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ABSTRACT

This paper presents a new method for symbolically
solving large sets of algebraically coupled equations as
they are frequently encountered in the formulation of
mathematical models of physical systems in object{
oriented modeling. The method, called \relaxing," en-
ables the modeler to exploit the special matrix struc-
ture of the type of system under study by simply pla-
cing the keyword relax at appropriate places in the
model class libraries. This procedure de�nes an eva-
luation sequence for a sparse matrix Gaussian elimina-
tion scheme. The method is demonstrated at hand of
several broad classes of physical systems: drive trains,
electrical circuits, and tree{structured multibody sy-
stems. In particular, relaxing allows a model compiler,
such as Dymola, to start from a declarative, object{
oriented description of the model, and to automatically
derive the recursive O(f) algorithm used in modern
multibody programs.

Keywords: Sparse matrices; symbolic formulaemani-
pulation; object{oriented modeling; relaxing; tearing.

1. INTRODUCTION

When deriving mathematical models of complex phy-
sical systems, it is essential that the modeler has the
option to describe submodels of subsystems indepen-
dently, and connect them topologically in the same
fashion as he or she would connect real subsystems in
a laboratory. For example, when modeling a large el-
ectronic circuit consisting of many circuit elements, it
is extremely inconvenient for the modeler to derive a
state{space model manually from the circuit diagram.
Instead, he or she should have the possibility to in-
voke component models from a component model li-
brary, and, for components not available in any libr-
ary yet, describe the laws that govern each component
class one at a time, and then connect these compo-
nent models in the same way as the real components

are connected in the circuit. Block diagram editors,
such as SIMULINK, which force the modeler to �rst
reformulate the problem at hand into a connection of
input/output blocks, are not suitable for such purpo-
ses, except to describe the higher echelons of a control
system architecture [6, 21].

In an object{oriented modeling system, such as Dy-
mola [8, 9] or Omola [1, 2], models are described in
a declarative way, i.e., only the local properties of
objects and the connections among the objects are
de�ned. The connection structure implicitly de�nes
the relationship between the variables of the submo-
dels, and leads to additional equations. Collecting all
the equations together usually results in a large set of
di�erential and algebraic equations. E�cient graph{
theoretical algorithms are available to sort the equati-
ons and variables into a form that contains algebraic
loops of minimal dimensions [7, 8, 17].

For models of physical systems, such as electrical
circuits, mechanical, or hydraulic systems, algebraic
loops of minimal dimensions are often still quite large.
On the other hand, derivation from an object{oriented
model description naturally leads to systems of equa-
tions that are usually very sparse, i.e., only few of the
variables are present in any one equation. The A ma-
trix of a linear system

Ax = b (1)

may contain only 5{10% non{zero elements, or even
less. In order to solve such a system of equations in an
e�cient way, the used algorithm has to take into ac-
count the sparsity of the system when applying Gaus-
sian elimination. If nothing more is known about such
a system, this task is quite hard: on the one hand, the
solver ought to permute rows and columns of A in or-
der to preserve the sparsity during elimination, while
on the other hand, it should use permutations for pi-
voting, i.e. to guard against division by zero [7]. This
procedure always represents a compromise. If the sol-
ver concentrates too much on preserving sparsity, the
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numerical properties of the Gaussian elimination may
be compromised. On the other hand, if the solver igno-
res the sparsity in order to keep the values of the pivots
large, this will lead to an increase in non{zero elements
in the matrix, which in turn leads to a (possibly avoi-
dable) overhead down the road. A general{purpose
sparse{matrix solver that does a good job at balan-
cing sparsity against a deterioration of the numerical
condition is e.g. subroutine HA28 from the Harwell li-
brary.

If additional knowledge about the system or about
the structure of the equations is known, the solution
can often be accomplished in a much more e�cient
way. For example, if A is symmetric and positive de-
�nite, it is well{known that pivoting is not necessary
when applying a Cholesky decomposition, i.e., when
transforming A to A = LLT , where L is a lower tri-
angular matrix. This in turn leads to the desirable
property that row and column permutations, in order
to preserve the sparsity of A during elimination, can
be done without knowing the numeric values of the pa-
rameters. Only the zero/non{zero pattern of A must
be provided for this purpose. As a consequence, such
a sorting algorithm can be applied once, before the
start of a simulation, rather than repeating the proce-
dure over and over again during each simulation step.
At every time step, the elimination of A follows a �-
xed pattern that was determined before the simulation
started.

In an object{oriented modeling system, it is di�cult
to use special{purpose sparse matrix solvers, such as
the ones for banded systems or for positive de�nite sy-
stems. The reason is that the modeling system would
have to deduce knowledge about the overall system
structure. Only local properties of objects and their
interconnections are known. Hence the only reasona-
ble alternative seems to be to use a general{purpose
sparse matrix solver. However, such a solution may
be quite ine�cient compared to the specialized algo-
rithms that a domain{speci�c simulation program can
use.

In this paper, it shall be shown that it is possible
to introduce domain{speci�c knowledge in component
model libraries of a general{purpose object{oriented
modeling system. The symbolic manipulation algo-
rithms inside the modeling software can then exploit
this knowledge and generate code that is as e�cient
as the code that a special{purpose modeling system
would generate. In this way, the object{oriented mode-
ling system is able to solve even large systems of equa-
tions much more e�ciently than if a general{purpose
sparse{matrix solver would have been used.

In [10], a method called tearing was introduced to
transform large sparse systems of equations down to

small dense systems. The method was further elabo-
rated in [11]. Below, a new complementary method,
called relaxing, will be discussed that allows the mode-
ler to provide more model knowledge to be used in the
code optimization process within the modeling soft-
ware.

2. BLT{TRANSFORMATION

In order to be able to discuss the relaxing method,
the basic transformation algorithm of object{oriented
modeling languages has to be reviewed. In general,
a high{level, object{oriented model description leads
directly to a large, sparse, non{linear system of equa-
tions that has to be solved for the unknown variables
z:

h(z) = 0 (2)

Usually, the �rst derivatives of the state variables, _x,
are elements of the vector z. By permutation of equa-
tions and variables, it is possible to transform this
system of equations to block{lower{triangular (BLT)
form that can be solved in a nearly explicit forward
sequence. The basic idea is explained by means of the
following simple example consisting of three nonlinear
equations:

h1 (z1; z3) = 0
h2 (z2) = 0
h3 (z1; z2) = 0

z1 z2 z3

S1 =

2
4 1 0 1

0 1 0
1 1 0

3
5

The structure of the system of equations is described
by the structure incidence matrix, S, displayed to the
right of the equations. This matrix signals whether
the kth variable (kth column) occurs in the ith equa-
tion (ith row), or not. By permuting equations and
variables, this set of equations can be brought to BLT{
form:

h2 (z2) = 0
h3 (z1; z2) = 0
h1 (z1; z3) = 0

z2 z1 z3

S2 =

2
4 1 0 0

1 1 0
0 1 1

3
5

This process is also called partitioning the set of equati-
ons. The strictly lower{triangular form of the permu-
ted structure incidence matrix characterizes the fact
that the non-linear equations can be solved one at a
time in a given sequence. First z2 is evaluated from
h2, then h3 is solved for z1, and �nally, z3 is determi-
ned from h1. If the variable to be solved for appears
linearly in an equation, that equation can be transfor-
med to explicit form by simple formulae manipulation.
Otherwise, a local Newton iteration is needed.

In general, it is not possible to transform the struc-
ture incidence matrix to a strictly lower{triangular
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form. However, e�cient algorithms exist to trans-
form to block{lower{triangular form, i.e., to a form,
in which some blocks of dimensions � 1 are present
along the diagonal. The algorithm guarantees that the
dimensions of the diagonal blocks are kept as small as
possible, i.e., it is not possible to transform to blocks
of yet smaller dimensions just by permuting variables
and equations. Non{trivial blocks on the diagonal cor-
respond to systems of equations that have to be sol-
ved simultaneously. In other words, the partitioning
algorithm �nds algebraic loops of minimal dimensions.
Algorithmic details and a proof of the mentioned pro-
perty can be found in [7].

3. AN INTRODUCTORY EXAMPLE

The simple drive train in �gure 1 is used as an in-
troductory example for the relaxing method. More
advanced systems shall be treated in due course. Fi-
gure 1 shows a window from Dymola's object{diagram
editor. The drive train consists of the rotor, s1, of a
motor, which drives an ideal inertialess gear, g, which
in turn drives the load inertia, s2.

shaft1

gear

shaft2

tin

cut l cut r

Figure 1: Object diagram of a drive train

In Dymola the components of a drive train can be
described in the following way:

model class Shaft
parameter J
cut l (w; a = tl) fleft cutg
cut r (w; a =� tr) fright cutg

J � relax(a) = tl� tr
end

model class ShaftS
parameter J
cut l (w; a = tl)
cut r (w; a =� tr)

der(w) = a
J � a = tl� tr

end

model class Gear
parameter i = 1
cut l (wl; al = tl)
cut r (wr; ar =� tr)

wl = i � wr
al = i � relax(ar)
i � tl = tr

end

Each component consists of two cuts, with which the
component can be rigidly connected to other drive
train components. The variables in the cut de�niti-
ons are the angular velocity, w, the angular accelera-
tion, a, and the cut{torque, t. Cut{variables at the
right{hand side of the slash \/" delimiter are through
variables, i.e., when connected at a point, these va-
riables are summed up to zero. The reader is asked
to ignore the \compiler{directive" relax for the time
being. Class Shaft describes shafts with two cuts. The
single equation states a torque balance. Class ShaftS
is a shaft where the angular velocity is used as a state
variable. Finally, class Gear contains the equations of
an ideal gear, in which the angular velocity and acce-
leration are transformed via the gear ratio, i, whereas
the torques are transformed via the inverse relations-
hip. After adding graphical information, the compo-
nents can be connected together at cuts as shown in
�gure 1.

In order to produce a state{space description of
this system, the model compiler �rst collects the lo-
cal equations of all components, adds the equations
according to the connection structure, and transforms
the resulting system of equations to BLT{form. Using
the abbreviations, �1 = shaft1.a, �2 = shaft2.a,
�1 = shaft1.tl, and �2 = shaft2.tr, the BLT{form
of the drive train is given by:

2
664

J1 0 1 0
0 J2 0 �1
�1 i 0 0
0 0 i �1

3
775

2
664

�1
�2
�1
�2

3
775 =

2
664

�in
0
0
0

3
775 (3)

_!2 = �2 (4)

In other words, the BLT{form of this example consists
of primarily one single block. Note that it is not possi-
ble to reduce this system of equations further by mere
permutation of rows and columns of the matrix. Fur-
thermore note that the ordering of the rows within a
diagonal block of the BLT{form is not unique, i.e., the
system of equations above could also have been pre-
sented in another sequence. In order to compute the
derivative of the state variable, i.e., _!2, a system of 4
linear equations has to be solved at every step of the
simulation.

When the reader would solve this problem by hand,
he or she could do much better. Since the system ma-
trix in (3) contains many zero and one elements, it is
easy to eliminate variables, and to end up with the
well{known equation:

(J2 + i2J1) _!2 = i�in (5)

that can easily be solved for the only remaining un-
known variable, _!2.
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The BLT{transformation performs generally not as
poorly as this example seems to indicate. Assume that
additional drive train components are attached via ro-
tational springs to the drive train above (describing the
gear elasticity). In this case, the BLT{transformation
will detect isolated algebraic loops, one for each part,
which consist of rigidly attached shafts and gear boxes
only, i.e., a spring acts as a separator between algebraic
loops.

4. RELAXING

Assume that the following linear system of equations
should be solved:2

4 A11 A12 A13

A21 A22 A23

A31 A32 A33

3
5
2
4 x1
x2
x3

3
5 =

2
4 b1
b2
b3

3
5 (6)

where the Aij are block matrices of appropriate di-
mensions. When using standard Gaussian elimination,
the sequence of the elimination process depends on the
numerical values of the matrix elements. Relaxing is a
way how this sequence can be de�ned by the modeler:

1. Characterize some of the unknown variables in
some equations by relax(xi).

2. Transform the system to BLT{form assuming that
the \relaxed" variables are not present. To distin-
guish from the \usual" BLT{transformation, this
partitioning is called relaxed BLT{form. The rela-
xed BLT{formwill have diagonal blocks of smaller
dimensions.

3. Solve the system in BLT{form by Gaussian elimi-
nation in such an order that the variables of the
diagonal blocks of the BLT{form are eliminated in
sequence. Since the sequence is �xed, the elimi-
nation can be done symbolically, thereby utilizing
the zero/non{zero pattern of the matrix.

Equation (6) could be relaxed in the following way:

A11x1 +A12relax(x2) +A13relax(x3) = b1
A21x1 +A22x2 +A23relax(x3) = b2
A31x1 +A32x2 +A33x3 = b3

(7)

i.e., during partitioning it is assumed that the �rst
equation is a function of x1 only. The relaxed BLT{
form reduces the previously full{sized matrix to block
diagonal form:2

4 A11 0 0

A21 A22 0

A31 A32 A33

3
5
2
4 x1
x2
x3

3
5 =

2
4 b1 �A12relax(x2)�A13relax(x3)
b2 �A23relax(x3)
b3

3
5

Gaussian elimination in the indicated sequence me-
ans that �rst x1 is determined as a function of
relax(x2); relax(x3):

x1 := A�111 (b1 �A12relax(x2)�A13relax(x3)) (8)

Inserting this relationship into the second and third
equations of (7) results in a reduced set of equations:

A
(2)
22 x2 +A

(2)
23 relax(x3) = b

(2)
2

A
(2)
32 x2 +A

(2)
33 x3 = b

(2)
3

(9)

where: A
(1)
ij := Aij

b
(1)
i := bi

A
(k+1)
ij := A

(k)
ij �A

(k)
ik A

(k)
kk

�1
A

(k)
kj

b
(k+1)
i := b

(k)
i �A

(k)
ik A

(k)
kk

�1
b
(k)
k

Solving the �rst equation in (9) for x2 results in:

x2 := A
(2)
22

�1
(b

(2)
2 �A

(2)
23 relax(x3)) (10)

Inserting this relationship again into the last row of (9)
�nally gives an equation that can explicitly be solved
for x3:

A
(3)
33 x3 = b

(3)
3 (11)

After x3 is computed, x2 can be obtained from (10)
and �nally x1 from (8), or in general:

xk := A
(k)
kk

�1
(b(k)k �

nX
j=k+1

A
(k)
kj xj)

In order for relaxing to be possible, two conditions
must be ful�lled. First, the relaxed variables must be
chosen in such a way that a transformation to BLT{
form is possible, i.e., that the system matrix is not
structurally singular. This would not be the case if
e.g. variable x2 in the second row of (7) would also be
relaxed. Second, the Gaussian elimination must not
lead to a division by zero. The �rst condition can be
checked automatically by the model compiler. Howe-
ver, it is not possible to check the second condition
without knowing the actual numerical values of the
matrix elements.

Relaxing has the advantage that the sequence of
computation can be determined before a simulation
run starts, thereby utilizing the sparsity of the matrix.
For example, if one of the block matrices Aij is zero,
all terms in which this matrix appears can be cance-
led. By appropriately chosen relaxing variables, newly

computed intermediate matrices A
(k)
ij remain zero too,

so that the original sparsity pattern is kept as much as
possible also for the intermediate, smaller systems of
equations. In particular, the computation can be done
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in a fully symbolical way, which would not otherwise
be possible1. Relaxing has the drawback that it can
be di�cult for the modeler to decide how a system of
equations should be relaxed correctly. Especially, it
must be guaranteed that the prede�ned sequence does
not lead to division by zero.

Above, relaxing was used to directly solve the given
linear system of equations by a speci�c sequence in
Gaussian elimination. Alternatively, the relaxing de-
�nition can be utilized to solve the linear (or even a
non{linear) system of equations iteratively, which can
be useful for very large systems of equations (say >
10000 equations). In such a case, the relaxed variables
can be used as iteration variables in a �xed{point ite-
ration. For equation (7), this results in the following
iteration scheme:

x2 := init(x2)
x3 := init(x3)
repeat

relax(x2) := x2
relax(x3) := x3
x1 := A�111 (b1 �A12relax(x2)

�A13relax(x3))
x2 := A�122 (b2 �A21x1 �A23relax(x3))
x3 := A�133 (b3 �A31x1 �A32x2)

until converged(x2 � relax(x2)) and
converged(x3 � relax(x3))

The relaxing iteration scheme corresponds essentially
to a Gauss{Seidel iteration. However, the symbolic
implementation of this algorithm within an object{
oriented modeling system provides a much larger de-
gree of exibilty than any numerical implementation
of the algorithm ever would.

1. A standard Gauss{Seidel iteration uses all of the
unknown variables as iteration variables. In a re-
laxing iteration scheme, this is seldomly the case.
For example, if matrix A21 were to be zero in the
above example, only x3 would have to be used
as an iteration variable, which enhances both the
stability and e�ciency of the iteration.

2. A standard Gauss{Seidel iteration works on scalar
equations. In a relaxing iteration scheme, it is
easy to work additionally on block matrices, and
to solve the small blocks Aii by Gaussian elimi-
nation. For some types of systems, this enhances
the stability of the algorithm further.

3. The set{up of an iteration is very easy in an
object{oriented modeling systems such as Dy-

1Using determinants, it is always possible to solve a system
of equations symbolically. However, this method is extremely
ine�cient for medium to large system sizes.

mola. The relax operator must simply be sup-
plied in the class de�nitions at appropriate pla-
ces. If the model is build up by objects of the same
class, which is e.g. the case when discretizing par-
tial di�erential equations, it su�ces to place the
relax operator at a single location in order to get
a suitable iteration scheme.

In [10], several alternatives of tearing are discussed.
Especially, branch and node tearing in the bipartite
graph of a system of equations are mentioned. The
paper explains in detail how node tearing can be used
in an object{oriented modeling system. Relaxing can
be seen as an application of the branch tearingmethod.

5. RELAXING DRIVE TRAINS

The drive train library presented earlier in this paper
already contains appropriate relaxing information. For
the drive train example in �gure 1, this leads to the
following relaxed BLT{form:

2
664
�1 0 0 0
0 1 0 0
i 0 �1 0
0 0 �1 J2

3
775

2
664

�1
�1
�2
�2

3
775 =

2
664
��in + J1relax(�1)

i � relax(�2)
0
0

3
775

(12)
Applying Gaussian elimination �nally results in:

c1 := �i�in
c2 := �iJ1
c3 := ic2
c4 := J2 � c3
�2 := �c1=c4
�2 := �c1 + c3�2
�1 := i�2
�1 := �in � J1�1

As can be seen, this implementation is equivalent
to the hand{derived equation (5) and much more e�-
cient than to repetitively solve a linear system of four
equations.

At �rst sight, it seems rather di�cult to apply the
relaxing technique. Where should the relax operators
be placed in the models? Looking at equation (8) may
provide some hints as to how the relaxing variables
ought to be selected. Whenever the modeler knows
that an equation in a model class should be solved for
a speci�c variable and it turns out that this equation
usually ends up in algebraic loops, all the remaining
variables in this equation should be relaxed. This rule
of thumb can be applied to a drive train.

A drive train can be split into \parts," where each
part consists of rigidly attached shafts and gears, and
where the parts are connected to each other via \force"
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elements such as springs or dampers. Each part is de-
scribed by one state variable, the angular velocity of
one of its components. Using all state variables, the
angular velocities of all components of a part as well
as the relative angular velocities between the parts can
be determined. Since force laws are functions of the
state variables, the torques produced by all force laws
can be computed as well. At this stage, the drive train
parts are totally decoupled from each other, since the
torques at both ends of all parts are known. Traversing
recursively from both ends of a part in the direction of
the element de�ning the state variable, there is always
the situation, that the torque at one side of a compo-
nent is known, and that the torque at the other side of
the component should be computed. If this could be
done, all torques in a part could be calculated. In order
to be able to proceed in this way, the other unknown
variables in the equations, i.e., the angular accelerati-
ons, have to be relaxed.

6. RELAXING ELECTRICAL CIRCUITS

Some basic electrical elements of an electrical circuit
can be described by the following model classes:

model class OnePort
fsuperclass of all one��port elementsg
cut p ( V p = i ) fpositive ping
cut n ( V n =� i ) fnegative ping
local u fvoltage dropg

u = V p� V n
end

model class Resistor
inherit OnePort
parameter R fResistanceg

R � i = V p� V n
end

model class Capacitor
inherit OnePort
parameter C fCapacitanceg

C � der(u) = i
end

Other elements, like inductors and voltage or current
sources, are described in similar ways. When electrical
elements are connected together, a large, sparse system
of di�erential and algebraic variables occurs that is
characterized by the following structure:

0 = Ai(t) (13)

u(t) = ATv(t) (14)

iv(t) = hv( _u(t);u(t);v(t)) (15)

0 = hr( _u(t);u(t);v(t); dir(t)=dt; ir(t)) (16)

i = [ic; ir] (17)

where A is the reduced incidence matrix describing the
connection structure of the electrical elements2. (13)
states that the sum of the currents i at every node is
zero, (14) computes the voltage drop u across all ele-
ments from the node potentials v, (15) are the compo-
nent equations of voltage{controlled elements (such as
resistors and capacitors), and (16) are the component
equations of the remaining elements (such as induc-
tors). (13{16) are called the Sparse Tableau Equations
[13, 20, 19]. Note that this system of equations con-
tains the potentials vi of all nodes, the potential drops
ui through all elements3, and the currents ik through
all voltage{controlled elements as unknown variables.

Experience shows that the BLT{transformation of-
ten ends up rather quickly in one very large block that
cannot be further partitioned. With the class de�ni-
tions as given above, the system of equations (13-16)
is already reduced, because the voltage drops (14) are
inserted into the element equations (15; 16) (with the
exception of voltage drops used as state variables), i.e.,
these variables are eliminated from the system of equa-
tions. The sparse tableau equations are seldom direc-
tly used by the sparse matrix solvers employed in el-
ectric circuit programs. Instead, programs like SPICE
[20] and Saber [18] �rst eliminate the currents iv of
all voltage{controlled elements. This method is called
Modi�ed Nodal Analysis (MNA) [14, 20, 19]. The two
popular methods, cutset analysis and loop analysis, of-
ten found in introductory books on network analysis,
impose restrictions upon the types of branch relations
that can be present in a network, and are therefore not
used in general{purpose circuit simulation programs.

Using the relaxing method, it is easy for an
object{oriented modeling system to follow the MNA{
philosophy. To this end, it su�ces to relax the un-
known potentials in the voltage{controlled elements:

model class Resistor
inherit OnePort
parameter R fResistanceg

R � i = relax(V p)� relax(V n)
end

model class Capacitor
inherit OnePort
parameter C fCapacitanceg

C � relax(der(u)) = i
end

As a consequence, the component equations of
voltage{controlled elements are solved for the currents
iv during relaxed BLT{transformation. These currents

2Aij is one when the j{th branch leaves the i{th node, it is
minus one, when the branch arrives at the node, and it is zero
otherwise.

3with the exception of uj used as state variables, as in
capacitors.
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are in turn inserted into equation (13) by Gaussian
elimination, i.e., equations (15) are completely elimi-
nated from the systems of equations, and the currents
iv are removed from the vector of unknown variables.
This procedure is demonstrated by means of an ex-
cerpt of a circuit as shown in �gure 2. Expanding the

R1=100 C2=1.E-5

R3=200

v1 v2

v3

v4

Figure 2: Relaxing an electrical circuit

equations from the model classes results in the follo-
wing relaxed BLT{form:

i2 = Crelax( _u2)

R1i1 = relax(v1) � relax(v4)

R3i3 = relax(v3) � relax(v4)

v2 � v4 = u2

i1 + i2 + i3 = 0

Substituting the relaxed variables reduces the system
of equations from �ve down to two equations:

�
0 0 1 0 �1
C 1

R1

0 1
R3

� 1
R1

� 1
R3

�
2
66664

_u
v1
v2
v3
v4

3
77775 =

2
66664

u
0
0
0
0

3
77775

Although relaxing has already drastically reduced the
system size, the remaining system is still sparse, and
a general{purpose sparse matrix solver is needed to
solve it e�ciently. Note that the modeler using the
circuit elements presented above does not have to know
anything about the relaxing method. He or she only
needs to invoke component models from the electrical
component library, and connect them together. The
information about the solution strategy is hidden in
the library model classes.

7. TEARING

In the next section, the relaxing of three{dimensional
multibody systems is discussed, which needs the tea-
ring method for a subproblem. Tearing is therefore
briey reviewed. Tearing is a well{known method for
solving sets of algebraically coupled equations. It had

originally been introduced by Kron [15]. In [10], it
has been shown how physical insight can extend the
applicability of this method, and it was demonstrated
that tearing is particularly useful in object{oriented
modeling systems. Tearing of a linear or non{linear
system:

h(x) = 0 (18)

means:

1. to split the vector of unknown variables into two
parts called the tearing variables, xt, and the re-
maining variables, xr , and

2. to select some equations of h as residue equations
in such a way that the residues can be determined,
provided the tearing variables are known.

In order to de�ne tearing variables and residue equati-
ons in an unambiguous way, the following notation is
used:

h1(xr;xt) = 0 (19)

h2(xr;xt) = residue(xt) (20)

meaning that the residues can be calculated, provided
the tearing variables, xt, are known. This requires
a speci�c structure of equation, h1. Tearing can be
quite e�ective, because a (usually sparse) system of
dimension dim(h1)+ dim(h2) is reduced to a (usually
full) system of dimension dim(h2), which is then solved
by a standard, general{purpose, linear or non{linear
solver (the solver provides xt and gets the residue). In
the linear case, equations (19,20) have the following
structure:�

L A12

A21 A22

� �
xr
xt

�
=

�
b1
b2 + residue(xt)

�

(21)
where L is required to be a lower{triangular, non{
singular matrix. In this case, the linear system of equa-
tions can be transformed to a linear system of smaller
dimension:

(A22 �A21L
�1A12)xt = b2 �A21L

�1b1 (22)

Since L is lower triangular, the inversion of L is just
a backward substitution, which can be carried out in
a fully symbolic fashion. The transformation, both for
linear and non{linear tearing, is a special application
of the BLT{transformation, as shown in [10], and can
therefore be accomplished e�ciently. The di�culty of
using the tearing method is related to the selection of
tearing variables and residue equations. In [10], it is
shown, how physical insight often leads naturally to an
appropriate choice.
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8. TEARING MULTIBODY SYSTEMS

Multibody systems consist of rigid bodies that are
connected together via ideal joints and force elements.
For simplicity, the following section assumes that only
tree{structured multibody systems are considered, i.e.,
the connection structure of bodies and joints does not
contain closed kinematic loops. However, the results
can be extended to closed{loop systems as well.

The components of a multibody system are treated
as elements with one or two mechanical cuts, where
the components can be rigidly connected together.
Among other variables, the angular accelerations, �a,
and linear accelerations, aa, of cut a, as well as the
cut{torques, �a, and cut{forces, fa, are transported
through a cut. For compactness, these variables are
collected together:

âa =

�
�a

aa

�
f̂a =

�
�a
fa

�
(23)

For simplicity, it is assumed that all vectors are re-
solved in a common frame. Multibody systems con-
sist of rigid bodies, bars, and ideal joints. Since force
elements usually don't pose di�culties in the BLT{
transformation, they are not discussed here. A rigid
body has only one cut at its center of mass, and is
described by Newton's and Euler's equations:

Iaâa = f̂a + ba (24)

where:

Ia =

�
ICM 0

0 mE

�
ba =

�
�!a � ICM!a

0

�

ICM is the inertia tensor with respect to the center of
mass, m is the mass of the body, E is a unit matrix,
and !a is the angular velocity of the body. A bar is a
massless mechanical element with two mechanical cuts
described by the following equations (the equations on
position and velocity level are not given due to space
limitations):

âb = Cbaa + �b (25)

f̂a = CT
b f̂b (26)

with:
Cb =

�
E 0

�skew(rab) E

�

�b =

�
0

!a � (!a � rab)

�

skew(r) =

2
4 0 �r3 r2

r3 0 �r1
�r2 r1 0

3
5

where rab is the position vector from cut a to cut b of
the bar. The equations state that the accelerations at

cut b can be computed from the accelerations at cut a,
and that the cut{forces at cut a can be computed from
the cut{forces at cut b, due to a force/torque balance
at the massless element.

Finally, joints are massless elements with two cuts.
Contrary to the bar, the movement of cut b with res-
pect to cut a is not fully restricted. Instead, it is de-
scribed by fi generalized coordinates qi (a bar could
be seen as a joint with fi = 0). A typical representa-
tion of a joint is a revolute joint. On acceleration level,
it is described by the following equations:

âb = relax(âa) + n̂�q + �b (27)

f̂a = f̂b (28)

n̂T f̂b = � + residue(�q) (29)

where:

�b =

�
!a � n _q

0

�
n̂ =

�
n

0

�

n is a unit vector in the direction of the rotation axis,
and q is the rotation angle. The third equation is due
to d'Alemberts principle (preserving energy ow), and
states that the projection of the cut{force onto the axis
of rotation is equal to the torque � driving the rotation
axis (� may be zero).

The reader is asked to ignore the relax operator
and the term residue(�q) for the moment. For tree{
structured systems, it is best to use the generalized
coordinates of all joints as state variables. In the case
of a revolute joint, these are the angle of rotation, q,
and the relative angular velocity, _q.

A multibody model is built up by connecting to-
gether speci�c objects of the discussed types, cf. e.g.
�gure 3. For most models, BLT{transformation will
result in one very large system of di�erential and al-
gebraic equations containing the accelerations, â, and
cut{forces/torques, f̂ , at all cuts, as well as the ge-
neralized accelerations, �q, of all joints. Even for a
modest{sized multibody system, such as a six degree
of freedom robot, this leads already to a sparsely po-
pulated system of more than 200 equations.

In multibody dynamics, it is well{known that the
equations can be transformed to the standard form:

M(q; t)�q = h(q; _q; t) (30)

In the case of a robot, these are six equations. In [10],
it was shown how tearing can produce this result, too.
In order to arrive at (30), it is clear that the �q must be
used as tearing variables, since the reduced system of
equations (22) must have the same unknown variables
as equation (30). The selection of the residue equations
is more di�cult, and is explained in [10]. In short, it is
well known in robotics that all desired quantities can
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be computed, provided q, _q, and �q are given. Especi-
ally, the driving torques of the joints can be calculated
(the so{called inverse dynamics problem), which justi-
�es the selection of �q as tearing variables. Introducing
the residue operator at the equation of the driving
torques (29) will produce a system structure of (21)
with a lower{triangular, non{singular L matrix. As
explained in the last section, this system can be trans-
formed to (22), i.e., to equation (30).

As can be seen, even handling 3Dmultibody systems
becomes surprisingly easy compared to traditional ap-
proaches, if the object{oriented method is used. Only
the local equations of the standard components have to
be formulated (24{29). After introducing appropriate
tearing information, a software tool, such as Dymola,
can automatically transform to the standard form.

9. RELAXING MULTIBODY SYSTEMS

Matrix M in (30) has f2 elements. It is therefore un-
derstandable that the most e�cient methods to trans-
form to (30) need O(f2) operations in order to com-
pute M, and O(f3) operations in order to solve the
linear system of equations (30) for the unknown varia-
bles, �q.

In the eighties, a new class of multibody algorithms,
the so{called recursive O(f) algorithms, appeared that
can solve for �q in O(f) operations, if the multibody
system has a tree structure [3, 12, 5, 4]. Generalizati-
ons to closed{loop systems are also available, but are
not considered here for simplicity.

Modern commercial multibody programs, such as
SIMPACK [22] or DADS [23], utilize one of the vari-
ants of this algorithm class. Clearly for larger systems,
the O(f) property is highly desirable. However even
for small systems, such as systems with two degrees of
freedom, an appropriately implemented recursive algo-
rithm is at least as e�cient as one of the O(f3) me-
thods [5].

It turns out that the relaxing method is powerful
enough to reproduce an O(f) algorithm in a fully au-
tomated fashion. The library developer only needs to
introduce the relax operator into the joint classes in
the way shown in equation (27). It is really an asto-
nishing result that such a special multibody algorithm
can be realized within Dymola by just inserting the
relax keyword at a few places. It seems not possible
to implement such an algorithm in an easier way.

It is beyond the scope of this paper to rigidly prove
that the relaxing method will actually generate one
of the variants of the recursive O(f) algorithms. Alt-
hough the result is very simple, the proof is lengthy.

Instead, only one part of the proof will be given that
gives at the same time more insight why relaxing will
work so satisfactorily in this case. As explained in the
section entitled RELAXING of this paper, a neces-
sary condition for relaxing is, that the relaxed BLT{
transformation can be carried out, i.e., that the system
with the removed relaxing variables is not structurally
singular. It will now be shown that this condition is
ful�lled for selection (27):

bar4rev1 rev2

bar3 body

1 2

3

4

Figure 3: Object diagram of multibody system

In �gure 3, a typical part of a multibody system
is shown that is built up from basic components. It
consists of a joint that is rigidly connected at loca-
tion 2 with two bars, called bar 3 and bar 4. The other
side of bar 3 ends at the center of mass of a body,
and is rigidly connected with that body object. Bar 4
is the connecting bar between joint 1 and the subse-
quent joint. The accelerations and constraint forces at
location i in the �gure are denoted as âi and f̂i, res-
pectively. According to (24{29), this subsystem of the
overall multibody model is described by the following
equations:2

66664

I3 �E 0 0 0

�E 0 C3 0 0

0 CT
3 0 �E 0

0 0 �E 0 n̂

0 0 0 n̂T 0

3
77775

2
66664

â3

f̂3
â2

f̂2
�q

3
77775

=

2
66664

b3
��3
�CT

4 f̂4
�C2relax(â1) � �2
� + residue(�q)

3
77775 (31)

â4 = C4â2 + �4 (32)

f̂1 = CT
2 f̂2 (33)

Transformation to relaxed BLT{form means that, in
this phase of the analysis, the relaxed variables in the
de�ned equations are assumed to be known. Note
that the variables are only assumed to be known in
the equations, where the relax{operator is used (this
is in contrast to tearing, where the tearing variables
are assumed to be known in all equations). The ne-
cessary condition is ful�lled, if it can be shown that
the remaining system can be solved for all unknown
variables.
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The leaves of a tree{structured multibody system
contain only bodies and no joints (otherwise the joints
could be removed without any e�ect on the dynamics).
The structure of a leaf of the tree is given in �gure 3,
with the only addition that bar 4 is not present, be-
cause a leaf ends in a body. This means that f̂4 = 0

in (31). Since relax(â1) is assumed to be known, all
variables on the right{hand side are known, and (31)
is a system of 25 equations for the 25 unknown varia-
bles â3; f̂3; â2; f̂2; �q, which can be solved by Gaussian
elimination (remember that each of the vectors has
six elements). This system corresponds to a block{
matrix Aii in (7). After solving this system of equa-

tions, the unknown variables â4; f̂1 can be computed
directly from (32,33).

The subcomponent, to which the leaf subcomponent
is connected, has again the structure shown in �gure 3.
Now, bar 4 is present, and is connected with the joint
of the leaf component. The leaf component can be
removed, and can be replaced by f̂4, which is known,
because it was computed as f̂1 in the leaf component.
Therefore, the equations have exactly the same struc-
ture (31-33) as they had for the leaf component. As
a consequence, all unknown variables of this system of
equations can again be computed. By removing this
subcomponent too, a backward recursion is establis-
hed in a natural way. When the recursion stops at
the root of the tree, i.e., at the inertial system, all un-
known variables have been computed. In other words,
the relaxed BLT{transformation is completed succes-
sfully. q.e.d.

The e�ciency can be enhanced considerably in (31),
if the structure of the sparse system of equations of the
subblocks is utilized. It is not possible to use relaxing
again: in order to transform (31) to relaxed BLT{form,
the variables in the upper subdiagonal must be relaxed.
However, if this were to be done, the remaining matrix
would clearly be structurally singular due to the zero
matrices on the diagonal. Another possibility would
be to just relax �q in row 4. However, this also leads to
a structurally singular relaxed BLT{form.

A simple remedy is to use tearing with exactly the
same tearing variables and residue equations that are
utilized to transform into the standard form (30). The
appropriate residue operator is already introduced in
(31). Tearing will reduce the system of 25 equations to
lower{triangular form, so that the inversion becomes
trivial. It can be seen easily that tearing will work:
assume that the tearing variable �q is known. Then
â2 can be computed from the fourth row of (31), â3
from the second row, f̂3 from the �rst row, f̂2 from the
third row, and �nally, the residue from the last row. In
other words, all unknown variables and the residue can
be computed provided the tearing variable �q is known,

i.e., the tearing is complete.

The tearing algorithm has to be modi�ed, in order
that it can be used to solve subproblems in a relaxed
BLT{transformation. To this end, a third row has to
be added to the system matrix of (21):

�
L A12A13

A21A22A23

�2
4 xr

xt
xrelax

3
5 =

�
b1
b2 + residue(xt)

�

(34)
containing the relaxed variables. When L is non{
singular and lower{triangular, this system of equations
can be transformed (in a fully symbolic fashion) to:

A
(2)
22 xt = b

(2)
2 �A

(2)
23 xrelax (35)

where

A
(2)
22 = A22 �A21L

�1A12

A
(2)
23 = A23 �A21L

�1A13

b
(2)
2 = b2 �A21L

�1b1

Equation (35) must be solved for xt, and the resul-
ting terms must be inserted into the remaining system
matrix, i.e., at all places where xrelax is present.

10. TEARING OR RELAXING?

When dealing with arbitrarily structured sparse ma-
trix systems, it is not always easy to decide, which of
the two techniques will work better. First of all, as
seen in the multibody example, tearing and relaxing
are clearly two distinct methods. Tearing reduces al-
ways to a (hopefully small) set of non{sparse equations
that can afterwards be solved by a full Gaussian elimi-
nation, whereas relaxing directly generates a Gaussian
elimination scheme for sparse matrices. The impor-
tant point relating to both methods is that sophisti-
cated modelers can anchor the tearing and relaxing
information in component model libraries, and hide it
from the casual user who would be easily overwhel-
med by the demand of placing the residue and relax
operators appropriately in his or her model. Imple-
mented in this fashion, both tearing and relaxing can
lead to very e�cient simulation code, while preserving
the full exibility of an object{oriented modeling en-
vironment, yet without placing unreasonable demands
of sophistication on the end user of the modeling tool.

In some cases, both methods are applicable. For
example, the drive train problem could as easily have
been solved using the tearing approach. In that case,
the ShaftS class would have been augmented in the
following way:
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model class ShaftS
parameter J
cut l (w; a = tl)
cut r (w; a =� tr)

der(w) = a
J � a = tl� tr + residue(a)

end

Relaxing has a severe drawback in the case of drive
trains: components can no longer be connected in an
arbitrary fashion. For example, if the gearbox in �-
gure 1 would have been connected in the other way
around (just rotating the icon by 180 degrees), the
relaxed BLT{transformation would fail. It is easy to
check this behavior at equation (12) by relaxing �1
instead of �2 in the second row (gear box equation).
Since tearing does not share this drawback, and since
the algorithm produces the exact same results with
the same number of operations as relaxing does (in
this example), tearing is clearly the method of choice
for drive trains. In this paper, drive trains have only
been selected as an introductory example, because the
relaxing method can be easily explained by means of
such systems.

In principle, tearing could also be used for electri-
cal circuits. The potentials at all nodes would then
be selected as tearing variables, whereas Kirchho�'s
current{law equations (13) would be selected as re-
sidue equations. Unfortunately, this is conceptually
di�cult, because equations (13) are not de�ned in mo-
del classes. Instead, they are only generated internally
at compile time from the connection structure of the
circuit, i.e., it is not obvious how to refer to these equa-
tions within model classes. Relaxing is better in this
case, because the appropriate relaxing structure can be
easily de�ned within model classes. The drawback fo-
und for drive trains is not present in electrical circuits.
The reason is that there is only one current in each
basic electrical component, and therefore, the variable
not to be relaxed is unique.

As already shown in the case of multibody systems,
both tearing and a combination of relaxing and tearing
are possible. The former approach leads to a resulting
code with O(f3) operations. The latter leads to one
with O(f) operations. For bigger systems, the latter
method is therefore more attractive. Unfortunately,
the drawback of the drive trains carries over to mul-
tibody systems: when using the relax operator, mul-
tibody objects must always be connected at opposite
cuts (i.e., cut a must be connected at cut b, and vice{
versa), otherwise the relaxed BLT{transformation will
fail.

Both methods currently have the disadvantage that
they produce slightly less e�cient code than a di-
rect implementation of a similar multibody algorithm

would. The reason is that the symmetry of matrices
present in the equations of multibody systems is not
taken into account. For example, tearing of equation
(31) does not make use of the symmetry of the matrix.
It is not yet clear how symmetry of matrices could be
exploited with either tearing or relaxing methods.

On the other hand, this very same feature o�ers
new possibilities. Only a speci�c class of multibody
systems leads to symmetric mass matrices or to sym-
metric matrices in the relaxing scheme. For example,
if Coulomb friction is present in the model, i.e., applied
forces are functions of constraint forces, then these ma-
trices are no longer symmetric. This can be seen from
equation (31): when Coulomb friction is present, the
driving torque in the joint is a linear function of the
cut{forces: � = ��̂

T
f̂2. As a consequence, element 4

in row 5 is changed to n̂T + �̂, and the matrix loses
its symmetry. Due to this structural change, multi-
body programs often have di�culties with handling
such systems. However, both the tearing and the re-
laxing methods will work �ne also in the presence of
Coulomb friction.

11. CONCLUSIONS

In this paper, a new symbolic sparse matrix technique,
called \relaxing," was introduced. This technique, so-
metimes in conjunction with an alternative approach,
called \tearing," is able to exploit special matrix struc-
tures, i.e., domain{speci�c information about a spe-
ci�c type of system, such as a multibody system or
an electrical circuit, in the same fashion as the nu-
merical special{purpose solvers of professional packa-
ges do. However, and contrary to the domain{speci�c
programs, the relaxing algorithm can be implemented
in an object{oriented modeling environment without
either compromising the exibility or restricting the
generality of the environment in any way. The appli-
cation of the algorithm to any special kind of system
is non{trivial and requires a good deal of physical in-
sight into how the system works, as well as mathema-
tical knowledge of how this type of system is modeled
in professional, domain{speci�c programs. However,
once this insight is available, the implementation be-
comes trivial, as seen by the MNA method for elec-
trical circuits and the recursive O(f) algorithms for
multibody systems. In the same way as the occasional
user of Spice or Saber doesn't have to know anything
about the MNA algorithm, the occasional user of Dy-
mola will not be aware of the presence of the relax and
residue operators in the component libraries that he
or she is invoking. Only the designer of these libraries
needs that knowledge.
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