The Impact of Incomprehensible Hardware
on Security

Telling a Story

= We don't really understand hardware (and it hurts security).
Examples from sel 4:
= Undocumented hardware bugs
= Side channels

= We're trying to fix this:
= Formal hardware models to drive OS actions
= Runtime verification
= Building better hardware

INRIA 2017 | 3 July 2017 | 2
Systems @ ETH zun

selL4d

selL4 is a verified, high-performance microkernel with:
= Proven functional correctness
= Proven authority confinement
= Proven information flow

INRIA 2017 | 3 July 2017 |3
Systems @ ETH zun

High-Level Properties

Confinement Noninterference

T

INRIA 2017 | 3 July 2017 | 4
Systems @ ETH zun

The Structure of the Proof

sl |3
Q
- 5
c £
J—
2 &
m 2
S E
+— 7)) @)
A ©
.M T
Machine Monad |«==p» MSR
?l
X S
E Model

|5

3 July 2017

INRIA 2017 |

Systems @ ETH zun

The seL4 Machine Model

Machine Monad

Machine Refinement

L a—

MSR

Formal Hardware Model

Simulator

INRIA 2017 | 3 July 2017

|6

A Worked Example

What does this code do? What ends up inrl?

address data instruction rl r2 r3 @100 @108
100 108 42

1000 e5921000 ldr rl, [r2]
1004 e5832000 str rl, [r3]
1008 e2811001 add rl, rl, #1

INRIA 2017 | 3 July 2017 | 7

Systems @ ETH zun

A Worked Example

What does this code do? What ends up inrl?

address data instruction rl r2 r3 @100 @108
100 108 42
1000 e5921000 1dr rl, [r2] 42 100 108 42

1004 e5832000 str rl, [r3]
1008 e2811001 add rl, rl, #1

INRIA 2017 | 3 July 2017 | 8

Systems @ ETH zun

A Worked Example

What does this code do? What ends up inrl?

address data instruction rl r2 r3 @100 @108
100 108 42
1000 5921000 1dr rl, [r2] 42 100 108 42
1004 e5832000 str rl, [r3] 42 100 108 42 42

1008 e2811001 add rl, rl, #1

INRIA 2017 | 3 July 2017 |9

Systems @ ETH zun

A Worked Example

What does this code do? What ends up inrl?

address data

1000 e5921000

1004 e5832000
1008 e2811001

Systems @ ETH zun

instruction

ldr r1l,
str rl,

add ril,

[r2]
[r3]

rl,

#1

rl

42
42
43

r2
100
100
100
100

r3
108
108
108
108

@100 @108
42
42
42 42
42 42

INRIA 2017 |

3 July 2017

| 10

A Worked Example

What does this code do? What ends up inrl?

address

1000
1004
1008

data

e5921000
e5832000
e2811001

instruction

ldr r1l,
str rl,

add ril,

[r2]
[r3]
rl,

#1

rl

42
42
43

r2
100
100
100
100

r3
108
108
108
108

@100 @108

42
42
42 42
42 42

Most code is like the above, and it's easy to understand;
The challenge here is how to express that formally.

Systems @ ETH zun

INRIA 2017 | 3 July 2017 | 11

A Worked Example

Another look at the example:

What value ends up in r1 now?

rl r2
1000
1000 e5921000 ldr rl, [r2]
1004 e5832000 str rl, [r3]
1008 €2811001 add rl, rl, #1

Systems @ ETH zun

r3
1008

@1000

e5921000

INRIA 2017 |

3 July 2017

@1008

|12

A Worked Example

Another look at the example:

What value ends up in r1 now?

rl r2
1000
1000 5921000 1dr rl, [r2] 5921000 1000

1004 e5832000 str rl, [r3]
1008 2811001 add rl, rl, #1

Systems @ ETH zun

r3 @1000 @1008
1008 5921000

1008 5921000

INRIA 2017 | 3 July 2017 | 13

A Worked Example

Another look at the example:

What value ends up in r1 now?

rl
1000 5921000 1dr rl, [r2] 5921000
1004 e5832000 str rl, [r3] 5921000

1008 2811001 add rl, rl, #1

Systems @ ETH zun

r2
1000
1000
1000

r3 @1000 @1008
1008 5921000

1008 5921000

1008 5921000 5921000

INRIA 2017 | 3 July 2017 | 14

A Worked Example

Another look at the example:

What value ends up in r1 now?

rl
1000 5921000 1dr rl, [r2] 5921000
1004 e5832000 str rl, [r3] 5921000

1008 e2811001 add rl, rl, #1 e5921001

Systems @ ETH zun

r2
1000
1000
1000
1000

r3
1008
1008
1008
1008

@1000 @1008

5921000

5921000

5921000 e5921000

5921000 5921000
INRIA 2017 | 3 July 2017 | 15

A Worked Example

Another look at the example:

What value ends up in r1 now?

rl
1000 5921000 1dr rl, [r2] 5921000
1004 e5832000 str rl, [r3] 5921000

1008 e2811001 add rl, rl, #1 e5921001

r2
1000
1000
1000
1000

r3
1008
1008
1008
1008

@1000
©5921000
©5921000
e5921000

e5921000

Wait a minute, what was that address? Didn’t we just overwrite this instruction?

Systems @ ETH zun

INRIA 2017 |

3 July 2017

@1008

e5921000

e5921000

| 16

A Worked Example

Another look at the example:

What value ends up in r1 now?

rl
1000 5921000 1dr rl, [r2] 5921000
1004 e5832000 str rl, [r3] 5921000

1008 e2811001 add rl, rl, #1 e5921001

r2
1000
1000
1000
1000

r3
1008
1008
1008
1008

@1000
©5921000
©5921000
e5921000

e5921000

Wait a minute, what was that address? Didn’t we just overwrite this instruction?

1008 5921000 1dr rl, [r2] 5921000

Systems @ ETH zun

1000

1008

INRIA 2017 |

e5921000

3 July 2017

@1008

e5921000

e5921000

e5921000

|17

A Worked Example

Another look at the example:

What value ends up in r1 now?

rl
1000 5921000 1dr rl, [r2] 5921000
1004 e5832000 str rl, [r3] 5921000

1008 e2811001 add rl, rl, #1 e5921001

r2
1000
1000
1000
1000

r3
1008
1008
1008
1008

@1000
©5921000
©5921000
e5921000

e5921000

Wait a minute, what was that address? Didn’t we just overwrite this instruction?

1008 5921000 1dr rl, [r2] 5921000

Which of these is the right answer?

Systems @ ETH zun

1000

1008

INRIA 2017 |

e5921000

3 July 2017

@1008

e5921000

e5921000

e5921000

| 18

The ISA Isn’t Enough

= The core ISA is pretty easy to model, and well documented.
= ARMvV6 was 1600 lines in Lyrebird.

= |nteracting mechanisms are hard.
= Heavily dependent on microarchitecture.
= This is where the bugs sneak in.

= For seL4 we went with a very simplistic HW model: “Surely the
hardware can’t be that weird?”.

= Spoiler:
= Both confinement and information flow proofs are undermined by exactly
these sorts of bugs (details shortly).

INRIA 2017 | 3 July 2017 | 19
Systems @ ETH zun

Errata (Hardware Bugs)

Cache Bombs

Address space 1
Page 0x00181000

Address space 2
Page 0x00200000

write

Physical memory

e Unmap a frame from AS 1 with a dirty cache line
e Map the same frame into somewhere else (AS2)

o At some unpredictable time, the cache will write the
line. BOOM!

INRIA 2017 | 3 July 2017 | 21
Systems @ ETH zun

You Can't Trust the Hardware

Source: Chip Errata for the i.MX51, Freescale Semiconductor

] S e L4 W aS Ve r |f| e d m Od u I O a ENGcm09830 | ARM: Load and Store operations on the shared device memory No fix scheduled 12

regions may not complete in program order

ENGem07788 | ARM: A RAW hazard on certain CP15 registers can result in a stale No fix scheduled 14
ar Ware ‘]] O e] register read

ENGcm04786 | ARM: ARPROTIO] is incorrectly set to indicate a USER transaction for Mo fix scheduled 16
memory accesses generated from user tablewalks

u T h e C O rteX A8 h aS b u g S : ENGcm04785 | ARM: C15 Cache Selection Register (CSSELR) is not banked No fix scheduled 18

ENGcm07784 | ARM: Cache clean memory ops generated by the Preload Engine or No fix scheduled 19
- Cache fl USheS donlt Work Clean by MVA to PoC instructions may corrupt the memory
- ENGem07786 | ARM: Under a specific set of conditions, a cache maintenance Mo fix scheduled 21

operation performed by MVA can result in memory corruption

u AS Of to d ay’ th ese “ e rrata” are ENGem07782 | ARM: Clean and Clean/invalidate maintenance ops by MVA to PoC No fix scheduled 23

may not push data to external memory

- .
Stl I I n Ot p u b | I C . ENGem04758 | ARM: Incorrect L2 cache eviction can occur when L2 is configured as No fix scheduled 25

an inner cache

- We re d iS Cove re d th eS e by ENGcm04761 ‘:::Te:;\::r? ;Ef;::::iggair::ﬁdgerzgﬂnn, and instruction fetch No fix scheduled 26

- ENGcm04759 | ARM: NEON load data can be incorrectly forwarded to a subsequent No fix scheduled 28
accident.
ENGem04760 | ARM: Under a specific set of conditions, processor deadlock can Mo fix scheduled 30

occur when L2 cache is servicing write allocate memory

u N O n = CO h e re nt m e m O ry I S ENGem10230 | ARM: Clarification regarding the ALP bits in AMC register No fix scheduled -Clarified in | 32

. RM
C O m I n ENGem10700 | ARM: If a Perf Counter OVFL occurs simultaneously with an update No fix scheduled 33
. to a CP14 or CP15 register, the OVFL status can be lost
ENGem10716 | ARM: A Neon store to device memory can result in dropping a Mo fix scheduled 35
previous store
ENGem10701 'ARM: BTB invalidate by MVA operations do not work as intended i Mo fix scheduled I 37]
when the |BE bitis enabled
ENGcm10703 | ARM: Taking a watchpoint is incorrectly prioritized over a precise data No fix scheduled 39
abort if both occur simultanecusly on the same address
ENGem10724 | ARM: VCVT.£32.u32 can return wrong result for the input No fix scheduled 41
0xFFFF_FF01 in one specific configuration of the floating point unit
INRIA 2017 | 3 July 2017 | 22

Systems @ ETH zun

Side Channels

E; INRIA 2017 | 3 July 2017 | 23
System:

Resource Sharing in Modern CPUs

Package Package
Core _Core - Core
] I |
| BTB || BTB I BTB
| I I
¥ N o
| al I al | a
1| E ¥l ' | E | 1| E + thread
e = = = B = - shared
| =) I =) 1. =
Pt Mz -—=—=-=-=-= R el
L TeBrif L1 [TLB)i L1 TLB)
| N By core
2 (e) e shared
= = - ——wla - - - e - - -———— e = - - - - - - - =
(+ + e + package
L L3) -\ L3 shared
P e R
| Memory - | Memory NUMA
| Controller - |Controller shared
1 I- system
(Interconnect shared

INRIA 2017 | 3 July 2017 | 24
Systems @ ETH zun

3

/

33333333

33333333

Systems @ ETH zun

The Cache Contention Channel

2

y

conflict !-i

>
context switch

22222222

22222222

INRIA 2017 |

3 July 2017

| 25

Empirical Evaluation on selL4

Core Date L2 Cache
iIMX.31 ARM1136JF-S (ARMvé6) 2005 128 KiB
E6550 Conroe (x86-64) 2007 4096 KiB
DM3730 Cortex A8 (ARMVv7) 2010 256 KiB
AM3358 Cortex A8 (ARMVv7) 2011 256 KiB
iIMX.6 Cortex A9 (ARMv7) 2011 1024 KiB
Exynos4412 Cortex A9 (ARMv7) 2012 1024 KiB

* 7 years and 3 (ARM) core generations.

* 32-fold range of cache sizes.

Systems @ ETH zun

INRIA 2017 | 3 July 2017

| 26

Exynos4412 Cache Channel

[[[[[[[[[‘ [[[[[[[[[‘ [[[[[[[[[I T]
10"
2 il
3 B 102
@
c ===
o
-
£ S F 100
n
o)
£ i
- e s e s P R I R i e i i i 1 0_4
0 10 20 30

Lines evicted /103

32,768 cache lines, 1000Hz sample rate (preemption).
Bandwidth: 2400b/s.

Baseline for comparison.

INRIA 2017 |
Systems @ ETH zun

3 July 2017

| 27

Instruction-Based Scheduling

The channel needs a clock. Tie it to progress, and the channel
should vanish. This is a form of deterministic execution.

= Advantages:
= Applies to any channel.
= Simple to implement (18 lines in seL4).

= Disadvantages
= Restrictive — Need to remove all clocks.
= Performance counter accuracy critical.

INRIA 2017 | 3 July 2017
Systems @ ETH zun

| 28

Exynos4412 Cache Channel with IBS

16 (e T C I EHRV T O e COIET RO TR O O e P] (T

S 10
S 12
| -2
B 8 10
N
S
S 4 1073
7))
&
: 0 | | Al TR 100 1 A0 EERTA L ‘] 0 [AR | ‘ | JLEEN NIV RO | ETEN T 0 ‘ [EERRI 10-4

0 10 20 30

Lines evicted /103
* Preempt after 10° instructions. Bandwidth 400b/s.
» Event delivery is imprecise thanks to speculation.
INRIA 2017 | 3 July 2017 | 29

Systems @ ETH zun

Cache Colouring

00000000

00001111
00010000

00011111
00100000

00101111
00110000

00111111

Systems @ ETH zun

IRRRIRRRR

0 1 2 3)

Aem

Exynos4412 Cache Channel, with Colouring

12.5
o)
= 103
©
()]
i
(@]
-
2 10
n
()
£
|
\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\
0 10 20 30
Lines evicted /103
 Bandwidth: 15b/s. Where's that from?
INRIA 2017 | 3 July 2017

Systems @ ETH zun

| 31

50

25

Lines touched -12290

16
12

Stalls/line

Systems @ ETH zun

Exynos4412 TLB Channel

No TLB flush
TLB flush

!//y/ﬁw

No TLB flush
TLB flush —

INRIA 2017 |

3 July 2017

| 32

Misprediction and the Cycle Counter

HPT ticks /10°

Systems @ ETH zun

1.3

1.2

1.1

|
| \ Branch mispredicts
_— o | |
f‘ \“\\\\ : - 1
C ’7# L O
0 10 20 30 40 50
Lines evicted
« Cycle counter affected by invisible mispredicts.
 Anew (and unexpected) channel.
« Event delivery is precise, the cycle counter is wrong.
INRIA 2017 |

3 July 2017

| 33

Summary so Far

= There are no trustworthy hardware models.
= The things our models hide do break security.

= There’s some hope:

= Formal ISA models exist (ARMv8 XML), but don’t cover this stuft.

= Hardware partitioning works, but still isn’t well-enough specified.

INRIA 2017 |
Systems @ ETH zun

3 July 2017

| 34

So, What Are We Doing About It?

1)Modelling hardware
2)Testing our models

3)Building understandable hardware

n; INRIA 2017 | 3 July 2017 | 35
System:

Barrelfish

= sel4-related research OS

= Targets modern hardware
(esp. multicore)

= Focus on automatic
configuration and DSLs

= |nfo/Exo-kernel influence

INRIA 2017 | 3 July 2017 | 36
Systems @ ETH zun

The SKB

Hardware
data and
pecification

= System Knowledge Base
= Hardware info
= Runtime state

= Rich semantic model
= Represent the hardware

CLP solver = Reason about it
(Prolog + = Embed policy choices

constraints)

Runtime
system information

INRIA 2017 | 3 July 2017 | 37

Systems @ ETH zun

What goes in?

i@
= Hardware resource discovery
= E.g. PCl enumeration, ACPI, CPUID... T

constraints)
= Online hardware profiling
= Inter-core all-pairs latency, cache measurements...

= QOperating system state
= Locks, process placement, etc.

= “Things we just know”
= SoC specs, assertions from data sheets, etc.

INRIA 2017 | 3 July 2017 | 38

Systems @ ETH zun

Current SKB applications

General name server / service registry
Coordination service / lock manager
Device management

= Driver startup / hotplug

PCle bridge configuration
= A surprisingly hard CSAT problem!

Intra-machine routing
= Efficient multicast tree construction

Cache-aware thread placement
= Used by e.g. databases for query planning

And now:
Teach the SKB about microarchitecture!

Systems @ ETH zun

s

CLP solver
(Prolog +
constraints)

INRIA 2017 |

3 July 2017

| 39

o

How | Picture a Computer

ARM A9 0

ARM A9 1

F Virtual Addresses Virtual Addresses

Y
Physical Addresses SDMA ‘ ﬁiﬁii

0 1G 2G 3G 4G
Ti OMAP 4460 SoC

INRIA 2017 | 3 July 2017 | 40
Systems @ ETH zun

How the Computer Actually Looks

Your mobile phone... 5-10 years ago!

. TallCore L4_PER L4_CFG L4_CFG L4_PER
Fram debug subsystem L M RAR S k- 32 hiea i ;—I 32 tils
I 55 megacel ey __Ilf,;'lgc L‘:SE: "
| EEeenen] T (e s e e e PHY
MPU subsystem IMAHD st i] Il.':muﬁa:.-trmm‘ﬂ'” : ! _l- Ll : !
_____ 10a0p . l = | | - -r- - |
a -mqnn 11 | |
9 9 ﬁu-‘. glfi'l R !: - Holddm e P 13P 43 : I: e USE ATE I: |
= = DMII. | I b} |
A A | & ullrldrllﬂ:m. i i ;‘E:’-"". :W ||| I:HB-J.IlCI
| ac 127 requests | | | |
L] P02 e ot ! swegizre | ([Ras (FX | l
A 2 HERL] e || i
| G JGP o : ROM SDMA 1
] o1 3L - 22 ! |
i !
[y ot

F
System DMA To g ME g
HE LSB OTE EMIF4D

F] HE LSB PHY,

= HE LESE Host,

£S5 USH, To EARU L2

_________ o q Srared OCE WE Instrumentation
HE LSE TLL

RAM RAMISRAM - M | T [CR - e

Ta EMU L3
ingrumaniation

HE-MMC 1

HE-MMC 2 Pl e = —
PRM +
bss (i PR,

|- GFTIMER

\
—::::::::—— g
........... e swsu235001
INRIA 2017 | 3 July 2017

Systems @ ETH zun

Decoding Nets

v | EERA | oo

L3

Node

Node

0000000

4000000 DRAM

INRIA 2017 | 3 July 2017 | 42
Systems @ ETH zun

BT ————

The OMAP4460 Decoding Net

V9.0 is map [200003/12 to Pag.g at 800003] V9.7 is map [200003/12 to Pao.; at 800003]
P90, Pag.; are map [401383/12 to GPT at O] over L3 Vpgp is over Ppsp
Ppsp is map [1d3e3/12 to GPT at O] over L3 L23 is map |03 to L3 at 800003]

Vs, Vs are over L1 y; L1 3 is map |05 to MIF|
RAM ;3 is accept (550203 /16| L4 is map [490383/12 to GPT at 0|
ROM ;3 is accept [550003/14] GPT is accept [0/12]

MIF is map [0 — 5£f£££££ to L2y3,550003 /14 to RAM)y3,550203 /16 to ROM 3]
L3 is map [490003/24 to L4 at 401003,550003 /12 to MIF] accept [800005/30]

INRIA 2017 | 3 July 2017 | 43
Systems @ ETH zun

Using the model

= Static Configuration:
= \We can now generate the kernel page tables directly from the formal spec.

= Dynamic Discovery and Reconfiguration:
= The SKB can be populated at runtime — extend the model as hardware is
discovered.
= Scheduling:

= We collaborate with the DB research group on operator scheduling — this
work needs the model data.

INRIA 2017 | 3 July 2017 | 44

Systems @ ETH zun

esting the Model

E; INRIA 2017 | 3 July 2017 | 45
System:

We're Building a Large Program Collider

Images: CERN; Chaix & Morel et associés

Collide instructions at 0.99¢, and observe the decay products.

INRIA 2017 | 3 July 2017 | 46
Systems @ ETH zun

There's a Lot of Data Available
Cache dumps

Program trace

CPU

[e | [] I
[13] | L3] [L3] | L3]
R — — ==
[RAM | P t . . [RAM]
e] =]
1 1
[L3] L3]
e — e
I RAM | |
|
|
L Pel [—{ Ne NiC [—| Pl e
|
|
|
s il NIC [—] P B
|
Openﬂow INRIA 2017 | 3 July 2017 | 47

Systems @ ETH zun

ARM High-Speed Serial Trace Port

Image: Teledyne Lecroy

= Streams from the Embedded
Trace Macrocell.

= Cycle-accurate control flow +
events @ 6GIB/s+

= Compatible with FPGA PHYSs.

= Well-documented protocol.
= Aurora 8/10

= Available on ARMvS8

INRIA 2017 | 3 July 2017 | 48
Systems @ ETH zun

HSSTP Testbench

INRIA 2017 | 3 July 2017 | 49
Systems @ ETH zun

I Hardware Tracing for Correctness I

Are HW operations right?

Hdva.va " — pa

unmap(pa);
cleanDCache();
flushTLB();

Filter at line rate _
] Ava.va — pa

Real time pipeline trace on ARM.
Can halt and inspect caches.
HW has “errata” (bugs).

Check that it actually works!
Catch transient and race bugs.

VB REE
Check temporal
Log & process offline assertions

INRIA 2017 | 3 July 2017 | 50
Systems @ ETH zun

Hardware Tracing for Performance

* Dowe?
- The HW knows!

Is URPC optimal?

* Should see N coherency messages.

\1 \/ Cache 0
URPC[O]= Xx; INVAL(0)
URPC[1]= 1 READ(1)
Core 0 /\ Cache 1
whlle('URPC[l]),
. x= URPC[O];
Log & process offline
Core 1

INRIA 2017 |
Systems @ ETH zun

3 July 2017

| 51

Properties to Check:
Security

Runtime verification is an
established field.

Lots of existing work to build

on.
/* A very simple TESLA assertion. */

What properties COUId we TESLA WITHIN(example syscall,
CheCk eﬂ:|C|ent|y7 previously(security check(ANY(ptr),

o, op) == 0));
How could we map them to ’
the filtering pipeline?

TESLA

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/

INRIA 2017 | 3 July 2017

Systems @ ETH zun

| 52

Properties to Check:
Memory Management

void *a = malloc();

{a is still allocated}
free(a);

= Could we check this?
Gp $free(x) —> P !$free(x) S x = $malloc;

It's always been

...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

INRIA 2017 | 3 July 2017
Systems @ ETH zun

| 53

Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;

00100211

malloc

malloc

malloc
free

00111010

11000110

Systems @ ETH zun

INRIA 2017 |

3 July 2017

| 54

A Streaming Verification Engine

Sources Captue

Properties
HSSTP ETM
Sequencer Data.ﬂOW TESLA
Engine
Packet mal]_.(.)c()
Capture CFaITJ??e FPGA pairing
u
Offload Coherence
correctness

 Constrants

Systems @ ETH zun

 Requiremens

INRIA 2017 | 3 July 2017 | 55

Building Understandable Hardware

i

INRIA 2017 | 3 July 2017 | 56
Systems @ ETH zun

Sketch
SATA, PCle, UART, NVMe, USB UART, USB, SD
. As many
100 Gb Large High-end FPGA 100Gb
Ethernet server-class <:> (e.g Xilinx Zynq QSFP+
SoC ZU17EQG) cages as
Coherence possible
= 0.5TB ~ 32GB
DDR4 DDR4

INRIA 2017 | 3 July 2017 | 57
Systems @ ETH zun

