Runtime Verification
David Cock — david.cock@inf.ethz.ch

Systems @ ETH ziricn

We're Building the Large Program Collider

Collide instructions at 0.99¢, and observe the decay products.

Images: CERN; Chaix & Morel et associés
David Cock | 30 January 2017 |2

Systems@ ETH ziricn

Why is This Useful?

= Formal verification relies on accurate models

= For systems-level HW, these mostly don'’t exist!
= Testing lets us build confidence at these low levels

= The hardware is trying to tell us what it's doing.

= Further applications:
= Debugging rack-scale systems.
= Monitoring control flow (security).

David Cock | 30 January 2017 |3

Properties
No Double Frees in LTL

void *a = malloc();

{a is still allocated}
free(a);

= \We can now check this:

Gp $free(x) —> P !$free(x) S x = $malloc;
It's always been ...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

Valgrind, with zero overhead!

Thanks to my student Andrei Parvu.

David Cock | 30 January 2017 | 4

Our Streaming Verification Engine

Sources Capture Properties
HSSTP ETM
LTL TESLA
Sequencer Automata e
@ £yna FPGA @ iri V
TPIU () FPGA pairing
Capture Offload

Li d
coverage

David Cock | 30 January 2017 |5

Sources
HSSTP Testbench: XGene 1, Zyng7000, Custom HW

David Cock | 30 January 2017 |6

Systems@ ETH ziricn

Capture
Trace Capture on the Zynq7000

= 32b trace port to the FPGA fabric, 250MHz, 8Gb/s.

= Custom TPIU - AXI core, with Linux drivers:
= Integrates with ARM OpenCSAL, interchangeable with ETB.
= Full-speed capture and FIFO buffering (512kB).
= Easytouse: trace_launch <bin>; cat /dev/axi_tpiu

= Coming soon: PCle & HSSTP output.

terconnect
reset_sequencer
(| 4|S00_AXI
t_sync_clk mb.
== ACLK
ext_reset_| bus_struct_reset[0:0]
q ARESETN[0:0]
aux_reset_in peripheral_reset[0:0]
- S00_ACLK Moo_AXi| axi_tpiu
==mb_debug_sys_rst interconnect_aresetn[0:0] =
S00_ARESETN[0:0]
dem_locked peripheral_aresetn[0:0] Y AGI SﬁAXI
- || [TRACE
Processor System Reset e 100_ARESETN[0:0]
ACLK
ARESETN
AXI Interconnect
rocessing_system
P 9.5y Y axi_tpiu
DDR| DDR
FIXED_IO/+| FIXED_IO
M_AXI_GP0_ACLK TF{ACE70
M_AXI_GPO[F|| st

FCLK_RESETO_N

ZYNQ-7 Processing System

David Cock | 30 January 2017 |7

Systems@ ETH ziricn

Properties
No Double Frees in LTL

void *a = malloc();

{a is still allocated}
free(a);

= \We can now check this:

Gp $free(x) —> P !$free(x) S x = $malloc;
It's always been ...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

Thanks to my student Andrei Parvu.

David Cock | 30 January 2017 |8

Systems@ ETH ziricn

Processing: Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;

00100211

malloc

malloc

00111010

malloc
free

David Cock | 30 January 2017 |9

Processing
Bound Variables and Multiple Automata

= What about multiple x-s? CX"I"/Q

= Every X needs an "

automaton instance.
> malloc
Gp $free(1) -> P !$free(1) S 1 = $malloc; ﬂ///////////ff f;L
Gp $free(2) —-> P !$free(2) S 2 = $malloc;
Gp $free(3) —> P !$free(3) S $malloc; malloc

= We keep a tree of partially- >O\m../@>
Instantiated automata.

= This is resolution.

David Cock | 30 January 2017 |10

Processing
Streaming Pipeline

Chained processing stages:

= Capture
= Using the TPIU — AXI core.
= Using HSSTP: On the Zynq soon, other hardware is buggy.

= Decode

= We have a custom PTM decoder.

= Also use Linaro OpenCSD — works, but still buggy.
= Checking

= Run the automaton.

= Live coverage analysis — demo.

David Cock | 30 January 2017 |11

Directions

= BRISC will support tracing.
= We’re moving PTM parsing into the FPGA.

= We need to integrate and test the pipeline.
The pieces are all there, they need to work together.

= Analysing live systems.

We have an ongoing survey of cache operations in Linux, seL4 &
Barrelfish. We should be able to test these.

More interesting CPU platforms (see. BRISC).

David Cock | 30 January 2017 |12

Questions?

Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;

 » O O
O +—» O
L O O O

David Cock | 30 January 2017 |14

