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The Impact of Incomprehensible Hardware 
on Security
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Telling a Story

 We don’t really understand hardware (and it hurts security). 
Examples from seL4:
 Undocumented hardware bugs
 Side channels

 We’re trying to fix this:
 Formal hardware models to drive OS actions
 Runtime verification
 Building better hardware
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seL4 is a verified, high-performance microkernel with:
 Proven functional correctness
 Proven authority confinement
 Proven information flow
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High-Level Properties

Confinement Noninterference
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What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... ... ... ... 100 108 42 ...

1000 e5921000 ldr r1, [r2]

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

A Worked Example
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What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... ... ... ... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

A Worked Example
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What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... ... ... ... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1

A Worked Example
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What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... ... ... ... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1 43 100 108 42 42

A Worked Example
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What does this code do? What ends up in r1?

address data instruction r1 r2 r3 @100 @108

... ... ... ... 100 108 42 ...

1000 e5921000 ldr r1, [r2] 42 100 108 42 ...

1004 e5832000 str r1, [r3] 42 100 108 42 42

1008 e2811001 add r1, r1, #1 43 100 108 42 42

Most code is like the above, and it’s easy to understand;
The challenge here is how to express that formally.

A Worked Example
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Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2]

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

A Worked Example
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Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3]

1008 e2811001 add r1, r1, #1

A Worked Example
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Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1

A Worked Example
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Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

A Worked Example
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Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn�t we just overwrite this instruction?

A Worked Example
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Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn�t we just overwrite this instruction?
1008 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 e5921000

A Worked Example
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Another look at the example:

What value ends up in r1 now?

r1 r2 r3 @1000 @1008

... ... ... ... 1000 1008 e5921000 ...

1000 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 ...

1004 e5832000 str r1, [r3] e5921000 1000 1008 e5921000 e5921000

1008 e2811001 add r1, r1, #1 e5921001 1000 1008 e5921000 e5921000

Wait a minute, what was that address? Didn�t we just overwrite this instruction?
1008 e5921000 ldr r1, [r2] e5921000 1000 1008 e5921000 e5921000

Which of these is the right answer?

A Worked Example
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The ISA Isn’t Enough

 The core ISA is pretty easy to model, and well documented.
 ARMv6 was 1600 lines in Lyrebird.

 Interacting mechanisms are hard.
 Heavily dependent on microarchitecture.
 This is where the bugs sneak in.

 For seL4 we went with a very simplistic HW model: “Surely the 
hardware can’t be that weird?”.

 Spoiler:
 Both confinement and information flow proofs are undermined by exactly 

these sorts of bugs (details shortly).
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Errata (Hardware Bugs)
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Cache Bombs

• Unmap a frame from AS 1 with a dirty cache line

• Map the same frame into somewhere else (AS2)

• At some unpredictable time, the cache will write the 
line.  BOOM!

Address space 1
Page 0x00181000

Address space 2
Page 0x00200000

Physical memory

write

Cache
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You Can't Trust the Hardware

 seL4 was verified modulo a 
hardware model.

 The Cortex A8 has bugs:
 Cache flushes don't work.
 As of today, these “errata” are 

still not public.
 We rediscovered these by 

accident.
 Non-coherent memory is 

coming.

Source: Chip Errata for the i.MX51, Freescale Semiconductor



3 July 2017INRIA 2017 23||

Side Channels
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Resource Sharing in Modern CPUs
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The Cache Contention Channel

33333333

3 2

context switch
33333333

22222222

22222222

conflict !
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Core Date L2 Cache

iMX.31 ARM1136JF-S (ARMv6) 2005 128 KiB

E6550 Conroe (x86-64) 2007 4096 KiB

DM3730 Cortex A8 (ARMv7 ) 2010 256 KiB

AM3358 Cortex A8 (ARMv7 ) 2011 256 KiB

iMX.6 Cortex A9 (ARMv7 ) 2011 1024 KiB

Exynos4412 Cortex A9 (ARMv7 ) 2012 1024 KiB

• 7 years and 3 (ARM) core generations.

• 32-fold range of cache sizes.

Empirical Evaluation on seL4
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• 32,768 cache lines, 1000Hz sample rate (preemption).
• Bandwidth: 2400b/s.
• Baseline for comparison.

Exynos4412 Cache Channel
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Instruction-Based Scheduling

The channel needs a clock. Tie it to progress, and the channel 
should vanish. This is a form of deterministic execution.

 Advantages:
 Applies to any channel.
 Simple to implement (18 lines in seL4).

 Disadvantages
 Restrictive — Need to remove all clocks.
 Performance counter accuracy critical.
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Exynos4412 Cache Channel with IBS

● Preempt after 105 instructions.  Bandwidth 400b/s.
● Event delivery is imprecise thanks to speculation.
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Cache Colouring
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● Bandwidth: 15b/s.  Where’s that from?
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Misprediction and the Cycle Counter

● Cycle counter affected by invisible mispredicts.
● A new (and unexpected) channel.
● Event delivery is precise, the cycle counter is wrong.
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Summary so Far

 There are no trustworthy hardware models.
 The things our models hide do break security.

 There’s some hope:
 Formal ISA models exist (ARMv8 XML), but don’t cover this stuff.
 Hardware partitioning works, but still isn’t well-enough specified.
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So, What Are We Doing About It?

1)Modelling hardware

2)Testing our models

3)Building understandable hardware
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Barrelfish

 seL4-related research OS
 Targets modern hardware 

(esp. multicore)
 Focus on automatic 

configuration and DSLs
 Info/Exo-kernel influence
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CLP solver 
(Prolog + 

constraints)

CLP solver 
(Prolog + 

constraints)

The SKB

 System Knowledge Base
 Hardware info
 Runtime state

 Rich semantic model 
 Represent the hardware
 Reason about it
 Embed policy choices

Hardware
data and 

specification

Runtime
system information
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What goes in?

 Hardware resource discovery 
 E.g. PCI enumeration, ACPI, CPUID…

 Online hardware profiling
 Inter-core all-pairs latency, cache measurements…

 Operating system state
 Locks, process placement, etc.

 “Things we just know”
 SoC specs, assertions from data sheets, etc.

CLP solver 
(Prolog + 

constraints)

CLP solver 
(Prolog + 

constraints)
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Current SKB applications

 General name server / service registry
 Coordination service / lock manager
 Device management

 Driver startup / hotplug
 PCIe bridge configuration

 A surprisingly hard CSAT problem!
 Intra-machine routing

 Efficient multicast tree construction
 Cache-aware thread placement

 Used by e.g. databases for query planning

And now:
 Teach the SKB about microarchitecture!

CLP solver 
(Prolog + 

constraints)

CLP solver 
(Prolog + 

constraints)
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How I Picture a Computer
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How the Computer Actually Looks
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Your mobile phone… 5-10 years ago!



3 July 2017INRIA 2017 42||

Decoding Nets
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acceptaccept

Node

Node

L3

DRAM

VA9:0

PA9:0

8000000
bffffff

8000000
bffffff

4001000
4001fff

0000000
4000000



3 July 2017INRIA 2017 43||

The OMAP4460 Decoding Net
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Using the model

 Static Configuration:
 We can now generate the kernel page tables directly from the formal spec.

 Dynamic Discovery and Reconfiguration:
 The SKB can be populated at runtime – extend the model as hardware is 

discovered.
 Scheduling:

 We collaborate with the DB research group on operator scheduling – this 
work needs the model data.
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Testing the Model
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Collide instructions at 0.99c, and observe the decay products.

We're Building a Large Program Collider

Images: CERN; Chaix & Morel et associés
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There's a Lot of Data Available
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ARM High-Speed Serial Trace Port

 Streams from the Embedded 
Trace Macrocell.

 Cycle-accurate control flow + 
events @ 6GiB/s+

 Compatible with FPGA PHYs.
 Well-documented protocol.

 Aurora 8/10
 Available on ARMv8

Image: Teledyne Lecroy
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HSSTP Testbench
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Hardware Tracing for Correctness

unmap(pa);
cleanDCache();
flushTLB();

 

 

Are HW operations right?
5Gb/s

Filter at line rate

Check temporal
assertionsLog & process offline

● Real time pipeline trace on ARM.
● Can halt and inspect caches.
● HW has “errata” (bugs).
● Check that it actually works!
● Catch transient and race bugs.
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Hardware Tracing for Performance

5Gb/s

Filter at line rate

Log & process offline

URPC[0]= x;
URPC[1]= 1;

while(!URPC[1]);
x= URPC[0];

1

2

x 1

xCore 0

Core 1

Cache 0

Cache 1

INVAL(0)
READ(1)
…

Is URPC optimal?

• Should see N coherency messages.
• Do we?

‐ The HW knows!
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Properties to Check:
Security

 Runtime verification is an 
established field.

 Lots of existing work to build 
on.

 What properties could we 
check efficiently?

 How could we map them to 
the filtering pipeline?

/* A very simple TESLA assertion. */
TESLA_WITHIN(example_syscall,
   previously(security_check(ANY(ptr), 
              o, op) == 0));

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/
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Properties to Check:
Memory Management

 Could we check this?

void *a = malloc();
...
{a is still allocated}
free(a);

Gp $free(x) −> P !$free(x) S x = $malloc;

It's always been
true that...

...if x is freed now, then...

...before this free...

...there were no frees of x,
since it was allocated.
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Checking LTL with Automata

Gp $free(x) −> P !$free(x) S x = $malloc;

This is a well-studied problem, and standard 
algorithms exist:
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A Streaming Verification Engine

HSSTP
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Building Understandable Hardware
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Sketch
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 0.5TB
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100Gb 
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~ 32GB
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~ 32GB
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SATA, PCIe, UART, NVMe, USB UART, USB, SD


