Runtime Verification
David Cock — david.cock@inf.ethz.ch

Systems @ ETH zirich

We're Building the Large Program Collider

Collide instructions at 0.99¢, and observe the decay products.

Images: CERN; Chaix & Morel et associés
David Cock | 13 September 2017 |2

Systems@ ETH i

Why is This Useful?

= Formal verification relies on accurate models

= For systems-level HW, these mostly don'’t exist!
= Testing lets us build confidence at these low levels

= The hardware is trying to tell us what it's doing.

= Further applications:
= Debugging rack-scale systems.
= Monitoring control flow (security).

David Cock | 13 September 2017 |3

Program Trace

»(Bus matrix)
(Cross Trigger Matrix (CTM))
A A
\ 4 \ 4
JTAG ARM ARM
port processor processor DSP
Cross Cross Cross
3 Trigger Trigger A Trigger
Interface Interface ETM Interface
DAP & (CTD (CTI) DSP (CTI)
T h 4 T
—»(Debug APB)
C Trace bus (ATB) D)
A
;
* * Replicator
Embedded Trace Port]
P Trace Buffer Interface Unit¢- i v
(ETB) (TPIU) Serial Wire
Output
l (SWO)
Trace port ¢

David Cock | 13 September 2017 | 4

Systems@ ETH i

LTL and Automata

The light stays on until | leave the house.

G Leave —> On S Enter;

David Cock | 13 September 2017 |5

LTL and Automata

The light stays on until | leave the house.

G Leave —> On S Enter | 4

%

Leave —> On S Enter | 4

On S Enter x

—
Leave x on x Enter x

David Cock | 13 September 2017 |6

LTL and Automata
The light stays on until | leave the house.

. 1

| | |
T 1 | T E
G Leave —> On S Enter | 4

%

Leave —> On S Enter | 4

on S Enter | &

Leave | I on | & Enter | 4

David Cock | 13 September 2017 |7

LTL and Automata
The light stays on until | leave the house.

1 i

| | |
T 1 | T E
G Leave —> On S Enter | 4

%

Leave —> On S Enter | 4

on S Enter | &

Leave | & on | 4 |Enter | 3¢

David Cock | 13 September 2017 |8

LTL and Automata

The light stays on until | leave the house.

G Leave —> On S Enter | 4

%

Leave —> On S Enter | 4

on S Enter | &

—
Leave x on | & Enter x

David Cock | 13 September 2017 |9

LTL and Automata

The light stays on until | leave the house.

G Leave —> On S Enter | 4

%

Leave —> On S Enter | 4

On S Enter x

—
Leave x On x Enter x

David Cock | 13 September 2017 | 10

LTL and Automata
The light stays on until | leave the house.

1 i

T 1 | E
G Leave —> On S Enter

%

Leave —> On S Enter | 4

On S Enter V

Leave | ¢ on | & Enter | &

David Cock | 13 September 2017 |11

LTL and Automata

The light stays on until | leave the house.

G Leave —> On S Enter | 4

%

Leave —> On S Enter | 4

On S Enter V

—
Leave x on | & Enter x

David Cock | 13 September 2017 | 12

LTL and Automata
The light stays on until | leave the house.

1 i

S N B i | | |
T 1 | T E
G Leave —> On S Enter | 3¢

%

Leave —> On S Enter x

On S Enter x

—
Leave |4 on “ Enter x

David Cock | 13 September 2017 |13

LTL and Automata
The light stays on until | leave the house.

: 1

S N B i | | |
T 1 | T E
G Leave —> On S Enter | 3¢

%

Leave —> On S Enter | &

On S Enter x

—
Leave x on x Enter x

David Cock | 13 September 2017 | 14

LTL and Automata

The light stays on until | leave the house.

S N B i | | |
T 1 | T E
G Leave —> On S Enter | 3¢

%

Leave —> On S Enter | &

On S Enter x

—
Leave x on x Enter x

David Cock | 13 September 2017 | 15

Properties
No Double Frees in LTL

void *a = malloc();

{a is still allocated}
free(a);

= \We can now check this:

Gp $free(x) —> P !$free(x) S x = $malloc;
It's always been ...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

Thanks to my student Andrei Parvu.

David Cock | 13 September 2017 | 16

Systems@ ETH i

Properties
No Double Frees in LTL

void *a = malloc();

{a is still allocated}
free(a);

= \We can now check this:

Gp $free(x) —> P !$free(x) S x = $malloc;
It's always been ...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

Valgrind, with zero overhead!

Thanks to my student Andrei Parvu.

David Cock | 13 September 2017 |17

Protocol Debugging
%‘
%‘

No more than two packets in flight

6 Tx(x) —> ITx(x+2) U Ack(x);

Ay
y

David Cock | 13 September 2017 | 18

Processing: Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;

00100211

malloc

malloc

00111010

malloc
free

David Cock | 13 September 2017 | 19

Processing
Bound Variables and Multiple Automata

= What about multiple x-s? Q\mfi/g

= Every X needs an "

automaton instance.
> malloc
Gp $free(1) -> P !$free(1) S 1 = $malloc; ﬂ///////////ff f;L
Gp $free(2) —-> P !$free(2) S 2 = $malloc;
Gp $free(3) —> P !$free(3) S $malloc; malloc

= Quantifier instantiation using > O\"‘"/Q
resolution.

David Cock | 13 September 2017 | 20

Our Streaming Verification Engine

TESLA

Sources Captu—fe Processing Properties

HSSTP ETM
LTL TESLA
Sequencer Automata
Zyng @ raiiocl)
TPIU @ FPGA EFPGA pairing
Capture Offload

Li d
coverage

David Cock | 13 September 2017 |21

Sources
HSSTP Testbench: Zyng7000

David Cock | 13 September 2017 | 22

Systems@ ETH i

Capture
Local Trace Capture on the Zynqg7000

= 32b trace port to the FPGA fabric, 250MHz, 8Gb/s.

= Custom TPIU - AXI core, with Linux drivers:
= Integrates with ARM OpenCSAL, interchangeable with ETB.
= Full-speed capture and FIFO buffering (512kB).
= Easytouse: trace_launch <bin>; cat /dev/axi_tpiu

= Coming soon: PCle & HSSTP output.

terconnect
reset_sequencer
(| 4|S00_AXI
t_sync_clk mb.
== ACLK
ext_reset_| bus_struct_reset[0:0]
q ARESETN[0:0]
aux_reset_in peripheral_reset[0:0]
- S00_ACLK Moo_AXi| axi_tpiu
==mb_debug_sys_rst interconnect_aresetn[0:0] =
S00_ARESETN[0:0]
dem_locked peripheral_aresetn[0:0] Y AGI SﬁAXI
- || [TRACE
Processor System Reset e 100_ARESETN[0:0]
ACLK
ARESETN
AXI Interconnect
rocessing_system
P 9.5y Y axi_tpiu
DDR| DDR
FIXED_IO/+| FIXED_IO
M_AXI_GP0_ACLK TF{ACE70
M_AXI_GPO[F|| st

FCLK_RESETO_N

ZYNQ-7 Processing System

David Cock | 13 September 2017 | 23

Systems@ ETH i

Directions

= Enzian will support tracing.
= Using monitoring to validate the coherence protocol.

= |Increasing the scope of FPGA offload (some parts are still
software).

= Analysing live systems.
= Cache operations correctness in Linux, seL4 & Barrelfish.
= [nput sanitisation.

= PSL as an input language.
= SoC integration.

I’d love to hear suggestions!

David Cock | 13 September 2017 | 24

Questions?

Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;

 » O O
O +—» O
L O O O

David Cock | 13 September 2017 | 26

