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Bond graphs have established themselves as a reliable tool for modeling physical systems. Multi-bonds are a
bond graphic extension that prov1des a general approach to modeling all kinds of multi-dimensional proc-
esses in continuous physical systems. This paper presents a Modelica library for modeling multi-bond graphs.
and their application to three-dimensional mechanical systems. A set of bond graphic models for ideal me-
chanical components is provided that enables a fully object-oriented modeling of mechanical systems. The
wrapping of the bond graphic models and their representatlon by meaningful icons gives the mechanical
models an infuitive appeal and makes them easy to use. The resultmg mechanical systems can be eﬂimenﬂy
simulated. Additionally, the continuous ‘mechanical ‘models were extended to hybrid models that allow dis-
crete changes to be modeled that occur in mechanical system as a result of hard impacts.

1 Introduction

1.1  Introduction to Bond Graphs

If a physical system is subdivided into small compo-
nents, we observe that these components all exhibit
specific behavior with respect to power and energy:
Certain components sfore energy like a thermal ca-
pacitance; other elements dissipate energy like a
mechanical damper. An electric battery can be con-
sidered a source of energy. The power that is flowing
between components is distributed along different
types of junctions. This perspective offers a general
modeling approach for physical systems: bond
graphs: [3, 8].

Bond graphs are a domain-neutral modeling tool for
continuous system modeling in the field of physics.
The actual graph represents the power flows between
the elements of a physical system. The edges of the
graph are the bonds themselves. A bond is repre-
sented by a “harpoon” and carries two variables: the
flow, £, written on the plain side of the bond, and the
effort, e, denoted on the other side of the bond [3].

The product of effort and flow is defined to be power.
Hence a bond is denoting a power flow from one
vertex element to another.
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Figure 1: Representation of a bond

Domain Effort Flow
electrical voltage (u) current (7)
translational force (f) velocity (v)
mechanics
rotational me- torque (7) angular
chanics velocity (@)
acoustics / hy- pressure (p) volumetric flow
draulics . (@)
thermodynamics | temperature (7) entropy flow ()
chemical chemical molar flow (v)
potential (x)

Table 1: Domain-specific effort/flow pairs

The assignment of effort and flow to a pair of physi-
cal variables determines the modeling domain. Table
1 below lists the effort/flow pairs for the most impor-
tant physical domains.

The vertex elements are denoted by a mnemonic code
corresponding to their behavior with respect to energy

Name Code Equation
resistance R e=R-f
source of effort Se e=el
source of flow St f =/
capacitance C f=C-der(e)
inductance I e =1-der (f)
0-junction 0 all efforts equal
sum (f) =
1-junction 1 all flows equal
sum (e) =0

Table 2: Mnemonic code of bondgraphic elements
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Figure 3: Bond graph of electric circuit

and power. Table 2 lists the most important bond
graphic elements. The mnemonic code is borrowed
from the electrical domain.

Using the bond graphic methodology, one can e.g.
model the electric circuit of Figure 2 by the corre-
sponding bond graph of Figure 3.

1.2 The Modelica BondLib

To conveniently model with bond graphs using Dy-
mola, a Modelica library called BondLib [4] has been
developed by F.E. Cellier and his students. Using this
library, bond graphs can be created in an object-
oriented fashion. The library provides a complete set
of basic bondgraphic elements as atomic (equation)
models. These can be composed graphically to form
more complex composite models.

The basic bondgraphic elements and the bonds them-
selves can be placed on the screen by drag and drop.
They can then easily be connected with each other.
Further specifications can be added by means of pa-
rameter menus.

Although BondLib is a general Modelica library, its
usage is strongly linked to the graphical modeling
environment of Dymola [5]. Since bond graphs are a
graphical modeling tool, it may be much less desir-
able to use this library in a purely alphanumerical
modeling environment.

1.3 Introduction to Multi-bond Graphs

Multi-bond graphs (sometimes also called vector-
bond graphs) are a vectorial extension of the regular

Figure 4: Composition of a multi-bond

bond graphs [2]. They are especially well suited for
modeling multi-dimensional processes.

A multi-bond is composed of a certain number of
bonds of either the same domain or at least closely
related domains. It is represented by a (blue) double
half-arrow as shown in Figure 4. The number shown
at the center of the multi-bond denotes its cardinality,
i.e., the number of individual bonds included.

This paper presents multi-bond graphs of mechanical
systems, which is their primary application. However,
multi-bond graphs can be used to model all kinds of
multi-dimensional processes. Diffusion processes like
heat distribution in a planar electric circuit may be
another meaningful application. Yet another interest-
ing field of application could be the modeling of
chemical reaction dynamics [2]. Multi-bonds may
also be applicable in the field of general relativity [7].

1.4  Advantages of Bondgraphic Modeling

Concerning the modeling of complex physical sys-
tems, bond graphs offer a suitable balance between
specificity and generality. The interdisciplinary con-
cept of energy and power flows creates a semantic
level for bond graphs that is independent of the mod-
eling domain. Thus, basic concepts of physics such as
the first rule of thermodynamics can always be veri-
fled in a bond graph, independent of its application.
This is particularly helpful for intra-domain models
that operate in multiple energy domains. In addition,
the semantic level helps the modeler avoid many
types of modeling errors and find an adequate solu-
tion for his or her task. Modeling by equations is far
more flexible and therefore leaves more room for
mistakes.

Another advantage of bond graphs is their graphical
approach to modeling. Relations can be expressed
more naturally by two-dimensional drawings than in
a one-dimensional equation code. Also the limitations
of the screen (or drawing area) force the modeler to
split his model into simple, easily understandable
elements.
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To us, bond graphs offer also a perfect approach to
gaining a profound understanding of the basic princi-
ples covering all of physics and to organizing the
knowledge concerning specific models. This makes
bond graphs extremely valuable and useful for teach-
ing purposes. However, bond graphs are a modeling
tool like any other. Everything that can be modeled
by bond graphs can also be modeled by other model-
ing paradigms. Some researchers will find bond
graphs a convenient means to organizing their knowl-
edge, whereas other researchers won’t.

2 The MultiBondLib

The original BondLib only contains models for regu-
lar bond graphs. An additional library is needed to
conveniently create models of multi-bond graphs.
This paper presents a Modelica library for multi-
bondgraphic modeling. It is called MultiBondLib and
was designed to bear a strong resemblance to the
existing BondLib in structure and composition. All
users already familiar with BondLib should therefore
be able to quickly acquaint themselves with the new
MultiBondLib.

The MultiBondLib features also domain-specific sub-
libraries for mechanical systems. These are intro-
duced further on in Section 4. Although mechanics
are the major field of application, the basic multi-
bondgraphic elements provide a general solution to
modeling all kinds of physical processes. These basic
elements shall be briefly discussed in the following
paragraphs.

Each vertex element of a regular bond graph has its
multi-bondgraphic counterpart. The elementary equa-
tions of the basic bondgraphic elements remain the
same. A transformation to the multi-bondgraphic
terminology simply extends the scalar equations to
vectorial form. The MultiBondLib provides these
multi-bondgraphic counterparts and much more.

Just like the regular BondLib, the MultiBondLib
features also causal bonds that are helpful for deter-
mining the computational causality of a model and
for analyzing computational problems. A stroke de-
notes the side of the bond at which the flow vector is
being computed. However, there is no need to ever
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Figure 5: The two causal multi-bonds

use causal bonds in Modelica since the computational
causality is determined automatically otherwise.
Causal multi-bonds are also less convenient than their
single-bondgraphic counterparts because the two
causal multi-bonds do not cover all possible cases:
mixed causality is possible as well, but a standard
notation for mixed causality is missing and would
probably be more confusing than helpful.

In addition, MultiBondLib provides certain elements
that are specific to multi-bond graphs. These elements
handle the composition, decomposition and permuta-
tion of multi-bonds. Also special converter elements
have been designed to allow a combination with the
classic BondLib.

The cardinality of a multi-bond and its connected
elements can be defined for each individual element
separately. Consequently, it is possible to create mod-
els containing multi-bonds of different cardinality
without any additional effort. Yet in many cases, the
same cardinality is being used for the entire model.
To afford a good usability in such cases, a default
model has been developed. The default model is an
outer model for all multi-bondgraphic components on
the same level of the modeling hierarchy or below
that defines the default cardinality of all underlying
bondgraphic elements.

3 Mechanical MultiBond Graphs

In the mechanical domain, the bondgraphic effort is
identified with the force, £, and the bondgraphic flow
is identified with the velocity, v. The corresponding
effort/flow pair of the rotational domain is torque, ¢,
and angular velocity, @. These assignments define the
semantic meaning of the bondgraphic elements.

The inductance implements the fundamental equation
f=m-dv/dt and represents storage of kinetic en-
ergy. The capacitance represents the storage of poten-
tial energy. It can be used to model a spring. A linear
bondgraphic resistor models an ideal damper. All of
these elements can be rigidly connected using a 1-
junction, whereas a force interaction between two
neighboring elements is modeled by a O-junction.

Based upon this standard, various tools for the multi-
bondgraphic modeling of mechanical systems have
been developed since their invention by Breedveld in
1984 [2]. Unfortunately, most of these tools are in-
complete, e. g. only suitable for the description of
linear systems; and many are outdated.
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To understand the specific difficulties that arise when
using a bondgraphic approach to modeling a me-
chanical system, it is important to note that such sys-
tems often exhibit holonomic constraints, i.e., con-
straints resulting from the topology of the system. No
two mechanical bodies can occupy the same space at
the same time, and frequently, different mechanical
bodies are related to each other by a distance con-
straint, e. g. they may be connected to each other by a
mass-less bar. Holonomic constraints are constraints
based on location. However, bond graphs operate on
velocities and forces only. Hence mechanical sys-
tems cannot be modeled by bond graphs alone. There
is a need for additional graphical modeling tools for
expressing holonomic constraints between bodies.

The MultiBondLib offers such a link to other model-
ing tools through sensor elements. Sensors elements
“measure” certain bondgraphic variables like effort,
flow, momentum (integrated effort) or position (inte-
grated flow). In the MultiBondLib, the signal emitted
by the sensor elements is a-causal and simply repre-
sents an equality equation (not an assignment). Hence
sensor elements are not limited to a single usage.
They may serve a number of different purposes:

e to measure bondgraphic variables,

e to convert bondgraphic variables to non-bond-
graphic signals, and

e to establish algebraic relationships between
bondgraphic elements.

It is this latter form of usage that enables us to state
holonomic constraint equations: The positional state
is derived through sensor elements and influences the
dynamical behavior through modulations. It is impor-
tant to note that sensor elements as well as modula-
tions are neutral with respect to power and energy.
Hence the entire energy flow is described by the bond
graph alone.

The following paragraphs present two examples that
inctude the applications of these elements in the field
of planar mechanical systems. In such a system, the
world is restricted to two dimensions. Models for
planar mechanic systems are therefore a lot simpler
than three-dimensional models. They may serve as a
good introduction to multi-dimensional mechanics
since such models are much more easily understand-
able. One major simplification in planar mechanics is
the fact that the rotational inertance, J, is a constant
scalar for all possible orientations, because the axis of
rotation is fixed. Thus everything can be comfortably
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Figure 6: Composition of a planar multi-bond

computed using the coordinate vectors of the inertial
system. There is no need for transformations between
different coordinate systems as is the case in 3D-
mechanics. All effort and flow variables of a planar
mechanical bond graph can be conveniently resolved
in the inertial system.

Hence planar mechanical systems can be described
by multi-bond of cardinality three. Figure 6 depicts
the planar mechanical multi-bond. The first two
bonds belong to the translational domain, whereas the
third bond belongs to the rotational domain. The
effort vector of a planar multi-bond then is (f,., f,.1)",
whereas the corresponding flow vector is (v,,v,, @) .
Figure 7 presents the bondgraphic model of a simple
planar pendulum.

The translational position is fixed at the revolute joint
by a source of zero flow, Sf, of cardinality two. The
revolute joint is free to rotate, i.e., it does not experi-
ence any torque. Hence it is modeled by a source of
zero effort, Se, of cardinality one. The two multi-
bonds are amalgamated to form a general multi-bond
of planar mechanical systems of cardinality three.

The mass itself is represented by the 1-junction
shown at the bottom of Figure 7. In a 1-junction, the
flow variables (velocities) are equal, whereas the
effort variables (forces) add up to zero. Hence the 1-
junction represents the d’Alembert principle applied
to the mass. The forces acting on the mass are the
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Figure 7: Bond graph of a planar pendulum
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Figure 8: Icon of the modulated transformer. It provides
two bondgraphic connectors (denoted by light blue circles)
and two signal connectors (denoted by blue diamonds)

inertial force, 7, and the gravitational force, which can
be represented by another source of effort, Se, pulling
in the negative y-direction.

The mass element is connected to the revolute joint
by a mass-less rod describing a positional translation
between the body element and the revolute joint. This
rod is modeled by a modulated transformer element,
mTF, that transforms the angular velocity into a trans-
lational velocity, and vice-versa.

This transformation is dependent on the current angle
of the revolute joint. Therefore the transformer is
modulated by the orientation angle of the revolute
joint that is measured by the sensor element, Dg. The
a-causal signal connecting the sensor element in
combination with the transformer implements the
holonomic constraint.

Let us take a closer look at the m7F element pre-
sented in Figure 8 to get a more profound understand-
ing. The element inherits the bondgraphic effort and
flow vectors (please remember the vector composi-
tion presented in Figure 6) (e, f;) and (e,, f,). from
its two bondgraphic connectors. These two connec-
tors represent the hinges of a mass-less rod. Hence,
the transformation between the variable pairs is speci-
fied by the parameter vector, d, that represents the
distance vector between the two hinges. A modulation
of the transformation is determined by two signals:
the current orientation ¢ and an optional elongation
factor ampl. The actual model then defines an addi-
tional auxiliary variable, r, and implements the bal-
ance equations of a lever:

. (—sin((p) cos(¢)
—cos(¢) —sin(g)
LHIL21= A[L2]+r £[3]
£[81= £[3]
e[1;2]=¢,[1;2]
e,[3]1=¢,[3]+7  ¢,[1:2]

)'dﬂmpl )]

This modulated transformer, mTF, is a highly special-
ized element that hardly makes any sense outside the

Figure 9: Schematic diagram of a crane crab

planar mechanical domain. Such specialized elements
are thus provided in corresponding domain-specific
sub-libraries, rather than listing them among the basic
multi-bond graph elements of the MultiBondLib.

The large bond graph of Figure 10 represents the
model of a second example: a simple model of a
crane crab. The corresponding schematic diagram is
presented in Figure 9.

Let us refrain from offering a detailed explanation of
the model. Instead we shall take a look at the overall
structure. The reader may observe the a-causal signals
in Figure 10 that flow alongside the actual bond
graph. These signals contain the variables for the
current position and orientation. Whereas the multi-
bond graph models the dynamics of the system, the
signals handle the system’s positional state.

Furthermore, multi-bond graphs of mechanical sys-
tems tend to become very large, since the sheer gen-
erality of the bondgraphic approach does not allow a
more specific representation of larger mechanical
elements. This makes the resulting bond graph hard to
read and understand. It is therefore helpful to separate
the bond graph into specific mechanically meaningful
subparts as indicated by the gray rectangular frames
of Figure 10. These subparts can then be represented
by composite models that contain a wrapped version
of the underlying subsystem multi-bond graph. The
resulting model is presented in Figure 11 and is now
easily understandable.

4  The Mechanical Sub-libraries

Two libraries for the modeling of mechanical systems
have been developed, one for planar mechanics: “Pla-
narMechanics,” and the other for 3D-Mechanics:
“Mechanics3D”. Both libraries are included as sub-
packages within the MultiBondLib. The following
discussion will now focus on the components of the
Mechanics3D library. However, most of the subse-
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Figure 10: Multi-bond graph of a crane crab

quent descriptions hold for the planar mechanical
library as well.

Similar to the Multi-body systems library of M. Otter
[9], the Mechanics3D library offers models for an
extensive set of mechanical components. It contains
models for rigid parts such as bodies and rods, as well
as models for different kinds of joints such as revo-
lute joints or prismatic joints. A spring and a damper
are typical examples of force elements for which
models are offered in the library as well. In addition,
models of ideal rolling objects such as wheels or
marbles are provided. All of these elements can be
further specified by parameter menus and feature a
suitable animation.

Due to the similarity in structure and design, users of
the standard Modelica MultiBody library will find the
Mechanics3D library very easy to use. The Mechan-
ics3D library represents both a subset and a superset
of the MultiBody library. Yet in contrast to the stan-
dard MultiBody library, all mechanical models of the
new Mechanics3D library are based upon wrapped
bondgraphic models. A look inside the models reveals
a bondgraphic explanation.

=10} Massl

=12}

Figure 11: Multi-body diagram of a crane crab

4.1  Connector Types

In this section, we discuss the selection of connector
variables for the mechanical components in Mechan-
ics3D. This selection is defined by the process of
wrapping. Therefore all bondgraphic variables have
to be part of the connector. These are:

o the force vector, £, (flow variables),
e the torque vector, 7, (flow variables),
o the velocity vector, v, (potential variables),

e the angular velocity vector, @ , (potential vari-
ables);

where the variables of the rotational domain are re-
solved with respect to their corresponding body sys-
tem. All other variables are resolved in the inertial
system. Also the variables of the positional signals
are part of the connector:

o the position vector, x, (potential variables),

o the orientation matrix, R , (potential variables).

Please note that the connector contains redundant
information. The variables v and @ are derivatives of
x and R. Also R itself is 3%3 orientation matrix and
thus a redundant way of expressing the current orien-
tation.

Although the Mechanics3D library and the Multi-
Body library are very similar, the Mechanics3D li-
brary defines its own slightly different connectors.
Hence it is not possible to combine the components
of these two libraries without additional tools.
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Figure 12: Multi-body diagram of a 3D kinematic loop

4.2  Kinematic Loops

The redundancy of the connector causes problems
when components are connected in a circular fashion,
as this is often the case in kinematic loops. A standard
connection statement leads then to a singularity in the
model. To overcome these difficulties, a second alter-
native connection statement is needed that contains
only non-redundant information. For each kinematic
loop, one standard connection has then to be replaced
by its non-redundant counterpart.

However, the user of the library does not need to
worry about these details, because the replacement is
achieved automatically. To implement the necessary
preprocessing of the model, a set of special Modelica
functions' has been used. These are the same methods
that have also been applied in the case of the standard
MultiBody library (see [9]).

Figure 12 shows the Mechanics3D model of a 3D
kinematic loop. No special cut joints have been used,
and the elimination of redundant equations and re-
dundant states takes place automatically. Whereas the
automatic elimination algorithm works in most cases,
planar loops within a 3D environment still require
special treatment. A special cut joint has been devel-
oped for this purpose.

43  An Example: The Bicycle

This example was created by components of Mechan-
ics3D and presents the model of an uncontrolled ideal
rolling bicycle. Such a bicycle has seven degrees of
freedom on the level of position and three degrees of
freedom on the level of velocity. It is a partially stable

! These are: defineRoot(), definePotentialRoot(), define-
Branch(), isRoot(), and rooted().

system for a specific range of driving velocities. A
nice description of the dynamic behavior of a bicycle
can be found in a paper by K. Astrém et al. [1]. The
relevant parameter values for mass and geometry of
this specific model are taken out of a paper by
Schwab et al. [11]. The described bicycle is self-
stabilizing for driving velocities between 4.3 ms™ and
6.1 ms™.

Figure 13 depicts the multi-body diagram of the bicy-
cle model. Although no closed loop is visible in the
multi-body diagram, the model contains a closed
kinematic loop, since both wheels are connected to
the road. The Mechanics3D library offers an outer
world3D model that is used in exactly the same fash-
ion as the corresponding model of the standard Mul-
tiBody library.

The selected state variables are the cardan angles of
the rear wheel and their derivatives. These three car-
dan angles represent the orientation on the plane, the
lean of the rear frame, and the roll angle of the rear
wheel. Additional state variables are the position of
the rear wheel on the plane, the angle of the steering
joint, and the angle of the front revolute joint. Each of
the two wheels defines one holonomic constraint
equation that prevents the bicycle from sinking into
the road.

Figures 14 and 15 show the results of the simulation.
The lean angle can be examined in a plot window,
and the bicycle is nicely animated within Dymola.
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Figure 13: Multi-body diagram of a bicycle
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Figure 14: Animation model of the bicycle

~——— RWheel.phi[2]

0.3

024 /7\

/ / \
\ \ \ ‘
J / \ / \ / \
0.1 / ‘,‘ J A ! A
- i \ / \ l
/
/

{rad]

0.0 \ /
/

0.1 V'\\ _/’ \ / \‘a /

-0.2 T T T T T T T T T 1

Figure 15: Plot of the lean angle

4.4  Run-time Efficiency

The selection of the state variables is of major impor-
tance for the efficiency of the resulting simulation.
Usually this selection is automatically achieved by
Dymola. Nevertheless variables can be suggested to
the simulation program via the advanced Modelica
attribute: “StateSelect”. These variables are the states
of a joint’s relative position and velocity. Each joint is
declaring state variables, unless there is a kinematic
loop.

In the latter case, there are often many equivalent sets
of state variables. Dymola uses the feature of dy-
namic state selection, where the state variables are
chosen at run time. This offers the most flexible solu-
tion but leads to a slower simulation and to many
additional equations that are often unnecessary. Hen-
ce it is strongly recommended to determine a static
set of state variables manually in such a case when-
ever this is feasible.

All mechanical components that contain potential
state variables have the option of a manual enforce-
ment of their state variables via the parameter menu.
To this end, the Boolean parameter “enforce-States™
needs to be activated.

MultiBody Mechanics3D
Experiment | Non-lin. | Integr. | Non-lin. | Integr.
eq. steps eq. steps
Double Pendu- 0 549 0 549
lum
Crane Crab 0 205 0 205
Gyroscopic 0 24438 0 25574
Exp. with
Quaternions )
Planar Loop 2 372 2 372
Centrifugal {2,2} 70 {2,2} 70
FourBar 5 446 5 625
Loop*
Bicycle* 1 97 1 84

Table 3. Comparison of the two mechanical libraries

The Mechanics3D library and the standard Multi-
Body library contain elements for the same purpose
that can be used in very similar ways. It is therefore
easily possible to translate the model for a mechanical
system from one library to the other. Both libraries
are examined with respect to their run-time effi-
ciency. The complexity of the resulting systems of
equation and the computational effort of the simula-
tion are compared for a given set of examples. The
results of this examination are presented in Table 3.
There is hardly any difference. In fact, the generated
equations of both libraries are very similar. There is
only one remarkable difference: In contrast to the
Mechanics3D library, the translational velocity is not
part of the connector variables of the standard Multi-
Body library. The elements are only connected by the
translational position. The equations for the transla-
tional velocities are then derived (when necessary) by
differentiation. In the bondgraphic models of the
Mechanics3D library, these equations are explicitly
stated.

Table 3 lists the sets of non-linear equations for a
given set of experiments. The number of integration
steps is counted for a simulation period of 10 sec-
onds. The simulation method was Dassl with a toler-
ance of 10* A * indicates that the parameters of the
experiment setup differ slightly between the two
libraries.

5 Conclusions and Further Work

A Modelica library for convenient multi-bond-
graphic modeling has been developed. It provides a
general solution to modeling all kinds of multi-
dimensional processes in continuous physical sys-
tems. Multi-bond graphs offer a good framework for
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Figure 16: An implementation of Newton's cradle

modeling mechanical systems. The bondgraphic me-
thodology proved to be powerful enough for model-
ing all important ideal subparts of mechanical sys-
tems accurately and efficiently.

The resulting libraries for mechanical systems Pla-
narMechanics and Mechanics3D provide an extensive
set of component models. These domain-specific
models have an intuitive appeal and are easy to use.
They consist in wrapped bondgraphic models, and a
closer look reveals a bondgraphic explanation of their
behavior. Also quality and efficiency of the resulting
solution are not impaired by the bondgraphic model-
ing technique. The selected state variables are chosen
wisely, and the resulting systems of equations can be
solved fast and accurately.

Furthermore, a third library for mechanics has been
developed and included in the MultiBondLib. It is
called “Mechanics3DwithImpulses” and represents an
extension of the Mechanics3D library. The existing
purely continuous mechanical models were extended
by their corresponding impulse equations to hybrid
models that contain an additional discrete event part.

This library was designed to model the behavior of
mechanical systems in situations of hard ideal im-
pacts. The type of mechanical system is thereby not
limited at all. Impacts can be modeled between single
objects, as well as between kinematic loops (e.g. a car
suspension). The provided parameter set for the im-
pact characteristics includes also specifications for
elasticity and friction.

Sadly, the Modelica support for discrete event model-
ing [10] is not yet fully sufficient. Hence the resulting
solution leads partially to models that are unnecessar-
ily complicated in execution and design. Nevertheless
the solution is fine and workable for small scale mod-
els. Figure 16 shows a simple example of a mechani-
cal system modeled using the extended 3D library.

-
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