Litmus Testing at Rack Scale




We're Going to Build a Large Program Collider

Collide instructions at 0.99¢, and observe the decay products.

Images: CERN; Chaix & Morel et associés
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Programmers Once (Thought They)
Understood Computer Architecture

Figure 1.4 CPU
Hardware organization Register file
of a typical system. CPU: ~
Central Processing Unit, ALU
ALU: Arithmetic/Logic
System bus  Memory bus

Unit, PC: Program counter,
USB: Universal Serial Bus.

Bus interface g 10 | | Main
| bridge | memory

(=

Expansion slots for

other devices such

UsB Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display () %2116 evecutable
W stored on disk

systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Image: Computer Systems, A Programmer's Perspective, )
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Symmetric Multiprocessors Were Fairly Simple
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Concurrent Code Makes Architecture Visible

= Consider message passing.
= Pretty much the simplest thing you can do with shared memory.
= Systems like Barrelfish rely on it.

= When are barriers required?

= You can't write good code, without sufficiently
understanding the hardware.

= We're combining components in
new ways.
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Message Passing with Shared Memory

CPU CPU
A
Write: *x = 42 Read: *y =1
Write: *y =1 Read: *x = 42
A J
RAM

=082 *y=0
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Message Passing with a Write Buffer

CPU CPU
A
Write: *x = 42 Read: *y =1
Write: *y = 1 Read: *x =0
Y *X = 42
WB ry =1
RAM
*x=0 vy =@
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Message Passing with a Barrier

CPU CPU
A
Write: *x = 42 Read: *y =1
Write: *y = 1 Read: *x =42
Y_ *x=42
WB o
RAM

*x = 02 *y =)
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Of Course, CPUs Aren't That Simple
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You Can't Trust the Hardware

= sel4 was verified modulo
a hardware model.

= The Cortex A8 has bugs:

= Cache flushes don't work.

= As of today, these “errata”
are still not public.

= We rediscovered these by
accident.
= Non-coherent memory is
coming.
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Source: Chip Errata for the i.MX51, Freescale Semiconductor

ENGcm09830 | ARM: Load and Store operations on the shared device memory No fix scheduled 12
regions may not complete in program order

ENGcm07788 | ARM: A RAW hazard on certain CP15 registers can result in a stale No fix scheduled 14
register read

ENGcm04786 | ARM: ARPROT(0] is incorrectly set to indicate a USER transaction for No fix scheduled 16
memory accesses generated from user tablewalks

ENGcm04785 | ARM: C15 Cache Selection Register (CSSELR) is not banked No fix scheduled 18

ENGem07784 | ARM: Cache clean memory ops generated by the Preload Engine or No fix scheduled 19
Clean by MVA to PoC instructions may corrupt the memory

ENGcm07786 | ARM: Under a specific set of conditions, a cache maintenance No fix scheduled 21
operation performed by MVA can result in memory corruption

ENGem07782 | ARM: Clean and Clean/Invalidate maintenance ops by MVA to PoC No fix scheduled 23
may not push data to external memory

ENGem04758 | ARM: Incorrect L2 cache eviction can occur when L2 is configured as No fix scheduled 25
an inner cache

ENGcm04761 | ARM: Swap instruction, preload instruction, and instruction fetch No fix scheduled 26
request can interact and cause deadlock

ENGcm04759 | ARM: NEON load data can be incorrectly forwarded to a subsequent No fix scheduled 28
request

ENGem04760 | ARM: Under a specific set of conditions, processor deadlock can No fix scheduled 30
occur when L2 cache is servicing write allocate memory

ENGem10230 | ARM: Clarification regarding the ALP bits in AMC register No fix scheduled -Clarified in 32

RM

ENGem10700 | ARM: If a Perf Counter OVFL occurs simultaneously with an update No fix scheduled 33
to a CP14 or CP15 register, the OVFL status can be lost

ENGem10716 | ARM: A Neon store to device memory can result in dropping a No fix scheduled 35
previous store

ENGem10701 | ARM: BTB invalidate by MVA operations do not work as intended No fix scheduled 37
when the IBE bit is enabled

ENGem10703 | ARM: Taking a watchpoint is incorrectly prioritized over a precise data No fix scheduled 39
abort if both occur simultanecusly on the same address

ENGem10724 | ARM: VCVT.f32.u32 can return wrong result for the input No fix scheduled 1

OxFFFF_FFO1 in one specific configuration of the floating point unit
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And Then There's Rack Scale...
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There's a Lot of Data Available
Cache dumps

Program trace
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ARM High-Speed Serial Trace Port

Image: Teledyne Lecroy

= Streams from the Embedded
Trace Macrocell.

= Cycle-accurate control flow +
events @ 6GIB/s+

= Compatible with FPGA PHYSs.
=  Well-documented protocol.

= Available on ARMvVS \ =
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The HSSTP Hardware

= The official tool is CHF10,000 per core.

= The cable run is maximum 15cm.

= |t's PHY-compatible with common FPGAs

= A CHF6k FGPA could easily handle 10 — 15x cheaper!

= We're working with the D-ITET DZ on an interface board.
= [If you like soldering, let us know!

m David Cock | 19. September 20 | 14
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Fancy Triggering and Filtering

= The ETM has sophisticated
filtering e.g. Sequencer.

= Bn and Fn can be just about any
events on the SoC.

= States can enable/disable trace,
or log events.

= A powerful facility for pre-filtering

m David Cock | 19. September 20 | 15
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Filtering and Offload in an FPGA

= We'll need to intelligently filter high-rate
data.

= We're using an FPGA for the physical
Interface already.

= How much processing could we do?

= We have expertise in the group with
FPGA query offloading

= Zsolt and | are writing a joint Master's project
proposal on this.
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Hardware Tracing for Correctness

Are HW operations right?

dva.va — pa

unmap(pa);
cleanDCache();
flushTLB();

Ava.va — pa

Real time pipeline trace on ARM.
Can halt and inspect caches.
HW has “errata” (bugs).

Check that it actually works!
Catch transient and race bugs.

Check temporal
Log & process offline assertions

David Cock | 19. September 20 | 17
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Hardware Tracing for Performance

* Should see N coherency messages.
* Dowe?
- The HW knows!

Is URPC optimal?

\1 \/ Cache 0
URPC[0]= Xx; <‘ :Q'\é\;'%((g)
URPC[1]= 1
Core 0 /\ Cache 1
wh11e('URPC[1]),
x= URPC[O];

Log & process offline

David Cock | 19. September 20 | 18
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Properties to Check:
Security

= Runtime verification IS an
established field.

= Lots of existing work to

build on.
- What propertles COUId we /* A very simple TESLA assertion. */
check eff|C|ent|y? TESLA WITHIN(example syscall,
previously(security check(ANY(ptr),
= How could we map them o, op) == 0));

to the filtering pipeline?

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/
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Processing Engine

= That's a lot of data, how can we process it?
= This is what rack-scale systems are for!
= Andrel is starting on this as his Master's project.
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Properties to Check:
Memory Management

void *a = malloc();

= Could we check this? free(b);
{a = b}

= \We don't have data
values (a & b).

In a VMSA implementation, the CONTEXTIDR bit assignments are:

31 8 7 0
Short-descriptor' PROCID ASID
Long-descriptor" PROCID

= We can play clever tricks
with the hardware! / ﬁ

= Shows what we could do
with data trace.

PROCID= b[31:16];

\J \J
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A Streaming Verification Engine

Sources Capture

HSSTP ETM
Sequencer
Packet
Capture FPGA
Capture

Cconstams

Dataflow
Engine

FPGA
Offload

Properties

TESLA

malloc()
pairing

Coherence
correctness

 Reaurements.
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Offloading Example:
LTL to Buchi

store 0xa000 1 = (0read 0xa000 =1

On core 1 On core 2

e LTL(-ish) formula: A store on core 1 is
eventually visible on core 2.
* Think regular expressions for infinite

/_\
streams. ‘ ‘
» As for REs, we compile a checking
automaton. /
* Run the automaton in real time and ‘—>>

look for violations. /O
 FPGASs are good at state machines. O
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An Instrumented Rack-Scale System

' SLPERMITRS il

I] ] KX LE

i 1F

| [
|-f =l

I I || I I

i ::!:f*::I_'il:f'[:l'_ilgilifi::l

Front

* 64 S0Cs x 5Gb/s = 320Gb/s trace output.

e Online checkers (e.g. automata) will be
essential at this scale.

« WWe're going to build this:
- Arack of ARMv8 cores & FPGAs.

« WWe're starting a fortnightly reading group to
get up to speed on the Runtime Monitoring
literature — feel free to join.

https://code.systems.ethz.ch/project/view/55/

rack-tracing@lists.inf.ethz.ch
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