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Automated formula manipulation is central to object-oriented 
continuous-system modeling. Such techniques are needed to a) 
solve the causality assignment problem in modeling any kind of 
energy transducer, b) generate the equations that result from the 
couplings between different objects, c) automatically reduce 
higher index models, and d) take care of algebraic loops that often 
result from subsystem couplings, and that also occur from the 
reduction of higher index models. A new tool, Dymola, imple- 
ments all of these formula manipulation techniques, and can be 
used to generate state-space models in a variety of different 
simulation languages (ACSL, DESIRE, DSblock, Simnon, and 
SIMULINK). 

Simulation Languages 
The first generation of digital continuous-system simulation 

languages were designed to resemble analog computer 
“programs.” They were block-diagram languages with adders, 
integrators, multipliers, and potentiometers used as their basic 
building blocks. This was done in order to “ease” the transition 
from analog to digital simulation technology. It took the 
modelers of that era several years to realize that programming an 
analog computer hadn’t been that convenient after all and that, 
by making digital simulation languages resemble analog 
programs, they actually made their task unnecessarily difficult. 
Analog computer programming had been dictated by the tech- 
nology in use, it wasn’t designed to suit the human programmer. 
Digital technology is not bound by the same limitations as analog 
technology. There is considerably more flexibility in designing 
digital programs. 

The second generation of simulation languages started out 
from the mathematics of numerically solving sets of ordinary 
differential equations. It turns out that most numerical integration 
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algorithms are designed to solve so-called state-space models of 
the type 

Continuous-system simulation languages used today have 
been designed to facilitate the formulation of state-space models. 
It was quickly recognized that the same expressions may reap- 
pear in several state equations, and that it is more efficient from 
a computational point of view (and also more convenient) to 
assign these expressions to auxiliary (algebraic) variables. Con- 
sequently, the extended state-space model used in simulation 
languages takes the form 

with the additional restriction that the auxiliary variables, z, 
must not depend algebraically upon each other in a mutual way, 
i.e., that no algebraic loops are contained in the model. As an 
additional bonus, simulation language designers added an equa- 
tion sorter that enables the user to specify the model equations 
in an arbitrary sequence and that thereby also supports the use of 
macros. Macros are used to describe subsystems in a compact 
fashion. They are invoked like subroutines, but their treatment 
within the simulation language is very different from that of a 
subroutine. The simulation compiler inserts the statements that 
are formulated within a macro into the simulation program at the 
place of its call. This happens before the equation sorter is 
activated. This is important since, once an executable statement 
sequence has been established, the statements that were extracted 
from different macros are now mixed [l]. 

It is important to realize that also simulation languages of the 
CSSL-type [2] that are in use today are technology-based. This 
time, it is not the technology of electronic and/or mechanical 
components that dictates the modeling methodology; instead, 
today’s simulation languages are designed to suit the mathemati- 
cal technology of numerical integration algorithms. This fact is 
illustrated in the following example. Fig. 1 shows a simple 
passive electrical circuit. In a CSSL-type simulation language, 
this circuit could be represented as: 

uo = f ( t ,  
uC = INTEG(iC/C, uC0) 
iL = INTEG(uL/L, iL0) 
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:g. 1. Simple passive electrical circuit. 

uR2 = R2 * iL 
uR1 = u o - u c  
iC = uRlJR1 
uL= uo - uR2 
io = iC + iL 

which corresponds to the block diagram of Fig. 2. The block 
diagram shows the computational causality of the model. The 
computational causality of a model determines how the physical 
laws that are encoded in the model equations must be interpreted 
in order to obtain a program that can be executed on a sequential 
machine using existing numerical algorithms. In the above ex- 
ample, Ohm’s law is utilized differently when applied to the two 
resistors, R1 and R2. In the case of R1, the current through the 
resistor, iR1 is computed from the voltage across the resistor, U R I ,  
which is computed elsewhere, whereas in the case of R2, the 
reverse is true. Obviously, both equations describe one and the 
same physical phenomenon. 

No modeler would normally fall upon the idea to represent 
this circuit by the set of equations: 

uo = f ( t )  
iC = C * DEFUV(uC) 

I I , I  

Fig. 2 .  Block diagram of electrical circuit. 

UL = L * DElUV(iL) 
uR1= R1* iC 
u c  = uo - uR1 
uR2 = UO - UL 
iL= uR2JR2 
i0 = iC + iL 

which would correspond to the block diagram of Fig. 3, although 
both descriptions are completely equivalent from an analytic 
point of view. The fact is that modelers have learned to avoid the 
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DERIV operator at all cost, since it is numerically easier to 
integrate variables than to differentiate them (at least as long as 
explicit numerical algorithms are used, which is always the case 
in today’s continuous-system simulation software). 

This example demonstrates the intimate interrelation of the 
modeling methodology supported by today’s simulation 
software and the characteristics of the underlying numerical 

U, -- 

+ 
UL 

dt 

pig. 3. Alternative block diagram of electrical circuit. 

algorithms. From the point of view of user convenience, there is 
no difference between the two formulations. It is not suggested 
here that it would be in any way more advantageous to formulate 
models in differential causality (Le., by use of the DERIV 
operator) rather than in integral causality (i.e., by use of the 
INTEG operator). However, it would be perfectly feasible to 
build a modeling compiler that could accept either of the two 
descriptions, and irrespectively of which description the human 
modeler chose as being more convenient, would automatically 
generate code for the resulting simulation program that is op- 
timally suited for the underlying numerical algorithms. 
Moreover, it is demonstrated below that the familiar state-space 
model is not the most convenient way to specify a model. 

The above equations, or rather assignment statements, are not 
obvious when inspecting the circuit shown on Fig. 1. The reason 
is that basic electrical laws have been transformed into un- 
familiar forms. The familiar forms are given below as true 
equations: 

U,  = f ( t )  {Voltage source. ) 

d(u,.) 
C . ~ = i, (Capacitor. Law of capacitance. ] 

dt 

4 i L )  
L . ~ = uL (Inductor. Law of inductance.) 

dt 

uR1 = R ,  . i, {Resistor. Ohm’s law. ] 
uR2 = R2 . i, { Resistor. Ohm’s law. ] 
U, = uR1 + u, { Kirchoff’s voltage law.) 
U, = uR2 + uL { Kirchoff’s current law. ) 
io = i, + iL { Kirchoff’s voltage law. ) 

There is a much closer correspondence between this formula- 
tion and the circuit diagram. These equations can be written 
down directly by inspecting the circuit diagram. The correctness 
of the model equations is thus promoted. In this paper, a model- 
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ing tool is introduced that allows the user to formulate his or her 
model in such an equation-based form. 

Causality Assignment Problem 
The above example contains two objects of the class resistor. 

Yet, in the familiar CSSL-type formulation, the equations used 
to describe these two objects are different. In the case of resistor 
R,, the current that flows through the resistor seems to “cause” 
a potential drop across the resistor. In the case of R the potential 
drop across the resistor seems to “cause” current to flow through 
the resistor. Moreover, the causalities for the two resistors change 
if the model as a whole is formulated in differential rather than 
integral causality. Quite obviously, computational causality is 
not a physical phenomenon at all, but is simply yet another 
artifact of the underlying numerical algorithm. 

It is rather inconvenient that the user must determine the 
(numerically) correct causality of the dissipative elements, or 
more generally, the causality of all energy transducers (trans- 
formers exhibit exactly the same problem as resistors). It would 
be much nicer if objects, such as a resistor, could be described 
once and for all in terms of their physical properties and their 
interactions with the environment. In case of the resistor, such 
an approach would call for a description of the resistor itself 
(Ohm’s law) and a description of how this equation interacts with 
other equations of the neighboring components. 

However, object-oriented continuous-system modeling [3] is 
much more than just a matter of convenience. State-space models 
suggest that each state variable changes with time according to 
some law that is expressed in the corresponding state equation. 
But why does this happen? The voltage across a capacitor doesn’t 
change with time unless it has a good reason for doing so. Physics 
is a matter of trade. The only tradable goods are mass, energy, 
and momentum. Consequently, it would be much safer if the 
modeling environment were to enable the user to formulate mass 
balances and energy balances rather than state equations. If a 
state equation is formulated incorrectly, a CSSL-type simulation 
language [2] will happily accept the incorrect equation, and trade 
it for beautiful multi-colored graphs that may even look plausible 

The modeling language Dymola [5] incorporates these con- 
[41. 

cepts. In Dymola, a resistor can be described as follows: 

model type resistor 
cut WireA(Vali), WireB( Vbl-i) 
main path P < WireA - WireB > 
local u 
parameter R = 1 .O 

u = Va - Vb 
u = R * i  

end 

Ohm’s law is described in the usual way. It involves the 
parameter R, which has a default value of 1 .O, the local variable 
u, and the terminal variables Va, Vb, and i. The cut and path 
declarations are used to describe the interface to the outside 
world. Additional equations are formulated to specify the rela- 
tions between the local variables and the terminal variables. 

Of course, the chosen approach also calls for a general 
mechanism to describe the couplings between different intercon- 
nected objects. In Dymola, the circuit of Fig. 1 could be repre- 
sented as follows: 

model circuit 
submodel (vsource) UO 
submodel (resistor) Rl (R  = 100.0), R2(R = 20.0) 
submodel (capacitor) C(C = 0.1E-6) 
submodel (inductor) L(L = 1.5E-3) 
submodel Common 
node no, n l ,  n2, n3 
input u 

connect Common at no, 
output y l ,  y2 

UO from nl to no, 
R1 from nl  to n2, 
C from n2 to no, 
R2 from nl  to n3, 
L from n3 to nO 

u0 .v  = u 

y2 = L.i 
y l  = c .u  

end 

The submodel declaration instantiates objects from classes. 
For example, two objects of type resistor are instantiated, one 
named R1 with a parameter value of R = 100.0 SZ and the other 
named R2 with a parameter value of R = 20.0 SZ: The connect 
statement is used to describe the interconnection between ob- 
jects. Notice that the connecting equations (Kirchhoff’s laws) are 
not explicitly formulated at all. They are automatically generated 
at compile time from the topological description of the intercon- 
nections. 

Upon entering the model, Dymola immediately instantiates 
all submodels (objects) from the model types (classes). It then 
extracts the formulated equations from these objects, and ex- 
pands them with the coupling equations that are being generated 
from the description of the interconnections between objects. 
The generated equations can be displayed with the command: 

> output equations 

which, for the above example, results in: 

uo V = V a - V b  
R1 u=Va-Vb 

u = R * i  
R2 u = Va - Vb 

u = R * i  
C u = Va - Vb 

C*der(u) = i 

L*der(i) = u 
L U = V a - V b  

Common V = O  
circuit U0.V = u 

yl  = c.u 
y2 = L.i 
R1.Vb = C.Va 
C.i = R1.i 
Rl.Va = R2.Va 
U0.Va = Rl.Va 
R2.i + R1.i = U0.i 
R2.Vb = L.Va 
L.i = R2.i 
C.Vb = L.Vb 
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U0.Vb = C.Vb 
Common.V = U0.Vb 

The first 10 of these equations are extracted from the sub- 
models. The next three equations are extracted from the circuit 
model. The last 10 equations represent Kirchhoff’s laws. The 
latter equations are automatically being generated from the 
connect statements that describe the interconnections between 
the objects. 

Many of the generated equations are trivial equations of the 
type: 

a = b  (3) 

Le., the same variable is stored under different names. Aliases 
can be eliminated with the command: 

> set Eliminate on 

Display of the equations thereafter will result in: 

uo 
R1 

R2 

C 

circuit.u = R2.Va - L.Vb 
u = R2.Va - C.Va 
u = R * i  
u = vu - L.Va 
u = R * L.i 
u = VU - L.Vb 
C*der(u) = R1.i 

L*der(i) = u 
L u = V i  - Vb 

Common L.Vb = 0 
circuit y l  = C.u 

y2 = L.i 
L.i + R1 .i = U0.i 

The structure of the equations needs to be examined in order 
to determine which variable to solve for in each equation. In 
addition, the equations need to be sorted into a correct computa- 
tional order. If this is not possible due to mutual dependencies, 
minimal systems of equations, that need to be solved simul- 
taneously, should be isolated. These problems are naturally 
solved by use of graph-theoretical algorithms [5]. The structure 
of equations and variables is represented by a bipartite graph. 
The problem of associating each equation with one variable is 
called the assignment problem. Algorithms with execution time 
depending linearly on the number of nodes can be found in Duff 
et al. [6]. The sorting problem is referred to as finding the strong 
components of the graph. Tarjan [7] has designed an algorithm 
with linear time dependency based on a depth-first traversal of 
the graph. 

The partition command in Dymola utilizes these algorithms 
to solve the causality assignment problem. Display of the equa- 
tions after partitioning results in: 

uo 
R1 

R2 

C 

circuit.u = [R2.Va] - L.Vb 
[u]  = R2.Va - C.Va 
u = R * [i] 
u = vu - [L.Va] 
[u] = R * L.i 
u = [VU] - L.Vb 
C * [der(u)] = R1.i 

L 

Common [L.Vh] = 0 
circuit lyl ]  = C.u 

ly2) = L.i 
L.i + R1.i = [UO.i] 

lu]  = vu - Vh 
L * [der(;)] = u 

In each equation, the variable to be solved for is marked by 
square brackets. Notice the different causalities for the two 
resistors. 

At this point, further formula manipulation can be used to 
solve the equations in order to generate a state-space model. The 
algorithm used for solving equations symbolically works on an 
intemal representation of equations, called a syntax tree. In order 
to solve equations, Dymola recursively applies certain transfor- 
mation and simplification rules to the tree representation. 

Dymola has rules about the inverse of certain functions and 
handles the case of several linear occurrences of the unknown 
variable. Solving the following equation for x: 

exp(a + sin([xl/h + c * [XI - 4 * (exp(e) + 1)) * *2 -f= 2 * g 
(4) 

gives the result: 

x = (arcsin((ln(sqrt(2 * g +fi) - a)/(exp(e) + 1)) + d)/(l/b + C )  

( 5 )  

More about symbolic formula manipulation can, for example, 

For the above circuit example, the result of the command: 
be found in Davenport et al. [8]. 

> output solved equations 

is as follows: 

Common L.Vh = 0 
uo 
C 
R1 

R2.Va = circuit.u + L.Vb 
Va = u + L.Vb 
LI = R2.Va - c.va 
i = uIR 
C der(u) = R 1 .i/C 
21 = R * L.i 
L.Va = Vu - u 

der(;) = u/L 
U0.i = L.i + R 1 .i 
y1 =c.u 
y2 = L.i 

R2 

L II = VU -Vb 

circuit 

Finally, the state-space model can be automatically encoded 
as a text file in any one of a list of simulation languages. For 
example, the command sequence: 

> language acsl 
> outfile circuit.csl 
> output model 

writes the following ACSL [SI program: 

!ACSL model generated by Dymola. 
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PROGRAM circuit 
VARIABLE Time, StartTime = 0.0 
CONSTANT StopTime = 1 .O 
INITIAL 

CONSTANT R2zR = 20.0 
END ! of INITIAL 
DYNAMIC 

CONSTANT RlzR = 100.0, C = O.lE-6, L = 1.5E-3 

DERIVATIVE 

!SORTED AND SOLVED EQUATIONS 
! Common. 

! uo. 
! c. 
! R1. 

PROCEDURAL 

Vb=O 

R2zVa = u + Vb 

CzVa = Czu + Vb 

R lzu = R2zVa - CzVa 
Rlzi = Rlzu/RlzR 

deru = RlziIC 

R2zu = R2zR * Lzi 
LzVa = R2zVa - R2zu 

Lzu = LzVa - Vb 
deri = Lzu/L 

UOzi = Lzi + Rlzi  

! c. 
! R2. 

! L. 

! circuit. 

! END OF SORTED AND SOLVED EQUATIONS 
! ELIMINATED STATE DERNATWES AND OUTPUTS 

yl  = c z u  
y2 = Lzi 
END ! of PROCEDURAL 
CONSTANT initCzu = 0 
Czu = INTEG(deru, initCzu) 
CONSTANT initLzi = 0 
Lzi = INTEG(deri inirLzi) 

END ! of DERNATNE 
TERMT (TimeGEStopTime) 

END ! of DYNAMIC 
END ! of PROGRAM 

onto the file circuit.cs1. 
Notice that Dymola is not a simulation program in its own 

right. It does not provide for any simulation support at all. 
Dymola can be viewed as a sophisticated macroprocessor since 
it can be used as a frontend to a simulation language and thereby 
(among other things) assumes the role of its macro processor. 
Dymola can also be viewed as a model generator since it can 
generate models for a variety of different simulation languages. 
The currently supported languages are ACSL [9],  DESIRE [ lo] ,  
DSblock [ l l ] ,  Simnon [12], and SIMULINK (MATLAB) [13]. 
However, the most adequate interpretation is to view Dymola as 
a modeling language. Dymola has been designed to facilitate the 
object-oriented formulation of models of complex continuous 
systems. The user interface (language definition) of Dymola is 
much less technology-driven than CSSL-type simulation lan- 
guages. It is designed to increase user-convenience. The Dymola 
software, on the other hand, is strongly technology-driven since 
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it generates a state-space model whenever possible. This is a 
deliberate choice. It is, however, also possible to make the 
Dymola program convert a Dymola model into a description that 
could then be simulated by use of a differential/algebraic equa- 
tion (DAE) solver [14]. The decision to generate a state-space 
model was based on the fact that most of the currently available 
simulation languages require this format. In the case of DSblock, 
a specification for the structure of Fortran and C routines that 
supports both ODE and DAE formulations, the user can select 
which of the two output formats he or she prefers. The choice 
will influence the run-time efficiency, but it is difficult to predict, 
in general, which of the two formulations will lead to a more 
efficient run-time execution. It is often more efficient to manipu- 
late the model at compile time to generate code that executes fast 
than to lay the burden of model manipulation on the numerical 
algorithm of the run-time program (a DAE solver). However, 
there exist situations when the implicit (DAE) set of equations 
is sparse, whereas the explicit (ODE) set of equations is dense. 
In such a case, it may be more efficient to stay with the DAE 
formulation if the target language supports this format. 

Algebraic Loop Problem 
It was mentioned earlier that simulation languages do not 

permit mutual algebraic relations between variables. This is due 
to the fact that, in such a case, the equation sorter cannot 
determine a proper execution sequence of the model statements. 
With the two equations: 

x must be known before y can be computed from the first 
equation, but y must be known in order to compute x from the 
second equation. Consequently, neither of the two equations can 
be computed without the other. 

Algebraic loops among variables within a model sometimes 
mean bad modeling, or rather, a bad choice of variables. How- 
ever, algebraic loops that are the result of interconnections 
between different objects occur frequently and are unavoidable. 
A simple example of this type is the voltage divider shown on 
Fig. 4. The voltage divider can by coded in Dymola as follows: 

model divider 
submodel (vsource) UO 
submodel (resistor) Rl (R  = 100.0), R2(R = 20.0) 
submodel Common 
input u 
output y 

R, = 

%= 

1 oon 

20n 

'ig. 4 .  Voltage divider. 
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connect Common - \UO -R 1 -R2 - Common 
UO.V = u 
y = R2.u 

end 

This is a more compact notation for the circuit connections 
than the Spice-like notation that was used in the previous ex- 
ample. The dash operator indicates series connection, whereas 
the backslash operator indicates that the voltage source is con- 
nected in reverse. 

From this model, the following set of equations is generated: 

uo V = V a - V b  
R1 u = Vu - Vb 

u = R * i  
R2 u = Vu - Vb 

u = R * i  
Common V=O.O 
divider U0.V = u 

y = R2.u 
R1 .Va = U0.Va 
R 1 .i = U0.i 
R 2 . k  = Rl.Vb 
R2.i = R1 .i 
Comm0n.V = R2.Vh 
U0.Vb = Comm0n.V 

With elimination of the trivial equations and after partitioning 
the equations, the solved equations can be displayed. The result 
of that operation is as follows: 

SORTED AND SOLVED EQUATIONS 
Common R2.Vb = 0 
uo Vu = divider.u + R2.Vb 

SYSTEM OF 4 SIMULTANEOUS EQUATIONS 
UNKNOWN VARIABLES 

R1.Vb 
R2.u 
U0.i 
R1.u 

EQUATIONS 
R2 u=[RI .Vb]-Vb 

[ul = R * U0.i 
u = R * WO.i] 
[u] = U0.Va - Vb 

R l  

SOLVED SYSTEM OF EQUATIONS 
QlOl = R I A  + R2.R 
R1.Vb = 
R2.u = 

R1.u = 

divider y = R2.u 

( R I R  * R2.Vb + R2.R * UO.Va)/QlOl 
(R2R * U0.Va - R2.R * R2.Vb)/QlOl 

( R l R  * U0.Va - R1.R * R2.Vb)IQlOl 
U0.i = ( U 0 . v ~  - R2.Vb)IQlOl 

END OF SYSTEM OF SIMULTANEOUS EQUATIONS 

END OF SORTED AND SOLVED EQUATIONS 

The simple fact that this circuit contains two series-connected 
resistors results in a system of simultaneous equations (an al- 
gebraic loop) involving four variables and four equations. The 
causality assignment problem can no longer be solved in a unique 
fashion, which is always an indication of algebraic loops. 
Dymola detects the algebraic loop, isolates the involved equa- 

tions, determines the involved variables, discovers that the al- 
gebraic loop is linear, and therefore is able to solve it at once by 
symbolic formula manipulation. Further simplifications are pos- 
sible. Dymola can be set up to find common sub-expressions and 
introduce auxiliary variables for them. This reduces the amount 
of computations needed. Equations of the type: 

a=O (7) 

can be eliminated from the model, and in all other equations, 
terms multiplied by a can also be eliminated. Finally, equations 
that evaluate a variable which is neither used in any other 
equation nor declared as an output variable are surplus equations 
that can be omitted from the model. 

With these two additional simplifications, the above model is 
reduced to a single equation: 

divider.y = R2.R * divider.u/(RlR + R2.R) 

which is the well-known voltage divider equation. 
Obviously, not all algebraic loops are linear. Nonlinear al- 

gebraic loops cannot generally be solved by formula manipula- 
tion. In this case, a DAE formulation may be the right answer, if 
the target language supports it. Also, it can happen that a single 
linear algebraic loop contains many equations and many vari- 
ables, in which case the solved set of equations may look 
formidable. In such cases, it may be preferable to employ a 
numerical method to solve such a set of equations. Dymola 
supports this feature. With the command sequence: 

> set SolveLinearSyst off 
> set MatrixExpr on 
> output solved equations 

Dymola generates the code: 

SORTED AND SOLVED EQUATIONS 
Common R2.Vb = 0 
uo Vu = divider.u + R2.Vb 

SYSTEM OF 4 SIMULTANEOUS EQUATIONS 
UNKNOWN VARIABLES 
R1.Vb 
R2.u 
U0.i 
R1.u 
EQUATIONS 

R2 u = [RI.Vb] - Vb 
[u] = R * U0.i 
u = R * [UO.i] 
[u]  = U0.Va - Vb 

R1 

A(1, l )  - -1 
A(1,2) = 1 

A(2,2) = 1 
b( 1 )  = -R2.Vb 

A(2,3) = -R2.R 
A(3,3) = -Rl.R 
A(3,4) = 1 
A(4, l )  = 1 
A(4,4) = 1 
b(4) = U0.Va 
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END OF SYSTEM OF SIMULTANEOUS EQUATIONS 

END OF SORTED AND SOLVED EQUATIONS 
divider y = R2.u 

assuming that the A-matrix and the b-vector are initialized to 
zero. If the target language supports matrix notations, Dymola 
generates calls to the appropriate Linpack routines (ACSL, D- 
Sblock) or generates matrix equations (SIMULINK) to numeri- 
cally solve the resulting set of linearly coupled algebraic 
equations. 

Higher Index Models 
Higher index problems are systems that contain more energy 

storing elements than eigen modi. Ahigher index linear electrical 
circuit contains more capacitors and/or inductors than indicated 
by the order of its transfer function. The “index” of a system is 
the index of nilpotency of the structure matrix of the implicit 
(DAE) formulation. Higher index problems are systems with an 
index of nilpotency larger than one [ 141, [ 151. Some authors refer 
to higher index problems also as “structurally singular problems” 
[I]. 

Structural singularities can easily be detected as a byproduct 
of the algorithm that determines the computational causality. If, 
during causality assignment, any of the integrators (energy 
storage elements) assumes differential rather than integral 
causality, the model is structurally singular (i.e., of index larger 
than one). 

As in the case of linear algebraic loops, structural singularities 
within models often indicate bad modeling, or rather a poor 
selection of variables. However, structural singularities that are 
caused by interconnections between objects are frequent and 
unavoidable. This fact can be demonstrated by the simple circuit 
shown on Fig. 5. This circuit can be modeled in Dymola as 
follows: 

model parcap 
submodel (capacitor) Cl (C = 0.2E-6), C2(C = 0 . E - 6 )  
submodel (csource) IO 
submodel Common 
input i 

connect Common - U O  - (CI//C2) - Common 
10.11 = i 

output y 

y = C1.U 
end 

When this model is entered into Dymola, the following 
equations are generated: 

c 1  u = Va -Vb 
C*der(u) = i 

c 2  u = Va - Vb 
C*der(u) = i 

IO V = Va - Vb 
i = I1 

Common V = O  
parcap IO11 = i 

y = C1.U 
C2.Vb = C1.Vb 
Common.V = C2.Vb 
I0.Vb = Common.V 
C1.Va = I0.Va 
C2.Va = C1.Va 
C1 .i + C2.i = I0.i 

Partitioning this problem leads to the following warning: 

- The problem is singular. 
- Unassigned variables: 
C2.i 
- Additional constraint equations: 
parcap C2.Va = C1 .Va 

and the generated equations are: 

c1 u = [Val - Vb 
C * [der(u)J = i 

C * [der(u)] = i 
IO [VI = Va - Vb 

[i] = I1 
Common [V=O 
parcap [IOJII = i 

ry] = C1.U 

c 2  u = [Val - Vb 

C2.Vb = [Cl .Vb] 
Common.V = [C2.Vb] 
[IO.Vb] = Common.V 
Cl.Va = [IO.Vu] 
C2.Va = C1.Va 
[Cl.i] + C2.i = I0.i 

Dymola assumes by default that the state variables of the 
model are all variables that appear differentiated. Due to the fact 
that the target simulation language is expected to make use of an 
explicit integration technique, all state variables can automat- 
ically be declared as known variables according to (1). 

It is possible to get around the singularity by telling Dymola 

0.2 yF 0.1 pF 

1 
J, 

h-ig. 5 .  Parallel capacitor circuit. 
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explicitly that one of the two so-called state variables that were 
introduced by default is, in fact, not a state variable at all. This 
can be accomplished by declaring: 
> variable unknown C2.u 
> variable known C2.deru 

Now, the equations can be repartitioned, and after eliminating 
the trivial assignments, and after sorting and solving them, the 
following set of equations is obtained: 

Common C1.Vb = 0 
c 1  
c 2  

I0.Va = u + Vb 
u = I0.Va - C1.Vb 
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i = C*der(u) 
parcap C1 .i = i - C2.i 
c 1  der(u) = i/C 
IO V = Va - C1.Vb 
parcap y = C1 .u 

It can be clearly seen that one of the two differential equations 
now assumes differential causality rather than integral causality. 

While this is a possible solution to the dilemma, it is not a 
very good one, since it forces the subsequent simulation to 
numerically differentiate the variable C2.u in order to compute 
C2.i, which is unnecessary. There exists a (linear) algebraic 
relationship between the two so-called state variables, i.e., the 
two outputs of the integrators. More precisely: 

By differentiating equation @a), the following equation is 
obtained: 

der(C2.u) = der(C1.u) (8b) 

One method is to replace (8a) by (8b), and thereby remove 
the structural singularity. The constraint is thus removed, and the 
voltages of the capacitors are integrated separately. It is then 
important to assign initial values that are consistent with the 
removed constraint. This approach has the drawback that 
numerical inaccuracy might introduce drift in such a way that 
the removed constraint is no longer valid after the simulation has 
proceeded for a while [ 151. 

The approach taken in Dymola is to retain all constraints. The 
dimension of the state vector is reduced. Instead, the removed 
state variables are solved from the constraints. The derivatives 
of the removed state variables also need to be computed. Equa- 
tions for those are added by differentiating the constraints. 

Pantelides [ 161 has designed an algorithm for determining 
which equations need to be differentiated. It is a graph-theoreti- 
cal algorithm that uses the dependency structure of the equations. 
This algorithm has been implemented in Dymola. When the 
dzfferentiate command is entered, Dymola uses the algorithm to 
augment the set of equations with symbolically differentiated 
versions of some of the equations. The algorithm assumes that 
all state variables are known. It then looks for constraints between 
these variables. Note, that there might be a chain of equations 
with auxiliary variables involved. All equations in such a de- 
pendency chain must be differentiated. 

This process is repeated because there might be second order 
derivatives implying that differentiated variables are considered 
known. The added differentiated equations might introduce con- 
straints on these differentiated variables, which means that these 
equations have to be differentiated once more. 

The differentiate operator performs an automated index 
reduction. Each complete differentiation of an equation chain 
corresponds to a reduction of the index of nilpotency by one. In 
the end, the resulting model is of index one, Le., it still contains 
algebraic loops, but is no longer structurally singular. 

Once the differentiate command has been issued, Dymola 
leaves it up to the user to declare which variables are to be used 
as state variables. 

The parallel capacitor problem can be tackled using the 
following set of commands: 

> differentiate 
> variable state C1 .u 
> partition 
> output equations 

which leads to the following set of equations: 

c 1  u = [Val - Vb 
C * [deru] = i 

c 2  [u] = Va - Vb 
C * deru = [i] 

IO [VI = Va - Vb 
[i] = II  

Common [v=O 
parcap [ZO.Ir] = i 

b] = c1.u 
C2.Vb = [Cl.Vb] 
Cammon.V = [C2.Vb] 
[ZO.Vb] = Common.V 
CI.Va = [ZO.Vu] 
(C2.VuI = CI.Va 
[Cl .i] + C2.i = Z0.i 

C l  deru = [derVa] - derVb 
parcap C2.derVb = [Cl.derVb] 
Common [derV] = 0 
c 2  [deru] = derVa - derVb 
parcap Common.derV = [C2.derVb] 

[C2.derVa] = C 1 .derVa 

The last six equations of the above set are those that have been 
added by applying the Pantelides algorithm to this model. 

By declaring C 1 .u as a state variable, the causality assignment 
algorithm inside Dymola knows that it doesn’t need to find an 
equation to evaluate Cl.u, and the model generator inside 
Dymola knows that it needs to generate a state equation for this 
variable. For example in the case of ACSL, a statement of the 
type: 

Cl-u = INTEG(C1-deru, 0.0) 

will be added to the set of generated equations. 
The commands: 

> set Eliminate on 
> set SubExpr off 
> set EvaluateExpr on 
> partition 
> output solved equations 
will lead to the following set of equations: 

SORTED AND SOLVED EQUATIONS 
SYSTEM OF 5 SIMULTANEOUS EQUATIONS 
UNKNOWN VARIABLES 

C1 .i 
C2.i 
C2.deru 
C1 .derVa 
C1 .dew 

EQUATIONS 
parcap 
c 2  

[Cl,i] + C2.i = i 
C * deru = [i] 
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[deru] = Cl.derVa - Cl.derVb 
deru = [derVa] - derVb 
C * [deru] = i 

C1 .i = C1.C * i/(Cl.C + C2.C) 
C2.i = C2.C * V(C1.C + C2.C) 
C2.deru = i/(Cl.C + C2.C) 
C1.derVa = i/(Cl.C + C2.C) 
Cl.deru = i/(Cl.C + C2.C) 

c1 

SOLVED SYSTEM OF EQUATIONS 

END OF SYSTEM OF SIMULTANEOUS EQUATIONS 

END OF SORTED AND SOLVED EQUATIONS 
parcap y = C1 .u 

which can be used to automatically generate a simulation pro- 
gram for either ACSL, DESIRE, DSblock, Simnon, or 
SIMULINK. 

Applications 
This section describes some typical modeling situations 

where symbolic model manipulation is needed. 
When modeling a mechanical system, the technique of free 

body diagrams is utilized. The introduced forces and torques are 
terminal variables that are structured into cuts to facilitate the 
description of the mechanical topology. Connecting mechanical 
links and joints introduces constraints on positions and 
velocities, which implies that the degrees of freedom of the 
interconnected system are reduced, i.e., the dimension of the state 
vector of the interconnected system is smaller than the sum of 
the dimensions of the state vectors of the subsystems. 

A simple example is the model of a body in two dimensions 
for which one end point is attached to a fixed rotational joint. 
The unconstrained body has three degrees of freedom. It can 
translate in x and y directions, and it can rotate around its z-axis. 
Thus, a state-space model of an unconstrained body must contain 
six first-order ODEs. Due to the connection with the rotational 
joint, the lever is restricted in its freedom to move. It can no 
longer translate at all. It can only rotate around the joint. Conse- 
quently, a state-space model of the constrained body must con- 
tain two first-order ODEs. The degrees of freedom are reduced 
from three to one. 

The model type that describes the body irrespective of the 
environment it operates in must describe the unconstrained body. 
Consequently, it may contain either two instances of Newton’s 
translational law and one instance of Newton’s rotational law, 
equivalent descriptions using the d’ Alembert principle, a direct 
formulation of the energy balance equations, or finally, a descrip- 
tion of power flow through the system (e.g., using a bond graph 
notation [ 11, [17]). In either formulation, an instantiation of the 
unconstrained body will result in a sixth-order state-space model. 

The model type that describes the joint doesn’t contain any 
dynamics at all, since the joint by itself doesn’t move around. 
When the unconstrained body is connected through the joint to 
the wall, four constraints (two explicit positional and two 
deduced velocity constraints) are introduced. The resulting 
model is thus structurally singular. By applying the Pantelides 
algorithm (differentiation), it is possible to get rid of the struc- 
tural singularity. In the process, the number of state equations is 
reduced from six to two. By choosing the angular position, 0, 
and the angular velocity, O, as the two remaining state variables, 
a system of equations arises, Le., the resulting model contains a 

linear algebraic loop that can be solved by formula manipulation. 
The solution is of the form: 

der(o) = .  . . / ( J + m .  d .  d) (9) 

where J is the inertia of the body relative to its point of gravity, 
d is the distance from the center of gravity to the joint, and m is 
the mass of the body. The formula for how the inertia changes 
due to translation ( J  + m . d .d) is thus automatically obtained. 

Thermodynamic systems and chemical reaction dynamics are 
modeled by defining control volumes and introducing terminal 
variables in cuts corresponding to, e.g., the pipes between dif- 
ferent components. The topology is typically described as 
separate subgraphs by following the different flows in the system 
(steam, water, etc). 

As an example, consider a superheater in a thermal power 
plant. A model for the steam is: 

der@) = Qin - W . (h - h,) 

where E denotes the stored energy, Q i n  describes the incoming 
heat flow, W is the mass flow rate of steam, h is the enthalpy of 
steam in the superheater, hin describes the enthalpy of incoming 
steam, V denotes the volume, and r is the density. The function 
g describes steam properties and is typically implemented as a 
table look-up function. 

If E is chosen as the state variable (default selection), a 
nonlinear system involving equations (lob) and (1Oc) has to be 
solved for h and r. An alternative approach is to select the 
enthalpy h as the state variable. The differentiation algorithm in 
Dymola determines that the equations (lob) and (1Oc) have to 
be differentiated. A two-dimensional linear system of equations 
results. Its solution produces: 

der(h) = derE/(gDER(h) . V . h + V . r) (11) 

where der(h) is a true state derivative, whereas derE is an 
algebraic variable with a special name [15]. The existence of a 
function gDER is assumed that returns the partial derivative of 
the function g with respect to its argument. 

It is not obvious which state variable selection is preferable. 
If the function gDER exists, the selection of h as a state variable 
probably gives more efficient computations. If gDER is not 
available, the former approach may be more appropriate. The 
point is that the modeler doesn’t need to manually perform the 
required formula manipulations depending on which state vari- 
able is selected. The model contains only the fundamental physi- 
cal equations. This makes modeling a considerably safer 
enterprise. 

A similar situation occurs when modeling active electronic 
circuits [ 13. A bipolar transistor model contains three junction 
diode models. Each of those models contains a nonlinear 
capacitor. Simplified model equations are: 

der(q,) = i, 
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qc = k, . u$ + k, . id+ k4 

id = k, . exp(ud) + k6 . ud + k, 

where qc is the charge, i,. is the capacitive current, id is the diode 
current, Ud is the voltage, and k l ,  . . ., k7 are parameters. A choice 
of qc as the state variable leads to a nonlinear system of equations 
in the variables Ud and id that must be solved iteratively. In an 
alternative approach, ud can be chosen as the state variable. In 
this case, the Pantelides algorithm must be applied. After dif- 
ferentiation, a h e a r  system of equations in the variables dud/dt 
and did/& results that can be solved by formula manipulation. 

The true bipolar transistor equations are, in fact, much more 
complicated than indicated above. It is thus a relief for the 
modeler not to have to perform the differentiations by hand, and 
automated differentiation certainly promotes model correctness. 

Automatic Generation of 

feeding them to a DAE solver is not efficient because it would 
require iterative solution of all variables. Amore efficient method 
is to eliminate as many variables as possible. This step involves 
the graph theoretical algorithms mentioned above and formula 
manipulation. The DAE solver will then only be involved in 
solving the state variables, variables involved in simultaneous 
systems of equations, and variables involved in certain nonlinear 
scalar equations. 

A software tool, Dymola, was presented in which the various 
formula manipulation techniques have been implemented. 
Dymola is an object-oriented continuous-system modeling lan- 
guage and a model manipulator that can be used to generate 
models in several simulation languages. Currently, Dymola sup- 
ports ODE interfaces for ACSL, DESIRE, DSblock, Simnon, and 
SIMULINK, and a DAE interface for DSblock. 

References 
[ 1 I F.E. Cellier, Continuous System Modeling, Springer-Verlag, New York, 
1991. 

[2] D.C. Augustin, M.S. Fineberg, B.B. Johnson, R.N. Linebarger, F.J. 
Sansom, and J.C. Strauss, “The SCi Continuous System Simulation Lan- 
guage (CSSL),” Simulation, vol 9, pp. 281-303, 1967. 

[31 F.E. Cellier, B.P. Zeigler, and A.H. Cutler, “Object-oriented modeling: 

State-Space Models 
In this paper, it was demonstrated how sophisticated 

automated formula manipulation can be used to automatically 
generate state-space models from an object-oriented description 
of a physical system. It was shown that the two major complica- 

loops and structural singu1arities, Occur frequent- 

Tools and techniques for capturing proprties Of physical systems in cam- 
puter code,” in Proc. CADCS’91 -fFAC Symp. Computer-Aided Design in 

[4] F.E. Cellier, “Bond graphs - The right choice for educating students in 

Control Systems, Swansea, Wales, U,K,, July 15-18, 1991, pp, 1-10. 
ly as a consequence of couplings between submodels (objects), 
and that these difficulties can Often be with by automated 

singu1arities can be reduced modeling continuous-time systems,>, in proc, I C S E E ’ ~ ~  - scs western 
Simulation MultiCoCference on Simu/arion in Engineering Education, New. 

to systems of simultaneous algebraic equations [15], and small 
linear systems of equations can be solved explicitly. 

simp1e1 and 
were mostly selected from the class of passive linear electrical 
circuits. However, the advocated techniques have been success- 
fully applied to considerably more complex systems, and to 
systems stemming from various application areas, such as 
mechanics, thermodynamics, and chemical reaction kinetics. 
Many sophisticated examples can be found in the literature 

was dictated partly by space considerations and partly by the 
desire to isolate the individual types of advocated formula 
manipulation techniques. 

overly optimistic. Isn’t it true that nonlinear algebraic loops are 
utterly common? While the Pantelides algorithm can reduce any 
higher index problem to index one, a further reduction to index 
zero (i.e., the explicit solution of remaining algebraic loops) is 
not always feasible. In such cases, DAE solvers might be able to 
do the job. DAE solvers have, however, the drawback of requir- 
ing consistent initial values for all variables and derivatives. 
From the user’s perspective, it is alright to provide initial values 
for the States of the model. The problem is that all auxiliary 
variables also need consistent initial values. A compromise is 
possible. DAE solvers can be combined with nonlinear equation 
solvers that compute consistent initial values. In order for such 
iterative methods to converge to the desired solution in case of 
multiple solutions, the user must provide appropriate guesses for 
the iteration variables. The burden for the modeler would 
decrease considerably by such strategies. 

It should be emphasized that much of the techniques illustated 
above during translation to ODE form is a h  necessary when 
translating to DAE form. Taking all original model equations and 

Beach, CA, 22-24, 1992, pp, 123-127. 
[51 H. Elmqvist, “A structured model language for large continuous systems,” 
Ph.D. diss., Rep. CODEN: LUTFD2/(TFRT-I015), Dept. of Automatic 
control, Lurid Institute of Technology, Lurid, Sweden, 1978, 

[6] I S .  Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse 

[71 R.E. Tarjan, “Depth first search and linear graph algorithms,” SIAM J .  
Comp.. vol. I .  pp. 146160, 1972. 

and Algorithms foi- Algebraic Computation. New York: Academic, 1988. 

[9] Mitchell & Gauthier Associates (MGA), Inc., Advanced Continuous 
Simulation Language (ACSL) - Reference Manual, Concord, Mass, 1991. 

[ lo] G.A. Kom, Interactive Dynamic-System Simulation. New York: Mc- 
Graw-Hill, 1989. 

[ 1 1 I M. Otter, “DSblock: Aneutral description of dynamic systems,” OPEN- 
CACsD Electronic Newsletter, vol. 1 ,  no. 3, Feb. 28, 1992. 
[121 H. Elmqvist, K.J. Astrom, T. Schonthal, and B. Wittenmark, Simnon- 
User’s Guidefor MS-DOS Computers. SSPA Systems, Gothenburg, Sweden, 
199”. 

[131 Mathworks, Inc., The Student Edition of MATLAB for MS-DOS or 
Macintosh Computers. Englewood Cliffs, NJ: Prentice-Hall, 1992. 

(141 K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical Solution of 
Initial-Value Problems in Differential Algebraic Equations. New York: 
North-Holland, 1989. 

[151 S.E. Mattson and G,SMerlind,“Anew technique for solving high-index 
differential-algebraic equations,” in Proc. CACSD’92, March 17-19, 1992, 
Napa, CA. 

[ 161 C.C. Pantelides, “The consistent initialization of differential-algebraic 
systems,” SIAM J .  Sci. Stat. Coniput.. vol. 9, no. 2, pp. 21 3-23 1, 1988. 

[ 171 F.E. ce1lier, -Hierarchical Nonlinear Bond Graphs: A Unified 
Methodology for Modeling Complex Physical Systems,”Simulation, voi. 58, 
no. 4, pp. 230-248, 1992. 

The chosen in this paper were 

Oxford, U,K,: Clarendon, 1986, 

[ 1],[3],[5],[ 18]-[21]. The selectionofexamples usedin this paper r81 J.H. Davenport, ’. and E. Computer systems 

Knowledgeable readers may find the tenor of this paper 

April 1993 37 



[18] M. Amrhein, “Modeling of chemical reaction networks using bond 
graphs,” Thesis, Dept. of Electr. & Comp. Engr., University of Arizona, 
Tucson, AZ, 1990. 

[19] B.A. Brooks and F.E. Cellier, “Modeling of a distillation column using 
bond graphs,” in Proc. ICBGM’93 - SCS Western Simulation Multi- 
Conference on Bond Graph Modeling, San Diego, CA, Jan. 17-20,1993. pp. 
31 5-320. 

[20] U. Piram, “Investigation of second sound in liquid helium,” Thesis, 
Dept. of Electr. & Comp. Engr., University of Arizona, Tucson, AZ, 1991. 

[21] M. Weiner and F.E. Cellier, “Modeling and simulation of a solar energy 
system by use of bond graphs,” in Proc. ICBGM93 -SCS Western Simula- 
tion MultiConference on BondGraph Modeling, San Diego, CA, Jan. 17-20, 
1993, pp. 301-306. 

Franqois E. Cellier received the B.S. degree in 
electrical engineering from the Swiss Federal In- 
stitute of Technology (ETH) Zurich in 1972, the 
M.S. degree in automatic control in 1973, and the 
Ph.D. degree in technical sciences in 1979, all 
from the same university. Following his Ph.D., he 
worked as a Lecturer at ETH Ziirich. He joined 
the University of Arizona in 1984 as an Associate 
Professor. His main scientific interests concern 
modeling and simulation methodology, and the 

design of advanced software systems for simulation, computer-aided model- 
ing, and computer-aided design. He has designed and implemented the 
GASP-V simulation package, and he was the designer of the COSY simula- 
tion language a modified version of which under the name of SYSMOD has 
meanwhile become a standard by the British Ministry of Defence. He has 

authored or co-authored more than sixty technical publications, and he 
recently published his first textbook on Continuous System Modeling 
(Springer-Verlag, 1991). He served as chairman of the National Organizing 
Committee (NOC) of the Simulation’75 conference, and as chairman of the 
International Program Committee (IPC) of the Simulation’77 and 
Simulation’80 conferences, and he has also participated in several other 
NOC’s and Ipc’s. He serves as the program chairman of the forthcoming 
1993 Intemational Conference on Bond Graph Modeling (SCS), and as the 
general chairman of the 1994 Computer-Aided Control Systems Design 
Conference (IEEE/IFAC). He is associate editor of several simulation related 
journals, and he served as vice-chairman of two committees on stand- 
ardization of simulation and modeling software. 

Hilding Elmqvist is the founder and president of 
DynaSim AB, a Swedish company developing 
and marketmg the modeling tool Dymola. In 
1972-1975, he developed the first version of the 
simulation program Simnon. He earned the Ph.D. 
degree at the Department of Automatic Control, 
Lund Institute of Technology, Sweden m 1978. 
His Ph.D. thesis contains the design of a novel 
object-onented model language called Dymola 
and algonthms for symbolic model manipulation. 

He then spent one year in 1978-1979 at the Computer Science Department 
at Stanford Umversity, Califomla. He was later involved in research on 
languages for implementation of lndustnal control systems. He has been the 
principal designer and project manager at SattControl in 1984-1990, for 
developing SattGraph and SattLine, graphical, object-oriented and dis- 
tributed control systems. 

Out of Control 

“You are sufferingffom a condition called ” hyper-inputitis” which has turned you into a fat, fat plant. And mark my words ... changing into 
Smith-McMillan form ain’t gonna do it! Your only hope is to reduce your inputs and get rid of a few of those columns.” 
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