Litmus Testing at Rack Scale




We're Going to Build a Large Program Collider

Collide instructions at 0.99¢, and observe the decay products.

Images: CERN; Chaix & Morel et associés
David Cock | 19. September 20 | 2
16

Systems@ ETH ziricn



Programmers Once (Thought They)
Understood Computer Architecture

Figure 1.4 CPU
Hardware organization Register file
of a typical system. CPU: ~
Central Processing Unit, ALU
ALU: Arithmetic/Logic
System bus  Memory bus

Unit, PC: Program counter,
USB: Universal Serial Bus.

Bus interface g 10 | | Main
| bridge | memory

(=

Expansion slots for

other devices such

UsB Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display () %2116 evecutable
W stored on disk

systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Image: Computer Systems, A Programmer's Perspective, )
Bryant & O'Hallaron, 2011 David Cock | 19. September 20 | 3
16

Systems@ ETH ziricn




Symmetric Multiprocessors Were Fairly Simple

CPU

Register file

~|ALu

RAM

| Cache |

WB |

Bus interface

Register file

ALy

| Cache |

WB |

Bus interface

Memory bus

David Cock | 19. September 20 | 4
16



Concurrent Code Makes Architecture Visible

= Consider message passing.
= Pretty much the simplest thing you can do with shared memory.
= Systems like Barrelfish rely on it.

= When are barriers required?

= You can't write good code, without sufficiently
understanding the hardware.

= We're combining components in
new ways.

David Cock | 19. September 20 | 5
16




Message Passing with Shared Memory

CPU CPU
A
Write: *x = 42 Read: *y =1
Write: *y =1 Read: *x = 42
A J
RAM

=082 *y=0

David Cock | 19. September 20 | 6
16




Message Passing with a Write Buffer

CPU CPU
A
Write: *x = 42 Read: *y =1
Write: *y = 1 Read: *x =0
Y *X = 42
WB ry =1
RAM
*x=0 vy =@

David Cock | 19. September 20 | 7
16



Message Passing with a Barrier

CPU CPU
A
Write: *x = 42 Read: *y =1
Write: *y = 1 Read: *x =42
Y_ *x=42
WB o
RAM

*x = 02 *y =)

David Cock | 19. September 20 | 8
16




Of Course, CPUs Aren't That Simple

9 hops

PCI

CPU CPU
. .
WB WB
N .
L1 L1
— Ue—

L2

CPU CPU
. .
WB WB
. .
L1 L1
~ U—

L2

RAM

Coherent
Interconnect

L3

David Cock | 19. September 20 | 9
16



You Can't Trust the Hardware

= sel4 was verified modulo
a hardware model.

= The Cortex A8 has bugs:

= Cache flushes don't work.

= As of today, these “errata”
are still not public.

= We rediscovered these by
accident.
= Non-coherent memory is
coming.

Systems@ ETH ziricn

Source: Chip Errata for the i.MX51, Freescale Semiconductor

ENGcm09830 | ARM: Load and Store operations on the shared device memory No fix scheduled 12
regions may not complete in program order

ENGcm07788 | ARM: A RAW hazard on certain CP15 registers can result in a stale No fix scheduled 14
register read

ENGcm04786 | ARM: ARPROT(0] is incorrectly set to indicate a USER transaction for No fix scheduled 16
memory accesses generated from user tablewalks

ENGcm04785 | ARM: C15 Cache Selection Register (CSSELR) is not banked No fix scheduled 18

ENGem07784 | ARM: Cache clean memory ops generated by the Preload Engine or No fix scheduled 19
Clean by MVA to PoC instructions may corrupt the memory

ENGcm07786 | ARM: Under a specific set of conditions, a cache maintenance No fix scheduled 21
operation performed by MVA can result in memory corruption

ENGem07782 | ARM: Clean and Clean/Invalidate maintenance ops by MVA to PoC No fix scheduled 23
may not push data to external memory

ENGem04758 | ARM: Incorrect L2 cache eviction can occur when L2 is configured as No fix scheduled 25
an inner cache

ENGcm04761 | ARM: Swap instruction, preload instruction, and instruction fetch No fix scheduled 26
request can interact and cause deadlock

ENGcm04759 | ARM: NEON load data can be incorrectly forwarded to a subsequent No fix scheduled 28
request

ENGem04760 | ARM: Under a specific set of conditions, processor deadlock can No fix scheduled 30
occur when L2 cache is servicing write allocate memory

ENGem10230 | ARM: Clarification regarding the ALP bits in AMC register No fix scheduled -Clarified in 32

RM

ENGem10700 | ARM: If a Perf Counter OVFL occurs simultaneously with an update No fix scheduled 33
to a CP14 or CP15 register, the OVFL status can be lost

ENGem10716 | ARM: A Neon store to device memory can result in dropping a No fix scheduled 35
previous store

ENGem10701 | ARM: BTB invalidate by MVA operations do not work as intended No fix scheduled 37
when the IBE bit is enabled

ENGem10703 | ARM: Taking a watchpoint is incorrectly prioritized over a precise data No fix scheduled 39
abort if both occur simultanecusly on the same address

ENGem10724 | ARM: VCVT.f32.u32 can return wrong result for the input No fix scheduled 1

OxFFFF_FFO1 in one specific configuration of the floating point unit

David Cock | 19. September 20 | 10

16




And Then There's Rack Scale...

we] we| [wg]
[ ] [ ]

Coherent
Interconnect

Coherent
Interconnect

RAM |

dol

we| e g
[ L2 ] | L2 |
I I
[ ] [s ]
Coherent | I
Imec:c?;enr:ect | PCI NIC
RAM |
CPU CPU CPU CPU
we|  [wg]  [we]
[ L2 ] [ L2 ]
1 I
[ L3 ] [ L3 ]
Coherent | | I v e
Interconnect l

P
>
4

Systems@ ETH ziricn

Backhaul

NIC

NIC

NIC

Coherent

Interconnect

Coherent
Interconnect

RAM

we|  [we] |w]
[ e ] [ ]
T T
[ s ] [ ]
| | Coherent
| Interconnect
[ RAM |
[cPu] [cru] [cru] [cru]
we]  [we]  [wg]
[c]  [u] [ [
L | [z |
[ s ] [ ]
I I Coherent
Interconnect
[ ]

David Cock | 19. September 20 | 11
16



There's a Lot of Data Available
Cache dumps

Program trace
fwe|] [we] [ws] we] [we] [wsl
[ ] [ ] [ | [

[ s ] [ ] [ s ] [ ]
Coherent I I Coherent
Ime?'ce;?lr:ect | acl M RIC acl | Imeorceﬁnect

[ RAM ] P t . . RAM

cpul| [cpu] [cpu] [cpu cpu| [cpu] [cpu] [cPu
we] we| [wg] we]  [we]  [wg]
[ e ] [ ] [ e ] [ ]

T T I I

[ s ] [ ] [ s ] [ ]

Coherent | I ] I ] [ Coherent
Ime?czrn?lnect | ) e e ) | Inte?cﬁﬁwnect
[ RAM | — [ RAM |

Event triggers — —
T T
we] we|  [wg] we] we| [wg]
[ e ] [ ] [ e ] [ ]
I T — I T
[ ] [ ] [ s ] [ ]

Coherent I ] I ] Coherent
Imec:c?;enr:ect | e acl | Inteorceainect
[ RAM | [ RAM |
el fwe]  fwg] el fwe]  |wg]

[ e ] [ ] [ e ] [ ]

1 1 I I
[ s ] [ ] [ s ] [ ]

Coherent I I I [ Coherent
Inteorcgailct | e acl | Imec:csgenr;ct
[ RAM | [ RAM |

Backhaul

David Cock | 19. September 20 | 12
16

Openflow

Systems@ ETH ziricn



ARM High-Speed Serial Trace Port

Image: Teledyne Lecroy

= Streams from the Embedded
Trace Macrocell.

= Cycle-accurate control flow +
events @ 6GIB/s+

= Compatible with FPGA PHYSs.
=  Well-documented protocol.

= Available on ARMvVS \ =

David Cock | 19. September 20 | 13
16




The HSSTP Hardware

= The official tool is CHF10,000 per core.

= The cable run is maximum 15cm.

= |t's PHY-compatible with common FPGAs

= A CHF6k FGPA could easily handle 10 — 15x cheaper!

= We're working with the D-ITET DZ on an interface board.
= [If you like soldering, let us know!

m David Cock | 19. September 20 | 14
Systemse zivich 16




Fancy Triggering and Filtering

= The ETM has sophisticated
filtering e.g. Sequencer.

= Bn and Fn can be just about any
events on the SoC.

= States can enable/disable trace,
or log events.

= A powerful facility for pre-filtering

m David Cock | 19. September 20 | 15
Systemse, zivich 16




Filtering and Offload in an FPGA

= We'll need to intelligently filter high-rate
data.

= We're using an FPGA for the physical
Interface already.

= How much processing could we do?

= We have expertise in the group with
FPGA query offloading

= Zsolt and | are writing a joint Master's project
proposal on this.

David Cock | 19. September 20 | 16
16



Hardware Tracing for Correctness

Are HW operations right?

dva.va — pa

unmap(pa);
cleanDCache();
flushTLB();

Ava.va — pa

Real time pipeline trace on ARM.
Can halt and inspect caches.
HW has “errata” (bugs).

Check that it actually works!
Catch transient and race bugs.

Check temporal
Log & process offline assertions

David Cock | 19. September 20 | 17
16




Hardware Tracing for Performance

* Should see N coherency messages.
* Dowe?
- The HW knows!

Is URPC optimal?

\1 \/ Cache 0
URPC[0]= Xx; <‘ :Q'\é\;'%((g)
URPC[1]= 1
Core 0 /\ Cache 1
wh11e('URPC[1]),
x= URPC[O];

Log & process offline

David Cock | 19. September 20 | 18
Core 1 19




Properties to Check:
Security

= Runtime verification IS an
established field.

= Lots of existing work to

build on.
- What propertles COUId we /* A very simple TESLA assertion. */
check eff|C|ent|y? TESLA WITHIN(example syscall,
previously(security check(ANY(ptr),
= How could we map them o, op) == 0));

to the filtering pipeline?

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/

David Cock | 19. September 20 | 19
16




Processing Engine

= That's a lot of data, how can we process it?
= This is what rack-scale systems are for!
= Andrel is starting on this as his Master's project.

David Cock | 19. September 20 | 20
16




Properties to Check:
Memory Management

void *a = malloc();

= Could we check this? free(b);
{a = b}

= \We don't have data
values (a & b).

In a VMSA implementation, the CONTEXTIDR bit assignments are:

31 8 7 0
Short-descriptor' PROCID ASID
Long-descriptor" PROCID

= We can play clever tricks
with the hardware! / ﬁ

= Shows what we could do
with data trace.

PROCID= b[31:16];

\J \J

David Cock | 19. September 20 | 21
16

PROCID= b[15:0];




A Streaming Verification Engine

Sources Capture

HSSTP ETM
Sequencer
Packet
Capture FPGA
Capture

Cconstams

Dataflow
Engine

FPGA
Offload

Properties

TESLA

malloc()
pairing

Coherence
correctness

 Reaurements.

David Cock | 19. September 20 | 22
16



Offloading Example:
LTL to Buchi

store 0xa000 1 = (0read 0xa000 =1

On core 1 On core 2

e LTL(-ish) formula: A store on core 1 is
eventually visible on core 2.
* Think regular expressions for infinite

/_\
streams. ‘ ‘
» As for REs, we compile a checking
automaton. /
* Run the automaton in real time and ‘—>>

look for violations. /O
 FPGASs are good at state machines. O

David Cock | 19. September 20 | 23
16




An Instrumented Rack-Scale System

' SLPERMITRS il

I] ] KX LE

i 1F

| [
|-f =l

I I || I I

i ::!:f*::I_'il:f'[:l'_ilgilifi::l

Front

* 64 S0Cs x 5Gb/s = 320Gb/s trace output.

e Online checkers (e.g. automata) will be
essential at this scale.

« WWe're going to build this:
- Arack of ARMv8 cores & FPGAs.

« WWe're starting a fortnightly reading group to
get up to speed on the Runtime Monitoring
literature — feel free to join.

https://code.systems.ethz.ch/project/view/55/

rack-tracing@lists.inf.ethz.ch

David Cock | 19. September 20 | 24
16



	Slide 1
	HW Tracing for Correctness
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	HW Tracing for Performance
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

