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Collide instructions at 0.99c, and observe the decay products.

We're Building the Large Program Collider

Images: CERN; Chaix & Morel et associés
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Why is This Useful?

 Formal verification relies on accurate models
 For systems-level HW, these mostly don’t exist!

 Testing lets us build confidence at these low levels

 The hardware is trying to tell us what it’s doing.

 Further applications:
 Debugging rack-scale systems.
 Monitoring control flow (security).
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LTL and Automata

The light stays on until I leave the house.

G Leave −> On S Enter;
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Properties
No Double Frees in LTL

 We can now check this:

void *a = malloc();
...
{a is still allocated}
free(a);

Gp $free(x) −> P !$free(x) S x = $malloc;

It's always been
true that...

...if x is freed now, then...

...before this free...

...there were no frees of x,
since it was allocated.

Thanks to my student Andrei Pârvu.
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Valgrind, with zero overhead!
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Protocol Debugging

Tx 1

Tx 2

Ack 2

Ack 1

No more than two packets in flight

G Tx(x) −> !Tx(x+2) U Ack(x);
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Processing: Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard 
algorithms exist:
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Processing
Bound Variables and Multiple Automata

 What about multiple x-s?
 Every x needs an 

automaton instance.

Gp $free(1) −> P !$free(1) S 1 = $malloc;

Gp $free(2) −> P !$free(2) S 2 = $malloc;

Gp $free(3) −> P !$free(3) S 3 = $malloc;

free

malloc

malloc

free

malloc

malloc

free

malloc

malloc

 Quantifier instantiation using 
resolution.
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Our Streaming Verification Engine
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Sources
HSSTP Testbench: Zynq7000
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Capture
Local Trace Capture on the Zynq7000
 32b trace port to the FPGA fabric, 250MHz, 8Gb/s.
 Custom TPIU → AXI core, with Linux drivers:

 Integrates with ARM OpenCSAL, interchangeable with ETB.
 Full-speed capture and FIFO buffering (512kB).
 Easy to use: trace_launch <bin>; cat /dev/axi_tpiu
 Coming soon: PCIe & HSSTP output.
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Directions

 Enzian will support tracing.
 Using monitoring to validate the coherence protocol.

 Increasing the scope of FPGA offload (some parts are still 
software).

 Analysing live systems.
 Cache operations correctness in Linux, seL4 & Barrelfish.
 Input sanitisation.

 PSL as an input language.
 SoC integration.

I’d love to hear suggestions!
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Questions?
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Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard 
algorithms exist:

Gp P, at t-1
„P was true until t-1“

P, at t
„P is still true at t“

Gp P, at t
„P has always been true“

0 0 0

0 1 0

1 0 0

1 1 1


