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We're Building the Large Program Collider

Collide instructions at 0.99¢, and observe the decay products.

Images: CERN; Chaix & Morel et associés
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Why is This Useful?

= Formal verification relies on accurate models

= For systems-level HW, these mostly don'’t exist!
= Testing lets us build confidence at these low levels

= The hardware is trying to tell us what it's doing.

= Further applications:
= Debugging rack-scale systems.
= Monitoring control flow (security).

David Cock | 13 September 2017 |3




Program Trace
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LTL and Automata

The light stays on until | leave the house.

G Leave —> On S Enter;
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LTL and Automata

The light stays on until | leave the house.
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LTL and Automata
The light stays on until | leave the house.
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LTL and Automata
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LTL and Automata

The light stays on until | leave the house.
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LTL and Automata

The light stays on until | leave the house.
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LTL and Automata
The light stays on until | leave the house.
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LTL and Automata

The light stays on until | leave the house.
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LTL and Automata
The light stays on until | leave the house.
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LTL and Automata
The light stays on until | leave the house.
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LTL and Automata

The light stays on until | leave the house.
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Properties
No Double Frees in LTL

void *a = malloc();

{a is still allocated}
free(a);

= \We can now check this:

Gp $free(x) —> P !$free(x) S x = $malloc;
It's always been ...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

Thanks to my student Andrei Parvu.
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Properties
No Double Frees in LTL

void *a = malloc();

{a is still allocated}
free(a);

= \We can now check this:

Gp $free(x) —> P !$free(x) S x = $malloc;
It's always been ...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

Valgrind, with zero overhead!

Thanks to my student Andrei Parvu.
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Protocol Debugging
%‘
%‘

No more than two packets in flight

6 Tx(x) —> ITx(x+2) U Ack(x);

Ay
y
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Processing: Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;

00100211

malloc

malloc

00111010

malloc
free
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Processing
Bound Variables and Multiple Automata

=  What about multiple x-s? Q\mfi/g

= Every X needs an "

automaton instance.
> malloc
Gp $free(1) -> P !$free(1) S 1 = $malloc; ﬂ///////////ff f;L
Gp $free(2) —-> P !$free(2) S 2 = $malloc;
Gp $free(3) —> P !$free(3) S $malloc; malloc

= Quantifier instantiation using > O\"‘"/Q
resolution.
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Our Streaming Verification Engine

TESLA

Sources Captu—fe Processing Properties

HSSTP ETM
LTL TESLA
Sequencer Automata
Zyng @ raiiocl)
TPIU @ FPGA EFPGA pairing
Capture Offload

Li d
coverage
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Sources
HSSTP Testbench: Zyng7000
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Capture
Local Trace Capture on the Zynqg7000

= 32b trace port to the FPGA fabric, 250MHz, 8Gb/s.

= Custom TPIU - AXI core, with Linux drivers:
= Integrates with ARM OpenCSAL, interchangeable with ETB.
= Full-speed capture and FIFO buffering (512kB).
= Easytouse: trace_launch <bin>; cat /dev/axi_tpiu

= Coming soon: PCle & HSSTP output.
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ZYNQ-7 Processing System
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Directions

= Enzian will support tracing.
= Using monitoring to validate the coherence protocol.

= |Increasing the scope of FPGA offload (some parts are still
software).

= Analysing live systems.
= Cache operations correctness in Linux, seL4 & Barrelfish.
= [nput sanitisation.

= PSL as an input language.
= SoC integration.

I’d love to hear suggestions!
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Questions?




Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;
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