ETH zürich

New Projects at ETH Systems

The Systems Group at ETH

About ETH

- Swiss Federal Polytechnic
- Founded 1854 (with EPFL)
- In central Zürich
- CHF1.8B/year
- Famous Alumni:
 - Albert Einstein
 - Wolfgang Pauli
 - Gernot Heiser ;)

Industrial Collaboration and Support

A Selection of New/Ongoing Projects

- Barrelfish
- Runtime Verification
- Formal Hardware Modelling
- Strymon
- Enzian

The State of the Fish

- 7 architectures: OMAP44xx, ARMv7/GEM5, X-Gene 1, ARMv8/GEM5, Xeon Phi, x86-64, x86-32
- 42 applications + 51 test apps
- 9 languages
- 32 committers
- 9 years old
- > 1.1M lines of code

We're Building a Large Program Collider

Images: CERN; Chaix & Morel et associés

Collide *instructions* at 0.99c, and observe the decay products.

Systems@ETH zuric

| 8

ARM High-Speed Serial Trace Port

- Streams from the Embedded Trace Macrocell.
- Cycle-accurate control flow + events @ 6GiB/s+
- Compatible with FPGA PHYs.
- Well-documented protocol.
 - Aurora 8/10
- Available on ARMv8

HSSTP Testbench

Hardware Tracing for Correctness

Are HW operations right?

```
\exists va. va \rightarrow pa

unmap(pa);
cleanDCache();
flushTLB();

\exists va. va \rightarrow pa
```

- Real time pipeline trace on ARM.
- Can halt and inspect caches.
- HW has "errata" (bugs).
- Check that it actually works!
- Catch transient and race bugs.

Hardware Tracing for Performance

Properties to Check: Security

- Runtime verification is an established field.
- Lots of existing work to build on.
- What properties could we check efficiently?
- How could we map them to the filtering pipeline?

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/

Properties to Check: Memory Management

Could we check this?

```
void *a = malloc();
...
{a is still allocated}
free(a);
```


Checking LTL with Automata

This is a well-studied problem, and standard algorithms exist:

Gp
$$free(x) \rightarrow P ! free(x) S x = $malloc;$$

A Streaming Verification Engine

Sources

HSSTP

Packet Capture

Capture

ETM Sequencer

> FPGA Capture

Processing

Dataflow Engine

FPGA Offload

TESLA

malloc()
pairing

Coherence

Constraints

Requirements

Formal Hardware Modelling

Ti OMAP 4460 SoC

How the Computer Actually Looks

Your mobile phone... 5-10 years ago!

Decoding Nets

The OMAP4460 Decoding Net

 $V_{A9:0}$ is map [20000₃/12 to $P_{A9:0}$ at 80000₃]

 $V_{A9:1}$ is map [20000₃/12 to $P_{A9:1}$ at 80000₃]

 $P_{A9:0}, P_{A9:1}$ are map [40138₃/12 to GPT at 0] over L3

 V_{DSP} is over P_{DSP}

 P_{DSP} is map [1d3e₃/12 to GPT at 0] over L3

 $L2_{M3}$ is map $[0_{30}$ to L3 at $80000_3]$

 V_{M3}, V_{M3} are over $L1_{M3}$

 $L1_{M3}$ is map $[0_{28}$ to MIF]

 RAM_{M3} is accept [55020₃/16]

L4 is map $[49038_3/12 \text{ to } GPT \text{ at } 0]$

 ROM_{M3} is accept [55000₃/14]

GPT is accept [0/12]

MIF is map $[0-5fffffff to L2_{M3}, 55000_3/14 to RAM_{M3}, 55020_3/16 to ROM_{M3}]$

L3 is map $[49000_3/24 \text{ to } L4 \text{ at } 40100_3, 55000_3/12 \text{ to } MIF] \text{ accept } [80000_3/30]$

Using the model

- Static Configuration:
 - We can now generate the kernel page tables directly from the formal spec.
- Dynamic Discovery and Reconfiguration:
 - The SKB can be populated at runtime extend the model as hardware is discovered.
- Scheduling:
 - We collaborate with the DB research group on operator scheduling this work needs the model data.

Strymon: Online Datacenter Analytics and Management

Support: **amadeus**

More info: http://strymon.systems.ethz.ch

Data Management Distributed Stream Processing

Graph Algorithms

Real-time sessonization

Incremental network routing

Online critical path analysis

Provenance and interactive explanations

Streaming fault-tolerance and data durability

Automatic re-scaling of distributed dataflows

Contact: Vasia Kalavri (<u>kalavriv@inf.ethz.ch</u>)

Enzian: Building Understandable Hardware

100 Gb

Enzian: Sketch

As many 100Gb QSFP+ cages as possible

Living and Working in Zürich

Living and Working in Zürich

