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We're Building the Large Program Collider

Collide instructions at 0.99¢, and observe the decay products.

Images: CERN; Chaix & Morel et associés
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Why is This Useful?

= Formal verification relies on accurate models

= For systems-level HW, these mostly don'’t exist!
= Testing lets us build confidence at these low levels

= The hardware is trying to tell us what it's doing.

= Further applications:
= Debugging rack-scale systems.
= Monitoring control flow (security).
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Properties
No Double Frees in LTL

void *a = malloc();

{a is still allocated}
free(a);

= \We can now check this:

Gp $free(x) —> P !$free(x) S x = $malloc;
It's always been ...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

Valgrind, with zero overhead!

Thanks to my student Andrei Parvu.
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Our Streaming Verification Engine
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Sources
HSSTP Testbench: XGene 1, Zyng7000, Custom HW
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Capture
Trace Capture on the Zynq7000

= 32b trace port to the FPGA fabric, 250MHz, 8Gb/s.

= Custom TPIU - AXI core, with Linux drivers:
= Integrates with ARM OpenCSAL, interchangeable with ETB.
= Full-speed capture and FIFO buffering (512kB).
= Easytouse: trace_launch <bin>; cat /dev/axi_tpiu

= Coming soon: PCle & HSSTP output.
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ZYNQ-7 Processing System
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Properties
No Double Frees in LTL

void *a = malloc();

{a is still allocated}
free(a);

= \We can now check this:

Gp $free(x) —> P !$free(x) S x = $malloc;
It's always been ...before this free...
true that...

...there were no frees of x,
...if x is freed now, then... since it was allocated.

Thanks to my student Andrei Parvu.
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Processing: Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;
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malloc
free
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Processing
Bound Variables and Multiple Automata

= What about multiple x-s? CX"I"/Q

= Every X needs an "

automaton instance.
> malloc
Gp $free(1) -> P !$free(1) S 1 = $malloc; ﬂ///////////ff f;L
Gp $free(2) —-> P !$free(2) S 2 = $malloc;
Gp $free(3) —> P !$free(3) S $malloc; malloc

= We keep a tree of partially- >O\m../@>
Instantiated automata.

= This is resolution.
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Processing
Streaming Pipeline

Chained processing stages:

= Capture
= Using the TPIU — AXI core.
= Using HSSTP: On the Zynq soon, other hardware is buggy.

= Decode

= We have a custom PTM decoder.

= Also use Linaro OpenCSD — works, but still buggy.
= Checking

= Run the automaton.

= Live coverage analysis — demo.
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Directions

= BRISC will support tracing.
= We’re moving PTM parsing into the FPGA.

= We need to integrate and test the pipeline.
The pieces are all there, they need to work together.

= Analysing live systems.

We have an ongoing survey of cache operations in Linux, seL4 &
Barrelfish. We should be able to test these.

More interesting CPU platforms (see. BRISC).
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Questions?




Checking LTL with Automata

This is a well-studied problem, and standard
algorithms exist:

Gp $free(x) —> P !$free(x) S x = $malloc;
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