R3control, R3drive1 and R3drive2 are de�ned, but they are omitted here due to space

limitations. Class R3mbs, to describe the mechanical (multibody) part of the robot, is discussed

after deriving the Dymola class library for multibody systems in the next sections.

3. Object-oriented modeling of multibody systems

In this section an overview about the Dymola classes for mechanical systems are given by an example.

The object-oriented view is based on ideas of [25]. In Figure 4, three di�erent views of a double

pendulum with an attached spring are shown: a mechanical, an object-oriented and a bond graph

view, respectively. The object-oriented model can be directly mapped to the following Dymola

model:

model DoublePendulum

submodel (Inertial) i (ng3=1, g=9.81)
submodel (Revolute) r1 (n2=1) , r2 (n2=1)

submodel (Bar) b1 (r3=0.5), b2 (r3=0.4)
submodel (Bar) b3 (r3=1.3)
submodel (Body) m1 (m=1, r3=0.25)
submodel (Body) m2 (m=1, r3=0.2)
submodel (Spring) s (c=1, s0=0.5)

connect i to r1 to b1 to r2 to b2, i to b3,

r1 to m1, r2 to m2, s at (b3:b,b2:b)

end

The object-oriented model consists of several basic mechanical components that are rigidly connected

to each other. For example, the inertial system \i" is connected to revolute joint \r1", which in

turn is attached to massless bar \b1" and body \m1". Again, all objects are �rst instantiated

with submodel statements and afterwards connected to each other with the connect statement

according to the physical coupling. All object parameters, which have to be entered relative to a

speci�c coordinate system, are de�ned in the home position of the multibody system with respect
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Figure 4: Mechanical, object-oriented, and bond graph view of a double pendulum.

to the inertial system. For example, to de�ne a massless bar, the position vector from one end of the

bar to the other has to be speci�ed. Therefore the statement \submodel (Bar) b2 (r3=0.4 )" de�nes

a massless bar of length 0.4m, located in the direction of the z-axis of the inertial system, when

all joint coordinates are zero (= home position, i.e., the double pendulum is hanging in downward

position).

4. Basic classes of multibody library

In order to formulate the equations of mechanical elements, some de�nitions are necessary: Matrix

E is the identity matrix. The coordinates of a vector ~hi, which is resolved in frame j, is given as

a column vector jhi. If i = j, index j can be removed, i.e., hi is the vector ~hi resolved in frame i.
Additionally, operator skew and its inverse vec are de�ned as (h is a (3 � 1) column vector, H is

a skew-symmetric (3� 3) matrix):

H = skew(h) = skew(

2
4 h1

h2
h3

3
5) =

2
4 0 �h3 h2

h3 0 �h1
�h2 h1 0

3
5 ; h = vec(H)

Every basic mechanical component has at least one or two interfaces to connect the element rigidly

to other mechanical elements. In Figure 5, the di�erent views of such a mechanical interface, or cut,

are shown. The cut is named a and contains a local coordinate system, also called frame, which

is rigidly attached to the cut-plane. The orientation of the cut-frame is (automatically) de�ned in

such a way that the frame is located in parallel to the inertial frame, if the multibody system is in

its home position. Therefore, the cut-frames of all cuts connected at the same point coincide always

with each other.

The movement of cut-frame a is uniquely described by the direction cosine matrix 0Ta transfor-

ming tensors resolved in frame a into the inertial frame, and the absolute position vector 0ra, which
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Figure 5: De�nition of a mechanical cut.

is a vector pointing from the origin of the inertial frame to the origin of cut-frame a. Equivalently,
the movement on velocity level is described by the absolute angular velocity !

a of frame a and

the absolute linear velocity va of the origin of this frame, and the movement on acceleration level

is described by the absolute angular acceleration �
a and the absolute linear acceleration aa. The

variables on velocity and on acceleration level are formally de�ned as (see e.g. [29]):

�
!
a

va

�
=

"
vec

�
0Ta

T
0 _Ta

�
0Ta

T
0 _ra

#
;

�
�
a

aa

�
=

"
0Ta

T
0 _!a

0Ta
T
0 _va

#
; (1)

where 0
!
a = 0Ta

!
a; 0va = 0Ta va.

The forces and torques acting in the cut-plane are described by a resultant cut-force fa and a

resultant cut-torque �a. For notational convenience, these two quantities are concatenated into a

generalized force vector f̂a, and equally are the angular and linear velocity as well as the angular

and linear acceleration concatenated:

v̂a =

�
!
a

va

�
; âa =

�
�
a

aa

�
; f̂a =

�
�
a

fa

�
:

The \e�ect" of a mechanical cut is therefore completely described by 0Ta; 0ra; v̂a; âa; f̂a. When

several mechanical elements are connected at the same point, the kinematic quantities are equal to

each other, i.e., they are across variables. On the other hand, the cut-forces and cut-torques sum

up to zero, due to the actio=reactio principle, i.e., they are through variables.

Mechanical cuts are de�ned in the superclasses MbsOneCut and MbsTwoCut, which are used

to de�ne the common properties of mechanical elements with one and with two mechanical cuts.

For example, MbsTwoCut has the following class description:

model class MbsTwoCut

cut a ( Ta(3;3), ra0(3), va(6), aa(6) / fa(6) )

cut b ( Tb(3;3) , rb0(3) , vb(6) , ab(6) / fb(6) )
main cut mc [a; b]
main path mp < a� b >

terminal Pa, Pb

Pa = trans(fa) � va
Pb = trans(fb) � vb

end
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The terminal variables Pa; Pb are the energy owing into the corresponding cuts.

The absolute position vector 0ra is resolved in the inertial frame, whereas all the other variables

are resolved in cut-frame a. The reason for this is that the position vector is e.g. needed in kinematic

analysis problems or to determine animation data. In such problems, the vector has to be resolved

in the inertial frame. On the other hand, velocities, accelerations and forces are utilized in dynamic

analysis problems. For the most important of these applications, i.e., the direct dynamics problem,

a detailed analysis of a certain class of multibody systems described in [15] unveils that the O(n)

algorithm yields more e�cient code when the calculation is performed in body-�xed coordinate

systems rather than in the inertial system. Furthermore, it is more natural to resolve forces in

body-�xed frames since the directions of the forces can be associated with geometric properties of

the corresponding component. Using the multibody library, it is of course easily feasible to resolve

every vector in any desired coordinate system since the absolute direction cosine matrix of every

frame is determined3.

In the lower right part of Figure 5, the bond graph description of a cut is shown. Usually, bonds

transmit only e�ort and ow variables. This is not the case in the multibody bond graph. Here,

the position variables (= integral of the ow variables) and the acceleration variables (= derivative

of the ow variables) are also transmitted. There are two reasons for this decision: First of all, the

integral of the ow variables does not always exist, since in a general three-dimensional movement,

the angular velocity is not integrable to a position coordinate4. Secondly, nearly all multibody

systems represent higher-index di�erential algebraic equations (DAE), if the connection of bond

graph elements is done on velocity level only. The explicit usage of the additional position and

acceleration variables can be viewed as an application of the general \dummy derivative" technique

to reduce the index of a DAE [5, 21]. Note that, for notational simplicity, the additional variables

are not shown explicitly on the bonds of Figure 5 and of the following Figures.

A mechanical component, like a joint, a force, or a sensor, has the property, that the element has

two mechanical cuts and that the relative quantities between the two cuts are needed, in order to

formulate the (local) equations of the element. Therefore, a common superclass Interact is introduced

as subclass of MbsTwoCut, to de�ne these common properties only once. In Figure 6, the di�erent

views of an object of class Interact are shown. The relative quantities of class Interact are de�ned

in the following way (see also Figure 6):

bTa Relative direction cosine matrix from cut-frame a to cut-frame b.
arab Relative position vector from the origin of cut-frame a to the origin of cut-frame b, resolved

in cut-frame a.
av̂ab Relative angular and relative linear velocity, resolved in cut-frame a:

av̂ab =

�
a
!
ab

avab

�
=

"
vec

�
b _Ta

T
bTa

�
a _rab

#
(2)

aâab Relative angular and relative linear acceleration, resolved in cut-frame a:

aâab =

�
a
�
ab

aaab

�
=

�
a _!ab

a _vab

�
: (3)

3The Dymola translator has an option that all equations are removed which are not needed to compute the
derivative of the state vector and the output variables. Therefore, equations to compute e.g. 0Ta do only show
up in the generated code, if 0Ta is really needed.

4Instead of the integral of the \critical" ow variable (= angular velocity !a), the closely related direction cosine

matrix 0
T
a is used ( !a = vec(0Ta

T
0 _Ta) ).



9

multibody component

dymola
object

bond graph

cut a

f b^

v̂bv̂ a

f a^

cut b

f a^

v̂ a v̂b

f b^
f a^

cut a

rb

v̂ a

inertial
system

cut b

f b^

v̂b

ra

rab

T ab
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The relative quantities of an Interact-object may be needed both in cut-frame a as well as in cut-

frame b. The relationships between the relative and the absolute quantities are derived from the

de�ning equations (1,2,3) and are given by the following equations (the derivation of the equations

is shown in the appendix):

bTa = 0Tb
T
0Ta (4a)

arab = 0Ta
T

(0rb � 0ra) (4b)

av̂ab = bT̂a
T
bv̂ab (4c)

aâab = bT̂a
T
bâab (4d)

brab = 0Tb
T

(0rb � 0ra) (4e)
bv̂ab = v̂b �Cv̂a (4f)
bâab = âb �Câa � � (4g)

0 = f̂a +CT f̂ b (4h)

where

bT̂a =

�
bTa 0

0 bTa

�
(5a)

C =

�
bTa 0

0 bTa

� �
E 0

�skew(arab) E

�
(5b)

� =

�
bTa 0

0 bTa

� �
!
a
�

a
!
ab

!
a
� (!a

�
arab + 2 avab)

�
: (5c)

Equations (4a{4g) de�ne, that the relative quantities are given by the \di�erence" of the absolute

quantities of cut b and of cut a. (4h) results from a force/torque balance under the assumption,

that the element has no mass and no inertia.

Ideal joints can be easily derived as subclasses from class Interact. Joints are Interact objects, where

the relative quantities are no longer independent from each other, but are functions of n generalized

coordinates q = [q1; q2; : : : ; qn]. Here, n is the number of degrees of freedom of the joint (0 � n � 6).

In Figure 7, the di�erent views of a joint object are shown. In order to de�ne a speci�c joint, the

relative quantities must be given as functions of the generalized joint coordinates:

bTa = bTa(q) ; brab = brab(q) ; bv̂ab = �(q) _q ; bâab = �(q)�q + �(q; _q) : (6)

E.g. for a revolute joint, equations (6) are given by (see e.g. [29]):

bTa = nnT + (E� nnT ) � cos(q)� skew(n) � sin(q) ; brab = 0 ; � = [n;0] ; � = 0 ;
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Figure 7: The di�erent views of an object of class Joint.

where n is a unit vector in direction of the axis of rotation and q is the angle of rotation.
It is often the case that a force element acts between the two cuts of a joint. In order to simplify

the treatment of such elements, a joint object consists of an ideal joint element and an optional force

element, see upper right part of Figure 7. For this, an additional cut ext is needed, where the power
of the force element ows into the joint element. Variable �a of cut ext is the generalized applied

force of the force element, e.g. the torque along the axis of rotation of a revolute joint.

Due to the reduced possibilities of movement, additional relationships exist between the forces

and torques at the two cuts of a joint. The corresponding equations can be determined from a power

balance of the three cuts of a joint, because no energy is stored in an ideal joint. With (6,4f,4h)

follows: X
Pi = 0 = f̂a

T

v̂a + f̂ b
T

v̂b + �
a
T

_q

= (�f̂ b
T

C)v̂a + f̂ b
T

(Cv̂a + � _q) + �
a
T

_q

= (�a + �
T f̂ b)T _q : (7)

Since q are the minimal coordinates of the joint, the variables _q are independent from each other

and can assume any value. Therefore, the term in parantheses must vanish on its own, in order

to satisfy the power balance constraint. Note that this requirement is equivalent to d'Alembert's

principle.

Optionally, a joint may have a variable structure in the sense that the number of degrees of

freedom (= dof) may vary during simulation. If a joint coordinate qi is locked, the coordinate

remains �xed and its derivatives remain zero (qi = const; _qi = 0; �qi = 0). In such a situation, an

additional constraint force �l
i
has to be applied that acts in the same direction as the generalized

applied force �a
i
.

To summarize, a general joint object is described by the following equations, in addition to

equations (6):

0 = �
a + L�l + �

T f̂ b (8a)

0 = L�q+ (E � L)�l (8b)
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where
L = diag(Lii) ; Lii = if Lockedi then 1 else 0 : (9)

The two possible con�gurations of a joint (free/locked) are de�ned by the diagonal matrix L. If

the j-th diagonal element of L is one, the j-th dof is locked. If it is zero, the j-th dof applies.

Therefore, equation (8b) states that �q = 0, if all degrees of freedom are locked, and that otherwise

the constraint forces �l = 0. During integration, matrix L remains constant. The matrix may

change its value only before the integration starts or immediately after an event has occurred.

Dymola has powerful, yet simple, language constructs do de�ne e.g. the value of the boolean

matrix L as a function of other variables (e.g. Lii becomes one, if the generalized coordinate _qi
vanishes). Dymola converts such descriptions automatically into appropriate state or time events

in the generated code, see [9] for details. In [26] an example of a robot with 6 dof is given, where

Coulomb friction is present in every joint. Here, the above equations are used and matrices L are

de�ned as functions of _q;�l in accordance to the Coulomb friction model.

Class Joint allows a rather general description of joints. Also, rheonomic joints are included

in the description, although the quantities of (6) do not explicitly depend on time. This is due to

the fact that it is not de�ned what is known and what is unknown. For example, an object of class

Revolute is used as revolute joint if �q is unknown whereas q; _q; �a are known. On the other hand,

an object of the same class is used as pure rheonomic joint if q; _q; �q are known functions of time,

whereas �a is unknown. The possibility to use the same class description for problems with di�erent

causality requirements is a unique feature of Dymola and one of its most important strengths.

In order to be able to describe general multibody systems, a few additional simple classes are needed,

as shown in Figure 8. Class Body de�nes the mass and inertia properties of a rigid body. An object

of this class has only one cut and can be connected to every other mechanical component with a

\mechanical" cut, especially to one of the cuts of an Interact object. An object of class Body is

described by the following equations (see, for example [29]):

f̂a = Iaâa + ba (10)

where

Ia =

�
�Ia m � skew(araCM)

�m � skew(araCM) m �E

�
(11a)

ba =

�
!
a
�
�Ia!a

m �!
a
� (!a

�
araCM)

�
(11b)

�Ia = aICM �m � skew(araCM ) � skew(araCM) : (11c)

Here, araCM is the position vector from the origin of cut-frame a to the center of mass of the body.
aICM is the inertia tensor of the body, relative to the center of mass, resolved in a frame that is in

parallel to cut-frame a. Equation 10 incorporates the Newton-Euler equations, i.e., it states that

the derivatives of the generalized momenta of a body are equal to the resultant generalized forces

f̂a acting at the reference point used for the momentum balance. In Figure 8, the corresponding

bond graph, i.e., the (slightly generalized) bond graph inertia element I, is shown.

Finally, class Force (cf. Figure 8) describes a force element. Similarily to class Joint, class

Force is derived by inheritance from class Interact and contains the common properties of all force

elements. A speci�c force element, such as a spring, is a subclass of class Force. The relative

kinematic quantities between cut a and cut b de�ned in class Interact, usually serve to formulate

the force law of the force element.
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Figure 8: The di�erent views of objects of classes Body and Force

In the multibody library of Dymola, some additional classes are de�ned, e.g. class Sensor to measure

kinematic quantities between two cut-frames. Since these classes are not important in the context

of this paper, they are not described here.

5. Solution of di�erent problem formulations

The classes introduced so far are su�cient to describe rigid multibody systems in tree-structure and

with kinematic loops5. Up to this stage, only relationships between variables have been de�ned. In

order to arrive at a well de�ned mathematical formulation, it must be de�ned, which variables are

known and which are unknown. By default, Dymola assumes that a simulation problem is under

consideration, i.e., that the highest derivatives are unknown and have to be solved for. However, it

is easy to modify this default behavior, e.g., for inverse problems or stationary point calculations.

To summarize, for a given object-oriented model, Dymola instantiates the equations for every

involved object from the class library and adds the equations for the object connections. The problem

formulation determines whether a variable is known or unknown. As a result, a (usually large) set of

linear and nonlinear equations is obtained that must be solved for the unknown variables. Dymola

uses e�cient graph theoretical algorithms to sort the equations and variables in order to arrive at

a set of equations that can be evaluated in a sequential manner [6]. Especially, algebraic loops

of minimal dimensions are determined with the algorithm of Tarjan [30]. The application of this

scheme to some problem formulations for mechanical systems is discussed in more detail below.

First of all, the inverse dynamics problem of tree-structured mechanical systems is considered.

Here, the generalized coordinates q and their �rst and second derivatives _q; �q of all joints are known,

whereas all other quantities, and in particular the generalized applied forces �a of all joints, are

5For systems with kinematic loops, speci�c types of joints are provided to \cut" the loops into a tree-structure.
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unknown. This problem formulation is especially encountered in robotics applications. It turns out

that Dymola can always sort the equations in such a way, that all unknown variables are calculated

from the known variables without encountering any algebraic loops. It can be shown that the Dymola

generated code of the sorted equations is equivalent to the O(n) algorithm of Luh/Walker/Paul [19],

where n is the total number of degrees of freedom, see [26].

For the simulation problem, also called direct dynamics problem, of tree-structured mechanical

systems, all the generalized joint coordinates q and their �rst derivatives _q are used as state variables

and are therefore known. Furthermore, the generalized applied forces �a are known too. All

other quantities are unkown, in particular the second derivatives of the state variables �q. It turns

out that Dymola always ends up with one huge, sparse, linear system of equations, containing as

unknown variables the accelerations, cut-forces, and cut-torques of every mechanical cut, as well

as the generalized accelerations �q and several auxiliary quantities. For example, an object-oriented

model of a typical robot with 6 revolute joints leads to one sparse, linear system of equations with

about 600 equations. Dymola can transform such a huge system of equations to a small system of

equations by a method called tearing, see [10] for details. In particular, the transformation leads to:�
M(q) �L

�L L� E

� �
�q

�
l

�
=

�
�
a + h(q; _q)

0

�
; (12)

where q are the generalized coordinates of all joints, �a are the generalized forces of all joints, �l

are the generalized constraint forces of all joints that can be locked, and matrix L is a diagonal

matrix containing all the L matrices from the corresponding joints. (12) reduces to the well-known

standard form (see e.g. [29]), if joints cannot be locked, i.e., when �l has dimension zero. E.g. for the

mentioned robot, tearing reduces the number of equations from 600 to 6. It can be shown that the

generated code is equivalent to algorithm 1 of Walker/Orin [31], i.e., O(n2) operations are needed

to calculate (12), and another O(n3) operations are needed to solve (12) for �q, see [26]. Dymola

automatically generates appropriate code in order to solve linear systems of equations, such as (12),

either symbolically with an intelligent variant of Cramer's rule or numerically with a LINPACK

routine.

For the simulation problem of mechanical systems with kinematic loops, the user has to select

three types of joints when de�ning the Dymola model: cut-joints, state-variable tree-joints and re-

maining tree-joints. The removal of the cut-joints must result in a tree-structured system, called

spanning tree. The joints of the spanning tree are called tree-joints. The generalized positional

and velocity coordinates of the state-variable tree-joints are used as state variables qmin; _qmin, whe-

reas the corresponding coordinates qrest; _qrest of the remaining tree-joints are treated as unknown

quantities. In a similar way as for tree-structured systems, huge linear and nonlinear systems of

equations are present in the sorted Dymola equations. Again, appropriate tearing transforms these

systems of equations into much smaller ones, see [10] for details. In particular, the following set of

systems of equations appears as an intermediate step (assuming that no joints can be locked):

M(q) �q = h(q; _q) + �
a + GT (q)�c (13a)

0 = g = g (q) (G =
@g

@q
) (13b)

0 = _g = G (q) _q (13c)

0 = �g = G (q)�q+
@G(q) _q

@q
_q : (13d)

Here, (13a) are the equations of motion of the spanning tree mechanism, (13b,13c,13d) are the

constraint equations of all cut joints on position, velocity, and acceleration levels, respectively, q are

the relative coordinates of the joints of the spanning tree, �a are the (known) generalized applied
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forces of the joints of the spanning tree, and �c are the (unknown) generalized constraint forces of

the cut-joints.

Dymola transforms (13) into at least three sets of systems of equations: A non-linear system

of equations for qrest (13b), which is solved with a numerical non-linear equation solver, a linear

system of equations for _qrest (13c), and a linear system of equations for �qmin; �qrest;�
c (13a,13d).

Depending on the loop structure of the mechanism, the systems of equations may be further divided

into smaller subsystems, which can be solved independently from each other.

6. Object-oriented O(n) solution of the direct dynamics problem

In this section, an alternative approach is explained for the simulation problem. Here, a second

class library called mbssim.lib is provided, which has essentially the same interfaces as the class

library mbs.lib explained in the last sections. A multibody system is de�ned in exactly the same way

as before. However, the equations of the class-library mbs.lib are transformed in such a way that

Dymola will produce very e�cient code for tree-structured multibody systems (O(n) algorithm).

The new library mbssim.lib can only be used for the solution of the direct dynamics problem,

contrary to library mbs.lib, due to a built-in causality.

Equations (4,6,8) form the starting point for reformulating the class library. The reformulation

is based on the property that all cut-forces and cut-torques f̂ can be expressed as linear functions

of the absolute linear and angular acceleration â at the same cut, i.e.,

f̂ = Iâ+ b ; I = IT : (14)

I and b are functions of positional and velocity coordinates, but not of acceleration variables. (14)

is true for classes Body and Force, since the corresponding equation (10) of a body object is already

in this form, and since the equation for a force object is a special case with I = 0, because a force

law does not depend on accelerations. What remains to be shown is that this property also holds

for class Joint. For the proof of this statement, assume �rst that equation (14) holds true for cut b

of an object of class Joint, i.e, f̂ b = Ibâb + bb. According to Wehage [32], equations (4g,6,8) can be

combined to form the following linear, symmetric matrix equation:2
664

Ib �E 0 0

�E 0 � 0

0 �
T 0 L

0 0 L E � L

3
775
2
664
âb

f̂ b

�q

�
l

3
775 =

2
664

�bb

�Câa � � � �

��
a

0

3
775 : (15)

Equation (15) states that the unknown variables of cut-frame b can be expressed as linear functions

of the unknown acceleration âa of cut-frame a. Solving (15) explicitly for the unknown quantities

of cut-frame b results in:

�
l = �L�h (16a)

�q = �M�1(E � L�)h (16b)

âb = Câa +��q + � (16c)

f̂ b = Ibâb + bb (16d)

with

h =
�
�
T IbC

�
âa +

�
�
T IbC� + �

a + �
T bb

�
(17a)

M = �
T Ib� (17b)

� = � + � (17c)

L� =
�
LM�1L+ L� E

�
�1

LM�1 = L if dim(L) = 1� 1 : (17d)
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Inserting these equations into (4h), i.e., into \0 = f̂a+CT f̂ b", yields the required relationship (14),

because f̂a is linear in f̂ b, f̂ b is linear in âb due to (16d), and âb is linear in âa due to (16c,16b,17a):

f̂a = Iaâa + ba ; Ia = Ia
T

(18)

where

Ia = �CT NC (19a)

ba = �CT

�
bb +N� � Ib�M�1(E� L�) (�a +�

Tbb)
�

(19b)

N = Ib � Ib�M�1 (E� L�)�T Ib (19c)

M = �
T Ib� (19d)

L� =
�
LM�1L+ L� E

�
�1

LM�1 = L if dim(L) = 1� 1 : (19e)

If all objects of classes Body and Force are removed from a tree-structured mechanical system,

the cut-forces and cut-torques of the removed objects, which are acting with negative sign on the

remaining multibody system, can be expressed in the form of (14). The remaining system contains

objects of class Joint, only. The cut-forces and cut-torques acting at the \leaves" of the remaining

tree can be expressed in the form of (14) too, since the linear factors I and b of the cut-forces

and cut-torques are through variables, and all the other cut-forces and cut-torques at the leaves are

already in this form because of the Body- and Force-objects having been removed. Assuming, that

cut a of every joint object is always directed \closer" to the inertial system as cut b of the same

joint, the cut-forces and cut-torques at cut a of the leave-joints can be given in the desired form too,

due to (18). Now, all the leave-joints are removed, and the same situation applies. This means, that

by backward recursion from the \leaves" to the \root" of the tree it can be shown that all cut-forces

and cut-torques can be expressed through (14). Q.E.D.

The class library mbssim.lib is built by using the already explained class library mbs.lib and

by replacing equations (4g,4h,8) by equations (16{19). Furthermore, not the torque and force f̂

are propagated through cuts, but the linear factors I;b of the torque and force in accordance with

(14,18).

The main advantage of this reformulation lies in the fact that Dymola can sort the equations of a

tree-structured multibody system explicitly for the generalized accelerations �q without encountering

algebraic loops (with the exception of small linear systems of equations within Joint-objects, which

are solved by inverting matrix M of (19d)). This property can be explained as follows: The linear

factors I;b are known at Body- and Force-objects. Using equations (19a,19b), these factors are

propagated through all Joint-objects �nally arriving at the inertial system. Since the acceleration

of the inertial system is known, equations (16) can be used to calculate all unknown variables of the

objects that are directly attached to the inertial frame. Afterwards the accelerations of these objects

are known, and therefore the unknown variables of all objects attached to them can be calculated,

and so on. Of course, this feature is only valid for tree-structured multibody systems.

The number of operations in the generated code is proportional to the number of degrees of

freedom (= O(n)) of the multibody system and is therefore very e�cient, especially if n is high. In

the same sense as the inverse dynamics problem solution with library mbs.lib is equivalent to the

Luh/Walker/Paul algorithm [19], the direct dynamics problem solution with library mbssim.lib is

equivalent to the recursive O(n) algorithm of Brandl/Johanni/Otter [1]. Note that these algorithms

are not explicitly programmed. Instead, only local properties of objects are stored in the corre-

sponding class libraries. Due to the built-in connection rules of Dymola together with its sorting

algorithm, Dymola \reinvents" these algorithms on its own.

The above class library extends the recursive algorithms such as [1] in one important aspect: it

allows the handling of variable structure systems. As already noted, matrix L signals whether a
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degree of freedom of a joint is locked or not. As can be seen, L appears in some places in the

recursive relations (19). The occurrences of matrix L can easily be interpreted: Assume that all

degrees of freedom of a joint are free, i.e., L = 0, and therefore L� = 0. In this case, (19) are

the usual recursive relations. On the other hand, if all degrees of freedom are locked, L = E and

therefore L� = E, and equations (19) reduce to the recursive relations of a �xed joint with zero

degrees of freedom. The generated equations are nearly as e�cient as if matrix L were not present.

This can easily be seen for a joint with one degree of freedom. In this case, matrices M and L

are scalars, and only one division, one subtraction, and one multiplication are needed in order to

calculate the additional terms M�1(E � L);Lh, i.e., the e�ciency reduction due to the variable

structure is negligible.

The O(n) algorithm can also easily be generalized for multibody systems with kinematic loops. Using

the same technique as in section 5, i.e., using cut-joints, state-variable tree-joints, and remaining tree-

joints, the following equations are obtained when using library mbssim.lib and the tearing technique

(see also equation (13)):

0 = g (q) (G =
@g

@q
) (20a)

0 = G (q) _q (20b)

GM�1GT
�
c = �GM�1 (h(q; _q) + �

a)�
@G(q) _q

@q
_q (20c)

�q = M�1 (h(q; _q) + �
a + GT (q)�c) (20d)

(20a) is a non-linear system of equations for qrest, (20b) is a linear system of equations for _qrest,

(20c) is a linear system of equations for �c, and (20d) is the O(n) algorithm for the spanning tree

to calculate �q. Note, thatM�1 is never calculated explicitly, but is implicitly contained in the O(n)

algorithm. This procedure is equivalent to the algorithm of Brandl/Johanni/Otter [2] for multibody

systems with kinematic loops.

7. Dymola model of mechanical part of robot

The Dymola library for multibody systems as explained in the last two sections is not provided here

due to space limitations. However, to demonstrate its usage on a more complicated problem, the

multibody model of the 6 dof robot of section 2 is presented:

model class R3mbs

submodel (Inertial) i(ng3=-1, g=9.81)

submodel (Revolute) r1(n3=1), r2(n1=1), r3(n1=1)

submodel (Revolute) r4(n3=1), r5(n1=1), r6(n3=1)

submodel (Bar) b3(r3=0.5), b5(r3=0.73), bL(r1=RL1,r2=RL2,r3=RL3)

submodel (Body) m1(I33=1.16)

submodel (Body) m2(m=56.5, r1=0.172, r3=0.205,

I11=2.58, I22=2.73, I33=0.64, I31=-0.46)

: : :

submodel (Body) load(m=mL)

parametermL=0, rL1=0, rL2=0, rL3=0

cut j1, j2, j3, j4, j5, j6

connect i to r1 to r2 to b3 to r3 to r4 to b5 to r5 to r6 to bL,
m1 at r1:b, j1 at r1:ext,

m2 at r2:b, j2 at r2:ext,

...
load at bL:b, j6 at r6:ext,

end
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Note, that the interface of the robot to the outside world is given by cuts j1, : : : , j6 of the revolute

joints. At these cuts, the gear boxes can be attached as shown in section 2.

Generating the equations of motion and the inverse dynamics model for an object of the above

class (i.e., the multibody part of the robot only), Dymola produces code for each of these problems

within about 10 seconds6 containing the following number of operations:

direct problem inverse problem

�; = operations 727 269

+;� operations 493 190

The numbers of operations are approximately the same as for other symbolic multibody programs.

8. Conclusions

In this paper, a new library for the object-oriented modeling language Dymola was presented that

supports the modeling of general multibody systems consisting of a connection of rigid bodies,

ideal joints, and force elements. The presented library generates e�cient code for tree-structured

multibody systems. Multibody systems with kinematic loops can also be handled. In both cases,

models are transformed into state space form.

Dymola should not be viewed as just \yet another" multibody program. The unique feature

of Dymola is its support for modeling components from several di�erent engineering disciplines

within one environment. For example, Dymola has been successfully applied to the modeling of the

thermodynamic behavior of a house using bond graphs [33], chemical reaction systems [3], electronic

circuits [14], and a detailed robot model [26]. Furthermore, Dymola has sophisticated language

elements for the de�nition and handling of discrete-event systems based on time and state events

[9]. It is therefore easy to model e.g. sampled data systems, discontinuous elements, interconnected

friction elements, or impact.
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Appendix

In this section, equations (4) are derived. Equations (4a{4e) are directly given by their de�nition.

Equation (4f) can be split up into two parts to determine b
!
ab and bvab, respectively:

b
!
ab = bTa a

!
ab

= bTa vec(b _Ta
T
bTa) (due to (2))

= bTa vec

�
d

dt

�
0Tb

T
0Ta

�T
bTa

�
(due to (4a))

= bTa vec
��

a _T0 0Tb + aT0 0 _Tb

�
bTa

�

= bTa vec
��

a _T0 0Ta0Ta
T
0Tb + aT0 0Tb0Tb

T
0 _Tb

�
bTa

�
= bTa vec

��
�skew(!a) aTb + aTb skew(!b)

�
bTa

�
(due to (1))

= bTa vec
�
�skew(!a) + skew(a!b)

�
= bTa (�!a + a

!
b)

= !
b
�

bTa
!
a

bvab = bTa avab

= bTa a _rab (due to (2))

= bTa
d

dt

�
0Ta

T �
0rb � 0ra

��
(due to (4b))

= bTa

�
0 _Ta

T
0Ta 0Ta

T
0rab + 0Ta

T �
0 _rb � 0 _ra

��
= bTa aT0 0 _rb � bTa

�
skew(!a) arab + va

�
(due to (1))

= vb � bTa
�
�skew(arab)!a + va

�
:

(4f) follows by collecting the two �nal equations for b
!
ab and for bvab together. In a similar

way, equation (4g) can be derived. Equation (4h) follows from a force/torque balance under the

assumption that an Interact-object has no mass and no inertia. The cut-forces and cut-torques at

the two cuts of an Interact-object are given as:

f̂a =

�
�
a

fa

�
; f̂ b =

�
�
b

f b

�
:

Transforming the cut-force and the cut-torque of cut b into cut-frame a, carrying out a torque

balance with respect to the origin of cut-frame a, and forming the force sum, results in:

0 =

�
�
a

fa

�
+

"
bTa

T

�
b + arab �

�
bTa

T

f b
�

bTa
T

f b :

#

(4h) follows when the abbreviation (5b) is used.


