This package contains Euler equations solved with the Finite Volume Methods by using the Lax-Friedrichs flux.
Release Notes:
| Name | Description |
|---|---|
| SOD |
Implements the Euler system of equations
with Lax-Friedrichs flux. The initial conditions are
The boundary conditions are
Release Notes:
model SOD
extends PDE.FiniteVolume.Examples.EulerSystem.BaseModel.ShockWaveLDLR(
worldModel1(n=10),
Density(
vb=worldModel1.gcl + 1,
icb=worldModel1.gcl + 1,
ve=worldModel1.gcl + worldModel1.n - 1,
ice=worldModel1.gcl + worldModel1.n - 1,
bcl=0),
Momentum(
vb=worldModel1.gcl + 2,
icb=worldModel1.gcl + 2,
bcr=0),
Energy(
vb=worldModel1.gcl + 1,
icb=worldModel1.gcl + 1,
ve=worldModel1.gcl + worldModel1.n - 1,
ice=worldModel1.gcl + worldModel1.n - 1,
bcl=0),
lF(alpha=0.2),
lF1(alpha=0.2),
lF2(alpha=0.2));
Modelica.Blocks.Sources.RealExpression ICdensity[worldModel1.n](y=1.0);
Modelica.Blocks.Sources.RealExpression BCLdensity[worldModel1.gcl](y=0.0);
Modelica.Blocks.Sources.RealExpression BCRdensity[worldModel1.gcr](y=
0.125);
Modelica.Blocks.Sources.RealExpression ICmomentum[worldModel1.n](y=
0.0);
Modelica.Blocks.Sources.RealExpression BCLmomentum[worldModel1.gcl](y=
0.0);
Modelica.Blocks.Sources.RealExpression BCRmomentum[worldModel1.gcr](y=
0.0);
Modelica.Blocks.Sources.RealExpression ICenergy[worldModel1.n](y=2.5);
Modelica.Blocks.Sources.RealExpression BCLenergy[worldModel1.gcl](y=0.0);
Modelica.Blocks.Sources.RealExpression BCRenergy[worldModel1.gcr](y=
0.25);
equation
connect(ICdensity.y, Density.u2);
connect(BCRdensity.y, Density.u4);
connect(ICmomentum.y, Momentum.u2);
connect(BCLmomentum.y, Momentum.u3);
connect(ICenergy.y, Energy.u2);
connect(BCRenergy.y, Energy.u4);
connect(BCLenergy.y, Energy.u3);
connect(BCRmomentum.y, Momentum.u4);
connect(BCLdensity.y, Density.u3);
end SOD;