
3 July 2017INRIA 2017 1||

The Impact of Incomprehensible Hardware
on Security

3 July 2017INRIA 2017 2||

Telling a Story

 We don’t really understand hardware (and it hurts security).
Examples from seL4:
 Undocumented hardware bugs
 Side channels

 We’re trying to fix this:
 Formal hardware models to drive OS actions
 Runtime verification
 Building better hardware

3 July 2017INRIA 2017 3||

seL4 is a verified, high-performance microkernel with:
 Proven functional correctness
 Proven authority confinement
 Proven information flow

3 July 2017INRIA 2017 4||

High-Level Properties

Confinement Noninterference

3 July 2017INRIA 2017 5||

Abstract

Haskell

C

1st Refinement

2nd Refinement

M
a
ch

i n
e
 M

o
n
a
d

M
S
R

?

"The World"

M
o
d
e
l

L

Lyrebird

λ

The Structure of the Proof

3 July 2017INRIA 2017 6||

LLy
re

b
ir

d

λ

Formal Hardware Model

Machine Monad

MSR

Machine Refinement

Simulator

The seL4 Machine Model

3 July 2017INRIA 2017 7||

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2]

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

A Worked Example

3 July 2017INRIA 2017 8||

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

A Worked Example

3 July 2017INRIA 2017 9||

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1

A Worked Example

3 July 2017INRIA 2017 10||

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1 43 100 108 42 42

A Worked Example

3 July 2017INRIA 2017 11||

What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1 43 100 108 42 42

Most code is like the above, and it’s easy to understand;
The challenge here is how to express that formally.

A Worked Example

3 July 2017INRIA 2017 12||

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2]

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

A Worked Example

3 July 2017INRIA 2017 13||

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

A Worked Example

3 July 2017INRIA 2017 14||

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1

A Worked Example

3 July 2017INRIA 2017 15||

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

A Worked Example

3 July 2017INRIA 2017 16||

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn�t we just overwrite this instruction?

A Worked Example

3 July 2017INRIA 2017 17||

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn�t we just overwrite this instruction?
1008 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 e5921000

A Worked Example

3 July 2017INRIA 2017 18||

Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn�t we just overwrite this instruction?
1008 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 e5921000

Which of these is the right answer?

A Worked Example

3 July 2017INRIA 2017 19||

The ISA Isn’t Enough

 The core ISA is pretty easy to model, and well documented.
 ARMv6 was 1600 lines in Lyrebird.

 Interacting mechanisms are hard.
 Heavily dependent on microarchitecture.
 This is where the bugs sneak in.

 For seL4 we went with a very simplistic HW model: “Surely the
hardware can’t be that weird?”.

 Spoiler:
 Both confinement and information flow proofs are undermined by exactly

these sorts of bugs (details shortly).

3 July 2017INRIA 2017 20||

Errata (Hardware Bugs)

3 July 2017INRIA 2017 21||

Cache Bombs

• Unmap a frame from AS 1 with a dirty cache line

• Map the same frame into somewhere else (AS2)

• At some unpredictable time, the cache will write the
line. BOOM!

Address space 1
Page 0x00181000

Address space 2
Page 0x00200000

Physical memory

write

Cache

3 July 2017INRIA 2017 22||

You Can't Trust the Hardware

 seL4 was verified modulo a
hardware model.

 The Cortex A8 has bugs:
 Cache flushes don't work.
 As of today, these “errata” are

still not public.
 We rediscovered these by

accident.
 Non-coherent memory is

coming.

Source: Chip Errata for the i.MX51, Freescale Semiconductor

3 July 2017INRIA 2017 23||

Side Channels

3 July 2017INRIA 2017 24||

Resource Sharing in Modern CPUs

Interconnect

Memory
Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory
Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

NUMA
shared

package
shared

core
shared

system
shared

thread
shared

3 July 2017INRIA 2017 25||

The Cache Contention Channel

33333333

3 2

context switch
33333333

22222222

22222222

conflict !

3 July 2017INRIA 2017 26||

Core Date L2 Cache

iMX.31 ARM1136JF-S (ARMv6) 2005 128 KiB

E6550 Conroe (x86-64) 2007 4096 KiB

DM3730 Cortex A8 (ARMv7) 2010 256 KiB

AM3358 Cortex A8 (ARMv7) 2011 256 KiB

iMX.6 Cortex A9 (ARMv7) 2011 1024 KiB

Exynos4412 Cortex A9 (ARMv7) 2012 1024 KiB

• 7 years and 3 (ARM) core generations.

• 32-fold range of cache sizes.

Empirical Evaluation on seL4

3 July 2017INRIA 2017 27||

Li
ne

s
to

uc
he

d
/1

03

Lines evicted /103

 20

 30

 40

 0 10 20 30

10-4

10-3

10-2

10-1

• 32,768 cache lines, 1000Hz sample rate (preemption).
• Bandwidth: 2400b/s.
• Baseline for comparison.

Exynos4412 Cache Channel

3 July 2017INRIA 2017 28||

Instruction-Based Scheduling

The channel needs a clock. Tie it to progress, and the channel
should vanish. This is a form of deterministic execution.

 Advantages:
 Applies to any channel.
 Simple to implement (18 lines in seL4).

 Disadvantages
 Restrictive — Need to remove all clocks.
 Performance counter accuracy critical.

3 July 2017INRIA 2017 29||

Li
ne

s
to

uc
he

d
-1

00
00

Lines evicted /103

 0

 4

 8

 12

 16

 0 10 20 30

10-4

10-3

10-2

10-1

Exynos4412 Cache Channel with IBS

● Preempt after 105 instructions. Bandwidth 400b/s.
● Event delivery is imprecise thanks to speculation.

3 July 2017INRIA 2017 30||

Cache Colouring

3 July 2017INRIA 2017 31||

Li
ne

s
to

uc
he

d
/1

03

Lines evicted /103

 12.1

 12.2

 12.3

 12.4

 12.5

 0 10 20 30

10-4

10-3

Exynos4412 Cache Channel, with Colouring

● Bandwidth: 15b/s. Where’s that from?

3 July 2017INRIA 2017 32||

 0

 25

 50

Li
ne

s
to

uc
he

d
-1

22
90

No TLB flush
TLB flush

 4

 8

 12

 16

S
ta

lls
/li

ne

No TLB flush
TLB flush

Exynos4412 TLB Channel

3 July 2017INRIA 2017 33||

H
P

T
tic

ks
 /1

06

Lines evicted

Branch mispredicts

 1.1

 1.2

 1.3

 0 10 20 30 40 50
 0

 1

Misprediction and the Cycle Counter

● Cycle counter affected by invisible mispredicts.
● A new (and unexpected) channel.
● Event delivery is precise, the cycle counter is wrong.

3 July 2017INRIA 2017 34||

Summary so Far

 There are no trustworthy hardware models.
 The things our models hide do break security.

 There’s some hope:
 Formal ISA models exist (ARMv8 XML), but don’t cover this stuff.
 Hardware partitioning works, but still isn’t well-enough specified.

3 July 2017INRIA 2017 35||

So, What Are We Doing About It?

1)Modelling hardware

2)Testing our models

3)Building understandable hardware

3 July 2017INRIA 2017 36||

Barrelfish

 seL4-related research OS
 Targets modern hardware

(esp. multicore)
 Focus on automatic

configuration and DSLs
 Info/Exo-kernel influence

3 July 2017INRIA 2017 37||

CLP solver
(Prolog +

constraints)

CLP solver
(Prolog +

constraints)

The SKB

 System Knowledge Base
 Hardware info
 Runtime state

 Rich semantic model
 Represent the hardware
 Reason about it
 Embed policy choices

Hardware
data and

specification

Runtime
system information

3 July 2017INRIA 2017 38||

What goes in?

 Hardware resource discovery
 E.g. PCI enumeration, ACPI, CPUID…

 Online hardware profiling
 Inter-core all-pairs latency, cache measurements…

 Operating system state
 Locks, process placement, etc.

 “Things we just know”
 SoC specs, assertions from data sheets, etc.

CLP solver
(Prolog +

constraints)

CLP solver
(Prolog +

constraints)

3 July 2017INRIA 2017 39||

Current SKB applications

 General name server / service registry
 Coordination service / lock manager
 Device management

 Driver startup / hotplug
 PCIe bridge configuration

 A surprisingly hard CSAT problem!
 Intra-machine routing

 Efficient multicast tree construction
 Cache-aware thread placement

 Used by e.g. databases for query planning

And now:
 Teach the SKB about microarchitecture!

CLP solver
(Prolog +

constraints)

CLP solver
(Prolog +

constraints)

3 July 2017INRIA 2017 40||

0 4G2G 3G1G
Physical Addresses

How I Picture a Computer

Virtual Addresses

0 4G

ARM A9 0ARM A9 0

DRAM

Virtual Addresses

0 4G

ARM A9 1ARM A9 1

MMUMMU MMUMMU

Ti OMAP 4460 SoC

SDMA

3 July 2017INRIA 2017 41||

How the Computer Actually Looks

RAM RAM

ROM

SRAM

L4
PE
R

L4
CF
GL4

W
K
U
P

L3 Interconnect

L
4
A
B
E

GPT5

EHCI

SDMA

KB

GPIO

A9 A9 DSP M3M3
GFX

Your mobile phone… 5-10 years ago!

3 July 2017INRIA 2017 42||

Decoding Nets

map

acceptaccept

acceptaccept

Node

Node

L3

DRAM

VA9:0

PA9:0

8000000
bffffff

8000000
bffffff

4001000
4001fff

0000000
4000000

3 July 2017INRIA 2017 43||

The OMAP4460 Decoding Net

3 July 2017INRIA 2017 44||

Using the model

 Static Configuration:
 We can now generate the kernel page tables directly from the formal spec.

 Dynamic Discovery and Reconfiguration:
 The SKB can be populated at runtime – extend the model as hardware is

discovered.
 Scheduling:

 We collaborate with the DB research group on operator scheduling – this
work needs the model data.

3 July 2017INRIA 2017 45||

Testing the Model

3 July 2017INRIA 2017 46||

Collide instructions at 0.99c, and observe the decay products.

We're Building a Large Program Collider

Images: CERN; Chaix & Morel et associés

3 July 2017INRIA 2017 47||

There's a Lot of Data Available

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

PCI NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

T
O

R

T
O

R

Backhaul

Program trace
Cache dumps

Port mirroring

Openflow

Event triggers

3 July 2017INRIA 2017 48||

ARM High-Speed Serial Trace Port

 Streams from the Embedded
Trace Macrocell.

 Cycle-accurate control flow +
events @ 6GiB/s+

 Compatible with FPGA PHYs.
 Well-documented protocol.

 Aurora 8/10
 Available on ARMv8

Image: Teledyne Lecroy

3 July 2017INRIA 2017 49||

HSSTP Testbench

3 July 2017INRIA 2017 50||

Hardware Tracing for Correctness

unmap(pa);
cleanDCache();
flushTLB();

Are HW operations right?
5Gb/s

Filter at line rate

Check temporal
assertionsLog & process offline

● Real time pipeline trace on ARM.
● Can halt and inspect caches.
● HW has “errata” (bugs).
● Check that it actually works!
● Catch transient and race bugs.

3 July 2017INRIA 2017 51||

Hardware Tracing for Performance

5Gb/s

Filter at line rate

Log & process offline

URPC[0]= x;
URPC[1]= 1;

while(!URPC[1]);
x= URPC[0];

1

2

x 1

xCore 0

Core 1

Cache 0

Cache 1

INVAL(0)
READ(1)
…

Is URPC optimal?

• Should see N coherency messages.
• Do we?

‐ The HW knows!

3 July 2017INRIA 2017 52||

Properties to Check:
Security

 Runtime verification is an
established field.

 Lots of existing work to build
on.

 What properties could we
check efficiently?

 How could we map them to
the filtering pipeline?

/* A very simple TESLA assertion. */
TESLA_WITHIN(example_syscall,
 previously(security_check(ANY(ptr),
 o, op) == 0));

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/

3 July 2017INRIA 2017 53||

Properties to Check:
Memory Management

 Could we check this?

void *a = malloc();
...
{a is still allocated}
free(a);

Gp $free(x) −> P !$free(x) S x = $malloc;

It's always been
true that...

...if x is freed now, then...

...before this free...

...there were no frees of x,
since it was allocated.

3 July 2017INRIA 2017 54||

Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard
algorithms exist:

11000000

00100211

00111011

00111111

11000111

malloc

free

free

malloc

free

free

free

malloc

malloc

malloc

00111010

00111110

11000110

free

malloc

malloc

free

malloc

free free

malloc

malloc

3 July 2017INRIA 2017 55||

A Streaming Verification Engine

HSSTP

Packet
Capture

Sources Capture Processing Properties

ETM
Sequencer

FPGA
Capture

Dataflow
Engine

FPGA
Offload

TESLA

malloc()
pairing

Coherence
correctness

Constraints Requirements

3 July 2017INRIA 2017 56||

Building Understandable Hardware

3 July 2017INRIA 2017 57||

Sketch

Large
server-class

SoC

Large
server-class

SoC

High-end FPGA
(e.g Xilinx Zynq

ZU17EG)

High-end FPGA
(e.g Xilinx Zynq

ZU17EG)
Coherence

100 Gb
Ethernet

 0.5TB
DDR4

 0.5TB
DDR4

As many
100Gb
QSFP+

cages as
possible

~ 32GB
DDR4

~ 32GB
DDR4

SATA, PCIe, UART, NVMe, USB UART, USB, SD

