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Collide instructions at 0.99c, and observe the decay products.

We're Going to Build a Large Program Collider

Images: CERN; Chaix & Morel et associés
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Programmers Once (Thought They)
Understood Computer Architecture

Image: Computer Systems, A Programmer's Perspective, 
Bryant & O'Hallaron, 2011
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Symmetric Multiprocessors Were Fairly Simple
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Concurrent Code Makes Architecture Visible

 Consider message passing.
 Pretty much the simplest thing you can do with shared memory.
 Systems like Barrelfish rely on it.

 When are barriers required?
 You can't write good code, without sufficiently 

understanding the hardware.
 We're combining components in

new ways.
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Message Passing with Shared Memory
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Message Passing with a Write Buffer
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Message Passing with a Barrier
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Of Course, CPUs Aren't That Simple
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You Can't Trust the Hardware

 seL4 was verified modulo 
a hardware model.

 The Cortex A8 has bugs:
 Cache flushes don't work.
 As of today, these “errata” 

are still not public.
 We rediscovered these by 

accident.
 Non-coherent memory is 

coming.

Source: Chip Errata for the i.MX51, Freescale Semiconductor
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And Then There's Rack Scale...
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There's a Lot of Data Available
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ARM High-Speed Serial Trace Port

 Streams from the Embedded 
Trace Macrocell.

 Cycle-accurate control flow + 
events @ 6GiB/s+

 Compatible with FPGA PHYs.
 Well-documented protocol.
 Available on ARMv8

Image: Teledyne Lecroy
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The HSSTP Hardware

 The official tool is CHF10,000 per core.
 The cable run is maximum 15cm.
 It's PHY-compatible with common FPGAs
 A CHF6k FGPA could easily handle 10 – 15x cheaper!
 We're working with the D-ITET DZ on an interface board.
 If you like soldering, let us know!
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Fancy Triggering and Filtering

 The ETM has sophisticated 
filtering e.g. Sequencer.

 Bn and Fn can be just about any 
events on the SoC.

 States can enable/disable trace, 
or log events.

 A powerful facility for pre-filtering

State 0

State 1

State 2

State 3

B2

B1

B0 F0

F1

F2
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Filtering and Offload in an FPGA

 We'll need to intelligently filter high-rate 
data.

 We're using an FPGA for the physical 
interface already.

 How much processing could we do?
 We have expertise in the group with 

FPGA query offloading
 Zsolt and I are writing a joint Master's project 

proposal on this. 
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Hardware Tracing for Correctness

unmap(pa);
cleanDCache();
flushTLB();

 

 

Are HW operations right?
5Gb/s

Filter at line rate

Check temporal
assertionsLog & process offline

● Real time pipeline trace on ARM.
● Can halt and inspect caches.
● HW has “errata” (bugs).
● Check that it actually works!
● Catch transient and race bugs.
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Hardware Tracing for Performance

5Gb/s

Filter at line rate

Log & process offline

URPC[0]= x;
URPC[1]= 1;

while(!URPC[1]);
x= URPC[0];

1

2

x 1

xCore 0

Core 1

Cache 0

Cache 1

INVAL(0)
READ(1)
…

Is URPC optimal?

• Should see N coherency messages.
• Do we?

‐ The HW knows!
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Properties to Check:
Security

 Runtime verification is an 
established field.

 Lots of existing work to 
build on.

 What properties could we 
check efficiently?

 How could we map them 
to the filtering pipeline?

/* A very simple TESLA assertion. */
TESLA_WITHIN(example_syscall,
   previously(security_check(ANY(ptr), 
              o, op) == 0));

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/
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Processing Engine

 That's a lot of data, how can we process it?
 This is what rack-scale systems are for!
 Andrei is starting on this as his Master's project.
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Properties to Check:
Memory Management

 Could we check this?

 We don't have data 
values (a & b).

 We can play clever tricks 
with the hardware!

 Shows what we could do 
with data trace.

void *a = malloc();
...
free(b);
{a = b}

PROCID= b[15:0]; PROCID= b[31:16];

CID:
B[15:0] ++ ASID

CID:
B[31:16] ++ ASID
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A Streaming Verification Engine

HSSTP

Packet
Capture

Sources Capture Processing Properties

ETM
Sequencer

FPGA
Capture

Dataflow
Engine

FPGA
Offload

TESLA

malloc() 
pairing

Coherence
correctness

Constraints Requirements
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Offloading Example:
LTL to Büchi

● LTL(-ish) formula: A store on core 1 is 
eventually visible on core 2.

● Think regular expressions for infinite 
streams.

● As for REs, we compile a checking 
automaton.

● Run the automaton in real time and 
look for violations.

● FPGAs are good at state machines.
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An Instrumented Rack-Scale System

● 64 SoCs x 5Gb/s = 320Gb/s trace output.
● Online checkers (e.g. automata) will be 

essential at this scale.
● We're going to build this:
– A rack of ARMv8 cores & FPGAs.

● We're starting a fortnightly reading group to 
get up to speed on the Runtime Monitoring 
literature – feel free to join.

https://code.systems.ethz.ch/project/view/55/

rack­tracing@lists.inf.ethz.ch
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