
Runtime Verification
David Cock – david.cock@inf.ethz.ch

ad

*x
=
*y++;

malloc();

tlbi alle3; dmb

0100
1111

010
011

01

13 September 2017David Cock 2||

Collide instructions at 0.99c, and observe the decay products.

We're Building the Large Program Collider

Images: CERN; Chaix & Morel et associés

ad

*x
=
*y++;

malloc();

tlbi alle3; dmb

0100
1111

010
011

01

13 September 2017David Cock 3||

Why is This Useful?

 Formal verification relies on accurate models
 For systems-level HW, these mostly don’t exist!

 Testing lets us build confidence at these low levels

 The hardware is trying to tell us what it’s doing.

 Further applications:
 Debugging rack-scale systems.
 Monitoring control flow (security).

13 September 2017David Cock 4||

Program Trace
Bus matrix

Cross Trigger Matrix (CTM)

JTAG
port

DAP

ARM
processor

ARM
processor

DSP

Debug APB

Trace bus (ATB)

Trace
Funnel

Replicator

Cross
Trigger

Interface
(CTI)

Cross
Trigger

Interface
(CTI)

Cross
Trigger

Interface
(CTI)ETM ETM ETM

DSP

HTM

Embedded
Trace Buffer

(ETB)

Trace Port
Interface Unit

(TPIU)

Trace port

ITM

Replicator

Serial Wire
Output
(SWO)

13 September 2017David Cock 5||

LTL and Automata

The light stays on until I leave the house.

G Leave −> On S Enter;

13 September 2017David Cock 6||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 7||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 8||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 9||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 10||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 11||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 12||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 13||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 14||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 15||

LTL and Automata

The light stays on until I leave the house.

Leave On Enter

G Leave −> On S Enter

On S Enter

Leave −> On S Enter

13 September 2017David Cock 16||

Properties
No Double Frees in LTL

 We can now check this:

void *a = malloc();
...
{a is still allocated}
free(a);

Gp $free(x) −> P !$free(x) S x = $malloc;

It's always been
true that...

...if x is freed now, then...

...before this free...

...there were no frees of x,
since it was allocated.

Thanks to my student Andrei Pârvu.

13 September 2017David Cock 17||

Properties
No Double Frees in LTL

 We can now check this:

void *a = malloc();
...
{a is still allocated}
free(a);

Gp $free(x) −> P !$free(x) S x = $malloc;

It's always been
true that...

...if x is freed now, then...

...before this free...

...there were no frees of x,
since it was allocated.

Thanks to my student Andrei Pârvu.

Valgrind, with zero overhead!

13 September 2017David Cock 18||

Protocol Debugging

Tx 1

Tx 2

Ack 2

Ack 1

No more than two packets in flight

G Tx(x) −> !Tx(x+2) U Ack(x);

13 September 2017David Cock 19||

Processing: Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard
algorithms exist:

11000000

00100211

00111011

00111111

11000111

malloc

free

free

malloc

free

free

free

malloc

malloc

malloc

00111010

00111110

11000110

free

malloc

malloc

free

malloc

free free

malloc

malloc

13 September 2017David Cock 20||

Processing
Bound Variables and Multiple Automata

 What about multiple x-s?
 Every x needs an

automaton instance.

Gp $free(1) −> P !$free(1) S 1 = $malloc;

Gp $free(2) −> P !$free(2) S 2 = $malloc;

Gp $free(3) −> P !$free(3) S 3 = $malloc;

free

malloc

malloc

free

malloc

malloc

free

malloc

malloc

 Quantifier instantiation using
resolution.

13 September 2017David Cock 21||

Our Streaming Verification Engine

HSSTP

Zynq
TPIU

Sources Capture Processing Properties

ETM
Sequencer

FPGA
Capture

LTL
Automata

FPGA
Offload

TESLA

malloc()
pairing

Live code
coverage

Observations Requirements

13 September 2017David Cock 22||

Sources
HSSTP Testbench: Zynq7000

13 September 2017David Cock 23||

Capture
Local Trace Capture on the Zynq7000
 32b trace port to the FPGA fabric, 250MHz, 8Gb/s.
 Custom TPIU → AXI core, with Linux drivers:

 Integrates with ARM OpenCSAL, interchangeable with ETB.
 Full-speed capture and FIFO buffering (512kB).
 Easy to use: trace_launch <bin>; cat /dev/axi_tpiu
 Coming soon: PCIe & HSSTP output.

DDR
FIXED_IO

axi_clkgen

Clocking Wizard

CLK_IN1_D
clk_out1

locked

axi_interconnect

AXI Interconnect

S00_AXI

M00_AXI

ACLK

ARESETN[0:0]

S00_ACLK

S00_ARESETN[0:0]

M00_ACLK

M00_ARESETN[0:0]

axi_tpiu

axi_tpiu

S_AXI

TRACE

ACLK

ARESETN

processing_system

ZYNQ7 Processing System

DDR

FIXED_IO

TRACE_0

M_AXI_GP0

M_AXI_GP0_ACLK

FCLK_RESET0_N

reset_sequencer

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]
sys_diff_clock

13 September 2017David Cock 24||

Directions

 Enzian will support tracing.
 Using monitoring to validate the coherence protocol.

 Increasing the scope of FPGA offload (some parts are still
software).

 Analysing live systems.
 Cache operations correctness in Linux, seL4 & Barrelfish.
 Input sanitisation.

 PSL as an input language.
 SoC integration.

I’d love to hear suggestions!

||

Questions?

13 September 2017David Cock 26||

Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard
algorithms exist:

Gp P, at t-1
„P was true until t-1“

P, at t
„P is still true at t“

Gp P, at t
„P has always been true“

0 0 0

0 1 0

1 0 0

1 1 1

