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1 Method of Lines

The first step in constructing PDE is to drag the WorldModel block in the diagram. The
WorldModel block contains general information about the problem, such as the number
of grid points the user wish to use to solve the problem. These information are then
”propagated” to all the blocks in the diagram that need them.
The heart of the Method of Lines Package are the integrator and derivative blocks. Once
the user know the problem it is easy to implement it in Dymola. Typically the problem
consists of a PDE and initial and boundary conditions. The initial condition can be
passed to the IC input of the integrator block. For the boundary conditions we must
additionally specify some parameters in the WorldModel block:

• bcl and bcr specify whether there is a boundary condition at the left and at the
right respectively (0: no, 1: yes).

• vb and ve specify the first and last unknown variable respectively. The same
applies to icb and ice, which specify the first and last variable for which an initial
condition must be specified.

The information in the second point is redundant and could be deduced from the first
point. However, for better understanding and use this choice was taken. In the World-
Model block the number of grid points can be specified in the n parameter. Per default
n = 10. Let now turn our attention to the integrator block. This block implements
PDEs of the form

∂u

∂t
= R (1)

where u is the unknown function and R is the right part of the equation that can contain
space derivatives, constant values and so on (See Examples). This means that if we do
not have the PDE in this form we must first convert it to this form before passing it to
the integrator. Once this step is achieved we can build the right part of the equation
and at the end pass it to the R input of the integrator block.
Now say that one of the component of the right part of the equation is a derivative of
unknown function with respect to space. In this case we can use the derivative blocks
that the Package provide. For example for the first-order space derivative use the d/dx
block. It is important to note here that in the case of the boundary condition of type

∂u

∂x
= 0 (2)

say at the left part of the domain, we must set the bcl parameter in the corresponding
block to −1 which tells that we are in front of the symmetry boundary condition at the
left part of the domain. The same applies for the right part of the domain, in which
case we must set the parameter bcr to −1. Another important point is the accuracy
of the derivative computation. For the computation of the first order space derivative
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for example, the second, fourth and sixth order central difference approximations were
provided. The user can choose which one to use by specifying the value of the ux

parameter in the WorldModel block.
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2 Finite Volume Method

Before going into details of FVM Package we need to explain some theory. In the follow-
ing a short introduction to the finite volume method is made. This short introduction is
based on book of Randall Leveque, ”Finite Volume Methods for Hyperbolic Problems”.

2.1 Introduction

In one dimension, the finite volume method consists in subdividing the spatial domain
into intervals, ”finite volumes” (or cells), and approximate the integral of the function q
over each of these volumes at each time step. Denote the i-th finite volume by

Ci = (xi−1/2, xi+1/2) (3)

Then the approximation to the average of q in the cell Ci at time t, which we denote
with Qt

i, is

Qt
i ≈

1
4x

∫
Ci

q(x, t)dx (4)

Remains the question of how to find this approximation. If we think about conservation
law, we note that the average within the cell can only changes due to the fluxes at the
boundaries (if we assume that no source or sink is present in the cell). The integral form
of conservation law is

d

dt

∫
Ci

q(x, t)dx = f(q(xi−1/2, t))− f(q(xi+1/2), t) (5)

If we integrate this expression in time from t to t + ∆t, we obtain∫
Ci

q(x, t+∆t)dx−
∫

Ci

q(x, t)dx =
∫ t+∆t

t
f(q(xi−1/2, t))dt−

∫ t+∆t

t
f(q(xi+1/2), t)dt (6)

and dividing by ∆x we reach the form

1
∆x

∫
Ci

q(x, t+∆t)dx =
1

∆x

∫
Ci

q(x, t)dx− 1
∆x

(
∫ t+∆t

t
f(q(xi+1/2, t))dt−

∫ t+∆t

t
f(q(xi−1/2, t))dt)

(7)

which gives us an explicit time marching algorithm. This is more clearly seen if we
rewrite the expression using the notation we introduced above:

Qt+∆t
i = Qt

i −
∆t

∆x
(F t

i+1/2 − F t
i−1/2) (8)
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where F t
i−1/2 approximates the average flux along the interface xi−1/2:

F t
i−1/2 ≈

1
∆t

∫ t+∆t

t
f(q(xi−1/2, t))dt (9)

As can be seen from the equation (??), in order to find the average at the next time step
we need to find the fluxes at the interfaces. The flux at the interface xi−1/2 for example,
depends on q(xi−1/2, t), which changes with time along the interface and for which we do
not know the analytical solution. For this reason we need to find some approximation
to this fluxes in order to calculate the averages at the next time step. Let us now see
some simple flux approximations.
Examples of fluxes:

Advection equation
Consider the advection equation qt + ūqx = 0, where ū is the fluid velocity. We have
seen in the previous chapters, that the flux of the contaminant at some point x, at some
time t, could be written as ūq(x, t). Consider now the flux through the interface xi−1/2.
If ū > 0 then the flux will be ūQi−1, otherwise, if ū < 0, the flux will be ūQi. Inserting
it into the average update rule, we obtain the finite volume method for the advection
equation:

Qt+∆t
i = Qt

i −
ū∆t

∆x
(Qt

i −Qt
i−1) (10)

if ū > 0, and

Qt+∆t
i = Qt

i −
ū∆t

∆x
(Qt

i+1 −Qt
i) (11)

if ū < 0.

Diffusion equation
In the advection equation, the flux depends on q: f(q) = uq. The flux in the diffusion
equation depends on the derivative of q:

f(qx) = −βqx (12)

where β is the conductivity. If β is space dependent then the flux will depend on space
too (f(x, qx) = −β(x)qx). In the following we will assume for simplicity that β is con-
stant.
Now remains the question of how to approximate numerically the diffusion flux. One
possibility were:

Fi−1/2 = −β(
Qi −Qi−1

∆x
) (13)
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By inserting this flux approximation into the average update rule (??), we obtain:

Qt+∆t
i = Qt

i +
∆t

∆x2
β(Qt

i−1 − 2Qt
i + Qt

i+1) (14)

It is interesting to note, that after some algebraic manipulations, we can write the aver-
age update rule in the form

Qt+∆t
i −Qt

i

∆t
= − 1

∆x
(F t

i+1/2 − F t
i−1/2) (15)

which is equivalent to the finite difference discretization of the conservation law equation
qt +f(q)x = 0. As said in (LeVeque): Many methods can be equally well viewed as finite
difference approximations to this equation or as finite volume methods.
Another form of the average update rule is

d

dt
Qi = − 1

∆x
(F t

i+1/2 − F t
i−1/2) (16)

which give us an ODE for each average cell. This form is more suitable for the imple-
mentation in Dymola and all Finite Volume Method blocks are based on this form of
update rule.

2.2 Unstable Method

The unstable flux just take the arithmetic average of the fluxes based on either side of
the interface xi−1/2:

F t
i−1/2 =

1
2
(f(Qt

i−1) + f(Qt
i)) (17)

By using this flux, the average update rule becomes:

Qt+1
i = Qt

i −
∆t

2∆x
(f(Qt

i+1)− f(Qt
i−1)) (18)

This method is generally unstable.

2.3 Lax-Friedrichs Method

The Lax-Friedrichs flux is defined as:

F t
i−1/2 =

1
2
(f(Qt

i−1) + f(Qt
i))−

∆t

2∆x
(Qt

i −Qt
i−1) (19)
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inserting it into the average update rule, we obtain the Lax-Friedrichs method:

Qt+∆t
i =

1
2
(Qt

i−1 + Qt
i+1)−

∆t

2∆x
(f(Qt

i+1)− f(Qt
i−1)) (20)

If we take a closer look at the Lax-Friedrichs flux, we notice that it is similar to the
unstable flux, but with the addition of some correction term. This correction term looks
like the diffusion flux (??) with

β =
(∆x)2

2∆t
(21)

The Lax-Friedrichs flux can thus be interpreted as the unstable flux plus a numerical
diffusion. This numerical diffusion damps the instabilities that arise in the unstable
method, however, it damps it too much. Later we will see another method, the Lax-
Wendroff method, that add less diffusion.

2.4 Implementation

As already seen, we obtain by starting from the integral conservation law the cell average
update rule

d

dt
Qi = − 1

∆x
(F t

i+1/2 − F t
i−1/2) (22)

This ODE is implemented in FVMIntegrator block. The use of this block is similar to
the use of the integrator block in the MOL package. We must specify the initial and
boundary conditions and give them to the inputs IC and gcl, gcr respectively. The only
difference here is that instead of writing special formulas for the boundary conditions
like in the MOL package, we extend the domain with additional cells, called ghost cells,
and fill them with values. This way, the first and the last cell of the domain for example,
can use the same formula as all other cells in the domain. Finally, we must pass the flux
vector F to the F input of the integrator, which can now use the cell average update
rule with the information just provided and compute the averages for the next time step.
See Examples for better understanding.
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3 Flux Limiter

Given a hyperbolic system of m equations we want to solve it with the flux limiter
method. We can specify the parameter m as well as the number of cell averages n that
we wish in the WorldModel block.
The first thing we need is the integrator block which will give us the mxn+gcl+gcr aver-
age matrix Q as output with which we can start then the construction. Having matrix
Q we can compute the jumps

∆Qi = Qi −Qi−1 (23)

at each interface i = 1,...,n+gcl+gcr-1. The deltaQ block achieves this task. The next
step is to solve the Riemann problem

∆Q = Rα (24)

This can be accomplished by passing ∆ Q and mxm eigenvalue matrix R to the Riemann
block which will give us the mxn+gcl+gcr-1 matrix α as output. It is important to note
that the eigenvalue matrix R as well as the eigenvalues λi must be provided by the user.
In the case of a constant coefficient linear hyperbolic system these do not change with
time. The next step is to use the α matrix just obtained together with the i-th eigenvalue
λi to calculate θi. The θi matrix has the θi values in the i-th row and zeros elsewhere.
With θi matrix at hand we can use for instance Beam Warming block to compute φ(θ),
which is just θ in the Beam Warming method. Beam Warming together with many other
methods is implemented in FluxSolver block. The user can choose which method to use
in the WorldModel block by giving the corresponding value to the method variable. Here
is a list of methods with their corresponding values:

• Upwind method: method = 1

• Lax-Wendroff method: method = 2

• Beam-Warming method: method = 3

• Fromm method: method = 4

• van Leer method: method = 5

The next step is to pass the α and R matrix to the pWave block, that will calculate the
p-th Wave matrix

W p
i−1/2 = αp

i−1/2r
p (25)

and give the mxn+1 matrix as output. Each column p in this matrix contains the wave
W p

i−1/2. By using the same block but giving this time α̃ as input instead of α we can
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compute the limited wave W̃

W̃ p
i−1/2 = α̃p

i−1/2r
p (26)

The limited α̃ can be computed by using the block limitedalpha which need φ(θ) and α
matrices as input. With the eigenvalues λp and the waves matrices W , W̃ we can com-
pute the fluxes and fluctuations. This is done by blocks FluxLimited and Fluctuation.
The FluxLimited block computes

1
2
|λp|(1− ∆t

∆x
|λp|)W̃ p

i−1/2 (27)

If we have m equations in the system then we must use m FluxLimited block to compute
each term of the sum

1
2
Σm

p=1|λp|(1− ∆t

∆x
|λp|)W̃ p

i−1/2 (28)

and then sum all the outputs of the blocks and pass it to Flux input of the integrator.
The same applies to the Fluctuation block, only that here we must sum the + outputs
of the blocks and - outputs of the blocks separately and at the end pass them to the +
and - inputs of the integrator respectively. Finally we specify the initial and boundary
conditions and connect them to the IC and gcl, gcr inputs respectively.
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