
Litmus Testing at Rack Scale

19. September 20
16

David Cock 2||

Collide instructions at 0.99c, and observe the decay products.

We're Going to Build a Large Program Collider

Images: CERN; Chaix & Morel et associés

ad

19. September 20
16

David Cock 3||

Programmers Once (Thought They)
Understood Computer Architecture

Image: Computer Systems, A Programmer's Perspective,
Bryant & O'Hallaron, 2011

19. September 20
16

David Cock 4||

Symmetric Multiprocessors Were Fairly Simple

WB

WB

Cache

Cache

RAM

19. September 20
16

David Cock 5||

Concurrent Code Makes Architecture Visible

 Consider message passing.
 Pretty much the simplest thing you can do with shared memory.
 Systems like Barrelfish rely on it.

 When are barriers required?
 You can't write good code, without sufficiently

understanding the hardware.
 We're combining components in

new ways.

19. September 20
16

David Cock 6||

Message Passing with Shared Memory

CPU

RAM

CPU

Write: *x = 42
Read: *x = 42

*x = 0*x = 42 *y = 1*y = 0

Write: *y = 1

Read: *y = 1

19. September 20
16

David Cock 7||

Message Passing with a Write Buffer

CPU

RAM

CPU

Write: *x = 42
Read: *x = 0

*x = 0

*x = 42
*y = 1

*y = 0

Write: *y = 1

Read: *y = 1

WB

*y = 1

19. September 20
16

David Cock 8||

Message Passing with a Barrier

CPU

RAM

CPU

Write: *x = 42
Read: *x = 42

*x = 0

*x = 42

*y = 1

*y = 0

Write: *y = 1

Read: *y = 1

WB

*y = 1*x = 42

19. September 20
16

David Cock 9||

Of Course, CPUs Aren't That Simple

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3RAM

Coherent
InterconnectPCI

9 hops

19. September 20
16

David Cock 10||

You Can't Trust the Hardware

 seL4 was verified modulo
a hardware model.

 The Cortex A8 has bugs:
 Cache flushes don't work.
 As of today, these “errata”

are still not public.
 We rediscovered these by

accident.
 Non-coherent memory is

coming.

Source: Chip Errata for the i.MX51, Freescale Semiconductor

19. September 20
16

David Cock 11||

And Then There's Rack Scale...

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

PCI NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

T
O

R

T
O

R

Backhaul

19. September 20
16

David Cock 12||

There's a Lot of Data Available

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3 L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

CPU

WB

L1

CPU

WB

L1

L2

CPU

WB

L1

CPU

WB

L1

L2

L3L3

RAM

Coherent
Interconnect

PCI

PCI NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

T
O

R

T
O

R

Backhaul

Program trace
Cache dumps

Port mirroring

Openflow

Event triggers

19. September 20
16

David Cock 13||

ARM High-Speed Serial Trace Port

 Streams from the Embedded
Trace Macrocell.

 Cycle-accurate control flow +
events @ 6GiB/s+

 Compatible with FPGA PHYs.
 Well-documented protocol.
 Available on ARMv8

Image: Teledyne Lecroy

19. September 20
16

David Cock 14||

The HSSTP Hardware

 The official tool is CHF10,000 per core.
 The cable run is maximum 15cm.
 It's PHY-compatible with common FPGAs
 A CHF6k FGPA could easily handle 10 – 15x cheaper!
 We're working with the D-ITET DZ on an interface board.
 If you like soldering, let us know!

19. September 20
16

David Cock 15||

Fancy Triggering and Filtering

 The ETM has sophisticated
filtering e.g. Sequencer.

 Bn and Fn can be just about any
events on the SoC.

 States can enable/disable trace,
or log events.

 A powerful facility for pre-filtering

State 0

State 1

State 2

State 3

B2

B1

B0 F0

F1

F2

19. September 20
16

David Cock 16||

Filtering and Offload in an FPGA

 We'll need to intelligently filter high-rate
data.

 We're using an FPGA for the physical
interface already.

 How much processing could we do?
 We have expertise in the group with

FPGA query offloading
 Zsolt and I are writing a joint Master's project

proposal on this.

19. September 20
16

David Cock 17||

Hardware Tracing for Correctness

unmap(pa);
cleanDCache();
flushTLB();

Are HW operations right?
5Gb/s

Filter at line rate

Check temporal
assertionsLog & process offline

● Real time pipeline trace on ARM.
● Can halt and inspect caches.
● HW has “errata” (bugs).
● Check that it actually works!
● Catch transient and race bugs.

19. September 20
16

David Cock 18||

Hardware Tracing for Performance

5Gb/s

Filter at line rate

Log & process offline

URPC[0]= x;
URPC[1]= 1;

while(!URPC[1]);
x= URPC[0];

1

2

x 1

xCore 0

Core 1

Cache 0

Cache 1

INVAL(0)
READ(1)
…

Is URPC optimal?

• Should see N coherency messages.
• Do we?

‐ The HW knows!

19. September 20
16

David Cock 19||

Properties to Check:
Security

 Runtime verification is an
established field.

 Lots of existing work to
build on.

 What properties could we
check efficiently?

 How could we map them
to the filtering pipeline?

/* A very simple TESLA assertion. */
TESLA_WITHIN(example_syscall,
 previously(security_check(ANY(ptr),
 o, op) == 0));

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/

19. September 20
16

David Cock 20||

Processing Engine

 That's a lot of data, how can we process it?
 This is what rack-scale systems are for!
 Andrei is starting on this as his Master's project.

19. September 20
16

David Cock 21||

Properties to Check:
Memory Management

 Could we check this?

 We don't have data
values (a & b).

 We can play clever tricks
with the hardware!

 Shows what we could do
with data trace.

void *a = malloc();
...
free(b);
{a = b}

PROCID= b[15:0]; PROCID= b[31:16];

CID:
B[15:0] ++ ASID

CID:
B[31:16] ++ ASID

19. September 20
16

David Cock 22||

A Streaming Verification Engine

HSSTP

Packet
Capture

Sources Capture Processing Properties

ETM
Sequencer

FPGA
Capture

Dataflow
Engine

FPGA
Offload

TESLA

malloc()
pairing

Coherence
correctness

Constraints Requirements

19. September 20
16

David Cock 23||

Offloading Example:
LTL to Büchi

● LTL(-ish) formula: A store on core 1 is
eventually visible on core 2.

● Think regular expressions for infinite
streams.

● As for REs, we compile a checking
automaton.

● Run the automaton in real time and
look for violations.

● FPGAs are good at state machines.

19. September 20
16

David Cock 24||

An Instrumented Rack-Scale System

● 64 SoCs x 5Gb/s = 320Gb/s trace output.
● Online checkers (e.g. automata) will be

essential at this scale.
● We're going to build this:
– A rack of ARMv8 cores & FPGAs.

● We're starting a fortnightly reading group to
get up to speed on the Runtime Monitoring
literature – feel free to join.

https://code.systems.ethz.ch/project/view/55/

rack­tracing@lists.inf.ethz.ch

	Slide 1
	HW Tracing for Correctness
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	HW Tracing for Performance
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

