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Abstract. Onion routing (OR) protocols are a crucial tool for providing
anonymous internet communication. An OR protocol enables a user to
anonymously send requests to a server. A fundamental problem of OR
protocols is how to deal with replies: ideally, we would want the server
to be able to send a reply back to the anonymous user without knowing
or disclosing the user’s identity.
Existing OR protocols do allow for such replies, but do not provably
protect the payload (i.e., message) of replies against manipulation. Kuhn
et al. (IEEE S&P 2020) show that such manipulations can in fact be
leveraged to break anonymity of the whole protocol.
In this work, we close this gap and provide the first framework and pro-
tocols for OR with protected replies. We define security in the sense of
an ideal functionality in the universal composability model, and provide
corresponding (less complex) game-based security notions for the indi-
vidual properties.
We also provide two secure instantiations of our framework: one based on
updatable encryption, and one based on succinct non-interactive argu-
ments (SNARGs) to authenticate payloads both in requests and replies.
In both cases, our central technical handle is an implicit authentication of
the transmitted payload data, as opposed to an explicit, but insufficient
authentication (with MACs) in previous solutions. Our results exhibit a
new and surprising application of updatable encryption outside of long-
term data storage.
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This is the extended version to “Onion Routing with Replies” published at
Asiacrypt 2021.

Erratum: In the conference version, the proof of our OR protocol based on
updatable encryption (UE) implicitly relied on a (standard) UE property called
“token simulatability”. We have made this requirement explicit in this version.

1 Introduction

Onion routing. Whenever we are communicating online without further secu-
rity measures, personal information is leaked. While encryption can protect the
content of the communication, metadata (like who communicates with whom)
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still allows an adversary to learn extensive sensitive information about her victim
[22]. Mix [10] and Onion Routing (OR) Networks, like Tor [15], are crucial tools
to protect communication metadata for example when accessing information on
web servers or during personal chat or email communication. Intuitively, in an
OR protocol, the sender encrypts the message several times (e.g. using a public-
key encryption scheme), which results in an “onion”.4 This onion is then sent
along a path of OR relays chosen from an overlay network. Each relay removes
(only) one layer of encryption and then forwards the partially-processed onion
to the next relay. The last relay as the final receiver5 removes the innermost
layer of encryption and thus retrieves the plaintext.

This technique provides a certain degree of anonymity: the first relay knows
the sender, but neither message plaintext nor final receiver, while the last relay
as receiver knows only the message, but not the sender. These guarantees hold
even if some relays are corrupt (i.e., under control of an adversary). In fact, as
long as one of the involved relays is honest (and does not share its secrets), an
onion cannot be distinguished from any other onion (with a possibly different
sender and/or receiver).
Open problem: onion routing with replies. Most natural use cases for
internet communication are bidirectional, i.e., require a receiver to respond to
the sender. However, in the above simplified description, a receiver of an OR-
transmitted message has no obvious way to send a reply back to an anonymous
sender. Note that adding a sender address in plain to the payload message would
of course defeat the purpose of OR. Even encrypting the sender address, say,
with the public key of the receiver (so that the receiver can use another OR
communication to reply), is not appropriate as we may not always trust the
receiver to protect the sender’s privacy (e.g., like a newspaper agency being
forced to reveal whistleblowers).

Perhaps surprisingly, this problem of “OR with replies” has not been formally
addressed in the OR literature with sufficient generality (with one recent excep-
tion).6 Hence, our goal in this work is to provide definitions and instantiations
for OR protocols “with an anonymous back envelope”. That is, we attempt to
formalize and construct OR protocols which allow the receiver to reply to the
sender without revealing the identity of the sender to anyone.
Related work. Before detailing our own contribution, we first start by giving
context. OR and Mixing have been introduced in the early years of anonymous
communication. Chaum presented the first idea of a mix network, which ran-
domly adds delays to each message at the forwarding relays to hinder linking
4 This name stems from the fact that in order to get to the message, several layers of

encryption have to be “peeled”.
5 There are also OR protocols that allow the receiver to be unaware of the protocol

and provide anonymization as a service. In such a protocol, the last relay recovers
both the plaintext and the receiver address. We however focus our work on the model
with a protocol aware receiver.

6 The one exception is a work by Ando and Lysyanskaya [3]. We discuss their work,
and why we believe that their solution is not sufficient, below.
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based on timing information to the basic concept of layered encryption and
source routing [10]; Goldschlag, Reed and Syverson proposed a clever setup pro-
cedure together with the same basic ideas, but decided against random delays
[19], which later on led to the development of the best known anonymous com-
munication network, Tor [15]. In the following years many solutions applied the
same technique [11,12,13,14,32,31]. With increasing importance of OR and un-
derstanding of the subtleties, which allow for attacks, theoretical and formal
models for OR were developed. Thereby, the problem of secure onion routing
and mixing is usually divided in two subproblems [6,13]: The definition of a se-
cure onion routing/mixing packet format (to avoid simple observing and tagging
attacks) and additional measures, like methods to detect dropping adversaries
(against traffic analysis attacks).

For the scope of this paper, we concentrate on the first subproblem. Thus,
we ignore attacks based on timings or dropping of onions, but instead aim to
construct a secure packet format, which can later be combined with different
measures against timing and traffic analysis attacks.7

Early on, Mauw et al. [29] modeled and analyzed OR. However, this work
does not contain any proposal to prove future systems secure. Backes et al.’s ideal
functionality [4] models Tor and hence includes sessions and reply channels.
However, it is very specific to Tor and thus rather complex and can hardly
be reused for general onion routing and mix networks. The Black-Box Model
of Feigenbaum et al. [16] on the other hand, oversimplifies the problem and
cannot support replies either. Further approaches [8,9,23] propose some security
properties, but do not give any ideal functionality or similar concept that would
allow to understand their concrete implications for the users’ privacy.

As the most prominent formalization without replies, Camenisch and Lysan-
skaya [6] defined an ideal functionality in the UC-Framework and showed prop-
erties an onion routing protocol needs to fulfill to prove its security. Proving
these properties has become the preferred way to prove mix and onion routing
networks secure. It has been used to prove the correction [32] of Minx [14], as
well as for the security proof of Sphinx [13], a fundamental protocol for onion
routing and mix networks. Sphinx splits the onion in a header and payload part
and elegantly includes the keys for every forwarding relay in the header, while
the payload is modified with these keys at each hop. By decoupling header and
payload Sphinx allows to precalculate a header for the backward direction, which
can be included in the payload to send a reply. The most eminent, recently pro-
posed practical onion routing and mix networks [11,12,31] build on Sphinx as
solution for the first subproblem to subsequently tackle the second subproblem
of dropping and timing attacks, while proving the security of their adaptions to
Sphinx still based on the properties of Camenisch and Lysanskaya.

7 For example, we accept a packet format solution that transforms a modification
attack into a dropping attack, e.g. by recognizing the modification and dropping the
according onion. As dropping attacks can be solved with additional measures, this
does not weaken the protocol.
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However, Kuhn et al. [26] recently recognized and corrected flaws in those
definitions that allowed for sincere practical consequences in the form of a mal-
leability attack:

An adversary that controls the internet service provision of the sender, or the
first relay as well as the receiver can easily mark the onion for later recognition by
flipping bits in the payload of the onion sent by her victim. She then checks if the
receiver receives some message that is not in the usual message space (e.g. not
containing English language). This allows the adversary to easily learn that the
victim wanted to contact the receiver (if such an unusual message was received).
Otherwise, the victim must be communicating with someone else. This attack
requires a very weak adversary only, but ultimately breaks the anonymity of the
sender, defeating the entire purpose of the protocol.

While the corrected properties are easy enough to be used, Kuhn et al. only
partially fix the situation as the models do not include support for reply messages
(to the anonymous sender). Sphinx and the improved version of Minx make
adaptions to the properties of Camenisch and Lysyanskaya to account for replies
to some extent, but thereby they build on the flawed properties and do not treat
replies correctly, thus limiting the achieved privacy [26]. Even worse, nearly all
of the eminent recent network proposals claim to support anonymity for replies,
while relying on the flawed properties for which the practical attack [26] was
introduced at the example of HORNET [11], an OR network that was proposed
as the successor of Tor.

On the work of Ando and Lysyanskaya. In a recent work [3], Ando and
Lysyanskaya define an ideal functionality for repliable onion routing. They also
propose corresponding properties and a protocol that satisfies their ideal func-
tionality. In this, they partition onions in header and payload and realize replies
by having the senders pre-compute another header for the reply path. They al-
ter the header and payload deterministically and check the header’s integrity at
each hop on the path, but they do not check the payload’s integrity until the
onion is at its final destination.

Thus the above malleability attack still works: Assume an adversarial first
relay P1 and receiver. P1 modifies the payload of the (forward) onion, i.e. replaces
the payload ciphertext C2 in [3] with randomness. The next honest relays process
the onion as usual without noticing this, as [3] uses mere end-to-end integrity
protection for the payload. Only the adversarial receiver can notice the payload
manipulation as the verification fails. This is the signal for the adversary that this
is the onion she tampered with earlier. While the message is lost, the adversary
learns critical metadata: who wanted to contact the receiver (e.g. the regime,
hosting own relays and pressuring newspapers, learns who tried to anonymously
contact the newspaper), unacceptable for practical protocols like [11,12].

While Ando and Lysyanskaya target the same setting, they avoid the chal-
lenge imposed by the above malleability attack [26] by explicitly allowing it in
their ideal functionality, which allows them to work with traditional malleability
protection: a “postponed” integrity check at the destination. This however even
strengthens the simple, yet effective de-anonymizing malleability attack on the
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payload, as the receiver now realizes the failed integrity check and does not even
have to compare with the expected message space. Therefore, the question of a
secure, repliable OR scheme is still unanswered.

A technical challenge with practical relevance. The goal we are aiming
at is not only useful, but also technically difficult to achieve. First of all, practi-
cally prominent protocols and packet formats [11,13,32] require that any reply is
indistinguishable from any forward request, except at the sender and receiver. In
particular, all parts of the onions in both directions should look alike, and must
be treated according to the same processing rules. This is necessary to provide
senders that expect replies with a sufficiently large anonymity set even if there is
only a small amount of reply packets, because they are hidden under all forward
traffic.

To prevent the malleability attack [26], tampering by a potentially corrupt re-
lay must become detectable. Theoretically, conventional payload authentication
for all forward layers, e.g., with MACs precalculated by the sender, is sufficient.
However, both Ando and Lysyanskaya [3] and practical proposals [11] require
indistinguishability of forward and reply onions. Extending authentication also
to the reply payload is challenging: The original sender cannot precalculate those
authentication tags as the reply payload is unknown and we cannot necessarily
assume that the receiver is honest. Letting the reply sender (= original receiver)
precalculate the authentication tags enables an attack similar to the malleabil-
ity attack: the malicious reply sender (= receiver) together with the last relay
can recognize the reply onion (without modifying its payload on the way) simply
based on the known authentication tags; thus letting the attacker learn the same
metadata as in the malleability attack. Hence, payload protection in the reply
setting is the real challenge towards a practical solution.

Our contribution. In this work, we present a framework for repliable OR,
along with two different instantiations (with different properties). Our framework
protects against malleability attacks on the payload, while even guaranteeing
that replies are indistinguishable from original requests. In our approach, hence,
both requests and replies are authenticated implicitly (i.e., without MACs) at
each step along the way.

From a definitional point of view, we express these requirements by an ideal
functionality (in the UC framework) which does not reveal the onion’s path,
message or direction to the adversary (unless all involved routers are corrupt;
further a corrupt receiver of course learns the message and direction). This trans-
lates to strong game-based properties, which are proven to imply the security in
the sense of that ideal functionality.

We also present two protocols that realize this ideal functionality. Both of
our OR protocols are in fact similar to existing protocols, and are partially
inspired by the popular Sphinx approach [13] and the Shallot scheme of Ando
and Lysyanskaya [3]. The main conceptual difference to previous work is that
the authentication of the (encrypted) payload happens implicitly in our case.
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Our first protocol uses updatable encryption (UE), a variant of symmetric8

encryption that provides both re-randomizable ciphertexts (and in fact RCCA
security [7] and plaintext integrity) and re-randomizable keys, as a central prim-
itive. Intuitively, using UE for encrypting the payload message (in both commu-
nication directions) enables a form of “implicit authentication” of ciphertexts,
and hence thwarts malleability attacks without explicit MACs on the payload.

Our second protocol is based on succinct non-interactive arguments (SNARGs
[30,5]), a variant of zero-knowledge arguments with compact proofs. Intuitively,
SNARGs enable every relay and the receiver to prove that they have processed
(or replied to) their input onion according to the protocol. This way, no explicit
authentication of the payload data is necessary, since the SNARGs guarantee
that no “content-changing” modification of the payload took place.

Neither of our protocols indeed are competitive in efficiency with existing
OR protocols. Further, our protocols require a trusted setup. This is due to
the introduction of new concepts and techniques for qualitatively stronger secu-
rity properties. Our work however represents an important conceptual first step
towards an efficient and secure solution.
A closer look at our UE-based protocol. We start by outlining the basic
ideas of our protocol based on updatable encryption (UE).

UE originally targets the scenario of securely outsourcing data to a semi-
trusted cloud server. To enable efficient key rotation, i.e., updating the stored
ciphertexts to a freshly chosen key, UE schemes allow the generation of update
tokens based on the old and new key. Given such a token the server can au-
tonomously lift a ciphertext encrypted with the old key to a ciphertext encrypted
with the new key. Of course, the token itself may not leak information about
the old nor the new key to the cloud server. Despite this update feature, UE
schemes should satisfy security properties similar to regular authenticated sym-
metric encryption schemes like IND-CPA/RCCA/CCA type of security along
with INT-PTXT or INT-CTXT security (when excluding trivial wins resulting
from corrupting certain keys and tokens). An additional property, which make
them especially interesting for our purposes is that some provide unlinkability
of ciphertext updates, i.e., an updated ciphertext does not provide information
about its old version (even given the old key).

The basic idea to exploit UE for secure onion routing with replies is simple:
the sender encrypts its request using an UE scheme and provides each relay, using
a header construction similar to Sphinx, with an update token to unlinkably
transform this request. Similarly, the receiver is equipped with the corresponding
decryption key and a fresh encryption key for the backward path.

More precisely, each onion O = (η, δ) consists of two components:
– a header η which contains encrypted key material with which routers can

process and (conventionally) authenticate the header itself, and
– the UE-encrypted payload δ; each router will use a UE update token to

re-randomize and re-encrypt δ under a different (hidden) key.
8 Although being a variant of symmetric encryption, UE schemes typically make use

of public-key techniques to achieve updatability through malleability.
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The structure of η is similar to the Sphinx and Shallot protocols. Namely, each
layer contains a public-key encryption (under the public key of the respective
relay) of ephemeral keys that encrypt the next layer (including the address of
the next relay), and authentication information with which to verify this layer.
Additionally, in our case each layer also contains an encrypted token which can
be used to update the payload ciphertext δ and we include the backward path
in the header as well. All of this header information can be precomputed by
the sender for both communication directions (i.e., for the path from sender to
receiver, and for the return path).

After processing the header (i.e., decrypting, verifiying, and applying the UE
token to the payload), each relay pads the so-extracted header for the next relay
suitably with randomness, so that it is not clear how far along the onion has been
processed. At some point, the decrypted header will contain a receiver symbol
and a UE decryption key to indicate that processing of the onion in the forward
direction has finished.

The header will then contain also a UE encryption key and enough informa-
tion for the receiver to prepare a “backwards onion”, i.e., an onion with the same
format for the return path. We stress that all header parts of this “backwards
onion”, including UE tokens and authentication parts, are precomputed by the
initial sender. The receiver merely UE-encrypts the payload and adds padding
similarly to relays during processing.

Processing on the return path works similarly, only that eventually, the initial
sender is contacted with the (still UE-encrypted) reply payload. The sender can
then decrypt the payload using a precomputed UE key.

We stress that there is no explicit check that the payload δ is still intact at
any point. However, the demanded UE security guarantees that re-encryption of
invalid UE ciphertexts will fail.

More precisely, we require an UE scheme with strong properties, namely
RCCA security, plaintext integrity, token simulatability and perfect re-encryption
under ciphertext-independent re-encryption of arbitrary (i.e., even maliciously
formed) ciphertexts. RCCA security and plaintext integrity ensure that valid
payloads from an honest sender cannot be modified or replaced by adversari-
ally generated payloads. Token simulatability ensures that any pair of tokens
can belong to the same onion (and no combination can be trivially excluded
by the adversary). Perfect re-encryption ensures that a payload encryption ob-
served along the forward/backward path does not leak the position in the path.
This property also implies the unlinkability of ciphertext updates. Allowing re-
encryption of arbitrary ciphertexts in the UE security games (what many UE
schemes do not consider) is crucial in our scenario as the relays who will perform
re-encryption might be easily confronted with adversarially crafted ciphertexts
which they need to reject. Also the property that update tokens can be generated
independently of the ciphertext to be updated is essential for our application as
otherwise the anonymous sender could not pre-compute the tokens for the back-
ward path.
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Considering the requirements from above, we are currently only aware of a
single suitable UE scheme which is a construction by Klooss, Lehmann, and
Rupp [24] based on (the malleability of) Groth-Sahai proofs. Unfortunately, in-
stantiating our protocol with their UE scheme leads to payload parts of the onion
which are comparatively large: Their underlying algebraic structure is a pairing-
based group setting e : G1 × G2 → GT . To encrypt a single G1-element, the
payload part contains 58 G1-and 44 G2-elements. For realistic group (bit)sizes
of, say, |G1| = 256 and |G2| = 512, we obtain a payload size of about 4.5 kilo-
bytes for 256 bits of communicated message. The header part of the onion is
about half as large for small pathlengths, and using conventional state-of-the art
building blocks, a full onion (including header and payload) comes out at about
4.5 + N kilobytes, where N is the maximal length of a path, i.e., the number of
hops between sender and receiver (cf. Appendix G.1 for details). Processing an
onion at a relay is dominated by the cost to perform the re-encryption of the
payload which requires about 110 G1- and 90 G2-exponentiations [24].
A closer look at our SNARG-based protocol. Our SNARG-based protocol
works conceptually similarly, but with two differences:

– First, the payload is enclosed by multiple symmetric encryption layers (one
for each relay). This is very similar to previous approaches [13,3], but also
opens the door to malleability attacks.

– Second, in order to prevent such malleability attacks, each layer contains a
concise SNARG proof on top of header and payload, which proves that this
onion is the result of (a) a fresh onion as constructed by a sender, (b) a fresh
backwards onion as constructed by a receiver, or (c) a legitimate processing
of another onion (with valid SNARG proof). In essence, this SNARG proof
avoids malleability attacks by inductively proving that this onion has gone
only through valid onion generation or processing steps.

We note that the SNARG proof may need to show that this onion is the result of
an honest processing of another onion with valid SNARG proof. Hence, we need
to be careful in designing the corresponding SNARG language in a recursive
way while avoiding circularities. This recursive and self-referential nature of our
language is also the reason why we use SNARGs (as opposed to “regular” zero-
knowledge techniques with larger proofs).

Our SNARG-based onions are in fact smaller (for small pathlengths N)
than the ones from our UE-based protocol. Using the SNARKs of Groth and
Maller [21] (and state-of-the-art conventional building blocks), we obtain onions
with an additive overhead (over the message size) of 128N2 + 448N + 192(2N −
1) + 160 bytes (cf. Appendix G.2 for details). The perhaps surprising quadratic
term in the maximal pathlength N stems from the fact that we require addi-
tional encryptions of all previous onion headers to enable a recursive extraction
of previous onion states.

However, due to our somewhat complex SNARG language, we expect that
the actual processing time of our SNARG-based approach (which involves con-
structing SNARG proofs at each processing step) will be considerably higher
than the one from our UE-based protocol.
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Performance in comparison to Ando and Lysyanskaya. While Ando and
Lysyanskaya do not provide concrete efficiency calculations, conceptually their
and our (time and space) overhead are similar except for the parts related to up-
datable encryption, resp. SNARGs. For realistic security parameters, these parts
dominate the header overhead. This is the price one has to pay for preventing the
malleability attack from [26] while making reply onions indistinguishable from
request onions as desired by practical protocols like HORNET [11].

After all, this is the first paper providing immunity in this strong sense, and
while we do not claim optimality of our constructions, we are convinced they are
the basis for a real-world improvement in communication privacy.

2 Notation

We use the superscript x← to denote the corresponding entity on the backwards
path. For example, while P1 is the first router on the forwards path, P1

← is the
first router on the backwards path. Further, we use the notation as summarized
in the following table:

Notation Meaning
∥ concatenation of strings
λ the security parameter
P an onion path
m a message
Pi for the i-th router name on the forward path, P0 (usually = P←n←+1) is the forward

sender and Pn+1(= P←0 ) the forward receiver
PKi public key of Pi

SKi private key of Pi

Oi = (ηi, δi) is the i-th forward onion layer to be processed by Pi

ηi the header of Oi

δi the payload of Oi

FormOnion the function to build a new onion as a sender.
ProcOnion the function to process an onion at a relay.
ReplyOnion the function to reply to a received onion as receiver.

3 Model and Ideal Functionality

We first define our assumptions and model for repliable OR and then describe
our desired security as the ideal functionality. Our model extends the OR scheme
definition of [6] as used in [26] by adding an algorithm to create replies. Our ideal
functionality extends the one of [6] as used in [26] and has similarities to [3], but
is strictly stronger as it requires protection against malleability attacks on the
payload.

3.1 Assumptions

We make the following assumptions that result from commonly used techniques
to ensure unlinkability of onion layers on criteria other than the concrete repre-
sentation of the onion.
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As in earlier examples, we assume the existence of public keys PK for all
relays.
Assumption 1 The sender knows the (authentic) public keys PK i of all relays
Pi it uses (e.g., by means of a PKI).

To ensure that packets cannot be linked based on their size, all onions are
padded to the same, fixed size (otherwise the largest incoming onion could triv-
ially be linked to the largest outgoing onion). As the path information has to be
encoded in the onion, fixing the size also entails an upper bound for the length
of the routing path.
Assumption 2 The protocol’s maximum path length is N .

To ensure that packets cannot be linked based on the included routing path,
the sender includes the routing information encrypted for each forwarder, such
that any forwarder only learns the next hop of the routing path. We assume that
the routing information is included in a header, while the message is included in
the payload of the onion.
Assumption 3 Each onion O consists of a header η and a payload δ.

To ensure that packets cannot be linked based on duplicate attacks, i.e. the
onion of the victim is duplicated at the first corrupted relay and observed twice
at the corresponding receiver, duplicates have to be detected and dropped. We
support duplicate detection with deterministically evolving headers, which allows
to also protect from duplicated replies. Thus, even though the (forward) receiver
is allowed to decide on her answer arbitrarily, we can still detect if she tries
to send multiple different answers to the same request.9 As some related work
wrongly adapted proof strategies for OR schemes where the duplicate detection
is solely based on parts of the onion, we deliberately build this model for OR-
schemes allowing for such protocols.10

Assumption 4 Duplicates, i.e. onions Oi, O′i with the same header ηi = η′i, lead
to a fail for every but the first such onion that is given to ProcOnion(SK i, Oi, Pi)
except with negligible probability.

To ensure the best chances that an honest relay is on the path, the honest
sender will pick a path without any repetition in the relays (acyclic).11

Assumption 5 Each honestly chosen path P is acyclic.
While true for, to our knowledge, all protocols, we use the following process-

ing order as an assumption in our proofs:
Assumption 6 Each onion is processed by the receiver, before it is replied to.
9 Note that our scope is a secure message format. Traffic analysis protection, like e.g.

recognizing duplicated onions, has to happen additionally to our message format,
but assuming that such a protection is in place allows for simplified proofs even for
the message format.

10 Practically, this assumption is often ensured by storing the seen headers in an efficient
way, e.g. Bloom filters, until a router’s key pair is changed or the current epoch
expires if the protocol works in time epochs. The change of key pairs can be expressed
in our framework by replacing a router identity by a fresh one (“Bob2020” becomes
“Bob2025”).

11 Note that our adversary model trusts the sender and hence this assumption is merely
a restriction of how the protocol works and the sender does not need to prove a
correct choice to anyone.
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3.2 Modeling Replies

We extend the definition of an onion routing scheme [6] as used in [26] with an
algorithm to send replies, similar to [3].

Definition 1 (Repliable OR Scheme). A Repliable OR Scheme is a tuple of
PPT algorithms (G, FormOnion, ProcOnion, ReplyOnion) defined as:

Key generation. G(1λ, p, Pi) outputs a key pair (PK i, SK i) on input of the
security parameter 1λ, some public parameters p and a router identity Pi.

Forming an onion. FormOnion(i,R, m,P→,P←, (PK)P→ , (PK)P←) returns
an i-th12 onion layer Oi (i = 1 for sending) on input of i ≤ n+n←+2 (for i >
n + 1, m is the reply message and Oi the backward onion layer), randomness
R, message m, a forward path P→ = (P1, . . . , Pn+1), a backward path P← =
(P←1 , . . . , P←n←+1), public keys (PK)P→ = (PK1, . . . , PKn+1) of the relays
on the forward path, and public keys (PK)P← = (PK ′1, . . . , PK ′n←+1) of the
relays on the backward path. The backward path can be empty if the onion is
not intended to be repliable.

Forwarding an onion. ProcOnion(SK, O, P ) outputs the next onion layer and
router identity (O′, P ′) on input of an onion layer O, a router identity P
and P ’s secret key SK. (O′, P ′) equals (⊥,⊥) in case of an error or (m,⊥)
if P is the recipient.

Replying to an onion. ReplyOnion(m←, O, P, SK) returns a reply onion O←

along with the next router P← on input of a received (forward) onion O, a
reply message m←, the receiver identity P and its secret key SK. O← and
P← attains ⊥ in case of an error.

Correctness. We want the onions to take the paths and deliver the messages
that were chosen as the input to FormOnion resp. ReplyOnion.

Definition 2 (Correctness). Let (G, FormOnion, ProcOnion, ReplyOnion) be
a repliable OR scheme with maximal path length N . Then for all n, n← <
N , λ ∈ N, all choices of the public parameter p, all choices of the random-
ness R, all choices of forward and backward paths P→ = (P1, . . . , Pn+1) and
P← = (P←1 , . . . , P←n←+1), all (PK (←)

i , SK (←)
i ) generated by G(1λ, p, P

(←)
i ), all

messages m, m←, all possible choices of internal randomness used by ProcOnion
and ReplyOnion, the following needs to hold:

Correctness of forward path. Qi = Pi, for 1 ≤ i ≤ n and Q1 := P1,
O1 ← FormOnion(1,R, m, (P1, . . . , Pn+1), (P←1 , . . . , P←n←+1), (PK1, . . . , PKn+1),
(PK←1 , . . . , PK←n←+1)), (Oi+1, Qi+1)← ProcOnion(SK i, Oi, Qi).

Correctness of request reception. (m,⊥) = ProcOnion(SKn+1, On+1, Pn+1)
Correctness of backward path. Q←i = P←i , for 1 ≤ i ≤ n and (O←1 , Q←1 )←

ReplyOnion(m←, On+1, Pn+1, SKn+1), (O←i+1, Q←i+1)← ProcOnion(SK←i , O←i , Q←i ).
Correctness of reply reception. (m←,⊥) = ProcOnion(SK←n←+1, O←n←+1, P←n←+1)
12 During normal operation only i = 1 is used. The possibility to form onion layers for

i > 1 (without using ProcOnion) is needed for our security definitions and proofs.
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Recognizing onions. To define our security properties, we need a way to rec-
ognize if an onion O provided by the adversary resulted from processing a given
onion O∗. To this end, we define the algorithm RecognizeOnion(i, O,R, m,P→,
P←, (PK)P→ , (PK)P←), which uses the given inputs (that have been used to
create the onion O∗ in the first place) to form the i-th layer of the onion O∗i
using FormOnion and then compares the header of O∗i to the header of the onion
O in question. If the headers13 are identical, it returns True, otherwise False.

Note that the “correctness” of FormOnion and RecognizeOnion for i > 1 is
defined implicitly as part of our security properties in Section 4.

3.3 Ideal Functionality

Informally, as long as the sender is honest we want that the adversary can only
learn the parts of the onion’s path (and associated reply’s path), where she
corrupted all relays. This includes especially the following three facts:
1. The adversary cannot link onion layers before and after any honest relay.
2. The adversary cannot learn the included message, unless she controls the

receiver.
3. The adversary cannot distinguish whether onions are on the forward or back-

ward path, unless she controls the receiver and the onion is either the last
layer before (forward) reception, or the first layer of her reply.

Note that this especially includes that she also cannot link layers based on
malleability attacks on the payload. See Appendix B for technical details.

4 New Properties

We now define our security properties and show that if they are fulfilled, our
ideal functionality is realized.

The ideal functionality requires that the adversary only learns parts of the
onion’s real path; the subpaths from each honest relay until the next honest
relay. Our idea is to replace any real sequence of onion layers that is observed
on such a subpath, with a random sequence that only is equal in the informa-
tion learned by the adversary, i.e., the allowed leakage of the ideal functionality.
More precisely, this information relates to the subpath the adversary controls.
It extends to the plaintext of the message, and the fact if the onion is at for-
ward or backward layers, if she also controls the receiver. For replacement, we
distinguish three types of subpaths and introduce one property for each type,
challenging the adversary to distinguish the real and a random layer sequence
for this specific subpath type. The types are: a subpath that is part of the for-
ward path (Forwards Layer-Unlinkability), one that is part of the backward path
(Backwards Layer-Unlinkability) and one that includes parts of the forward and
backward path as the receiver is corrupted (Repliable Tail-Indistinguishability).
13 We define RecognizeOnion and the duplicate detection on the header as this is

common practice.
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Forward Path: We first require that the layers on the forward path can be
replaced by random ones. Therefore, we extend Layer-Unlinkability from [26]
with oracles for the creation of replies and illustrate the property in Figure 1.

Thereby, we challenge the adversary to distinguish between (a) an onion cre-
ated according to her choices from (b) a random onion that takes the same path
from the sender to the first honest relay. We use oracles to allow for processing
of and replying to (other) onions at the honest relays. Due to duplicate checks,
these oracles only return a processed onion if no onion with this header was
processed before (Assumption 4) and only return a reply onion if the onion was
processed before (Assumption 6). Further, the oracle after the challenge has to
treat the challenge onion with care: if it is processed or replied to (depending if
the honest relay is an intermediate relay or the receiver), a onion fitting to the
original choice is constructed with FormOnion and returned.

b=0

b=1

b=0

b=1

......

...

...

Backward PathForward Path

C

...

Fig. 1. Forwards Layer-Unlinkability illustrated: Red boxes are corrupted relays, black
honest relays, orange ellipses are the b = 0 and the blue the b = 1 case. m̄ is a random
message. The main idea is that the adversary cannot distinguish between real and
random onions before Pj .

Definition 3 (Forwards Layer-Unlinkability LU→). Forwards Layer Un-
linkability is defined as:

1. The adversary receives the router names PH , PS and challenge public keys
PKS , PKH , chosen by the challenger by letting (PKH , SKH)← G(1λ, p, PH)
and (PKS , SKS)← G(1λ, p, PS).

2. Oracle access: The adversary may submit any number of Proc and Reply
requests for PH or PS to the challenger. For any Proc(PH , O), the chal-
lenger checks whether η is on the ηH- list. If not, it sends the output of
ProcOnion(SKH , O, PH), stores η on the ηH-list and O on the OH-list. For
any Reply(PH , O, m) the challenger checks if O is on the OH- list and if so,
the challenger sends ReplyOnion(m, O, PH , SKH) to the adversary. (Similar
for requests on PS with the ηS-list).

3. The adversary submits a message m, a position j with 1 ≤ j ≤ n + 1, a path
P→ = (P1, . . . , Pj , . . . , Pn+1) with Pj = PH ,a path P← = (P←1 , . . . , P←n←+1 =
PS) and public keys for all nodes PK i (1 ≤ i ≤ n + 1 for the nodes on the
path and n + 1 < i for the other relays).
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4. The challenger checks that the chosen paths are acyclic, the router names are
valid and that the same key is chosen if the router names are equal, and if
so, sets PK j = PKH and PK←n←+1 = PKS and picks b ∈ {0, 1} at random.

5. The challenger creates the onion with the adversary’s input choice and hon-
estly chosen randomness R: O1 ← FormOnion(1,R, m,P→,P←, (PK )P→ ,
(PK )P←) and a replacement onion with the first part of the forward path
P̄→ = (P1, . . . , Pj), a random message m̄ ∈M, another honestly chosen ran-
domness R̄, and an empty backward path P̄← = (): Ō1 ← FormOnion(1, R̄,
m̄, P̄→, P̄←, (PK )P̄→ , (PK )P̄←)

6. If b = 0, the challenger gives O1 to the adversary.
Otherwise, the challenger gives Ō1 to the adversary.

7. Oracle access:
If b = 0, the challenger processes all oracle requests as in step 2).
Otherwise, the challenger processes all requests as in step 2) except for:
• If j < n + 1: Proc(PH , O) with RecognizeOnion(j, O, R̄, m,P→,P←,

(PK )P→ , (PK )P←) = True, η is not on the ηH-list and ProcOnion(
SKH , O, PH) ̸=⊥:
The challenger outputs (Pj+1, Oc) with Oc ← FormOnion(j + 1,R,
m,P→,P←, (PK )P→ , (PK )P←) and adds η to the ηH-list and O to
the OH-list.
• If j = n + 1:

∗ Proc(PH , O) with RecognizeOnion(j, O, R̄, m,P→,P←, (PK )P→ ,
(PK )P←) = True, η is not on the ηH-list and ProcOnion(SKH ,
O, PH) ̸=⊥:
The challenger outputs (m,⊥) and adds η to the ηH-list and O
to the OH-list.

∗ Reply(PH , O, m←) with RecognizeOnion(j, O, R̄, m,P→,P←,
(PK )P→ , (PK )P←) = True, O is on the OH- list and has not
been replied before and ReplyOnion(m←, O, PH , SKH) ̸=⊥:
The challenger outputs (P←1 , Oc) with Oc ← FormOnion(j +
1,R, m←,P→,P←, (PK )P→ , (PK )P←)

8. The adversary produces guess b′.

LU→ is achieved if any probabilistic polynomial time (PPT) adversary A, cannot
guess b′ = b with a probability non-negligibly better than 1

2 .

Note that by using the real processing for the oracle in step 7 for b = 0 and
the recognition and a newly formed onion layer for j + 1 in b = 1, it follows that
both RecognizeOnion and FormOnion have to adhere to their intuition, i.e. with
overwhelming probability only the challenge onion is recognized and the newly
formed layer has to be indistinguishable to the real processing.
Backward Path: Additionally, we build a reverse version of Layer-Unlinkability
for the backward path and illustrate the property Backwards Layer-Unlinkability
LU← in Figure 2. This definition is similar to LU→, but the challenge is to distin-
guish a reply from randomness. We thus return the challenge onion in a special
case of the second oracle (step 7 in LU→) and the forward onion is always
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b=0

b=1

b=0

b=1

...
...

...

...

Forward Path

Backward PathForward Path

Fig. 2. Backwards Layer-Unlinkability illustrated: Red boxes are corrupted relays,
black honest relays, orange ellipses are the b = 0 and the blue the b = 1 case. The
main idea is that the adversary cannot distinguish between real and random onions
after P←j← .

constructed to the adversary’s choice (instead of step 6 in LU→). The chal-
lenge onion either contains the layers of the reply constructed to the adversary’s
choices (including the chosen reply message) or random forward layers with a
random message. As these two cases are trivially distinguishable by processing
the challenge onion at the honest original sender (i.e. backwards receiver), we
ensure that the oracle denies to do this final processing of the challenge onion.
This corresponds to the real world in which our trusted sender does not share
any received message with the adversary. For a formal definition of this property
see Appendix C.1.

Notice that we pick the random replacements to be forward onion layers.
Thus the property LU← implies indistinguishability between forward and back-
ward onions for intermediates (otherwise the adversary could distinguish the real
(backward) onion from the fake (forward) onion).
Between forward and backward path: Finally, we want to replace the

...

...

b=0

b=1

Backward PathForward Path

...

...

Forward Path Backward Path

... ...

Fig. 3. Repliable Tail-Indistinguishability illustrated: Red boxes are corrupted relays,
black honest relays, orange ellipses are the b = 0 and the blue the b = 1 case. While
the adversary can learn the behavior between between Pj and P←j← she cannot connect
it to anything before Pj and after P←j← .

layers between the last honest relay on the forward and the first honest relay on
the backward path with random ones. Note that the replaced part of the path
contains an adversarial receiver. For the replacement in this case, we extend
Tail-Indistinguishability from [26] with oracles for the creation of replies and
illustrate the property Repliable Tail-Indistinguishability TI↔ in Figure 3. As
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we can already replace all other layers before and after this part of the path with
random ones due to the Layer Unlinkability properties, the TI↔ property does
not output anything for these layers. We thus, start outputting the challenge
layers only after the honest relay Pj on the forward path and refuse processing
of the challenge onion at the honest relay on the backwards path P←j← in our
oracle (similar to LU←). The challenge onion hence either contains the layers
after Pj of an onion build according to the adversary’s choices or random layers
that take the same part of the path and carry the same message, but for an
onion that actually starts at Pj and ends (with the backwards path) at P←j← . For
a formal definition of this property see Appendix C.2.
Properties imply ideal functionality As argued in the beginning of this
section, we built the properties to step by step replace the real onion layers
between honest relays with random ones that only coincide with the real ones in
information that the ideal functionality allows to leak. By applying one property
for each subpath between honest relays at a time, similar to earlier proofs [6,26],
we show that these properties imply the ideal functionality in Appendix D. From
here on, we call any OR scheme that fulfills our properties a secure, repliable
OR scheme.

5 Our UE-based Scheme

5.1 Building Blocks

Our construction makes use of the generic building blocks listed below. Due
to the page limit, we restrict to only elaborate on the less common and more
complex building block of updatable encryption while referring to Appendix A
for formal definitions of the more common building blocks.

– an asymmetric CCA2-secure encryption scheme (to encrypt ephemeral keys)
with encryption and decryption algorithms denoted by PK.EncPKi and
PK.DecSKi

when used with public key PK i and secret key SK i,
– a PRP-CCA secure symmetric encryption scheme (to encrypt routing infor-

mation) of length L1 with encryption and decryption algorithms denoted by
PRP.Enckη and PRP.Deckη when used with the symmetric key kη,

– an SUF-CMA secure message authentication code (to protect the header)
with tag generation and verification algorithm denoted by MACkγ and Verkγ

when used with the symmetric key kγ ,
– a sufficiently secure (see below) updatable encryption scheme (to protect the

payload) with encryption, decryption and re-encryption algorithms denoted
by UE.Enck∆ , UE.Deck∆ and UE.ReEnc∆ when used with keys k∆ and tokens
∆ . We assume that keys and tokens are of the same length or padded to
the same length. Further, all messages are padded to the same length.

Updatable Encryption. Roughly speaking, an updatable encryption (UE)
scheme is a symmetric encryption scheme with an extra re-encryption function-
ality moving ciphertexts from an old to a new key. In the following, we recapit-
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ulate the definitions of an UE scheme providing RCCA security and plaintext
integrity given in [24].

Security for UE is defined based on a notion of time which evolves in epochs.
Data is encrypted with respect to a specific epoch e (starting with e = 1) using
key ke. When time advances from epoch e to e + 1, first a new key ke+1 is
generated using UE.GenKey and then a token ∆e is created using UE.GenTok on
input of ke and ke+1. This token allows to update all ciphertexts from epoch e
to e + 1 using the re-encryption algorithm UE.ReEnc.

Definition 4 (Updatable Encryption [24]). An updatable encryption
scheme UE is a tuple (GenSP, GenKey, GenTok, Enc, Dec, ReEnc) of PPT algo-
rithms defined as:

UE.GenSP(pp) is given the public parameters and returns some system parame-
ters sp. We treat sp as implicit input to all other algorithms.

UE.GenKey(sp) is the key generation algorithm which on input of the system
parameters outputs a key k ∈ Ksp.

UE.GenTok(ke, ke+1) is given two keys ke and ke+1 and outputs some update
token ∆e.

UE.Enc(ke, M) is given a key ke and a message M ∈ Msp and outputs some
ciphertext Ce ∈ Csp (or ⊥ in case M = ⊥).

UE.Dec(ke, Ce) is given a key ke and a ciphertext Ce and outputs some message
m ∈Msp or ⊥.

UE.ReEnc(∆e, Ce) is given an update token ∆e and a ciphertext Ce and returns
an updated ciphertext Ce+1 or ⊥.

Given UE, we call SKE = (GenSP, GenKey, Enc, Dec) the underlying (stan-
dard) encryption scheme. UE is called correct if SKE is correct and it holds
that ∀sp ← GenSP(pp),∀kold, knew ← GenKey(sp),∀∆← GenTok(kold, knew),
∀C ∈ C : Dec(knew, ReEnc(∆, C)) = Dec(kold, C).

RCCA Security. RCCA is a relaxed version of CCA where the decryption
oracle ignores queries for ciphertexts containing the challenge messages m0 or
m1. In particular, these ciphertexts could be re-randomizations of the challenge
ciphertext. In the updatable encryption setting, the adversary is additionally
given access to a re-encryption oracle and an oracle to adaptively corrupt se-
cret keys and tokens of the current and past epochs. Trivial wins by means of
corruption or re-encryption need to be excluded by the definition.

Definition 5 (UP-IND-RCCA [24]). UE is called UP-IND-RCCA secure if
for any PPT adversary A the following advantage is negligible in κ:
Advup-ind-rcca

UE,A (pp) :=
∣∣∣Pr[Expup-ind-rcca

UE,A (pp, 0) = 1]− Pr[Expup-ind-rcca
UE,A (pp, 1) = 1]

∣∣∣ .

Experiment Expup-ind-rcca
UE,A (pp, b)

(sp, k1, ∆0, Q, K, T, C∗)← Init(pp)
(M0, M1, state)←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |M0| = |M1| and M0, M1 ∈Msp
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C∗ ←R UE.Enc(ke, Mb), M∗ ← (M0, M1), C∗ ← {e}, e∗ ← e
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(C∗, state)
return b′ if K ∩ Ĉ∗ = ∅, i.e. A did not trivially win. (Else abort.)
In the above definition, the global state (sp, ke, ∆e−1, Q, K, T, C∗) is initial-

ized by Init(pp) as follows:
Init(pp): Returns (sp, k1, ∆0, Q, K, T, C∗) where e ← 1, sp ←R UE.GenSP(pp),

k1 ←R UE.GenKey(sp), ∆0 ← ⊥, Q← ∅, K← ∅, T← ∅ and C∗ ← ∅.
The list Q contains “legitimate” ciphertexts the adversary has obtained

through Enc or ReEnc calls. The challenger also keeps track of epochs in which
A corrupted a secret key (K), token (T), or obtained a re-encryption of the
challenge-ciphertext (C∗).

Moreover, the oracles given to the adversary are defined as follows:
Next(): Runs ke+1 ←R UE.GenKey(sp), ∆e ←R UE.GenTok(ke, ke+1), adds

(ke+1, ∆e) to the global state and updates the current epoch to e← e + 1.
Enc(M): Returns C ←R UE.Enc(ke, M) and sets Q← Q ∪ {(e, M, C)}.
Dec(C): If isChallenge(ke, C) = false, it returns m ← UE.Dec(ke, C), else

invalid.
ReEnc(C, i): Returns Ce iteratively computed as Cℓ ←R UE.ReEnc(∆ℓ−1, Cℓ−1)

for ℓ = i + 1, . . . , e and Ci ← C. It also updates the global state depending
on whether the queried ciphertext is the challenge ciphertext or not:
– If (i, M, C) ∈ Q (for some m), then set Q← Q ∪ {(e, M, Ce)}.
– Else, if isChallenge(ki, C) = true, then set C∗ ← C∗ ∪ {e}.

Corrupt({key, token}, i): Allows corruption of keys and tokens, respectively:
– Upon input (key, i), the oracle sets K← K ∪ {i} and returns ki.
– Upon input (token, i), the oracle sets T← T ∪ {i} and returns ∆i−1.
The isChallenge predicate (used by Dec and ReEnc) is defined as:

isChallenge(ki, C) : If UE.Dec(ki, C) ∈ M∗, return true. Else, return false.
To exclude trivial wins, we need to define the set of challenge-equal epochs

containing all epochs in which the adversary obtains a version of the challenge
ciphertext, either through oracle queries or by up/downgrading14 the challenge
ciphertext herself using a corrupted token.

Ĉ∗ ← {e ∈ {1, . . . , eend} | challenge-equal(e) = true}
and true← challenge-equal(e) iff: (e ∈ C∗) ∨

(challenge-equal(e− 1) ∧ e ∈ T) ∨ (challenge-equal(e + 1) ∧ e + 1 ∈ T)

The adversary can trivially win UP-IND-RCCA by corrupting the key in any
challenge-equal epoch. This is excluded by the UP-IND-RCCA definition.

Perfect Re-encryption. Intuitively, perfect re-encryption demands that fresh
and re-encrypted ciphertexts are indistinguishable. This is defined by requiring
that decrypt-then-encrypt has the same distribution as re-encryption.
14 We assume that a token ∆e also enables downgrades of ciphertexts from epoch e + 1

to epoch e.
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Definition 6 (Perfect Re-encryption [24]). Let UE be an updatable encryp-
tion scheme where UE.ReEnc is probabilistic. We say that re-encryption (of UE)
is perfect, if for all sp ←R UE.GenSP(pp), all keys kold, knew ←R UE.GenKey(sp),
token ∆←R UE.GenTok(kold, knew), and all ciphertexts C, we have

UE.Enc(knew, UE.Dec(kold, C)) dist≡ UE.ReEnc(∆, C).

In particular, note that ReEnc(∆, C) = ⊥ ⇔ Dec(kold, C) = ⊥.

Plaintext Integrity. Plaintext integrity demands that the adversary cannot
produce a ciphertext decrypting to a message for which she does not trivially
know an encryption.

Definition 7 (UP-INT-PTXT [24]). UE is called UP-INT-PTXT secure if
for any PPT adversary A the following advantage is negligible in κ:
Advup-int-ptxt

UE,A (pp) := Pr[Expup-int-ptxt
UE,A (pp) = 1].

Experiment Expup-int-ptxt
UE,A (pp)

(sp, k1, ∆0, Q, K, T)← Init(pp)
c∗ ←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
return 1 if UE.Dec(keend , c∗) = m∗ ̸= ⊥ and (eend, m∗) /∈ Q∗,

and ∄e ∈ K where i ∈ T for i = e to eend; i.e. if A does not trivially win.

The oracles provided to the adversary are defined as follows:

Next(), Corrupt({key, token}, i): as in CCA game
Enc(M): Returns C ←R UE.Enc(ke, M) and sets Q← Q ∪ {(e, M)}.
Dec(C): Returns m← UE.Dec(ke, C) and sets Q← Q ∪ {(e, M)}.
ReEnc(C, i): Returns Ce, the re-encryption of C from epoch i to the current

epoch e. It also sets Q← Q ∪ {(e, M)} where M ← UE.Dec(ke, Ce).

To exclude trivial wins, we define the set Q∗ which contains all plaintexts
(and epochs) the adversary has received a ciphertext for by means of Enc and
ReEnc queries or by upgrading a ciphertext herself using a corrupted token.

for each (e, m) ∈ Q:
set Q∗ ← Q∗ ∪ (e, m), and i← e + 1
while i ∈ T: set Q∗ ← Q∗ ∪ (i, m) and i← i + 1

The adversary trivially wins if her output decrypts to a message m such that
(eend, m) is contained in this set or if she has corrupted a secret key and all
following tokens, as this allows to create valid ciphertexts for any plaintext.

Token Simulatability. We will make use of a further property concerned with
the token generation of an updatable encryption scheme. Token simulatability
ensures that one is able to generate new tokens without knowing any key that are
perfectly indistinguishable from real ones. The corresponding definition from [24]
also requires that the generation algorithm for simulated tokens outputs reverse
tokens, inverting the effects of the former. However, we will not make use of
reverse tokens in our proofs.
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Fig. 4. Overview of the basic idea for the payload δ. Each relay gets an updatable
encryption token ∆ to change the key k∆ under which the payload is encrypted.

Definition 8 (Reverse Token [24]). We call a token ∆′ a reverse token of a
token ∆ if for every pair of keys kold, knew ∈ K with ∆ ∈ supp(UE.GenTok(kold, knew))
we have ∆′ ∈ supp(UE.GenTok(knew, kold)).

Definition 9 (Token Simulatability [24]). Let UE be an updatable en-
cryption scheme. We say that UE has simulatable token generation if it has
the following property: There is a PPT algorithm SimTok(sp) which samples
a pair (∆, ∆′) of token and reverse token. Furthermore, for arbitrary (fixed)
kold ← UE.GenKey(sp) following distributions of ∆ are identical: The distribu-
tion of ∆

– induced by (∆, _)←R SimTok(sp).
– induced by ∆←R UE.GenTok(kold, knew) where knew ←R UE.GenKey(sp).

In other words, honest token generation and token simulation are perfectly in-
distinguishable.

5.2 Scheme Description

The basic idea is to share the update tokens for the payload with intermediate
relays and the encryption key with the receiver. So, the payload in each layer
is encrypted under a different key that only the sender knows (see Fig. 4). To
realize this, we need to construct a header that transports the tokens and routing
information while ensuring that headers of different layers of the same onion
cannot be linked to each other.
Setup. To setup the system, UE.GenSP(pp) needs to be run on the public
parameters pp (which, e.g., may contain a description of the group setting) by
an honest party (or by using multi-party computation). The resulting system
parameters sp (which, e.g., may contain a Groth-Sahai CRS) need to be made
public and used by all participating parties. Usually they would be distributed
along with the software package.
Header Construction. Each onion layer Oi, which is sent from Pi−1 to Pi,
is a tuple of header ηi and payload δi: Oi = (ηi, δi). Constructing the header is
inspired by the Sphinx approach [13] and the Shallot scheme [3]. Contrary to the
existing works, we however treat the payload with sufficiently secure updatable
encryption.
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Fig. 5. Non-repliable receiver header illustrated

Each header ηi is a tuple of encrypted temporary keys and tokens in Ei, en-
crypted routing information and keys for the current router Pi and later routers
P>i in Bj

i and a MAC over the header in γi: ηi = (Ei, B1
i , B2

i , . . . , B2N−1
i , γi).

We describe a non-repliable header first and later on extend it to be repliable.
The first layer’s header η1 contains:
η1 = ( E1, B1

1 , B2
1 , . . . , B2N−1

1 , γ1 )
η1 = (PK.EncPK1(kη

1 , kγ
1 , ∆1), PRP.Enckη

1
(P2, E2, γ2), PRP.Enckη

1
(B1

2), . . . , PRP.Enckη
1
(B2N−2

2 ), MACkγ
1
(E1, B1

1 , . . . , B2N−1
1 ))

The second layer’s header η2 has padding added by the first relay in B2N−1
2 :

η2 = ( E2, B1
2 , B2

2 , . . . , B2N−1
2 , γ2 )

η2 = (PK.EncPK2(kη
2 , kγ

2 , ∆2), PRP.Enckη
2
(P3, E3, γ3), PRP.Enckη

2
(B1

3), . . . , PRP.Deckη
1
(0 . . . 0), MACkγ

2
(E2, B1

2 , . . . , B2N−1
2 ))

The already existing relay padding is further decrypted for later layers:
η3 = (. . . , B2N−3

3 , B2N−2
3 , B2N−1

3 , . . . )
η3 = (. . . , PRP.Enckη

3
(B2N−4

4 ), PRP.Deckη
2
(PRP.Deckη

1
(0 . . . 0)), PRP.Deckη

2
(0 . . . 0), . . . )

The message is destined for the current processing relay Pn+1 if (⊥,⊥,⊥)
is encrypted in B1

n+1. All later B>1
n+1 contain random bit strings chosen by the

sender resp. the padding added by the earlier relays (see Figure 5). The blocks
with sender chosen padding are used for the reply path in repliable onions later.

To construct η1 for a path P = (P1, . . . , Pn+1), n + 1 ≤ N − 1, the sender
builds the onion from the center, i.e. calculates the layer for the receiver first:

1. Pick keys kη
1 , . . . , kη

n+1 for the block cipher, k∆
1 , ∆1, . . . , ∆n, k∆

n+1 for the UE
and kγ

1 , . . . , kγ
n+1 for the MAC randomly.

2. Construct ηn+1:
En+1 = PK.EncPKn+1(kη

n+1, kγ
n+1, k∆

n+1)
B1

n+1 = PRP.Enckη
n+1

(⊥,⊥,⊥)

B2N−i
n+1 = PRP.Deckη

n
(PRP.Deckη

n−1
(. . . PRP.Deckη

n+1−i
(0 . . . 0)))

for 1 ≤ i ≤ n (blocks appended by relays)
B2N−i

n+1 ←R {0, 1}L1 for n + 1 ≤ i ≤ 2N − 2
(blocks as path length padding calculated by sender)

γn+1 = MACkγ
n+1

(En+1, B1
n+1, B2

n+1, . . . , B2N−1
n+1 )

3. Construct ηi, i < n + 1 recursively (from i = n to i = 1):
Ei = PK.EncPKi(k

η
i , kγ

i , ∆i)
B1

i = PRP.Enckη
i
(Pi+1, Ei+1, γi+1)

Bj
i = PRP.Enckη

i
(Bj−1

i+1 ) for 2 ≤ i ≤ 2N − 1
γi = MACkγ

i
(Ei, B1

i , B2
i , . . . , B2N−1

i )



22 Kuhn, Hofheinz, Rupp and Strufe

PK.EncPKi (kη
i , kγ

i , ∆i) PRP.Enckη
i

(Pi+1, Ei+1, γi+1) PRP.Enckη
i

(B1
i+1) . . . PRP.Enckη

i
(B2N−2

i+1 ) MACkγ
i

(Ei..B2N−1
i )

Ei: used by Pi

Received by Pi

B1
i B2

i B2N−1
i

γi: used by Pi

includes future path random padding

. . . PRP.Deckη
i

(0..0)

Ei+1

Sent by Pi

B1
i+1 B2N−2

i+1 B2N−1
i+1 : Added by Pi γi+1

Fig. 6. Processing illustrated

PK.EncPKn+1 (kη
n+1, kγ

n+1, k∆
n+1) PRP.Enckη

n+1
(⊥,⊥,⊥) PRP.Enckη

n+1
(P←1 , k∆←

1 , pad) PRP.Enckη
n+1

(B1←
1 ) . . . PRP.Enckη

n+1
(B(n←)←

1 ) . . .

. . . random . . . random PRP.Deckη
n

(PRP.Deckη
n−1

(. . . PRP.Deckη
1

(0..0))) . . . PRP.Deckη
n

(0..0) MACkγ
n+1

(En+1..B2N−1
n+1 )

B1
n+1 B2

n+1 B3
n+1 Bn←+2

n+1

Bn←+3
n+1 B2N−n−1

n+1 B2N−n
n+1 B2N−1

n+1 γn+1

En+1

Backwards path

Sender padding Relay padding

Fig. 7. Repliable receiver header illustrated

Payload Construction. Let m be a message of the fixed message length to be
sent. We add a 0 bit to the message to signal that it is not repliable m′ = 0∥m:
δi = UE.ReEnc∆i−1(. . . (UE.ReEnc∆1(UE.Enck∆

1
(m′)) . . . ).

Onion Processing. The same processing is used for any forward or back-
ward, repliable or not-repliable onion. If Pi receives an onion Oi = (ηi =
(Ei, B1

i , B2
i , . . . , B2N−1

i , γi), δi)), it takes the following steps (see Fig. 6):

1. Decrypt the first part of the header (kη
i , kγ

i , ∆i) = PK.DecPKi
(Ei) [resp. k∆

n+1
instead of ∆i, if Pi is the receiver]

2. Check the MAC γi of the received onion (and abort if it fails)
3. Decrypt the second part of the header (Pi+1, Ei+1, γi+1) = PRP.Deckη

i
(B1

i )
[if Pi+1 = Ei+1 = γi+1 =⊥ (Pi is the receiver), skip processing of the header
and process the payload (and check for replies as explained below)]

4. Decrypt the rest of the header Bj−1
i+1 = PRP.Deckη

i
(Bj

i ) for j ≥ 2
5. Pad the new header B2N−1

i+1 = PRP.Deckη
i
(0 . . . 0)

6. Construct the new payload δi+1 = UE.ReEnc∆i
(δi) [resp. retrieve the mes-

sage in case of being the receiver (δi+1 = UE.Deck∆
n+1

= 0∥m if no reply)]
and abort if this fails

7. Send the new onion Oi+1 = ((Ei+1, B1
i+1, . . . , B2N−1

i+1 , γi+1), δi+1) to the next
relay Pi+1

Constructing a Repliable Onion. Let m be the message for the receiver,
P← = (P←1 , . . . , P←n←+1), n←+1 ≤ N−1 the backward path. To send a repliable
onion, the sender performs the following steps:

1. Construct a (non-repliable) header η←1 with path P←. Let the chosen keys
be kη←

1 , . . . , kη←
n←+1 and k∆←

1 , ∆←1 , . . . , ∆←n← , k∆←
n←+1.
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2. Construct the (repliable) header η1 by starting to construct ηn+1 for the
receiver as before in the non-repliable case, but with the following differences
(see Fig. 7) with pad being padding to the fixed blocklength:

– Set B2
n+1 = PRP.Enckη

n+1
(P←1 , k∆←

1 , pad).
– Set Bi

n+1 = PRP.Enckη
n+1

(B(i−2)←
1 ) for 3 ≤ i ≤ n← + 2.

– Store the key k∆←
n←+1

3. Evolve the header ηn+1 as before to create η1
4. Construct the message for the repliable onion as m′ = 1∥m.
5. Construct the payload δ1 for m′ as before.
6. The repliable onion is (η1, δ1).

Sending a reply. After recognizing to be the receiver (due to (⊥,⊥,⊥) in B1)
of an repliable message (due to the starting bit), the receiver retrieves P←1 and
k∆←

1 from B2
n+1. Let m← be the reply message padded to the fixed message

length. To send the reply the receiver performs the following steps:

1. Calculate δ←1 = UE.Enck∆←1(m←)
2. Evolve the header (as before but shifting the header by two blocks):

– B(j−2)←
1 = PRP.Deckη

n+1
(Bj

n+1) for j ≥ 3
– B(2N−1)←

1 = PRP.Deckη
n+1

(0 . . . 0) (i.e. receiver padding)
– B(2N−2)←

1 = PRP.Deckη
n+1

(1 . . . 1) (i.e. receiver padding)
3. Send the onion O←1 = (η←1 , δ←1 ) to P←1

Decrypting a reply. After recognizing to be the receiver (due to (⊥,⊥,⊥) in
B1), the relay checks whether the included key k∆

n+1 for her matches a stored
k∆←

n←+1s (it indeed is a reply) or not (it is just a new message). She uses the
key and decrypts the message: m = UE.Deck∆

n+1
(δ).

6 Security of Our Repliable OR Scheme

In this section, we prove that our scheme is secure:

Theorem 1. Let us assume a PK-CCA2 secure PKE, a PRP-CCA secure SKE,
a UP-IND-RCCA, and UP-INT-PTXT secure UE scheme with perfect Re-En-
cryption (of arbitrary ciphertexts) and Token Simulatability, and a SUF-CMA
secure MAC are given. Then our construction described in Section 5 satisfies
LU→ security.

Intuitively, the PK-CCA2 secure PKE ensures that the temporary keys for
each relay are only learned by the intended relay, and the PRP-CCA secure
SKE that the header is rerandomized and can be padded in the processing at a
relay (so incoming and outgoing onions cannot be linked based on the header).
Further, the SUF-CMA secure MAC protects the header against modifications.
The UE scheme takes care of the payload: the UP-IND-RCCA ensures that the
message is hidden and that the payload is rerandomized during the processing at
a relay (so incoming and outgoing onions cannot be linked based on the payload),
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UP-INT-PTXT security that the payload cannot be maliciously modified (as
in the malleability attack), while Perfect Re-Encryption guarantees that the
adversary does not learn how far on the path the onion has already traveled.
Finally, Token Simulatability guarantees that any pair of tokens could belong to
the same onion, i.e. for each combination of two tokens there exist underlying
keys which result in those tokens.

Formally, we first describe FormOnion for later layers and show a detailed
proof sketch for LU→. As the proofs for LU← and TI↔ are similar to the one
of LU→, we only quickly sketch them here. All detailed proofs are provided in
Appendix E. Further, correctness follows from inspection of our scheme.
FormOnion - later layers. FormOnion for i > 1 uses the k∆

i belonging to the
corresponding epoch to create the payload δ = UE.Enck∆

i
(m) and creates the

other onion parts deterministically as described in the protocol for the current
layer (with the randomness, all used keys are known and the deterministic parts
of all layers can be built). For reply layers (i > n + 1) it combines the determin-
istically computed header and payload with the encrypted new message15 (as
all randomness is known, all temporary keys are).
Forwards Layer Unlinkability. Our proof for LU→ follows a standard hybrid
argument. We distinguish the cases that the honest node is a forward relay
(j < n + 1) and that it is the receiver (j = n + 1).
Case 1 – Honest Relay (j < n + 1). We first replace the temporary keys
of the honest party included in the header, to be able to change the blocks of
the header and the payload corresponding to the b = 1 case. For the oracles we
further need to ensure, that RecognizeOnion does not mistreat any processing of
e.g. modified onions. Therefore, we leverage the UE properties for the payload
protection and the MAC for the header. Table 2 and Table 3 in Appendix E
provide overviews of the proof.
Proof Sketch We assume a fixed, but arbitrary PPT algorithm ALU→ as
adversary against the LU→ game and use a sequence of hybrid games H for our
proof. We show that the probability of ALU→ outputting b′ = 1 in the first and
last hybrid are negligibly close to each other.
Hybrid 1) LU→(b=0). The LU→ game with b chosen as 0.
Hybrid 2) replaces the keys and token included in Ej with 0 . . . 0 before en-
crypting them and adapts the oracle of step 7 such that RecognizeOnion checks
for the adapted header, but still uses the original keys as decryption of Ej .

We reduce this to the PK-CCA2 security of our PK encryption: We either
embed 0 . . . 0 or the keys and token as the CCA2 challenge message and process
other onions (for the step 7 oracle) by using the CCA2 decryption oracle.
Hybrid 3) rejects all onions that reuse Ej , but differ in another part of the
header, in the oracle of step 7.

Due to the SUF-CMA of our MAC a successful processing of a modified
header can only occur with negligible probability.
15 We use the parameter m of FormOnion for the reply message if i > n + 1, as the

forward message is not needed to construct the reply.
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Hybrid 4) replaces the blocks (with information and keys for the future path
of the onion) with random blocks and adapts the oracle of step 7 such that
RecognizeOnion checks for the adapted header, but still uses the original blocks
as processing result.

We reduce this to the PRP-CCA security of the PRP, by embedding the
PRP-CCA challenge into these blocks, while continuing to treat these same
blocks during processing as if they had the original content. (Other blocks in
onions using Ej are rejected in the oracle of step 7.)
Hybrid 5) replies with a fail to all step 7 oracle requests, that use the challenge
onion’s header, but modified the message included in its payload.

We reduce this to the UP-INT-PTXT of our UE: First, we carefully construct
the secrets of the challenge onion until it is at the honest relay with the help of the
UP-INT-PTXT-oracles. Then we wait for an onion with the challenge header to
be given to the oracle in step 7. We use the payload of this onion as the ciphertext
to break UP-INT-PTXT. Note that we do not have to answer this oracle request
in our reduction, but only oracle requests for onions with a different header,
which we can easily process with the knowledge of the secret keys (only the keys
for the challenge onion are partially unknown in the reduction).
Hybrid 6) replaces the processing result of the challenge onion (recognized
based on the header, with an unchanged message in payload) with a newly
formed onion (FormOnion) that includes the same rest of the path and message.

FormOnion constructs the header deterministically as before, the only dif-
ference is the re-encryption (Hybrid 5) and the fresh encryption (Hybrid 6) of
the same message in the payload. Due to the perfect Re-Encryption of our UE
scheme those are indistinguishable.
Hybrid 7) replaces the message included in the payload with a random message
and adapts the oracle in step 7 to expect this random message as payload, but
still replies with the newly formed onion including the original message as before.

We reduce this to the UP-IND-RCCA security of our UE: We carefully con-
struct the secrets of the challenge onion until the honest relay with the help of
the UP-IND-RCCA-oracles and either embed the original or a random message
as the UP-IND-RCCA challenge message. To answer the step 7 oracle, we use
the knowledge of the secret keys if the requested onion does not have the chal-
lenge onion’s header. If it has, we use the decryption oracle of UP-IND-RCCA
to detect whether the payload was maliciously modified (the UP-IND-RCCA
oracle returns another message m′) or not (the UP-IND-RCCA oracle does not
process the payload). In the first case, we return a fail (as introduced in Hybrid
5), in the second we return a newly formed onion (as introduced in Hybrid 6).
Hybrid 8) replaces the tokens for the layers after the honest relay with simu-
lated ones.

Due to the Token Simulatability of the UE scheme, the simulated tokens and
honestly generated tokens are identically distributed.
Hybrid 9) replaces the keys kη

i , kγ
i for the layers after the honest relay with

freshly chosen keys.
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As the randomness is chosen anew and independently from all information of
the onion in our scheme in every run of the game, Hybrid 8 and 9 are equivalent.
Hybrid 10) - Hybrid 15) revert the hybrids 9), 8) and 5)-2) (similar argu-
mentation).
Case 2 – Honest Receiver (j = n + 1): We sketch the proof in Table 4
and 5 of Appendix E. The steps are the same as for the first case of LU→, but in
Hybrid 6) we need to treat Reply and Proc requests separately. As the FormOnion
behavior simulating the receiver is exactly the same as in the real protocol, we
do not need to rely on Perfect Re-Encryption, but just on correctness of the
decryption in this step. Note further that the earlier restrictions on the oracle
work both for Reply and Proc requests.
Other Properties. We sketch the proofs in Table 6 – 11 of Appendix E.

Theorem 2. Let us assume a PK-CCA2 secure PKE, a PRP-CCA secure SKE
and a UP-IND-RCCA secure UE scheme with perfect Re-Encryption (of arbi-
trary ciphertexts), and a SUF-CMA secure MAC are given. Then our construc-
tion described in Section 5 satisfies LU← security.

Backwards Layer Unlinkability. The steps are similar to the ones for LU→ Case 1:
We replace the temporary keys of honest routers, before we exclude bad events
(header manipulations) at the oracles and finally set the header and payload
parts to correspond to the b = 1 case. However, this time we need to replace
parts for both at the forward and backward path, as the forward layers also
include information about the backward layers (but not the other way round).
Notice that we can skip the steps related to the modification of the payload
(and thus UP-INT-PTXT). As the forward message is known to the adversary
anyways and the backward message (as the final processing) is never given to
the adversary, she cannot exploit payload modification at the oracles to break
LU←.

Theorem 3. Let us assume a PK-CCA2 secure PKE, a PRP-CCA secure SKE,
and a SUF-CMA secure MAC are given. Then our construction described in
Section 5 satisfies TI↔ security.

Tail Indistinguishability. This is similar to LU←, except that we can skip more
steps. For the same reasons as before, we do not need the payload protection in
TI↔. Further, the adversary does not obtain any leakage related to kη

j and thus
the blocks in the forward header can be replaced right away.

7 Our SNARG-based Scheme

We now present an alternative instantiation of a secure, repliable OR scheme
based on SNARGs, instead of updatable encryption.
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7.1 Building Blocks and Setting

We make use of the following cryptographic building blocks and emphasize the
differences compared to the UE-based scheme (see Appendix A for details):

– an asymmetric CCA2-secure encryption scheme with encryption and de-
cryption algorithms denoted by PK.EncPKi

and PK.DecSKi
when used with

public key PK i and secret key SK i.
– an SUF-CMA secure message authentication code with tag generation algo-

rithm denoted by MACkγ when used with the symmetric key kγ .
– two PRP-CCA secure symmetric encryption schemes of short length L1 (for

the header) and long length L2 (for the payload) with encryption and de-
cryption algorithms denoted by PRP.Enckη and PRP.Deckη resp. PRP2.Enckδ

and PRP2.Deckδ when used with the symmetric key kη resp. kδ.
– a re-randomizable IND-CPA secure asymmetric encryption scheme, with en-

cryption, decryption, and re-randomization algorithms denoted by
PKM.EncPKM , PKM.DecSKM , PKM.ReRandPKM when used with public key
PKM and secret key SKM. We require that re-randomization is invertible, in
the sense that knowing the random coins of PKM.ReRand allows to retrieve
the original ciphertext.

– a simulation-sound SNARG with proof generation, verification, and simula-
tion algorithms denoted by ProveZK, VfyZK, and SimZK.

We assume that all keys of honest participants are chosen independently at
random.

Regarding the setting, we assume additionally that

– a master public key PKM (for the re-randomizable IND-CPA secure encryp-
tion) and a common reference string CRS (for the SNARG) are known to
all participants, while the corresponding SNARG trapdoor and secret key
SKM are not known to anyone.16

We will use PKM to let participants encrypt secrets “to the sky”, and the cor-
responding secret key SKM will only be used as an extraction trapdoor in our
proof. Hence, it is crucial that in an implementation of our scheme, both PKM

and CRS are chosen such that noone knows their trapdoors. (However, at least
in the case of CRS , subversion-zero-knowledge SNARKs [17] are a promising
tool to allow for adversarially chosen CRS .)

7.2 Scheme Description

Overview Each router (publicly) proves at each step of the protocol that the
whole current onion (including payload) is consistent, in the sense that it is
16 Those public parameters can be either chosen by a trusted party, agreed upon with an

initial multi-party computation, or, if SNARG and the re-randomizable encryption
scheme have dense keys, be derived from a public source of trusted randomness (like,
e.g., sunspots).
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the result of a faithful processing of a previous onion. This proof is realized
with a succinct non-interactive argument of knowledge (SNARG [5]). This in
fact presents us with a minor technical challenge, since now proving consistency
involves proving that a previous onion with a valid consistency proof exists.
Why we do not use SNARK extraction. In our security proofs, such a
consistency proof will be used to reconstruct previous onions (and in fact the
whole past of an onion) by using the soundness of the SNARG. We stress that
we will not be using any extractability properties from the SNARG (i.e., we
do not rely on any knowledge soundness properties) at this point, since this
would need to extract recursively. Indeed, in our proofs, we will need to simulate
a ProcOnion oracle on adversarial inputs (i.e., onions) without knowing the
underlying secret key. Instead, we will “reverse-process” the given onion until
its creation with FormOnion, and then extract all future onions from the initial
FormOnion inputs.

Our crucial tool to enable this “reverse-processing” is the soundness of the
used SNARG. Intuitively, it seems possible to use a SNARK (i.e., a succinct
argument of knowledge, which allows extraction of a witness) to prove that this
onion has been created or processed honestly, with the witness being the corre-
sponding FormOnion, resp. ProcOnion input. The problem with this approach
is that each proof only certifies a single processing step, and so we would have to
extract SNARK witnesses multiple times, and in fact recursively extract (which
is notoriously difficult).

Instead, each onion will carry enough encrypted information to recreate pre-
vious onions, and the corresponding SNARG will certify the validity of that
(encrypted) information. (Since the size of onions should not grow during pro-
cessing, we will not be able to fully reconstruct the previous onion. However,
we will still be able to implement the above strategy.) Like before, we rely on
using MACs for a more “fine-grained” (and, most importantly, deterministic)
authentication and progression of onion headers.

Viewed from a higher level, these consistency proofs provide a whole authen-
tication chain for both requests and replies even with an intermediate receiver
that replies with an arbitrary (and a-priori unknown) payload. This authentica-
tion chain protects against malleability attacks and payload changes along the
way.
More details In our protocol, each onion O = (η, σ, δ) consists of three main
components:

– a header η which contains encrypted key material with which routers can
process and (conventionally) authenticate the onion,

– the (SNARG-related) authentication part σ,
– the multiply encrypted payload δ; each router will decrypt one layer during

processing.

While η and δ are similar to the Sphinx and Shallot protocols, σ contains several
SNARG proofs π1, . . . , πN and an encrypted ring buffer (that consists of cipher-
texts C1, . . . , CN ). Here, N denotes the maximal path length in the scheme.
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Intuitively, the Ci contain information that is required to reverse-process O, and
the πi prove that the information encrypted in C1 is accurate. More specifically:

– C1 contains a public-key encryption of the π′1, . . . , π′N from the previous
onion O′, as well as the last router’s long-term secret key SK ′. The public
key used is a public parameter of the OR scheme, such that the secret key is
not known by anyone. Of course, this last property is crucial to the security
of the scheme. We will use this secret key as a trapdoor that allows to
reverse-process onions during the proof.

– C2, . . . , CN are the values C ′1, . . . , C ′N−1 from O′. Note that this implies that
C ′N is lost during processing and cannot be reconstructed.

– πi is a SNARG proof that proves that η, δ, and C1, . . . , CN−i are the result of
an honest processing of some previous onion. The reason for N proofs πi (and
not just a single one) is that during repeated reverse-processing of a given
onion, more and more Ci will unavoidably be lost. To check the integrity of
such incomplete onions, we will use πi in the i-th reverse-processing step.

Header Construction Each onion layer Oi is a tuple of header ηi, SNARG-
Information σi and payload δi: Oi = (ηi, σi, δi). We construct the header ηi as in
the UE-based solution (see Section 5.2), except that instead of the ∆i resp. k∆

i

we now include kδ
i of the second PRP-CCA secure symmetric encryption scheme

for the relays.
SNARG Construction: The SNARG-Information σi consists of a ring buffer
Ci = (C 1

i , . . . , C N
i ) and the SNARGs πi = (π1

i , . . . πN
i ): σi = (Ci, πi).

Ring buffer. The ring buffer Ci is calculated similarly to Bi, but reversed.
The ring buffer for forward onions includes all information needed to undo the
processing of the onion or reconstruct all input to FormOnion, encrypted under
the master public key. On the reply path, we overwrite old (forward) information
in Cis, as this is sufficient to achieve the forward-backward indistinguishability.

C 1
1 = PKM.EncPKM(I) with I = (form, (R, m,P→,P←, (PK )P→ , (PK )P←))

C j
1 ←R {0, 1}L3 \ {sim} with sim being a special symbol

and L3 the fixed length of ring buffer elements
C 1

i = PKM.EncPKM(I) with I = (proc, (SK i−1, π1
i−1, . . . , πN

i−1, Ei−1, Pi−1))
C j

i = PKM.ReRandPKM(C j−1
i−1 )

Note that the onion Oi is created by Pi−1 and thus the information included
in Ci is known at the time of creation. Further, information encrypted in Ci

does not include the payload message or the MAC, as both an be reconstructed
given the current onion layer. Finally, all C j

i are padded to the fixed length L3.
SNARGs. The SNARG πj

i is calculated by Pi−1 for the language Lj , which
consists of all partial onions X = (ηi, (C 1

i , . . . , C N−j
i ), δi) for which the following

holds: namely, there should exist R, M such that C 1
i = Enc(PKM, M ; R), and

such that M fulfills the following:
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1. If M is of the form M = (form, I), then I is some parameter list I =
(1,R, m,P→,P←, (PK)P→ , (PK)P←) (including random coins R) for which
FormOnion(I) outputs an onion O∗ = (η∗, σ∗, δ∗) with η∗ = ηi and δ∗ = δi.
In other words, in this case, M explains X as an immediate FormOnion
output for a particular message m.

2. If M is of the form M = (proc, (SKi−1, π1
i−1, . . . , πN

i−1, Ei−1, Pi−1,R)), then
(a) all πN−k

i−1 (for k > j) are valid, in the sense that πN−k
i−1 shows that

(ηi, (C 1
i , . . . , C N−k

i ), δi) ∈ Lk. (Note that this is a well-defined state-
ment if we define Lj for larger j first.)

(b) ProcOnionj
partial(SKi−1, (ηi−1, (C1

i−1, . . . , CN−j−1
i−1 ), δi−1), Pi−1;R) = (ηi,

(C1
i , . . . , CN−j

i ), δi), where ProcOnionj
partial is the upcoming ProcOnion

algorithm restricted to header, payload, and (partial) ring buffer pro-
cessing (i.e., without any SNARG proof checks or creations), and ηi−1,
δi−1, and the Cj

i−1 are the previous header, payload, and (partial) ring
buffer that are reverse-processed from X, SKi−1, and random coins R.17

3. M of any other form are not allowed.

The intuition behind Lj is simple: partial onions in Lj feature a ciphertext
C 1

i that allows to “reverse-process” the given onion to some extent. In particular,
either the onion in question is the immediate output of either a FormOnion or
a ProcOnion query. In case of a ProcOnion output, the whole onion cannot
be reconstructed or checked (since some information in the Ci ring buffer is
necessarily lost during processing). However, given an onion Oi and the secret
key SKM, the validity of πN

i guarantees that a large portion of Oi−1 can be
reconstructed. In fact, only C N

i−1 cannot possibly be retrieved. However, going
further, the reconstructed πN−1

i−1 now makes a statement about that “incomplete
onion” Oi−1, and the reverse-processing can be continued.
Payload Construction. For message m, we again signal that it is not repli-
able by prepending a 0-bit: m′ = 0∥m and construct the payload as multiple
encryption: δ1 = PRP2.Enckδ

1
(PRP2.Enckδ

2
(. . . PRP2.Enckδ

n+1
(m′) . . . ))

Onion Processing The processing of the header is done as in the UE-based
scheme (see Section 5.2). However, the processing also checks the SNARG and
treats the payload with PRP2.Dec:

If Pi receives an onion Oi = (ηi = (Ei, B1
i , B2

i , . . . , B2N−1
i , γi), (Ci, πi), δi)),

it does the following steps differently:

1. Check the SNARG-Sequence πi of the received onion (and abort if it fails)
2. Decrypt the header to retrieve (kη

i , kγ
i , kδ

i ) and new header blocks for i + 1,
check the MAC, pad the header as before (see Section 5.2)

3. Construct the new payload δi+1 = PRP2.Deckδ
i
(δi) [resp. retrieve the message

in case of being the receiver (δi+1 = 0∥m if no reply)]
17 We will describe ProcOnion only below, but it will be clear that the header, payload,

and partial ring buffer part of the processing can be reversed with the secret key
SKi−1 of the processing party. We additionally run ProcOnionpartial to re-check
MAC values.
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4. Rerandomize and shift ring buffer: C j+1
i+1 = PKM.ReRandPKM(C j

i )
5. Replace first ring buffer entry: C 1

i+1 = PKM.EncPKM(I)
6. Build the new SNARG-Sequence πi+1
7. Send the new onion Oi+1 = ((Ei+1, B1

i+1, . . . , B2N−1
i+1 , γi+1), (Ci+1, πi+1), δi+1)

to the next relay Pi+1

Constructing a Repliable Onion. works as for the UE-based scheme before,
except that we include kδ←

1 in the header and store all chosen kδ←
i for later use.

Sending a reply. Processing the repliable onion, the receiver stores P←1 , η←1
and kδ

R. To reply with m (padded to the fixed message length), the receiver does
the following steps:

1. Calculate δ1 = PRP2.Enckδ
R

(m)
2. Construct the SNARG-Sequence π1,
3. Pick the ring buffer elements randomly C j

1 ←R {0, 1}L3 \ {sim} for all j
4. Send the onion O1 = (η←1 , (C1, π1), δ1) to P←1

Decrypting a reply. After recognizing to have received a reply (by checking
the stored kδ

n←+1), the reply is “decrypted”:
m = PRP2.Deckδ

1
(PRP2.Enckδ

2
(. . . (PRP2.Enckδ

n←
(PRP2.Enckδ

n←+1
(δ)) . . . )))

7.3 Security

The proofs of our onion routing properties are similar to the ones for the UE-
based scheme, except that they rely on the SNARGs to protect the payload. We
detail them in Appendix F.

Theorem 4. Our SNARG-based OR Scheme is a secure, repliable OR scheme.
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Appendix

A Definition of Building Blocks

For our construction we make use of SUF-CMA secure MACs, PRP-CCA secure
symmetric encryption, re-randomizable IND-CPA secure public-key encryption,
CCA secure public-key encryption, and simulation-sound SNARGs which are all
defined below.

Definition 10. A message authentication code (MAC) scheme consists of three
PPT algorithms (Gen, MAC, Ver) with the following syntax:

Key generation. Gen(1λ) outputs a key k.
MAC generation. MAC(k, M) computes a tag γ for a message M ∈ {0, 1}∗

under key k.
MAC Verification. Ver(k, M, γ) outputs a bit on input of a key k, a message

m, and a tag γ.

We require correctness in the sense that for all λ ∈ N, all k ← Gen(1λ), all
M ∈ {0, 1}∗, it holds that Ver(k, M, MAC(k, M)) = 1.

Finally, we say that the MAC scheme is SUF-CMA secure if for all PPT
adversaries A it holds that the success probability defined by

Pr

 Ver(k, M∗, γ∗) = 1
∧

(M∗, γ∗) ̸∈ {(M1, γ1), . . . , (Mq, γq)}∧

∣∣∣∣∣∣ k ← Gen(1λ)
(M∗, γ∗)←AMAC(k,·)(1λ)


is negligible in λ, where MAC(k, ·) is an oracle that, on input M , returns MAC(k, M),
M1, . . . , Mq denotes the messages queried by A to its oracle, and γ1, . . . , γq the
respective replies.

Furthermore, we will make use of PRP-CCA secure symmetric encryption
for constructing onion headers which is defined as follows:

Definition 11. A symmetric encryption scheme consists of three polynomial-
time algorithms (Gen, Enc, Dec) with the following syntax:

http://eprint.iacr.org/2019/612
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Key generation. Gen(1λ) is a probabilistic algorithm which outputs a key k.
Encryption. Enc(k, M) is a deterministic algorithm which takes a key k and a

plaintext message M ∈ X ⊂ {0, 1}∗ and outputs a ciphertext C.
Decryption. Dec(k, C) is a deterministic algorithm takes a key k and a cipher-

text C and outputs a plaintext message m.

We require correctness in the sense that for all λ ∈ N, all k ← Gen(1λ), all
M ∈ X, it holds that Dec(k, Enc(k, M)) = M .

We restrict to encryption schemes defining a permutation, i.e., for all λ ∈ N
and k ← Gen(1λ) the function Enc(k, ·) is a permutation on X. We call such an
encryption scheme PRP-CCA secure if for every PPT A, the advantage

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

k ← Gen(1λ)
P ← Perm(X)

b← {0, 1}

(F, F−1) :=
{

(Enc(k, ·), Dec(k, ·)), b = 0
(P, P−1), b = 1

b′ ←AF (·),F−1(·)(1λ)


− 1

2

is negligible in λ, where P is a uniformly chosen permutation on X and P−1

is its inverse. Note that if an encryption scheme is PRP-CCA secure then the
above property also holds if we swap Enc and Dec (i.e., Dec is also a strong
pseudo-random permutation on X).

Moreover, to enable payload integrity along with SNARGs, we will make use
of IND-CCA secure and re-rerandomizable IND-CPA secure public-key encryp-
tion.

Definition 12. An asymmetric (or public-key) encryption scheme consists of
three PPT algorithms (Gen, Enc, Dec) with the following syntax:

Key generation. Gen(1λ) outputs a public key PK and a secret key SK . We
assume that PK defines an efficiently decidable and samplable message space
M ⊆ {0, 1}∗.

Encryption. Enc(PK , M) encrypts a message M under a public key PK to a
ciphertext C.

Decryption. Dec(SK , C) decrypts a ciphertext C under a secret key SK to a
message M ∈ M ∪ {rej}, where rej is a special symbol that indicates that
C was rejected.

We require correctness in the sense that for all λ, all (PK , SK ) ← Gen(1λ), all
M ∈M, and all C ← Enc(PK , M), we always have Dec(SK , C) = M .

Furthermore, a ciphertext is called valid (for PK) iff it lies in the range of
Enc(PK , ·). We say that the scheme has efficiently recognizable ciphertexts iff the
set of valid ciphertexts (for a given PK) can be efficiently recognized.

Finally, we say that the scheme is IND-CPA secure iff no PPT adversary A

can distinguish the following two experiments with non-negligible advantage:
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– A gets a fresh public key PK , selects two equal-length messages M0, M1 ∈M,
and receives C∗ ← Enc(PK , M0).

– A gets a fresh public key PK , selects two equal-length messages M0, M1 ∈M,
and receives C∗ ← Enc(PK , M1).

We say that the scheme is IND-CCA secure if the above experiments are indis-
tinguishable even when A gets access to a decryption oracle Dec(SK , ·) (with the
provision that Dec(SK , ·) does not decrypt C∗ after C∗ is defined).

Definition 13. A rerandomizable asymmetric encryption scheme is an IND-
CPA secure PKE scheme (GenRR, EncRR, DecRR) with efficiently recognizable
ciphertext in the sense of Def. 12 for which a PPT algorithm Rerand exists that
inputs a public key PK and a ciphertext C, and outputs another ciphertext C ′.
We require that no PPT adversary A can distinguish the following two experi-
ments with non-negligible advantage:

– A gets a fresh public key PK , selects C, and receives C ′ ← Rerand(PK , C).
– A gets a fresh public key PK , selects C, and receives C ′ ← EncRR(PK , R),

where R is a fresh random message from the scheme’s message space.

Here, we only quantify adversaries A that always output valid ciphertexts (in
the sense of Def. 12).

We stress that rerandomizability requires that even adversarially generated (but
valid) ciphertexts can be rerandomized. An example of a rerandomizable asym-
metric encryption scheme is the ElGamal scheme [18]. (The corresponding Rerand
homomorphically adds a fresh encryption of the neutral group element to C.)

In the following, we present a variant of the SNARK definition from [20]. We
will assume a language L ⊆ {0, 1}∗ (that may depend on the security parameter
and additional random choices), and an efficiently computable witness relation R
for L. Hence, R takes as input x ∈ {0, 1}∗ and a potential witness w ∈ {0, 1}p(|x|)

(for a fixed polynomial p), and gives a binary output. We require that x ∈ L⇔
(∃w ∈ {0, 1}p(|x|) : R(x, w) = 1). We also assume a canonical description of R,
e.g., as a Boolean circuit.

Definition 14 (SNARG). A succinct non-interactive argument (SNARG) for
a relation R consists of four PPT algorithms:

– Key generation: SetupZK(1λ, R) outputs a common reference string CRS and
a simulation trapdoor τ .

– Proofs: ProveZK(R, CRS , x, w), for R(x, w) = 1, outputs a proof π.
– Verification: VfyZK(R, CRS , x, π) outputs a binary verdict.
– Simulation: SimZK(R, τ, x) outputs a simulated proof π.

We require the following properties:

– Succinctness: the bitlength |π| of π is polynomial in the security parameter
λ, and the runtime of VfyZK is polynomial in λ + |x|.
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– (Perfect) completeness: for all λ and x, w with R(x, w) = 1, it is VfyZK(R,
CRS , x, ProveZK(R, CRS , x, w)) = 1 always.

– (Perfect) zero-knowledge: for all λ and x, w with R(x, w) = 1, the outputs of
ProveZK(R, CRS , x, w) and SimZK(R, τ, x) are identically distributed.

– Simulation-soundness: for every PPT A, the following probability is negli-
gible in λ:

Pr

VfyZK(R, CRS , x, π) = 1
∄w : R(x, w) = 1

∣∣∣∣∣∣
(CRS , τ)← SetupZK(1λ, R)

(x, π)←ASimZK(R,τ,·)(1λ, R, CRS)
SimZK never queried with x


where the probability is over the random coins of SetupZK, the random coins
of A and VfyZK, and possibly over the choice of the relation R itself.

We note that the simulation-soundness game above is not necessarily efficient
(because of the condition ∄w : R(x, w) = 1), but still implied by a prop-
erty called “simulation-extractability” [25,21]. Efficient simulation-extractable
SNARGs (i.e., SNARKS) can be constructed from knowledge assumptions [21,28].

B Ideal Functionality

We show the ideal functionality in Algorithm 1 and 2. As in earlier works, the
honest nodes inform the environment about the temp whenever they receive an
onion. Further, they now additionally include the information whether the onion
is repliable. We highlight the changes compared to the ideal functionality of the
simple one-way sending [26] in teal. We especially add two data structures:

– Back: to store the mapping from temps (labels of the onions) to the corre-
sponding path and forward onion id. This mapping is used to find the right
path when a reply onion is constructed.

– IDfwd: to store the mapping from backward ids to forward ids. This map-
ping is used to allow corrupted senders (i.e. backward receivers) to learn all
information of the backward onion; including to which forward onion she
belongs.

We assume that a corrupted sender (i.e. backward receiver) can learn and
link all onion layers. Further, an onion can be replied to multiple times. We stress
that this is a useful security definition as single use reply blocks can be created
with the help of duplicate protection (on the header), which also prevents other
traffic analysis attacks that are considered an orthogonal problem [26].
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Algorithm 1: Ideal Functionality F (Part 1)
Data structure:
Bad: Set of corrupted nodes
L: List of onions processed by adversarial nodes
Bi: List of onions held by node Pi

Back: Mapping from temps to path and forward id
IDfwd: Mapping from backward id to forward id
// Notation:
// S: Adversary (resp. Simulator)
// Z: Environment
// P = (Po1 , . . . , Pon ): Onion path, (P→ forwards, P← backwards)
// O = (id, Ps, Pr, m, P,P′, i, d): Onion = (identifier, sender, receiver, message, path

in current direction, path in other direction, traveled distance, direction)
// N: Maximal onion path length
On message Process_New_Onion(Pr, m, P→,P←) from Ps

// Ps creates and sends a new onion (either instructed by Z if honest or S if
corrupted)

if |P| > N ; // selected path too long
then

Reject;
else

id←R session ID ; // pick random session ID
O ← (id, Ps, Pr, m, P→, P←, 0, f) ; // create new onion
Output_Corrupt_Sender(Ps, id, Pr, m, P→, P←, start, f);
Process_Next_Step(O);

On message Process_New_Backward_Onion(m, temp) from P
// P creates and sends a backward onion (either instructed by Z if honest or S

if corrupted)
if Back(temp) =⊥ ; // no forward onion was sent
then

Reject;
else

Back(temp) = (Ps, P→, P←, Pr, id′); // lookup the corresponding path
id←R session ID ; // pick random session ID
Store id′ under IDfwd(id) ; // add ID linking to mapping
O ← (id, Pr, Ps, m, P←, P→, 0, b) ; // create new onion
Output_Corrupt_Sender(Pr, id, Ps, m, P→, P←, start, b);
Process_Next_Step(O);

Procedure Output_Corrupt_Sender(Ps, id, Pr, m, P→, P←, temp, d)
// Give all information about onion to adversary if sender is corrupt
if Ps ∈ Bad then

Send “temp belongs to onion from Ps with id, Pr, m, P→, P←, b” to S;
if d = b then

add “as answer to IDfwd(id)” to the output for S
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Algorithm 2: Ideal Functionality F (Part 2)
Procedure Process_Next_Step(O = (id, Ps, Pr, m, P, P′i, d))

// Router Poi
just processed O that is now passed to router Poi+1

if Poj
∈ Bad for all j > i ; // All remaining nodes including receiver are corrupt

then
Send “Onion temp in direction d from Poi

with message m for Pr routed through
(Poi+1 , . . . , Pon )” to S;

if d = f then
Store (Ps, P, P′, Pr, id) under Back(temp);
Add “temp’s first part of the backward path is P′H ” with P′H being P′ until

(and including) the first honest node to the message for S;
Output_Corrupt_Sender(Ps, id, Pr, m, P, P′, temp, f);

else
Output_Corrupt_Sender(Pr, id, Ps, m, P′, P, temp, b);

else
// there exists an honest successor Poj

Poj
← Pok

with smallest k such that Pok
̸∈ Bad;

temp←R temporary ID;
Send “Onion temp from Poi

routed through (Poi+1 , . . . , Poj−1 ) to Poj
” to S;

Add (temp, O, j) to L; // see Deliver_Message(temp) to continue this routing
if d = f then

Output_Corrupt_Sender(Ps, id, Pr, m, P, P′, temp, f);
else

Output_Corrupt_Sender(Pr, id, Ps, m, P′, P, temp, b);
if Ps ∈ Bad and i = 0 then

Send “temp belongs to id” to S

On message Deliver_Message(temp) from S

// Adversary S (controlling all links) delivers onion belonging to temp to next
node

if (temp, _, _) ∈ L then
Retrieve (temp, O = (sid, Ps, Pr, m, P, P′, i), j) from L;
O ← (sid, Ps, Pr, m, P, P′, j); // jth router reached
if j < |P|+ 1 then

temp′ ←R temporary ID;
Send “temp′ received” to Poj

;
Store (temp′, O) in Boj

; // See Forward_Onion(temp′) to continue
else

if m ̸=⊥ then
Send “Message m under temp in direction d received to Pr”;
if P′ ̸= () and d = f then

add “that is repliable” to the message for Pr ;
Store (Ps, P, P′, Pr, id) under Back(temp)

On message Forward_Onion(temp′) from Pi

// Pi is done processing onion with temp′ (either decided by Z if honest or S

if corrupted)
if (temp′, _) ∈ Bi then

Retrieve (temp′, O) from Bi;
Remove (temp′, O) from Bi;
Process_Next_Step(O);
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C Other OR Property Definitions

C.1 Backwards Layer-Unlinkability

Definition 15 (Backwards Layer-Unlinkability LU←). Backwards Layer-
Unlinkability is defined as:

1. The adversary receives the router names PH , PS and challenge public keys
PKS , PKH , chosen by the challenger by letting (PKH , SKH)← G(1λ, p, PH)
and (PKS , SKS)← G(1λ, p, PS).

2. Oracle access: The adversary may submit any number of Proc and Reply
requests for PH or PS to the challenger. For any Proc(PH , O), the chal-
lenger checks whether η is on the ηH- list. If not, it sends the output of
ProcOnion(SKH , O, PH), stores η on the ηH-list and O on the OH-list. For
any Reply(PH , O, m) the challenger checks if O is on the OH- list and if so,
the challenger sends ReplyOnion(m, O, PH , SKH) to the adversary. (Similar
for requests on PS with the ηS-list).

3. The adversary submits
– message m,
– a position j← with 0 ≤ j← ≤ n← + 1,
– a path P→ = (P1, . . . , Pj , . . . , Pn+1), where Pn+1 = PH , if j← = 0,
– a path P← = (P←1 , . . . , P←j← , . . . , P←n←+1 = PS) with the honest node PH

at backward position j←, if 1 ≤ j← ≤ n← + 1, and the second honest
node PS at position n← + 1

– and public keys for all nodes PK i (1 ≤ i ≤ n + 1 for the nodes on the
path and n + 1 < i for the other relays).

4. The challenger checks that the chosen paths are acyclic, the router names
are valid and that the same key is chosen if the router names are equal, and
if so, sets PK←j← = PKH (resp. PKn+1 if j← = 0), PK←n←+1 = PKS and
sets bit b at random.

5. The challenger creates the onion with the adversary’s input choice and hon-
estly chosen randomness R:

O1 ←FormOnion(1,R, m,P→,P←, (PK )P→ , (PK )P←)

and sends O1 to the adversary.
6. The adversary gets oracle access as in step 2) except if:

Exception 1) The request is ...
• for j← > 0: Proc(PH , O) with RecognizeOnion((n+1)+j←, O,R, m,
P→,P←, (PK )P→ , (PK )P←) = True, η is not on the ηH-list and
ProcOnion(SKH , O, PH) ̸=⊥: stores η on the ηH and O on the OH-
list and . . .
• for j← = 0: Reply(PH , O, m←) with RecognizeOnion((n+1), O,R, m,
P→,P←, (PK )P→ , (PK )P←) = True, O is on the OH- list and no
onion with this η has been replied to before and ReplyOnion(m←, O,
PH , SKH) ̸=⊥:
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.. then: The challenger picks the rest of the return path P̄→ = (P←j←+1,

. . . , P←n←+1), an empty backward path P̄← = (), and a random message
m̄, another honestly chosen randomness R̄, and generates:

Ō1 ← FormOnion(1, R̄, m̄, P̄→, P̄←, (PK )P̄→ , (PK )P̄←)

• If b = 0, the challenger calculates
(Oj←+1, P←j←+1) = ProcOnion(SKH , O, P←j←) (for j← > 0) resp.
(Oj←+1, P←j←+1) = ReplyOnion(m←, O, P←j← , SKH) (for j← = 0)
and gives Oj←+1 for P←j←+1 to the adversary.
• Otherwise, the challenger gives Ō1 for P←j←+1 to the adversary.

Exception 2) Proc(PS , O) with O being the challenge onion as processed
for the final receiver on the backward path, i.e.:
• for b = 0 : RecognizeOnion((n + 1) + (n← + 1), O,R) = True
• for b = 1 : RecognizeOnion((n←+1)−j←, O, R̄, m̄, P̄→, P̄←, (PK )P̄→ ,

(PK )P̄←) = True
.. then the challenger outputs nothing.

7. The adversary produces guess b′ .

LU← is achieved if any PPT adversary A, cannot guess b′ = b with a probability
non-negligibly better than 1

2 .

C.2 Repliable Tail-Indistinguishability

Definition 16 (Repliable Tail-Indistinguishability TI↔). Repliable Tail-
Indistinguishability is defined as:

1. The adversary receives the router names PH , P←H , PS and challenge public
keys PKS , PKH , PK←H , chosen by the challenger by letting (PKH , SKH)←
G(1λ, p, PH), (PK←H , SK←H )← G(1λ, p, P←H ), (PKS , SKS)← G(1λ, p, PS).

2. Oracle access: The adversary may submit any number of Proc and Reply
requests for PH , P←H or PS to the challenger. For any Proc(PH , O), the chal-
lenger checks whether η is on the ηH- list. If not, it sends the output of
ProcOnion(SKH , O, PH), stores η on the ηH-list and O on the OH-list. For
any Reply(PH , O, m) the challenger checks if O is on the OH- list and if so,
the challenger sends ReplyOnion(m, O, PH , SKH) to the adversary. (Similar
for requests on P←H , PS).

3. The adversary submits a message m, a path P→ = (P1, . . . , Pj , . . . , Pn+1)
with the honest node PH or P←H at position j, 1 ≤ j < n + 1, a path P← =
(P←1 , . . . , P←n←+1) with the honest node P←H at position 1 ≤ j← ≤ n← + 1
and public keys for all nodes PK i (1 ≤ i ≤ n + 1 for the nodes on the path
and n + 1 < i for the other relays).

4. The challenger checks that the given paths are acyclic, the router names are
valid and that the same key is chosen if the router names are equal, and
if so, sets PK j = PKH (or PK j = PK←H , if the adversary chose P←H at
this position as well) , PK←j← = PK←H ,PK←n←+1 = PKS and sets bit b at
random.
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5. The challenger creates the onion with the adversary’s input choice and hon-
estly chosen randomness R:

Oj+1 ←FormOnion(j + 1,R, m,P→,P←, (PK )P→ , (PK )P←)

and a replacement onion with the path from the honest relay PH to the cor-
rupted receiver P̄→ = (Pj+1, . . . , Pn+1) and the backward path from the cor-
rupted receiver starting at position 0 ending at j←: P̄← = (P←1 , . . . , P←j←);
and another honestly chosen randomness R̄:

Ō1 ←FormOnion(1, R̄, m, P̄→, P̄←, (PK )P̄→ , (PK )P̄←)

6. If b = 0: The challenger sends Oj+1 to the adversary.
Otherwise: The challenger sends Ō1 to the adversary.

7. Oracle access: the challenger processes all requests as in step 2) except if...
... Proc(P←H , O) with O being the challenge onion as processed for the
honest relay on the backward path, i.e.:
• for b = 0 : RecognizeOnion((n + 1) + j←, O,R) = True or
• for b = 1 : RecognizeOnion((n−j)+j←, O,R, m,P→,P←, (PK )P→ ,

(PK )P←) = True
.. then the challenger outputs nothing.

8. The adversary produces guess b′.

TI↔ is achieved if any PPT adversary A, cannot guess b′ = b with a prob-
ability non-negligibly better than 1

2 .

D Proof of UC-realization

D.1 Overview

This argumentation extends the one from [26] for the replies.
* Informally: For corrupted sender (= backward receiver), all information about
the communication are leaked in the ideal functionality. Thus, no protection is
needed.

For honest senders (= backward receivers), we want to ensure that only the
subpaths between honest relays and (if the receiver is corrupted) the messages
can be learned by the adversary. Therefore, we start by replacing the onion layers
on the first part of the path, i.e. from the honest sender to the first honest relay
on the forward path, with random ones that take the same path. Due to LU→,
we know that the adversary cannot notice the difference. We continue, one onion
and subpath at the time, until all subpaths between honest relays on the forward
path are replaced.

Next, we replace the last part of the backward path, i.e. from the last honest
relay on the backward path to the honest sender (= backward path receiver). Due
to LU←, we know that the adversary cannot notice the difference. We continue,
one onion and subpath at the time, until all subpaths between honest relays on
the backward path are replaced.
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If the receiver is honest, the steps above already replaced everything, as then
the receiver is an honest relay. If the receiver is corrupted, we still need to replace
the subpath between the last honest relay on the forward and the first honest
relay on the backward path. We can do this without the adversary noticing any
change due to TI↔. Thus, we replaced the onion layers on all subpaths.
* Formally: We assume that the public keys are already distributed and define
any secure, repliable OR scheme to fulfill our properties:

Definition 17. A secure repliable OR scheme is a quadruple of polynomial-
time algorithms (G, FormOnion, ProcOnion, ReplyOnion) (Section 3.2) that
achieves Onion-Correctness (Def. 2), Repliable Tail-Indistinguishability (Def.
16), Forwards Layer-Unlinkability (Def. 3) and Backwards Layer-Unlinkability
(Def. 15).

Similarly to [6,26], we say that a OR protocol is build from the OR scheme
with an additional ideal functionality for the assumed key distribution FRKR.

Definition 18. OR protocol Π is a secure repliable OR protocol (in the FRKR-
hybrid model), iff it is based on a secure OR scheme (G, FormOnion, ProcOnion,
ReplyOnion) and works as follows:

Setup: Each node Pi generates a key pair (SK i, PK i)← G(1Λ) and publishes
PK i by using FRKR.

Sending a Message: If PS wants to send m ∈M to PR over path P1, . . . , Pn

with n < N and wants to allow a reply over the path P←1 , . . . , P←n← with n← < N
and P←n← = PS, he chooses a randomness R and sends the following O1 to P1.

O1 ←FormOnion(1,R, m, (P1, . . . , Pn, PR), (P←1 , . . . , P←n←),
(PK1, . . . , PKn, PKR), (PK←1 , . . . , PK←n←))

Replying an Onion: If PR wants to reply to an onion O with message m←,
he sends O←1 to P←1 which are calculated as

(O←1 , P←1 )← ReplyOnion(m←, O, PR, SKR).

Processing an Onion: If Pi received Oi, he calculates:

(Oj , Pj)← ProcOnion(SK i, Oi, Pi)

If Pj =⊥, Pi outputs “Received (m, Reply) = Oj” in case Oj ̸=⊥ and reports a
fail if Oj =⊥. Otherwise Pj is a valid relay name and Pi generates a random
temp and stores (temp, (Oj , Pj)) in its outgoing buffer and notifies the environ-
ment about temp.

Sending an Onion: When the environment instructs Pi to forward temp, Pi

looks up temp in its buffer. If Pi does not find such an entry, it aborts. Otherwise,
it found (temp, (Oj , Pj)) and sends Oj to Pj.

We now show that our properties are sufficient for the ideal functionality:
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Theorem 5. A secure repliable onion routing protocol following Definition 18
UC-realizes F in the (FRKR)-hybrid model.

Therefore, we describe a simulator that translates any attack on the secure,
repliable OR protocol to an attack in the ideal functionality.

Simulator Overview

The simulator uses the knowledge of honest keys to process adversarial onions
(FormOnion called by an adversarial sender or modified at the adversarial relay)
just as the protocol does. For honest onions (FormOnion called by an honest
sender) our simulator uses the information it gets from the ideal functionality
to build the random replacement onions for each subpath. This information
are the part of the path (and if the receiver is adversarial, the message and
repliability). The correct relaying of honest onions is recognized by the simulator
with RecognizeOnion. With the help of our security properties, we can show
that the adversary cannot notice the change. We give an overview over standard
hybrid argument in Table 1.

D.2 Proof - Detailed

Our proof follows in large parts the argumentation from [26], which in turn
adapted the one of [6]. For UC-realization, we show that every attack on the
real world protocol Π can be simulated by an ideal world attack without the
environment being able to distinguish those. We first describe the simulator S.
Then we show indistinguishability of the environment’s view in the real and ideal
world.

Constructing Simulator S

S interacts with the ideal functionality F as the ideal world adversary, and sim-
ulates the real-world honest parties for the real world adversary A. All outputs
A does are forwarded to the environment by S.

First, S carries out the trusted set-up stage: it generates public and private
key pairs for all the real-world honest parties. S then sends the respective public
keys to A and receives the real world corrupted parties’ public keys from A.

The simulator S maintains four internal data structures:

– The r-list consisting of tuples of the form (rtemp, nextRelay, temp). Each
entry in this list corresponds to a stage in processing an onion that belongs
to a communication of an honest sender. By “stage,” we mean that the next
action to this onion is adversarial (i.e. it is sent over a link or processed by
an adversarial router).

– The O-list containing onions sent by corrupted senders together with the
information about the communication (onion, nextRelay, information).

– The Reply-list containing reply information together with the forward id for
communications with a corrupted sender (idfwd, reply information).
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Table 1. Overview Proof: Properties imply Ideal Functionality

Hybrid Description Reduction
H0 Machine using the real world protocol to interact with the real world

adversary A and the environment
H1 = H<2

1 As H0 but for one forward communication of an honest sender: The
onion layers between this sender and the next honest node (relay or
receiver) are replaced by the layers of a newly formed onion taking this
part of this path but carrying a random message for the next honest
node.

LU→

H<x
1 As H<x−1

1 but for one forward communication of an honest sender,
where the onion layers between the first two honest nodes are not yet
replaced: Replace as in H1

(LU→)

H2 = H<2
2 As H∗1 (=first part for all honest forwards communications replaced)

but for one forward communication of an honest sender where no mod-
ification happened: The onion layers between the next two honest node
(relay or receiver) is replaced as in H1

LU→

H<x
2 As H<x−1

2 but for one forward communication of an honest sender
where no modification happened and these layers are not yet replaced:
Replace as in H2

(LU→)

H←1 = H<2←
1 As H∗2 (=all are replaced) but for one backward communication of an

honest sender: The onion layers between the last honest node (relay or
forward receiver) are replaced by the layers of a newly formed onion
taking this part of this path but carrying a random message for the
honest backward receiver (=forward sender).

LU←

H<x←
1 As H<x−1←

1 but for one backward communication of an honest sender,
where the onion layers between the last honest node and (backward)
receiver are not yet replaced: Replace as in H←1

(LU←)

H←2 = H<2←
2 As H∗←1 (=all are replaced) but for one backward communication of

an honest sender where no modification happened: The onion layers
between the (next) last two honest nodes (relay or forward receiver)
are replaced as in H←1

LU←

H<x←
2 As H<x−1←

2 but for one forward communication of an honest sender
where no modification happened and these layers are not yet replaced:
Replace as in H←2

(LU←)

H3 = H<2
3 As H∗←2 (=all are replaced) but for one forward communication of an

honest sender where no modification happened but no other honest
relay exists(i.e. receiver is corrupt): The onion layers between the last
honest node on the forward path and the receiver are replaced with
the ones generated by a newly formed onion for this part of the path,
carrying the same message

T I↔

H<x
3 As H<x−1

3 but for one forward communication of an honest sender
where no modification happened and these layers are not yet replaced:
Replace as in H3

(T I↔)
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– The C-list containing reply information together with the temp for commu-
nications with an honest sender (Pi, reply, temp).

S’s behavior on a message from F: In case the received output belongs to
an adversarial sender’s communication18:

Case I: “start belongs to onion from PS with id, Pr, m, n,P←,P→, d as
answer to id”; an honest node is replying to an onion of a corrupted sender.
S knows that the next output “Onion temp in direction d from ...” includes
the first part of this backward path, that he chose to consist of one adversarial
node and just needed to give Pr (the backward sender) a chance to reply (as
S did not know where the real reply path goes and does not need to know).
S thus ignores this output and does not react with another Case on this. To
construct the right real world reply onion, S looks up the reply information
(id, reply info) for this id in the Reply-list and uses the information to construct
an onion: (O1, P1) ← ReplyOnion(m, replyinfo, Pr, SK r) and sends O1 to P1,
if P1 is adversarial or to A’s party representing the link between the Pr and
P1, if P1 is honest. (Note that Pr cannot be adversarial for this output as then
both sender and receiver would be corrupt, which only activates cases VIII b
and II (as it works without including any reply onion from the view of the ideal
world).)

Case II: any output together with “temp belongs to onion from PS with
sid, Pr, m, n,P” for temp ̸∈ {start, end}. This is just the result of S’s reaction
to an onion from A that was not the protocol-conform processing of an honest
sender’s communication (Case VIII). S does nothing.

Case III: “end belongs to onion from PS with sid, Pr, m, n,P”. This means
an honest relay is done processing an onion received from A that was not the
protocol-conform processing of an honest sender’s communication (processing
that follows Case VIII). S finds (onion, currentRelay, nextRelay, information)
with this inputs as information in the O-list (notice that there has to be such
an entry) and as currentRelay sends the onion onion to nextRelay if it is an
adversarial one, or it sends onion, as if it is transmitted, to A’s party repre-
senting the link between the currently processing honest relay and the honest
nextRelay.

In case the received output belongs to an honest sender’s communication:
Case IV: “Onion temp from Poi

routed through () to Poi+1”. In this case S

needs to make it look as though an onion was passed from the honest party Poi

to the honest party Poi+1 : S the path P = (Poi , Poi+1), and random message
mrdm. S honestly picks a randomness R and calculates

O1 ← FormOnion(1,R, mrdm,P, (), (PK )Prdm
, ())

and sends the onion O1 to A’s party representing the link between the honest
relays as if it was sent from Poi

to Poi+1 . S stores (info = (2,R, mrdm,P, (),
(PK )Prdm

, ()),Poi+1 ,temp) on the r-list.

18 S knows whether they belong to an adversarial sender from the output it gets.
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Case V: “Onion temp from Poi routed through (Poi+1 , . . . , Poj−1) to Poj ”.
S picks the path P = (Poi+1 , . . . , Poj−1), a randomness R and a message mrdm

and calculates
O1 ← FormOnion(1,R, mrdm,P, ()(PK )Prdm

, ())
and sends the onion O1 to Poi+1 , as if it came from Poi

. S stores (info =
(j − i, R, mrdm,P, ()(PK )Prdm

, ()), Poj
, temp) on the r-list.

Case VI: “Onion temp from Poi with message m for Pr routed through
(Poi+1 , . . . , Pon)”. Note that this output always occurs together with “temp’s first
part of the backward path is P←” (Pr received a forward onion) [as otherwise
Pr would receive a backward onion, the sender (=backward receiver) would be
corrupt and hence the whole communication would be simulated by using cases
VIII b and II (and VIII a1 and R).]: S picks the path P = (Poi

, . . . , Pon
, Pr),

randomness R and calculates
O1 ← FormOnion(1,R, m,Prdm,P←, (PK )Prdm

, (PK )P←)
and sends the onion O1 to Poi+1 , as if it came from Poi . Further, S stores
(P←.last, info, temp) with info = (R, n + 1 + P←.lastPosition, m,Prdm,P←,
(PK )Prdm

, (PK )P←) on the C-list. (Note that as this is an honest communication
P←.last is honest.)
S’s behavior on a message from A: S, as real world honest party Pi,
received an onion O = (η̃, π̃, δ̃) from A as adversarial player Pa.

Case VII: (η̃, Pi, temp) is on the r-list for some temp. In this case O is
the protocol-conform processing of an onion from a communication of an honest
sender. S calculates ProcOnion(SK(Pi), O, Pi). If it returns a fail (O is a replay
or modification that is detected and dropped by Π), S does nothing. Otherwise,
S sends the message (Deliver Message, temp) to F.

Case VIII. (η̃, Pi, temp) is not on the r-list for any temp. S calculates
ProcOnion(SK(Pi), O, Pi) = (O′, P ′) (and aborts if this fails).

(a) P ′ =⊥: Pi is the recipient and O′ contains a message and reply informa-
tion; only a message (if send as reply or not repliable) or a fail symbol.
(a1) Contains a message and reply information. S thus sends the message “(Pro-
cessNewOnion, Pi, O′, (),P←) with P← = Pa” (note that this is only one adver-
sarial node) to F on Pa’s behalf and as A already delivered this message to the
honest party sends (Deliver Message, temp) for the belonging temp . Further, S
stores (id, O′) in the Reply-list (to later reply to this onion).
(a2) contains only a message m (S knows this as we can try to create a re-
ply to it with Pi). This means the adversary possibly replied to an honest
senders forward onion. S checks for all (Pi, reply, temp) tuples in the C-List
to see if η̃ matches any reply-info on this list. If so (it was a reply to temp),
S sends the message (ReplyOnion, m, temp) to F on Pa’s behalf and, as A

already delivered this message to the honest party, sends (Deliver Message,
temp′) for the belonging temp′. Otherwise S (creates this onion in the F) sends
(ProcessNewOnion, Pi, O′, (),⊥) and (Deliver Message, temp) for the corre-
sponding temp. (Notice that S knows which temp and id belongs to this com-
munication as it is started at an adversarial party Pa).



Onion Routing with Replies 47

(b) P ′ ̸=⊥: S picks a message m ∈M. S sends on Pa’s behalf the message,

Process_New_Onion(P ′a, m, n, (Pi))

(notice that this is not repliable) and Deliver_Message(temp) for the belonging
temp to F (notice that S knows the temp as in case (a)). S adds the entry
(O′, Pi, P ′, (Pa, id, P ′a, m, n, (Pi))) to the O-list.

Example Case Combinations for the Simulator For easier understanding
of the simulator, we sketch the cases that are used together:

– Corrupt Sender
• Corrupt Receiver

∗ Forward: Case VIII (b) and Case III [repeatedly if honest relays
involved] until receiver receives correctly unwrapped onion (outside
of the scope of the simulator)

∗ Backward: Case VIII(b) and Case III [repeatedly if honest relays
involved] until sender receives reply onion (outside of the scope of
the simulator)

• Honest Receiver
∗ Forward: Case VIII (b) and Case III [repeatedly if honest relays

involved] until Case VIII (a1) [receiver receives onion]
∗ Backward: Case I [receiver replies], then Case VIII(b) and Case III

[repeatedly if honest relays involved] until sender receives reply onion
(outside of the scope of the simulator)

– Honest Sender
• Corrupt Receiver

∗ Forward: Case IV or V and Case VII [repeatedly if honest relays
involved] until case VI [receiver receives]

∗ Backward: Case VIII(a2) [receiver replies] and Case IV or V and
Case VII [repeatedly over honest relays until sender]

• Honest Receiver
∗ Forward: Case IV or V and Case VII [repeatedly over honest relays

until receiver]
∗ Backward: Case IV or V and Case VII [repeatedly over honest relays

until sender]

Modified onions are treated as corrupt sender communications.

Indistinguishability

Notation: Hi describes the first hybrid that replaces a certain part of any com-
munication for the first communication. In H<x

i this part of the communication
is replaced for the first x − 1 communications. Finally in H∗i this part of the
communication is replaced in all communications.

Hybrid H0. This machine sets up the keys for the honest parties (so it has
their secret keys). Then it interacts with the environment and A on behalf of the
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honest parties. It invokes the real protocol for the honest parties in interacting
with A.

Replacing between honest - Forward Onion We replace the onion layers
in the way they appear in the communication. So the first onion layers (close to
the sender) are replaced first.

Hybrid H1. In this hybrid, for the first one forward communication the
onion layers from its honest sender to the next honest node on the forward
path (relay or receiver) are replaced with random onion layers embedding the
same path. More precisely, this machine acts like H0 except that the consec-
utive onion layer O1, O2, . . . , Oj from an honest sender P0 to the next honest
node Pj are replaced with Ō1 and its following processings by calculating (with
honestly chosen randomness R) Ō1 ← FormOnion(1,R, mrdm,P, (), (PK )P, ())
where mrdm is a random message, P = (P1, . . . , Pj). H1 keeps an Ō-list and
stores (info = (R, m,P,P←, (PK ), (PK )←), Pj , (OR

1 , Pj+1)) where info are the
randomness and parameters used for the original senders onion creation and OR

1
is calculated19 as

OR
1 ← FormOnion(j + 1,R, m,P→,P←, PKP→ , PKP←),

where the randomness, paths and message are chosen as in the original sender’s
call in H0.20 If an onion Õ is sent to Pj , the machine tests if processing results
in a fail (replay/modification detected and dropped). If it does not, H1 uses
RecognizeOnion(Õ, j,R, m,P,P←, (PK ), (PK )←) for all recognize information
stored in the Ō-list where the second entry is Pj . If it finds a match, the belonging
OR

1 is send to Pj+1 as processing result of Pj . Otherwise, ProcOnion(SKPj
,

Õ, Pj) is used.
H0 ≈I H1. The environment gets notified when an honest party receives an

onion layer (and about their repliability) and inputs when this party is done. As
we just exchange onion layers by others (with the same repliability), the behavior
to the environment is indistinguishable for both machines.

A observes the onion layers after P0 and if it sends an onion to Pj , the result
of the processing after the honest node. Depending on the behavior of A three
cases occur: A drops the onion belonging to this communication before Pj , A
behaves protocol-conform and sends the expected onion to Pj or A modifies the
expected onion before sending it to Pj . Notice that dropping the onion leaves
the adversary with no further output. Thus, we can focus on the other cases:

We assume there exists a distinguisher D between H0 and H1 and construct
a successful attack on LU→:
19 As some parts of the onion are non-deterministic, we cannot assume that the sender

and thus our machines knows the onion layer after the honest node (only the de-
terministic part is known)) and thus we have to replace with an onion created as a
close match due to the reproducability requirement.

20 H1 knows this as it simulates all honest senders and thus knows the parameters this
honest sender picked.
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The attack receives key and name of the honest relay and uses the input of
the replaced communication as choice for the challenge, where it replaces the
name of the first honest relay with the one that it got from the challenger.21 For
the other relays the attack decides on the keys as A (for corrupted) and the
protocol (for honest) does. It receives Õ from the challenger. The attack uses D.
For D it simulates all communications except the one chosen for the challenge,
with the oracles and knowledge of the protocol and keys.22 For simulating the
challenge communication the attack hands Õ to A as soon as D instructs to do
so. To simulate further for D it uses Õ to calculate the later layers and does any
actions A does on the onion.

A either sends the honest processing of Õ to the challenge router or A

modifies it. The attack uses the oracle to simulate the further processing of Õ
or its modification.

Thus, either the challenger chose b = 0 and the attack behaves like H0 under
D; or the challenger chose b = 1 and the attack behaves like H1 under D. The
attack outputs the same bit as D does for its simulation to win with the same
advantage as D can distinguish the hybrids.

Hybrid H<x
1 . In this hybrid, for the first x − 1 forward communications,

onion layers from an honest sender to the next honest node on the forward path
are replaced with a random onion sharing this path. [Note that H1 = H<2

1 and
let H∗1 be the hybrid where the replacement happened for all communications.]

H<x−1
1 ≈I H<x

1 . Analogous to above. Apply argumentation of indistinguisha-
bility (H0 ≈I H1) for every replaced subpath.23

Hybrid H2. In this hybrid, for the first forward communication, for which
in the adversarial processing no recognition falsifying modification (i.e. on η) oc-
curred and other modification does not result in a fail,24 onion layers between two
consecutive honest relays on the forward path (the second might be the receiver)
are replaced with random onion layers embedding the same path. Additionally,
for all forward communications replacements between the sender and the first
relay happen as in H∗1 . More precisely, this machine acts like H∗1 except that the
processing of Oj ; i.e. the consecutive onion layers Oj+1, . . . , Oj′ from a communi-
cation of an honest sender, starting at the next honest node Pj to the next follow-
ing honest node Pj′ , are replaced with Ō1, . . . , Ōj′−j by sending Ō1. Thereby, for
a honestly chosen randomness R: Ō1 ← FormOnion(1,R, mrdm,P, (), (PK )P, ())
where mrdm is a random message, P = (Pj , . . . , Pj′) is the path between the hon-
est nodes. H2 stores (info = (R, m,P→,P←, PKP→ , PKP←), Pj′ , (OR

1 , Pj′+1)),25

21 As both honest nodes are randomly drawn this does not change the success
22 This includes that duplicates are dropped (Assumption 4) and onions are processed

before they are replied (Assumption 6).
23 Technically, we need the onion layers as used in H1 (with replaced onion layers

between a honest sender and first honest node) in this case. Hence, slightly different
than before, the attack needs to simulate the other communications not only by
the oracle use and processing, but also by replacing some onion layers (between the
honest sender and first honest node) with randomly drawn ones as H1 does.

24 We treat modifying adversaries on other parts later in a generic way.
25 Pj′+1 might be ⊥ and OR

1 the message m if Pj′ is the honest receiver.
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where OR
1 is calculated as OR

1 ← FormOnion(j′ + 1,R, m,P→,P←, PKP→ ,
PKP←), where the randomness, paths and message are chosen as the original
sender would pick them in the original construction (of the complete onion),26 on
the Ō-list. Like in H∗1 if an onion Õ is sent to Pj′ , processing is first checked for
a fail. If it does not fail, H2 checks RecognizeOnion(Õ, j′−j, info) for any info
on the Ō-list where the second entry is Pj′ . If it finds a match, the belonging
OR

1 is used as processing result of Pj′ . Otherwise, ProcOnion(SKPj′ , Õ, Pj′) is
used.

H∗1 ≈I H2. H2 replaces for one communication (and all its replays), the first
subpath between two consecutive honest nodes after an honest sender. The out-
put to A includes the earlier (by H∗1 ) replaced onion layers Ōearlier before the
first honest relay (these layers are identical in H∗1 and H2) that take the origi-
nal subpath but are otherwise chosen randomly; the original onion layers after
the first honest relay for all communications not considered by H2 (outputted
by H∗1 ) or in case of the communication considered by H2, the newly drawn
random replacement (generated by H2); and the processing after Pj′ .

The onions Ōearlier are chosen independently at random by H∗1 and H2
such that they embed the original path between an honest sender and the first
honest relay, but contain a random message. As they are replaced by other
original onion layers after Pj (there was no recognition falsifying modification
for this communication) and include a random message, onions Ōearlier have no
connection to onions output by Pj and hence can simply be generated for any
distinguisher based on the knowledge and oracles an attacker on LU→ has access
to.

Thus, all that is left are the original/replaced onion layer after the first honest
node and the processing afterwards. This is the same output as in H0 ≈I H1.
Hence, if there exists a distinguisher between H∗1 and H2 there exists an attack
on LU→.

Counting explanation for H<x
2 : Communication paths consist of possible

multiple honest subpaths (paths from an honest relay to the next honest relay).
We count (and replace) all these subpaths from the subpath closest to the sender
until the one closest to the receiver. We first replace all such subpaths for the first
communication, then for the second and so on. Below we use < x to signal how
many such subpaths will be replaced in the current hybrid. [Note that H2 = H<2

2
and let H∗2 be the hybrid where the replacement happened for all such subpaths.]

Hybrid H<x
2 . In this hybrid, the first x−1 honest subpaths (honest relay to

next honest relay) of honest senders’ forward communications is replaced with
a random onion sharing the path. Additionally, for all forward communications
replacements between the sender and the first relay happen as in H∗1 . If A pre-
viously (i.e. in onion layers up to the honest node starting the selected subpath)
modified η of an onion layer in this communication or modifies other parts such
that processing fails, the communication is skipped.

26 H2 can do this as it knows all parameters of the original onion and can link the
current layer back to the original sending request of the honest sender.
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H<x−1
2 ≈I H<x

2 . Analogous to above.

Replacing between Honest - Backward Onion
On the backward path, we replace the last onion layers first, then the second

last and so on. Each machine only starts replacing at a certain point and if a
message does not come that far (it is modified or dropped), they simply do not
use any replacement.

For all following hybrids the replacements on the forward path are done as
in H∗2

Hybrid H←1 . Similar to H1, but this time one backward communication
between the last honest node (relay or forwards receiver) until the honest (for-
wards) sender is replaced.

More precisely, this machine acts like H∗2 except that the consecutive onion
layers O←j+1, . . . , O←n←+1 from a reply to an honest (forward) sender from the
last honest relay P←j to the (forward) sender P←n←+1 = P0 are replaced with
Ō1, . . . , Ōn←−j+1 with (for a honestly chosen R:) Ō1 ← FormOnion(1,R, mrdm,
P, (), (PK )P, ()) where mrdm is a random message, P = (P←j , . . . , P←n←+1) is the
path from P←j to P←n←+1. H←1 stores (info, P←n←+1 = P0, mrdm), on the Ō-list.
When looking up entries (with RecognizeOnion) on the Ō-list, H←1 checks the
belonging last entry to be an onion before sending it to the next node.

H∗2 ≈I H←1 . The environment gets notified when an honest party receives
an onion layer and inputs when this party is done. As we just exchange onion
layers by others (with the same repliability), the behavior to the environment is
indistinguishable for both machines.

A observes the onion layers before P←j and if it sends an onion to P←j the
result of the processing after the honest node. Depending on the behavior of A
three cases occur: A drops the onion belonging to this communication before
P←j , A behaves protocol-conform and sends the expected onion to P←j or A

modifies the expected onion before sending it to P←j . Notice that dropping the
onion leaves the adversary with no further output. Thus, we can focus on the
other cases.

We assume there exists a distinguisher D between H∗2 and H←1 and construct
a successful attack on LU←:

The attack receives key and name of the honest relay and uses the input of
the replaced communication as choice for the challenge, where it replaces the
name of the honest relay with the one that it got from the challenger.27 For the
other relays the attack decides on the keys as A (for corrupted) and the protocol
(for honest) does. It receives O1 from the challenger and forwards it to A for
the corrupted first relay (on the forward path). The attack simulates all other
communications with oracles (or their replacements as in the games before) and
at some point as A replies to O1 (after receiving its processing On+1), so does
our attack. The reply is processed (with the knowledge of the keys) until the
honest node where the replaced onion layers start and this processed reply is

27 As both honest nodes are randomly drawn this does not change the success
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forwarded to the oracle of the challenger as O to process it.28 The challenger
returns29 Õ. The attack sends Õ, as the processing of the answer, to A as soon
as D instructs to do so. To simulate further for D it uses Õ to calculate the later
layers and does any actions A does on the onion. Further, the attack simulates
also all other communications with the oracles and knowledge of the protocol
and keys (or the random replacement onions, if replaced before).30

Thus, either the challenger chose b = 0 and the attack behaves like H∗2 under
D; or the challenger chose b = 1 and the attack behaves like H←1 under D. The
attack outputs the same bit as D does for its simulation to win with the same
advantage as D can distinguish the hybrids.

Hybrid H<x←
1 . In this hybrid, for the first x−1 backward communications,

onion layers from the last honest relay to the honest sender (=backwards re-
ceiver) are replaced with a random onion sharing this path. The replacement is
again stored on the Ō-list as before.

H<x−1←
1 ≈I H<x←

1 . Analogous to above. Apply argumentation of indistin-
guishability (H∗2 ≈I H←1 ) for every replaced subpath.

Hybrid H←2 . In this hybrid, for the first backward communication (and
all its replays) for which in the adversarial processing no recognition falsifying
modification occurred and other modification did not lead to failed processing31

onion layers between the two last consecutive honest relays (the first might
be the forward receiver (=backward sender)) are replaced with random onion
layers embedding the same path. More precisely, this machine acts like H∗←1
except that the processing of O←j ; i.e. the consecutive onion layers O←j+1, . . . , O←j′
from a backward communication of an honest (forward) sender, starting at the
second last honest node P←j to the next following honest relay P←j′ (on the
backward path), are replaced with Ō1, . . . , Ōj′−j . Thereby for an honestly chosen
R; Ō1 ← FormOnion(1,R, mrdm,P, (), (PK )Prdm

, ()) where mrdm is a random
message, P = (P←j , . . . , P←j′ ) the path from P←j to P←j′ .

Further, the Hybrid calculates (and stores) another replacement for the next
part after the current replacement (P̃←j′+1, Õk) (by exploiting the fact that the
sender knows the backward path and can infer the message from any layer) as
in the Hybrid H∗←1 before. Then it also stores (info, P←j′ , (Õk, P̃←j′+1)) to the
Ō-list (to ensure the replacement of the later path is used as well). As before,
the Ō-list will be checked to pick the right processing of an onion.

H∗←1 ≈I H1←
2 . H←2 replaces for one backward communication, the last sub-

path between two consecutive honest nodes before an honest (forward) sender.
The output to A includes the later (by H∗←1 ) replaced onion layers Ōlater af-

28 In case of the (honest) forward receiver being P←j , there is no such processing, but
her answer Õ is queried from the challenger by the attacker to simulate the honest
communications that are happening.

29 Unless the onion was no reply to the onion in question or processing failed, in which
case we need to do nothing for D

30 This includes that duplicates are dropped (Assumption 4) and onions are processed
before they are replied (Assumption 6).

31 We treat modifying adversaries on other parts of the onion later in a generic way.
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ter the second honest relay (these layers are identically generated in H∗←1 and
H←2 ) that take the original subpath but are otherwise chosen randomly; the
original onion layers after the first of the honest relays for all communications
not considered by H←2 (outputted by H∗←1 ) or in case of the communication
considered by H←2 , the newly drawn random replacement (generated by H←2 );
and the processing before the first honest relay P←j .

The onions Ōlater are chosen independently at random by H∗←1 such that
they embed the original path between the second considered honest relay and
the honest (forward) sender, but contain a random message. As they are used
as processing of the original onion layers before P←j′ (there was no recognition
falsifying modification for this communication) and include a random message,
onions Ōlater are not connected to onions before P←j′ and hence can simply be
generated for any distinguisher based on the knowledge and oracles an attacker
on LU← has access to.

Thus, all that is left are the original/replaced onion layer after the honest
node and the original layers before. This is the same output as in H∗2 ≈I H←1 .
Hence, if there exists a distinguisher between H∗←1 and H←2 there exists an
attack on LU←.

Hybrid H<x←
2 . In this hybrid, for the first32 x − 1 honest subpaths on

backwards communications are replaced with a random onion sharing the path
and the other replacements calculated as before and all are stored on the Ō-list.
If A previously (i.e. in onion layers up to the honest node starting the selected
subpath) modified η of an onion layer in this communication or modified another
part such that processing fails, the communication is skipped.

H<x−1←
2 ≈I H<x←

2 . Analogous to above.

Onion replacement for corrupted receivers
We replace the missing part between the onion layers already replaced on

the forward path and the onion layers already replaced on the backward path.
Hybrid H3. In this hybrid, for the first forward communication for which

in the adversarial processing no recognition falsifying modification (i.e. a modi-
fication on η) occurred (and no other modification caused the processing to fail)
so far, forward onion layers from its last honest relay to the corrupted receiver
are replaced with random onions sharing this path and message and the first
part of the reply-path. More precisely, this machine acts like H∗←2 except that
the processing of Oj ; i.e. the consecutive onion layers Oj+1, . . . , On+1 from a
communication of an honest sender, starting at the last honest node Pj to the
corrupted receiver Pn+1 are replaced with Ō1, . . . , Ōn−j+1. Thereby for a hon-
estly chosen R; Ō1 ← FormOnion(1,R, m,P,P←, (PK )P, (PK )P←) where m is
the message of this communication,33 P = (Pj , . . . , Pn+1) is the path from Pj

32 counted similarly to the forward path, but now starting from the backward receiver
until the backward sender; again for the first backward communication until the last.

33 H3 knows this message as it simulates the honest sender.
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to Pn+1 and P← is the first part of the reply-path (until the first honest node),
that an reply to the original onion would have taken.34

H3 further checks for every onion (ending at) P←.last, if it was a reply to this
replaced onion layers (by using the information info stored and RecognizeOnion).
If so, it uses its knowledge about the original forward onion (before replacement)
and the sender to construct the belonging original reply. With it it computes the
replacement of the later onion layers for this communication as in Hybrid H∗←2
and stores the corresponding information on the Ō-List. As before, the Ō-list
will be checked to pick the right processing of an onion.

H∗←2 ≈I H3. Similar to H∗1 ≈I H2 the forward onion layers before Pj are
independent and hence can be simulated for the distinguisher by an attack on
TI↔. Similar to H∗←1 ≈I H←2 the backward onion layers after P←.last are
independent and hence can be simulated for the distinguisher by an attack on
TI↔. The remaining outputs suffice to construct an attack on TI↔ similar to
the one on LU→ in H∗1 and H2.

Hybrid H<x
3 . In this hybrid, for the first x − 1 forward communications

for which in the adversarial processing no recognition falsifying modification
(and no other modification that results in failed processing) occurred so far, the
onion layers between its last honest relay to corrupted receiver are replaced with
random onion layers sharing the path, message and first part of the reply path.

H<x−1
3 ≈I H<x

3 . Analogous to above.
Hybrid H4 This machine acts the way that S acts in combination with F.

Note that H∗3 only behaves differently from S in (a) routing onions through
the honest parties and (b) where it gets its information needed for choosing the
replacement onion layers: (a) H∗3 actually routes them through the real honest
parties that do all the computation. H4, instead runs the way that F and S

operate: there are no real honest parties, and the ideal honest parties do not do
any crypto work. (b) H∗3 gets inputs directly from the environment and gives
output to it. In H4 the environment instead gives inputs to F and S gets the
needed information (i.e. parts of path and the included message, if the receiver is
corrupted) from outputs of F as the ideal world adversary. F gives the outputs
to the environment as needed.

H∗3 ≈I H4. For the interaction with the environment from the protocol/ideal
functionality, it is easy to see that the simulator directly gets the information
it needs from the outputs of the ideal functionality to the adversary: whenever
an honest node is done processing, it needs the path from it to the next honest
node or path from it to the corrupted receiver and in this case also the message
and beginning of the backward path. This information is given to S by F.

Further, in the real protocol, the environment is notified by honest nodes
when they receive an onion together with some random ID that the environment
sends back to signal that the honest node is done processing the onion. The
same is done in the ideal functionality. Notice that the simulator ensures that
every communication is simulated in F such that those notifications arrive at

34 H3 knows this reply path as the forward onion was constructed by an honest party.
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the environment without any difference (this includes them having the same
repliability).

For the interaction with the real world adversary, we distinguish the outputs
in communications from honest and corrupted senders. 0) Corrupted (forward)
senders: In the case of a corrupted sender both H∗3 and H4 (i.e. S+F) do not
replace any onion layers except that with negligible probability a collision on
the Ō-list resp. O-list occurs. (Notice that even for honest receivers (and thus
backward senders) layers following the protocol can be and are created.)

1) Honest senders: 1.1) No recognition falsifying modification of the onion by
the adversary happens (and if modification happens at all, the processing does
not fail [note that a failing processing is the same as dropping; see 1.2)]): All parts
of the path are replaced with randomly drawn onion layers Ōi. The way those
layers are chosen is identical for H∗3 and H4 (i.e. S+ F). 1.2) Some recognition
falsifying modification of the onion or a drop or insert happens: As soon as a
recognition falsifying modification happens, both H∗3 and H4 continue to use
the bit-identical onion for the further processing except that with negligible
probability a collision on the Ō-list resp. O-list occurs. In case of a dropped
onion it is simply not processed further in any of the two machines.

Note that the view of the environment in the real protocol is the same as
its view in interacting with H0. Similarly, its view in the ideal protocol with
the simulator is the same as its view in interacting with H4. As we have shown
indistinguishability in every step, we have indistinguishability in their views.

E Proof Sketches of Further Properties for our UE
Scheme

E.1 Forwards Layer-Unlinkability, Honest Relay
We assume a fixed, but arbitrary PPT algorithm ALU→ as adversary against
the LU→ game and use a sequence of hybrid games H for our proof. Let Xi be
the event that ALU→ outputs b′ = 1 in the i-th hybrid game Hi. We start with
the LU→ game with b = 0 as first hybrid and transform it to the LU→ game
with b = 1, while showing that the probability of X in the first and last hybrid
are negligibly close to each other.
Hybrid 1) LU→(b=0). The LU→ game with b chosen as 0.
Hybrid 2). As Hybrid 1), but with differences in the following steps:
5. The challenger creates the onion as before, but encrypts 0 . . . 0 instead of

kη
j , kγ

j , ∆j for Ej (but still encrypts other blocks of the header with the real
kη

j , the payload with the real ∆j and MACs with kγ
j ):

Ej = PK.EncPKj
(0, . . . , 0)

B1
j = PRP.Enckη

j
(Pj+1, Ej+1, γj+1)

Bi
j = PRP.Enckη

j
(Bi−1

j+1) for 2 ≤ i ≤ 2N − 1
The challenger calculates the new MAC for the blocks. All the later layers
E≥j+1, Bi

≥j+1 are constructed as before but using the replacements for the
calculations, i.e. the onion layer Oj is wrapped as before.
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Table 2. Overview Proof for LU→, j < n + 1

Hybrid Description Reduction
1) The LU→ game with challenge bit chosen as 0
2) We replace the temporary keys kη

j , kγ
j , ∆j at the honest relay by

0..0 before they are encrypted in Ej (and adapt recognizeOnion
to the new header), but still use the real keys for the processing.

PK-CCA2

3) We let the oracles in step 7 output a fail, if the challenge Ej is
recognized, but other parts of the header differ.

SUF-CMA

4) We replace the blocks B1
j , ..., B2N−j

j by R1, R2, . . . , R2N−j with
Ri being randomly chosen (and adapt recognizeOnion to the
new header), but use the real blocks for the processing.

PRP-CCA

5) We let the oracles in step 7 output a fail, if the challenge header
ηj is recognized, but the payload does not include the correct
plaintext.

UP-INT-PTXT

6) We let the Proc oracle in step 7 output the replicated layer
j + 1:(F ormOnion(j + 1,R, m,P→,P←, (PK)P→ , (PK)P←)), if
the challenge ηj is recognized, the payload matches, and real
processing of the given onion would not fail.

Perfect Re-Encryption

7) We replace the content δj by a random string of the same length. UP-IND-RCCA
8) We replace the tokens ∆i in Ei for i < j with simulated ones

(and adapt the oracle correspondingly)
Token Simulatability

9) We replace the keys kη
i , kγ

i in Ei for i < j with freshly chosen
keys and adapt the corresponding parts of the header accord-
ingly

(just another outcome of the
sender’s random choice)

10) We replace the (simulated) tokens ∆i in Ei for i < j with (newly
generated) tokens that are created according to the generation
function

Token Simulatability

11) We revert the changes made in Game 5). UP-INT-PTXT
12) We replace the block B1

j by (⊥,⊥,⊥) (and adapt recognizeOnion
to the new header).

PRP-CCA

13) We revert the changes made in Game 3). SUF-CMA
14) We revert the changes made in Game 2). PK-CCA2
15) We use FormOnion with the parameter of the b = 1 case to

generate the first challenge onion layer. This is the LU→ game
with challenge bit chosen as 1.

Same behavior except for new
draw of randomness

6. The challenger gives the final O1 to the adversary.
7. RecognizeOnion now checks for the adapted header (as constructed above)

and if Ej is reused in a not recognized onion, the original keys kη
j , kγ

j , ∆j are
returned as decryption.

Hybrid 1) ≈IND Hybrid 2). Assume there exists a distinguisher D that
can distinguish Hybrid 1) and 2). We can build an attack ACCA2 on the CCA2
security of the PK encryption scheme:

1. ACCA2 gets the public key PK from the challenger ChCCA2, picks an honest
router’s name Pj as ChLU→ would and gives both to D.

2. ACCA2 keeps an η-list and answers all queries from the D (as ChLU→ would;
including rejecting already seen headers). To decrypt ciphertexts under PK
(possible in E of the header), ACCA2 uses the decryption oracle provided
by the challenger ChCCA2.

3. ACCA2 gets the challenge choices from D.
4. ACCA2 checks the challenge choices from D as ChLU→ would.
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Table 3. Overview Hybrids for LU→, j < n + 1

O1: kη
j , kγ

j , ∆j in Ej B1
j , . . . , B2N−j

j δj Oracle kη
i , kγ

i , ∆i in Ei, i < j

1) param. b = 0 real kη
j , kγ

j , ∆j contains path after Pj contains m honest proc.
2) (0, . . . , 0)
3) fail, if E1 = exp, η modif.
4) R1, R2, . . . , R2N−j

5) fail, if η1 = exp , δ modif.
6) recog+ FormOnion(i > 1)
7) rdm m̄

8) kη
i , kγ

i , sim

9) kη
i
′, kγ

i
′, sim

10) kη
i
′, kγ

i
′, ∆i

′

11) proc, if η1 = exp , δ modif.
12) PRP.Enc(⊥,⊥,⊥), R2, . . . , R2N−j

13) proc, if E1 = exp, η modif.
14) fresh kη

j
′, kγ

j
′, ∆j

′

15) param. b = 1 (fresh kη
j
′, kγ

j
′, ∆j

′) (receiver signal and rdm blocks) (contains m̄) (recog.+ FormOnion(i > 1)) (fresh chosen kη
i
′, kγ

i
′, ∆i

′)

5. ACCA2 sends m0 = (kη
j , kγ

j , ∆j) and m1 = (0 . . . 0) to the challenger ChCCA2
and receives the ciphertext c that ACCA2 uses as Ej = c and calculates the
MAC for it. Other than that ACCA2 forms the onion O1 just as the challenger
ChLU→ in the hybrids would.35

6. ACCA2 gives O1 to D.
7. ACCA2 answers the oracles for D just as ChLU→ would. If ACCA2 needs

to decrypt Ej = c under PK , it uses the original keys kη
j , kγ

j , ∆j as result.
For all other requests; to decrypt ciphertexts under PK , ACCA2 uses the
decryption oracle of ChCCA2.

8. ACCA2 receives the guess from D and uses it as its own guess.

Note that ACCA2 simulates Hybrid 1) for b = 0 and Hybrid 2) for b = 1
and thus wins the CCA2 game with the same advantage as D distinguishes the
hybrids.

Security loss: |Pr(X1)−Pr(X2)| ≤ ϵPK-CCA2 with ϵPK-CCA2 being the CCA2-
advantage of some efficient adversary against our PK encryption scheme (which
is negligible according to our choice).
Hybrid 3). As Hybrid 2) but with differences in the following step:
7. If an onion is handed to the oracles that reuses Ej , but changes another

part of the header, i.e. is not the recognized as challenge onion processing,
processing fails.

Hybrid 2) ≈IND Hybrid 3). Due to the SUF-CMA of our MAC and the
already replaced MAC key, a successful processing of (Ej , B, γ) ̸= (Ej , Bj , γj),
i.e. an onion with reused Ej but modified header, can only happen with negligible
probability and except for these cases the hybrids are identical.

Security loss: |Pr(X2) − Pr(X3)| ≤ ϵSUF-CMA with ϵSUF-CMA being the
SUF-CMA-advantage of some efficient adversary against our used MAC scheme
(which is negligible according to our choice).
Hybrid 4). As Hybrid 3), but with differences in the following step:
35 Note that anything except for Ej is constructed exactly in the same way in both

hybrids.
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5. The challenger creates the onion as before but the blocks B1
j , . . . , B2N−j

j are
replaced with R1, R2, . . . R2N−j with Ri being randomly chosen blocks to cal-
culate O1:

Ej = PK.EncPKj
(0, . . . , 0)

Bi
j = (Ri) for 1 ≤ i ≤ 2N − j with Ri being the randomly generated

The challenger continues to wrap the onion to create O1.
7. The challenger answers oracles as in Hybrid 3), except if the header reuses

Ej and Bi
j . In this case, the challenger replaces the header with the one first

calculated for this position and processes it as usual.

Hybrid 3) ≈IND Hybrid 4). Assume there exists a distinguisher D that can
distinguish Hybrid 3) and 4). We can build an attack ACCA on the PRP-CCA
security of the PRP:

1. ACCA picks an honest router’s name Pj and public key PK as ChLU→ would
and gives both to D.

2. ACCA answers the oracle queries from D as ChLU→ would (including re-
jecting already seen headers).

3. ACCA gets the challenge choices from D.
4. ACCA checks the challenge choices from D as ChLU→ would.
5. ACCA constructs the onion O1 as before and sends the blocks (Pj+1, Ej+1,

γj+1), B1
j+1, . . . , B2N−j−1

j+1 to the challenger ChCCA. The challenger replies
with blocks B̃1

j , . . . , B̃2N−j
j as encryption. ACCA replaces the calculated

blocks B1
j , . . . , B2N−j

j with the ones received from the challenger and con-
tinues to calculates O1 from it by wrapping and adapting the MAC.

6. ACCA gives O1 to D.
7. ACCA answers the oracles for D by processing it, if it does not use Ej . Oth-

erwise (it uses Ej): if some of the blocks B̃1
j , . . . , B̃2N−j

j are changed, ACCA

returns a fail (as introduced in Hybrid 3)). If all blocks are as expected, it
calculates the answer as in step 7 of Hybrid 4).

8. ACCA receives the guess from D and uses it as its own guess.

ACCA simulates Hybrid 3) for b = 0 and Hybrid 4) for b = 1 and thus wins
the PRP-CCA game with the same advantage as D distinguishes the hybrids.

Security loss: |Pr(X3)−Pr(X4)| ≤ ϵPRP-CCA with ϵPRP-CCA being the CCA-
advantage of some efficient adversary against our used PRP (which is negligible
according to our choice).
Hybrid 5). As Hybrid 4) but with differences in the following step:
7. The challenger replies with a fail to all Proc(PH , O) requests with η = ηj , i.e.

RecognizeOnion is true - the header corresponds to the one we created and
UE.Deck∆

j
(δ) ̸= m, i.e. the payload was modified.36 Otherwise, the challenger

processes the onions for the oracles as before.
36 Note that the challenger can check this as it knows all UE keys because it created

the onion.
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Hybrid 4) ≈IND Hybrid 5). Let B be the (bad) event that an Proc(PH , O)
request with η = ηj and UE.Deck∆

j
(δ) ̸= m is not replied with a fail in Hybrid

4). Hybrid 4) and 5) work on the same underlying probability space. Thus both
games indeed are identical, except if B happens.

Idea: If B happens, we can use the payload of the corresponding onion to
break UP-INT-PTXT. We therefore assume an distinguisher D distinguishing
Hybrid 4) and 5). Note that we can recognize the header belonging to B and D

has only one try with this header at the oracle (due to the duplicate check with
the η-list). We thus do not have to answer D’s oracle request during B but instead
use the included payload to break UP-INT-PTXT. Therefore, we carefully only
progress until the epoch j (corresponding to the input for the honest relay) in
the UP-INT-PTXT game, only request tokens (no keys) and create later keys
and tokens with GenKey and GenTok. Precise steps of AUP-INT-PTXT:

1. Pick random router names PH , PS and generate corresponding key pairs
(PKH , SKH) ← G(1λ, p, PH), (PKS , SKS) ← G(1λ, p, PS). Send PH , PS

and PKH , PKS to D.
2. Oracle access: Upon receiving onions O and messages mi from D, create and

update the η-list to detect replicates, and if it is no replicate; use SKH resp.
SKS to ProcOnion(SKH , O, PH) resp. ReplyOnion(mi, O, PH , SKH).

3. Receive message m, paths P→, P← and public keys PK i for both path
directions from D.

4. Check validity of names and set PK j = PKH and PK←n←+1 = PKS .
5. Construct O1 carefully using the UP-INT-PTXT oracles as follows:

(a) δ1 = Enc(m)
(b) Use Next oracles j − 1 times until epoch e = j.
(c) Get tokens ∆1, . . . , ∆j−1 with Corrupt(token, 2), . . . , Corrupt(token, j)
(d) Create k∆

j+1, . . . , k∆
n+1 as k∆

i ← UE.GenKey(sp) for all j + 1 ≤ i ≤ n + 1
(if P← ̸= {}: Create k∆←

1 , . . . , k∆←
n←+1 similar)

(e) Create tokens ∆j+1, . . . , ∆n as ∆i ← UE.GenTok(k∆
i , k∆

i+1) for all j +1 ≤
i ≤ n (if P← ̸= {}: Create ∆←1 , . . . , ∆←n← similar)

(f) Pick keys kη
1 , . . . , kη

n+1 for the block cipher and kγ
1 , . . . , kγ

n+1 for the MAC
randomly. (If P← ̸= {}, similar for keys on the backwards path)

(g) Create the header η1 with the keys kη
1 , . . . , kη

n+1, ∆1, . . . , ∆j−1, ∆j+1, . . . ,
∆n, k∆

n+1 (resp. additionally with the keys for the backward path, if
P← ̸= {}) as the protocol does, but replace Ej = PK.EncPKj (0, . . . , 0)
and Bi

j = (Ri) (as in the Hybrids before). Note that we can do this
without knowing ∆j , as it has been replaced with 0 . . . 0 earlier.

Construct Ō1: Ō1 ← FormOnion(1, R̄, m̄, P̄→, P̄←, (PK )P̄→ , (PK )P̄←)
6. Send O1 = (η1, δ1) to D

7. Oracle access: Upon receiving Proc(P, O) from D, check if η = ηj and P =
PH . If not or it is a Reply request, process/reply with knowledge of secret
keys as before. Otherwise, output δj as c∗ and stop.

Note that the new generation of UE keys and tokens uses the same generation
functions as FormOnion and thus AUP-INT-PTXT simulates the hybrids perfectly
until B occurs.
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AUP-INT-PTXT is valid: As UE.ReEnc does not output a fail, UE.Dec (with
the corresponding key) does not output a fail. This follows from Perfect Re-
Encryption.37 Further, this is no trivial win, as Q∗ only contains m: Q∗ =
{(0, m), (1, m), . . . , (j − 1, m)} and K contains no keys at all K = ∅.

AUP-INT-PTXT is successful: Unless B happens, Hybrid 4) and 5) are identi-
cal. If B happens, AUP-INT-PTXT wins.

Security loss:|Pr(X4) − Pr(X5)| ≤ ϵUP-INT-PTXT with ϵUP-INT-PTXT being
the UP-INT-PTXT-advantage of some efficient adversary against our used UE
scheme (which is negligible according to our choice).
Hybrid 6). As Hybrid 5), but with differences in the following step:
7. The challenger uses Pj+1 and FormOnion(j + 1,R, m,P→,P←, (PK )P→ ,

(PK )P←) to answer Proc(PH , O) requests with η = ηj , i.e. RecognizeOnion is
true; if η is not on the ηH -list and processing of O would not have failed (this
includes failing because of the wrong content as in Hybrid 5.). Otherwise,
the challenger processes the onions for the oracles as before.

Hybrid 5) ≈IND Hybrid 6). The hybrids only differ in the replied layers
for Proc(PH , O) requests with η = ηj . FormOnion constructs the header deter-
ministically just as before, hence the header of the replied layers are equal. The
payload carries the same content, as otherwise the output would fail both in
Hybrid 5) and 6). Thus the only difference is the re-encryption (Hybrid 5)/fresh
encryption (Hybrid 6) of the plaintext for the payload. Those encryptions are
indistinguishable due to the perfect Re-Encryption property of the UE-scheme
(note that perfect Re-Encryption holds also for multiple times re-encrypted ci-
phertexts): ηH5

j = ηH6
j (header is deterministic),

δH5
j = UE.ReEncj

∆i,1≤i≤j−1
(m) dist≡ δH6

j = UE.Enck∆
j

(m)

⇔ UE.Enc(knew, UE.Dec(kold, C)) dist≡ UE.ReEnc(∆, C)
Security loss:|Pr(X5)− Pr(X6)| = 0

Hybrid 7). As Hybrid 6), but with differences in the following step:
5. The challenger creates the onion as before but with random payload:

δ1 = (UE.Enck∆
1

(R)) with R being a random message
7. The expected plaintext encrypted in the payload of the recognized onion is

adapted to be R. Otherwise, the oracle works as before.

Hybrid 6) ≈IND Hybrid 7). Assume there exists a distinguisher D that can
distinguish Hybrid 6) and 7). We build an attack ACCA on the UP-IND-RCCA
security of the UE scheme: Precise steps of ACCA:
1. Pick random router names PH , PS and generate corresponding key pairs

(PKH , SKH) ← G(1λ, p, PH), (PKS , SKS) ← G(1λ, p, PS). Send PH , PS

and PKH , PKS to D.
37 Assume, UE.ReEnc does not fail, but UE.Dec results in a fail, i.e. output ⊥. This

means UE.Enc(UE.Dec()) would also output a fail ⊥ (see Note in Perfect Re-
Encryption) and thus UE.ReEnc has to fail as well (

dist
≡ ), completing the indirect

argument.
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2. Oracle access: Use SKH resp. SKS to answer the oracles as in the original
game.

3. Receive message m, paths P→, P← and public keys PK i for both path
directions from D.

4. Check validity of names and set PK j = PKH and PK←n←+1 = PKS .
5. Construct O1 using the UP-IND-RCCA oracles and challenge as follows:

(a) Send M0 = m, M1 = R ←R Msp with |m| = |R| to ChCCA and receive
C∗ ←R UE.Enc(k∆

1 , Mb) from ChCCA. It sets δ1 = C∗.
(b) Use Next oracles j − 1 times until epoch e = j.
(c) Get tokens ∆1, . . . , ∆j−1 with Corrupt(token, 2), . . . , Corrupt(token, j)
(d) Create k∆

j+1, . . . , k∆
n+1 as k∆

i ← UE.GenKey(sp) for all j + 1 ≤ i ≤ n + 1
(if P← ̸= {}: Create k∆←

1 , . . . , k∆←
n←+1 similar)

(e) Create tokens ∆j+1, . . . , ∆n as ∆i ← UE.GenTok(k∆
i , k∆

i+1) for all j +1 ≤
i ≤ n (if P← ̸= {}: Create ∆←1 , . . . , ∆←n← similar)

(f) Pick keys kη
1 , . . . , kη

n+1 for the block cipher and kγ
1 , . . . , kγ

n+1 for the MAC
randomly. (If P← ̸= {}, similar for keys on the backwards path)

(g) Create the header η1 with the keys kη
1 , . . . , kη

n+1, ∆1, . . . , ∆j−1, ∆j+1, . . . ,
∆n, k∆

n+1 (resp. additionally with the keys for the backward path, if
P← ̸= {}) as the protocol does, but replace Ej = PK.EncPKj (0, . . . , 0)
and Bi

j = (Ri) (as in the Hybrids before). Store the intermediate result
ηj+1 for later use. Note that we can do this without knowing ∆j , as it
has been replaced with 0 . . . 0 earlier.

Construct Ō1: Ō1 ← FormOnion(1, R̄, m̄, P̄→, P̄←, (PK )P̄→ , (PK )P̄←)
6. Send O1 = (η1, δ1) to D

7. Oracle access: Answer all Reply as before. Upon receiving Proc(P, O = (η, δ))
from D:

– check if η = ηj and P = PH :
• If not, process/reply with knowledge of secret keys as before (if it is

not on the η-List).
• If so, (η = ηj , i.e. the challenge is recognized):

(a) Request Dec(δ) from ChCCA and output a fail if a message m′ is
returned. (This is, the header is equal, but the payload has been
modified which requires a fail since Hybrid 5).)

(b) If no fail was output: (we use38 FormOnion(j+1,R, m, P→,P←,
(PK )P→ , (PK )P←) as introduced in Hybrid 6.)
∗ δ+1 = UE.Enc(k∆

j+1, m).( k∆
j+1 was created in Step 5.(d).)

∗ η+1 = ηj+1. (ηj+1 was stored during Step 5.(g).)
∗ Give Pj+1 and O+1 = (δ+1, η+1) as reply to D.

8. Receive the guess from D and return it as own guess.

Note that the keys and tokens during FormOnion and in our simulation are
generated with the same functions and parameters. Thus ACCA indeed simulates
38 We do not know all random coins R used for all onion layers of this communication.

To create the j + 1 -th layer we however only need the right randomness for the keys
that we generated ourselves during 5. (d) -(f) and we can pick the remaining parts
of R arbitrarily as they will not be used for layer j + 1.
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Hybrid 6) for b = 0 and Hybrid 7) for b = 1 and thus wins the UP-IND-RCCA
game with the same advantage as D distinguishes the hybrids.

Security loss: |Pr(X6) − Pr(X7)| ≤ ϵUP-IND-RCCA with ϵUP-IND-RCCA being
the UP-IND-RCCA-advantage of some efficient adversary against our used UE
scheme (which is negligible according to our choice).
Hybrid 8). As Hybrid 7), but with differences in the following steps:

5. The challenger creates the onion as before, but replaces the real ∆i with the
(first part of the) output of the token simulator SimTok(sp): ∆′i for Ei:

Ei = PK.EncPKi(k
η
i , kγ

i , ∆′i)
All layers are constructed as before but using the replacements for the cal-
culations (changes the MACs).

6. The challenger gives the final O1 to the adversary.
7. RecognizeOnion now checks for the adapted header (as constructed above).

Hybrid 7) ≈IND Hybrid 8). Token simulatabability of UE guarantees that
the simulated and honest tokens are identically distributed. As this is the only
difference between the hybrids, they are perfectly indistinguishable.

Security loss: |Pr(X7)− Pr(X8)| = 0
Hybrid 9.) As Hybrid 8), but with differences in the following steps:

5. The challenger creates the onion as before, but replaces the keys kη
i , kγ

i with
freshly generated keys kη

i
′
, kγ

i
′ for Ei:

Ei = PK.EncPKi(k
η
i
′
, kγ

i
′
, ∆′i)

All layers are constructed as before but using the replacements for the cal-
culations (calculates the MACs with the new keys and uses the new keys to
encrypt the blocks).

6. The challenger gives the final O1 to the adversary.
7. RecognizeOnion now checks for the adapted header (as constructed above).

Hybrid 8) ≈IND Hybrid 9). The hybrids are identical except that now
another randomness is used to pick the keys. As the randomness is chosen anew
and independently from all information of the onion in our scheme and thus in
every run of the game, the hybrids are equivalent.

Security loss: |Pr(X8)− Pr(X9)| = 0
Hybrid 10) until Hybrid 15). Those hybrids revert earlier hybrids (except for
replacing randomness to the receiver signal in the first block and the simulated
tokens with new calculated tokens). Thus a similar argumentation as in the
original hybrid transition applies.
Total Security loss: |Pr(X1) − Pr(X15)| ≤ 2 · ϵPK-CCA2 + 2 · ϵSUF-CMA + 2 ·
ϵPRP-CCA + 2 · ϵUP-INT-PTXT + ϵUP-IND-RCCA with ϵ defined as the advantage
of some efficient adversary against the corresponding primitive, which are all
negligible due to our choices.
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Table 4. Overview Proof for LU→, j = n + 1

Hybrid Description Reduction
1) The LU→ game with challenge bit chosen as 0
2) We replace the temporary keys kη

j , kγ
j , k∆

j=n+1 at the honest re-
lay by 0..0 before they are encrypted in Ej (and adapt recog-
nizeOnion to the new header), but still use the real keys for the
processing.

PK-CCA2

3) We let the oracles in step 7 output a fail, if the challenge Ej is
recognized, but other parts of the header differ.

SUF-CMA

4) We replace the blocks B1
j , ..., B2N−j

j by R1, R2, . . . , R2N−j with
Ri being randomly chosen (and adapt recognizeOnion to the
new header), but use the real blocks for the processing.

PRP-CCA

5) We let oracles in step 7 output a fail, if the challenge header
ηj is recognized, but the payload does not include the correct
plaintext.

UP-INT-PTXT

6) We let the oracles in step 7 output the replicated layer j +
1:(F ormOnion(j + 1,R, m←,P→,P←, (P K)P→ , (P K)P←)) for
the Reply(PH , O, m←) request and we output (⊥, m) for the
Proc(PH , O), if the challenge ηj is recognized, the payload
matches, and real processing of the given onion would not fail.

Reply: Same behavior as be-
fore, Proc: UE-Correctness

7) We replace the content δj by a random string of the same length. UP-IND-RCCA
8) We replace the tokens ∆i in Ei for i < j with simulated ones

(and adapt the oracle correspondingly)
Token Simulatability

9) We replace the keys kη
i , kγ

i in Ei for i < j with freshly chosen
keys and adapt the corresponding parts of the header accord-
ingly

(just another outcome of the
sender’s random choice)

10) We replace the (simulated) tokens ∆i in Ei for i < j with (newly
generated) tokens that are created according to the generation
function

Token Simulatability

11) We revert the changes made in Game 5). UP-INT-PTXT
12) We replace the block B1

j by PRP.Enc(⊥,⊥,⊥) (and adapt rec-
ognizeOnion to the new header).

PRP-CCA

13) We revert the changes made in Game 6). SUF-CMA
14) We revert the changes made in Game 5). PK-CCA2
15) We use FormOnion with the parameter of the b = 1 case to

generate the first challenge onion layer. The LU→ game with
challenge bit chosen as 1

Same behavior except for new
draw of randomness

Table 5. Overview Hybrids for LU→, j = n + 1

O1: kη
j , kγ

j , k∆
j in Ej B1

j , . . . , B2N−j
j δj Oracle kη

i , kγ
i , ∆i in Ei, i < j

1) param. b = 0 real kη
j , kγ

j , k∆
j contains path after Pj contains m honest proc.

2) (0, . . . , 0)
3) fail, if E1 = exp, η modif.
4) R1, R2, . . . , R2N−j

5) fail, if η1 = exp , δ modif.
6) recog+ FormOnion(i > n + 1)
7) rdm m̄

8) kη
i , kγ

i , sim

9) kη
i
′, kγ

i
′, sim

10) kη
i
′, kγ

i
′, ∆i

′

11) proc, if η1 = exp , δ modif.
12) PRP.Enc(⊥,⊥,⊥), R2, . . . , R2N−j

13) proc, if E1 = exp, η modif.
14) real kη

j , kγ
j , k∆

j

15) param. b = 1 (real kη
j , kγ

j , k∆
j ) (receiver signal and rdm blocks) (contains m̄) (recog.+FormOnion(i > n + 1)) (fresh chosen kη

i
′, kγ

i
′, ∆i

′)
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E.2 Forwards Layer-Unlinkability, Honest Receiver: LU→, j = n+1:

The hybrids work exactly as before, except for a small change in Hybrid 6, which
we detail below.

H4 → H5: Note that even for the receiver this works as before, as onions
have to be processed before they can be replied (Assumption 6 and included in
LU→).

Precise steps of AUP-INT-PTXT:

1. Pick random router names PH , PS and generate corresponding key pairs
(PKH , SKH) ← G(1λ, p, PH), (PKS , SKS) ← G(1λ, p, PS). Send PH , PS

and PKH , PKS to D.
2. Oracle access: Use SKH resp. SKS to answer the requests as in the original

game.
3. Receive message m, paths P→, P← and public keys PK i for both path

directions from D.
4. Check validity of names and set PK j = PKH and PK←n←+1 = PKS .
5. Construct O1 carefully using the UP-INT-PTXT oracles as follows:

(a) δ1 = Enc(m)
(b) Use Next oracles n times until epoch e = n + 1.
(c) Get tokens ∆1, . . . , ∆n with Corrupt(token, 2), . . . , Corrupt(token, n + 1)
(d) If P← ̸= {} create keys k∆← and tokens ∆← for the backwards path

with UE.GenKey and UE.GenTok.
(e) Pick keys kη

1 , . . . , kη
n+1 for the block cipher and kγ

1 , . . . , kγ
n+1 for the MAC

randomly. (If P← ̸= {}, similar for keys on the backwards path)
(f) Create the header with the keys kη

1 , . . . , kη
n+1, ∆1, . . . , ∆n (resp. addition-

ally with the keys for the backward path, if P← ̸= {}) as the protocol
does, but replace Ej = PK.EncPKj

(0, . . . , 0) and Bi
j = (Ri) (as in the

Hybrids before). Note that we can do this without knowing k∆
n+1, as it

has been replaced with 0 . . . 0 in the earlier Hybrids.
Construct Ō1 as before:

Ō1 ← FormOnion(1, R̄, m̄, P̄→, P̄←, (PK )P̄→ , (PK )P̄←)

6. Send O1 to D

7. Oracle access: Upon receiving Proc(P, O) from D, check if η = ηj and P =
PH . If not, process/reply with knowledge of secret keys as before (if it is not
on the η-List). Otherwise, output δj as c∗ and stop.

Hybrid 6). As Hybrid 5), but with differences in the following step:

7. The challenger uses Pj=n+1 and FormOnion(j+1,R, m←,P→,P←, (PK )P→ ,
(PK )P←) to answer Reply(PH , O, m←) requests with η = ηj , i.e. RecognizeO-
nion is true; if O is on the OH -list. Further, for a Proc(PH , O)request, we
check that η = ηj is not on the ηH -list, the payload matches, (if so) out-
put (⊥, m) and store η on the ηH -list and O on the OH -list. Otherwise, the
challenger processes the onions for the oracle as before.
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H5 → H6: As before, except for using Correctness: Since the correct message
is included and the expected challenge header is used, FormOnion outputting
(⊥, m) for the receiver is what would also happen during real processing as long
as the UE scheme has correctness.

E.3 Backwards Layer-Unlinkability, Honest Receiver: LU←, j← = 0

Similar to the LU→ proofs, we now use Xi as the event that ALU← outputs
b′ = 1 in the i-th hybrid game Hi.

Table 6. Overview Proof for LU←, j← = 0

Hybrid Description Reduction
1) The LU← game with challenge bit chosen as 0
2) We replace the temporary keys kη

n+1, kγ
n+1, k∆

n+1 on the forward
path at the honest receiver with 0 . . . 0 in their encryption for
En+1 (and adapt recognizeOnion to the new header), but still
use the real keys for the processing.

PK-CCA2

3) We let the oracles in step 6 output a fail, if the challenge En+1
is recognized, but other parts of the header differ.

SUF-CMA

4) We replace the blocks B1
n+1, . . . B2N−1

n+1 by random values when
forming the challenge onion (and adapt recognizeOnion to the
new header), but use the real block for the processing. (In partic-
ular, in this way we get rid of k∆←

1 and all kη←
>j← , kγ←

>j← , ∆←>j←)

PRP-CCA

5) We replace the content δ←1 by a random string of the same length
during ReplyOnion.

UP-IND-RCCA

6) We replace the tokens ∆←>j in Ei for i > j with simulated ones
(and adapt the oracle correspondingly)

Token Simulatability

7) We replace the keys k∆←
1 , kη←

>j , kγ←
>j in Ei for i > j with freshly

chosen keys and adapt the corresponding parts of the header
accordingly

(just another outcome of the
sender’s random choice)

8) We replace the (simulated) tokens ∆←>j in Ei for i > j with
(newly generated) tokens that are created according to the gen-
eration function

Token Simulatability

9) We revert the changes made in Game 4). PRP-CCA
10) We revert the changes made in Game 3). SUF-CMA
11) We revert the changes made in Game 2). PK-CCA2
12) The LU← game with challenge bit chosen as 1 Same Behavior

Hybrid 1

1. The adversary receives the router names PH , PS and challenge public keys
PKS , PKH , chosen by the challenger by letting (PKH , SKH)← G(1λ, p, PH)
and (PKS , SKS)← G(1λ, p, PS).

2. Oracle access: The adversary may submit any number of Proc and Reply
requests for PH or PS to the challenger. For any Proc(PH , O), the chal-
lenger checks whether η is on the ηH - list. If not, it sends the output of
ProcOnion(SKH , O, PH), stores η on the ηH -list and O on the OH -list. For
any Reply(PH , O, m) the challenger checks if O is on the OH - list and if so,
the challenger sends ReplyOnion(m, O, PH , SKH) to the adversary. (Similar
for requests on PS with the ηS-list).
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Table 7. Overview Hybrids for LU←, j← = 0 with “bw” denoting parts of the backward
onion

δn+1 B1
n+1, . . . , B2N−1

n+1 kη
n+1, kγ

n+1, k∆
n+1 δ←1 (bw) Oracle (Reply)

1) real PRP.Enc(⊥,⊥,⊥), bw path, real contains m← recog.+ honest reply
sender & relay padding (adv. chosen)

2) (0, . . . , 0) (adapt recog.)
3) fail, if En+1 = exp, η modif.
4) random (treat B1

n+1 as path-end)
5) random
6) use simulated ∆←>j = sim

7) use fresh k∆←
1 , kη←

>j , kγ←
>j

8) use fresh ∆←>j

9) PRP.Enc(⊥,⊥,⊥), bw path use actual content of B1
n+1

sender & relay padding
10) verify MAC,

if En+1 = exp, η modif.
11) real
12) real PRP.Enc(⊥,⊥,⊥), bw path real random use fresh k∆←

1 , kη←
>j , kγ←

>j , ∆←>j

sender & relay padding

3. The adversary submits
– message m,
– a position j← with 0 ≤ j← ≤ n← + 1,
– a path P→ = (P1, . . . , Pj , . . . , Pn+1), where Pn+1 = PH ,
– a path P← = (P←1 , . . . , P←j← , . . . , P←n←+1 = PS) with the second honest

node PS at position n← + 1
– and public keys for all nodes PK i (1 ≤ i ≤ n + 1 for the nodes on the

path and n + 1 < i for the other relays).
4. The challenger checks that the chosen paths are acyclic, the router names

and public keys are valid and that the same key is chosen if the router names
are equal, and if so, sets PKn+1 = PKH , PK←n←+1 = PKS and sets bit b at
random.

5. The challenger creates the onion with the adversary’s input choice and hon-
estly chosen randomness R:

O1 ←FormOnion(1,R, m,P→,P←, (PK)P→ , (PK)P←)

and sends O1 to the adversary.
6. The adversary gets oracle access as in step 2) except if:

Exception 1) The request is ...
• Reply(PH , O, m←) with RecognizeOnion((n + 1), O,R, m,P→,P←,

(PK )P→ , (PK )P←) = True, O is on the OH - list and no onion
with this η has been replied to before and ReplyOnion(m←, O, PH ,
SKH) ̸=⊥:

.. then: The challenger picks the remaining return path P̄→ = (P←j←+1,

. . . , P←n←+1), an empty backward path P̄← = (), and a random message
m̄, another honestly chosen randomness R̄, and generates:

Ō1 ← FormOnion(1, R̄, m̄, P̄→, P̄←, (PK)P̄→ , (PK)P̄←)
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• The challenger calculates (Oj←+1, P←j←+1) = ReplyOnion(m←, O,
P←j← , SKH) and gives Oj←+1 for P←j←+1 to the adversary.

Exception 2) Proc(PS , O) with O being the challenge onion as processed
for the final receiver on the backward path, i.e.:
• RecognizeOnion((n + 1) + (n← + 1), O,R) = True

.. then the challenger outputs nothing.
7. The adversary produces guess b′ .

Hybrid 2 As Hybrid 1), but with differences in the following step:
5. The challenger creates the onion as before, but encrypts 0 . . . 0 instead of

kη
n+1, kγ

n+1, k∆
n+1 for En+1 (but still encrypts other blocks of the header with

the real kη
n+1, the payload with the real k∆

n+1 and MACs with kγ
n+1):

En+1 = PK.EncPKn+1(0, . . . , 0)

The challenger calculates the new MAC for the blocks. All the other layers
are constructed as before but using the replacements for the calculations, i.e.
the onion layer On+1 is wrapped as before. The challenger gives the final O1
to the adversary.

6. RecognizeOnion now checks for the adapted header (as constructed above)
and if En+1 is reused in a not recognized onion, the original keys kη

n+1, kγ
n+1,

k∆
n+1 are returned as decryption.

H1 ⇒ H2:
|Pr(X1)− Pr(X2)| ≤ ϵPK-CCA2

with ϵPK-CCA2 being the CCA2-advantage of some efficient adversary against
our PK encryption scheme; argued similarly to LU→, j < n + 1,H1 ⇒ H2.
Hybrid 3 As Hybrid 2) but with differences in the following step:
7. If an onion is handed to the oracles that reuses En+1, but changes another

part of the header, i.e. is not the recognized as challenge onion processing,
processing fails.
H2 ⇒ H3: Security loss:

|Pr(X2)− Pr(X3)| ≤ ϵSUF−CMA

with ϵSUF−CMA being the SUF − CMA-advantage of some efficient adversary
against our used MAC scheme; argued similarly to LU→, j < n + 1,H2 ⇒ H3.
Hybrid 4 As Hybrid 3), but with differences in the following step:
5. The challenger creates the onion as before but the blocks B1

n+1, . . . , B2N−1
n+1

are replaced with R1, . . . , R2N−1 with Ri being randomly chosen blocks to
calculate O1:

Ej = PK.EncPKj (0, . . . , 0)
Bi

n+1 = (Ri) for 1 ≤ i ≤ 2N − 1 with Ri being the randomly generated
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The challenger continues to wrap the onion with the replaced Bn+1 to create
O1.

6. The challenger answers oracles as in Hybrid 3), except if the header reuses
En+1 and Bi

n+1. In this case, the challenger replaces the header with the one
first calculated for this position and processes it as usual.

H3 ⇒ H4: Security loss:

|Pr(X3)− Pr(X4)| ≤ ϵPRP-CCA

with ϵPRP-CCA being the CCA-advantage of some efficient adversary against our
used PRP; argued similarly to LU→, j < n + 1,H3 ⇒ H4.
Hybrid 5 As Hybrid 4), but with differences in the following step:

6. The challenger creates the reply onion in Exception 1 as before but with
random payload:

δ←1 = (UE.Enck∆←
1

(R)) with R being a random message

H4 → H5: As this is the first time that we replace the backward payload, we
argue this transition in more details below:

Precise steps of ACCA:

1. Pick random router names PH , PS and generate corresponding key pairs
(PKH , SKH) ← G(1λ, p, PH), (PKS , SKS) ← G(1λ, p, PS). Send PH , PS

and PKH , PKS to D.
2. Oracle access: Use SKH resp. SKS to answer as in the original game.
3. Receive message m, paths P→, P← and public keys PK i for both path

directions from D.
4. Check validity of names and set PKn+1 = PKH and PK←n←+1 = PKS .
5. Construct O1 as before (Note that the backwards part of the header has

been replaced with random bocks before and thus we do not need to involve
any UP-IND-RCCA oracles for this construction.)

6. Send O1 to D

7. Oracle access: Process Proc requests normally. Upon receiving a Reply(P, O =
(η, δ), m←) from D:

– check if η = ηn and P = PH :
• If not: process/reply with knowledge of secret keys and adaptations

to the processing as before (if it is not on the η-List and if it not
violates exception 2 (is the reply processed at the original sender)).
• If so: Construct the reply onion carefully using the UP-IND-RCCA

oracles and challenge as follows:
(a) Sends M0 = m←, M1 = R ←R Msp with |m←| = |R| to ChCCA

and receives C∗ ←R UE.Enc(k∆
1 , Mb) from ChCCA. It sets δ̄1 =

C∗.
(b) Use Next oracles n← times until epoch e = n← + 1.
(c) Get tokens ∆1, . . . , ∆n← with Corrupt(token, 2), . . . ,

Corrupt(token, n← + 1)
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(d) Create k∆
n←+1 ← UE.GenKey(sp)

(e) Pick keys kη
1 , . . . , kη

n+1 for the block cipher and kγ
1 , . . . , kγ

n+1 for
the MAC randomly.

(f) Create the non-repliable (backwards) header η̄1 with the keys
kη

1 , . . . , kη
n+1, ∆1, . . . , ∆n← , k∆

n←+1 as the protocol does.
(g) Return onion (η̄1, δ̄1) for P←1 .
(h) Adapt exception 2 to work for the newly constructed header (the

sender will not process this onion in the oracle).
8. Receive the guess from D and return it as own guess.

Security loss:
|Pr(X4)− Pr(X5)| ≤ ϵUP-IND-RCCA

with ϵUP-IND-RCCA being the UP-IND-RCCA-advantage of some efficient adver-
sary against our used UE scheme (which is negligible according to our choice).
Hybrid 6 As Hybrid 5), but with differences in the following step:

6. The challenger creates the reply onion in Exception 1 as before but with
simulated tokens ∆>j← = simi. Exception 2 is adapted to match these new
header layers.

Security loss:
|Pr(X5)− Pr(X6)| = 0

H5 → H6: argued similarly to LU→, j < n + 1,H7 ⇒ H8.
Hybrid 7 As Hybrid 6), but with differences in the following step:

6. The challenger creates the reply onion in Exception 1 as before but with
freshly chosen k∆←

1 , kη←
>j← , kγ←

>j← . Exception 2 is adapted to match these
new header layers.

Security loss:
|Pr(X6)− Pr(X7)| = 0

H6 → H7: argued similarly to LU→, j < n + 1,H8 ⇒ H9.
Hybrid 8 As Hybrid 7), but with differences in the following step:

6. The challenger creates the reply onion in Exception 1 as before but with
freshly chosen ∆′>j← . Exception 2 is adapted to match these new header
layers.

Security loss:
|Pr(X7)− Pr(X8)| = 0

H7 → H8: argued similarly to LU→, j < n + 1,H9 ⇒ H10.
Remaining hybrids: The remaining hybrids just revert changes done in earlier
hybrids and are argued similarly to these.
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Table 8. Overview Proof for LU←, j← > 0

Hybrid Description Reduction
1) The LU← game with challenge bit chosen as 0
2) We replace the temporary keys kη←

j← , kγ←
j← , ∆←j← at the honest

relay with 0 . . . 0 in their encryption for E←j← (and adapt recog-
nizeOnion to the new header) as part of the payload of O1, but
still use the real keys for the processing.

PK-CCA2

3) We let the oracles in step 6 output a fail, if the challenge E←j←
is recognized, but other parts of the header differ.

SUF-CMA

4) We replace all B1←
j← , ..., B2N−1←

j← while constructing the
header with randomness, but use the real header for j← + 1
as answer to the corresponding Proc request. Note that replac-
ing all B←j←s results in not including any keys for > j← in the
earlier header.

PRP-CCA

5) We replace the padding included in j← + 1:
B(n−j←+2)←

j←+1, . . . B2N−1←
j← (bw) with (fresh) random-

ness.

PRP-CCA

6) We replace the content δ←j with a random string of the same
length during ProcOnion at PH .

UP-IND-RCCA

7) We replace the tokens ∆←>j in Ei for i > j with simulated ones
(and adapt the oracle correspondingly)

Token Simulatability

8) We replace the keys k∆←
1 , kη←

>j , kγ←
>j in Ei for i > j with freshly

chosen keys and adapt the corresponding parts of the header
accordingly

(just another outcome of the
sender’s random choice)

9) We replace the (simulated) tokens ∆←>j in Ei for i > j with
(newly generated) tokens that are created according to the gen-
eration function

Token Simulatability

10) We revert the changes made in Game 4). PRP-CCA
11) We revert the changes made in Game 3). SUF-CMA
12) We revert the changes made in Game 2). PK-CCA2
13) The LU← game with challenge bit chosen as 1 Same Behavior

E.4 Backwards Layer-Unlinkability, Honest Relay: LU←, j← > 0:

Similar to the LU→ proofs, we now use Xi as the event that ALU← outputs
b′ = 1 in the i-th hybrid game Hi.
Hybrid 1

1. The adversary receives the router names PH , PS and challenge public keys
PKS , PKH , chosen by the challenger by letting (PKH , SKH)← G(1λ, p, PH)
and (PKS , SKS)← G(1λ, p, PS).

2. Oracle access: The adversary may submit any number of Proc and Reply
requests for PH or PS to the challenger. For any Proc(PH , O), the chal-
lenger checks whether η is on the ηH - list. If not, it sends the output of
ProcOnion(SKH , O, PH), stores η on the ηH -list and O on the OH -list. For
any Reply(PH , O, m) the challenger checks if O is on the OH - list and if so,
the challenger sends ReplyOnion(m, O, PH , SKH) to the adversary. (Similar
for requests on PS with the ηS-list).

3. The adversary submits
– message m,
– a position j← with 0 ≤ j← ≤ n← + 1,
– a path P→ = (P1, . . . , Pj , . . . , Pn+1),
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Table 9. Overview Hybrids for LU←, j← > 0 with “bw” denoting parts of the backward
onion

B1←
j← , . . . kη←

j← , kγ←
j← , ∆←j← B(n−j←+2)←

j←+1, . . . δ←j (bw) Oracle (bw)
B2N−1←

j← (bw) in E←j← (bw) B(2N−1)←
j←+1 (bw)

1) real real kη
j← , kγ

j← , ∆←j← PRP.Deci(0, . . . , 0) contains m← recog.+ honest proc
(Relay padding) (adv. chosen)

2) (0, . . . , 0) use kη
j← , kγ

j← , kδ
j← ,

if E←j← is recognized
3) fail, if E←j← = exp, η modif.
4) random use sender’s kη

>j← , kγ
>j← , ∆←>j←

for challenge onion
5) random fresh rdm padding

for challenge onion
6) random
7) use simulated ∆←>j = sim

8) use fresh k∆←
1 , kη←

>j , kγ←
>j

9) use fresh ∆←>j

10) real
11) proc, if E←j← = exp, η modif.
12) real kη

j← , kγ
j← , ∆←j←

13) real real kη
j← , kγ

j← , ∆←j← random random recog.+ Ō1

(Sender padding) (new fw onion)

– a path P← = (P←1 , . . . , P←j← , . . . , P←n←+1 = PS) with the honest node PH

at backward position j←, if 1 ≤ j← ≤ n← + 1, and the second honest
node PS at position n← + 1

– and public keys for all nodes PK i (1 ≤ i ≤ n + 1 for the nodes on the
path and n + 1 < i for the other relays).

4. The challenger checks that the chosen paths are acyclic, the router names
and public keys are valid and that the same key is chosen if the router names
are equal, and if so, sets PK←j← = PKH , PK←n←+1 = PKS and sets bit b at
random.

5. The challenger creates the onion with the adversary’s input choice and hon-
estly chosen randomness R:

O1 ←FormOnion(1,R, m,P→,P←, (PK)P→ , (PK)P←)

and sends O1 to the adversary.
6. The adversary gets oracle access as in step 2) except if:

Exception 1) The request is ...
• Proc(PH , O) with RecognizeOnion((n + 1) + j←, O,R, m,P→,P←,

(PK )P→ , (PK )P←) = True, η is not on the ηH -list and ProcOnion(
SKH , O, PH) ̸=⊥: stores η on the ηH and O on the OH -list and . . .

.. then: The challenger picks the rest of the return path P̄→ = (P←j←+1,

. . . , P←n←+1), an empty backward path P̄← = (), and a random message
m̄, another honestly chosen randomness R̄, and generates:

Ō1 ← FormOnion(1, R̄, m̄, P̄→, P̄←, (PK)P̄→ , (PK)P̄←)

• The challenger calculates
(Oj←+1, P←j←+1) = ProcOnion(SKH , O, P←j←) and gives Oj←+1 for
P←j←+1 to the adversary.
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Exception 2) Proc(PS , O) with O being the challenge onion as processed
for the final receiver on the backward path, i.e.:
• RecognizeOnion((n + 1) + (n← + 1), O,R) = True

.. then the challenger outputs nothing.
7. The adversary produces guess b′ .

Hybrid 2 As Hybrid 1), but with differences in the following step:

5. The challenger creates the onion as before, but encrypts 0 . . . 0 instead of
kη←

j← , kγ←
j← , ∆←j← for E←j← (but still encrypts other blocks of the header with

the real kη←
j← , the payload with the real ∆←j← and MACs with kγ←

j←):

E←j← = PK.EncPKj← (0, . . . , 0)

The challenger calculates the new MAC for the blocks. All the other layers
are constructed as before but using the replacements for the calculations,
i.e. the onion layer O′j← is wrapped as before and the new backward header
embedded in O1. The challenger gives the final O1 to the adversary.

6. RecognizeOnion now checks for the adapted header (as constructed above)
and if E←j← is reused in a not recognized onion, the original keys kη←

j← , kγ←
j← ,

∆←j← are returned as decryption.

H1 ⇒ H2:
|Pr(X1)− Pr(X2)| ≤ ϵPK-CCA2

with ϵPK-CCA2 being the CCA2-advantage of some efficient adversary against
our PK encryption scheme; argued similarly to LU→, j < n + 1,H1 ⇒ H2.
Hybrid 3 As Hybrid 2) but with differences in the following step:

7. If an onion is handed to the oracles that reuses E←j← , but changes another
part of the header, i.e. is not the recognized as challenge onion processing,
processing fails.

H2 ⇒ H3: Security loss:

|Pr(X2)− Pr(X3)| ≤ ϵSUF−CMA

with ϵSUF−CMA being the SUF − CMA-advantage of some efficient adversary
against our used MAC scheme; argued similarly to LU→, j < n + 1,H2 ⇒ H3.
Hybrid 4 As Hybrid 3), but with differences in the following step:

5. The challenger creates the onion as before but the block B1←
j← , ..., B2N−1←

j←

are replaced with Ri being randomly chosen blocks to calculate O1:

Bi
j← = (Ri) for 1 ≤ i ≤ 2N − 1 with Ri being the randomly generated
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6. The challenger answers oracles as in Hybrid 3), except if the header matches
ηj← and the request Proc. In this case, the original (backwards) header for
j← (as before the random replacement) is output as processing.

H3 ⇒ H4: Security loss:

|Pr(X3)− Pr(X4)| ≤ ϵPRP-CCA

with ϵPRP-CCA being the CCA-advantage of some efficient adversary against our
used PRP; argued similarly to LU→, j < n + 1,H3 ⇒ H4.
Hybrid 5 As Hybrid 4), but with differences in the following step:

5. The challenger creates the onion as before but the block B(n−j←+2)←
j←+1, . . . B2N−1←

j←

are replaced with Ri being randomly chosen blocks to calculate O1:

Bi
j←+1 = (Ri) for n− j← + 2 ≤ i ≤ 2N − 1 with Ri being the randomly generated

H4 ⇒ H5: Security loss:

|Pr(X4)− Pr(X5)| ≤ ϵPRP-CCA

with ϵPRP-CCA being the CCA-advantage of some efficient adversary against our
used PRP; argued similarly to LU→, j < n + 1,H3 ⇒ H4.
Hybrid 6 As Hybrid 5), but with differences in the following step:

5. The challenger creates the onion as before but with random payload:

δ1 = (UE.Enck∆
1

(R)) with R being a random message

6. The expected plaintext encrypted in the payload of the recognized onion is
adapted to be R. Otherwise, the oracle works as before.

H5 → H6: This is similar to LU←, j← = 0,H4 ⇒ H5, but as we replace
during the backward path (instead of in the beginning where the backward
message is known), we have to retrieve the backward message using the UE
decryption as shown below:

Precise steps of ACCA:

1. Pick random router names PH , PS and generate corresponding key pairs
(PKH , SKH) ← G(1λ, p, PH), (PKS , SKS) ← G(1λ, p, PS). Send PH , PS

and PKH , PKS to D.
2. Oracle access: Use SKH resp. SKS to answer the oracle as in the original

game.
3. Receive message m, paths P→, P← and public keys PK i for both path

directions from D.
4. Check validity of names and set PKn+1 = PKH and PK←n←+1 = PKS .
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5. Construct O1 as before (Note that the (non-repliable) backwards header used
for the construction of O1 is thus constructed with the GenTok and GenKey
until P←j = PH and for > j← the keys are already replaced by randomness
as in earlier hybrids. Store η←j← and k∆

j← for later use. We thus do not need
to involve any UP-IND-RCCA oracles for this construction.)

6. Send O1 to D
7. Oracle access: Reply are processed normally. Upon receiving Proc(P, O =

(η, δ)) from D:
– check if η = η←j← for PH = P :
• If not, process with knowledge of secret keys and adaptations to the

processing as before (if it is not on the η-List and if it not violates
exception 2 (is the reply processed at the original sender)).

• If so: Construct the reply onion carefully using the UP-IND-RCCA
oracles and challenge as follows:
(a) Find out the included message m← by m← ← UE.Dec(k∆

j← , δ)
(Note that this is not an oracle call, but instead uses the key
generated during 5.)

(b) Sends M0 = m←, M1 = R ←R Msp with |m←| = |R| to ChCCA

and receives C∗ ←R UE.Enc(k∆
1 , Mb) from ChCCA. It sets δ←j←+1 =

C∗.
(c) Use Next oracles n← − j← times until epoch e = n← + 1− j←.
(d) Get tokens ∆1, . . . , ∆n←−j← with Corrupt(token, 2), . . . ,

Corrupt(token, n← + 1− j←)
(e) Pick keys kη

1 , . . . , kη
n←−j← for the block cipher and kγ

1 , . . . , kγ
n←−j←

for the MAC randomly.
(f) Create the header η←j←+1 (for the last part of the backwards path)

with the keys kη
1 , . . . , kη

n←−j← , kγ
1 , . . . , kγ

n←−j← , ∆1, . . . , ∆n←−j←

as the protocol does.
(g) Return the onion (η←j←+1, δ←j←+1) for P←j←+1.
(h) Adapt exception 2 to work for the newly constructed header (the

sender will not process this onion in the oracle).
8. Receive the guess from D and return it as own guess.

Security loss:
|Pr(X4)− Pr(X5)| ≤ ϵUP-IND-RCCA

with ϵUP-IND-RCCA being the UP-IND-RCCA-advantage of some efficient adver-
sary against our used UE scheme (which is negligible according to our choice).
Hybrid 7 As Hybrid 6), but with differences in the following step:
6. The challenger creates the reply onion in Exception 1 as before but with

simulated tokens ∆>j← = simi. Exception 2 is adapted to match these new
header layers.
Security loss:

|Pr(X6)− Pr(X7)| = 0
H6 → H7: argued similarly to LU→, j < n + 1,H7 ⇒ H8.

Hybrid 8 As Hybrid 7), but with differences in the following step:
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6. The challenger creates the reply onion in Exception 1 as before but with
freshly chosen k∆←

1 , kη←
>j← , kγ←

>j← . Exception 2 is adapted to match these
new header layers.

Security loss:
|Pr(X7)− Pr(X8)| = 0

H7 → H8: argued similarly to LU→, j < n + 1,H8 ⇒ H9.
Hybrid 9 As Hybrid 8), but with differences in the following step:
6. The challenger creates the reply onion in Exception 1 as before but with

freshly chosen ∆′>j← . Exception 2 is adapted to match these new header
layers.

Security loss:
|Pr(X8)− Pr(X9)| = 0

H8 → H9: argued similarly to LU→, j < n + 1,H9 ⇒ H10.
Remaining hybrids: The remaining hybrids just revert changes done in earlier
hybrids and are argued similarly to these.

E.5 Repliable Tail-Indistinguishability: T I↔

Table 10. Overview Proof for T I

Hybrid Description Reduction
1) The T I↔ game with challenge bit chosen as 0
2) We replace the blocks B

2N−(j+1)
j+1 , ..., B2N−1

j+1 in step 5 by random
strings R2N−(j+1), . . . , R2N−1 (and adapt recognizeOnion to the
new header).

PRP-CCA

3) We replace the temporary keys kη←
j← , kγ←

j← , ∆←j← at the honest
relay with 0 . . . 0 in their encryption for E←j← (and adapt recog-
nizeOnion to the new header) as part of the payload of Oj+1,
but still use the real keys for the processing.

PK-CCA2

4) We let the oracles in step 7 output a fail, if the challenge E←j←
is recognized, but other parts of the header differ.

SUF-CMA

5) We replace the block B1←
j← with a path-end-block and

B2←
j← , . . . , B(n←−j←+1)←

j← with random blocks in the payload
part of the challenge onion representing the backward header.

PRP-CCA

6) We revert the changes of Game 4). SUF-CMA
7) We revert the changes of Game 3). PK-CCA2
8) The T I↔ game with challenge bit chosen as 1 Same behavior as before

Similar to the LU→ proofs, we now use Xi as the event that AT I↔ outputs
b′ = 1 in the i-th hybrid game Hi.
Hybrid 1

1. The adversary receives the router names PH , P←H , PS and challenge public
keys PKS , PKH , PK←H , chosen by the challenger by letting (PKH , SKH)←
G(1λ, p, PH), (PK←H , SK←H )← G(1λ, p, P←H ), (PKS , SKS)← G(1λ, p, PS).
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Table 11. Overview Hybrids for T I with “bw” denoting parts of the backward onion

kη
j , kγ

j , ∆j B
2N−(j+1)
j+1 , . . . , B2N−1

j+1 kη←
j← , kγ←

j← , ∆←j← B2←
j← , . . . , B(n←−j←+1)←

j← (bw) Oracle (bw)
in Ej in E←j← (bw)

1) real contains real processing real complete path fail, if b = 0 reply back at
honest relay (exception step 7)

2) R2N−(j+1), . . . , R2N−1

3) (0, . . . , 0) (adapt recog.)
4) fail, if E←j← = exp, η modif.
5) PRP.Enc(⊥,⊥,⊥), R2, . . . , Rn←−j←+1

6) proc, if E←j← = exp, η modif.
7) real
8) real Sender padding real shortened path fail if b = 1 reply back at

honest relay (exception step 7)

2. Oracle access: The adversary may submit any number of Proc and Reply
requests for PH , P←H or PS to the challenger. For any Proc(PH , O), the chal-
lenger checks whether η is on the ηH - list. If not, it sends the output of
ProcOnion(SKH , O, PH), stores η on the ηH -list and O on the OH -list. For
any Reply(PH , O, m) the challenger checks if O is on the OH - list and if so,
the challenger sends ReplyOnion(m, O, PH , SKH) to the adversary. (Similar
for requests on P←H , PS).

3. The adversary submits a message m, a path P→ = (P1, . . . , Pj , . . . , Pn+1)
with the honest node PH or P←H at position j, 1 ≤ j < n + 1, a path P← =
(P←1 , . . . , P←n←+1) with the honest node P←H at position 1 ≤ j← ≤ n← + 1
and public keys for all nodes PK i (1 ≤ i ≤ n + 1 for the nodes on the path
and n + 1 < i for the other relays).

4. The challenger checks that the given paths are acyclic, the router names and
public keys are valid and that the same key is chosen if the router names are
equal, and if so, sets PK j = PKH (or PK j = PK←H , if the adversary chose
P←H at this position as well) , PK←j← = PK←H ,PK←n←+1 = PKS and sets bit
b at random.

5. The challenger creates the onion with the adversary’s input choice and hon-
estly chosen randomness R:

Oj+1 ←FormOnion(j + 1,R, m,P→,P←, (PK)P→ , (PK)P←)

and a replacement onion with the path from the honest relay PH to the
corrupted receiver P̄→ = (Pj+1, . . . , Pn+1) and the backward path from the
corrupted receiver starting at position 0 ending at j←: P̄← = (P←1 , . . . , P←j←);
and another honestly chosen randomness R̄:

Ō1 ←FormOnion(1, R̄, m, P̄→, P̄←, (PK)P̄→ , (PK)P̄←)

6. The challenger sends Oj+1 to the adversary.
7. Oracle access: the challenger processes all requests as in step 2) except if...

... Proc(P←H , O) with O being the challenge onion as processed for the
honest relay on the backward path, i.e.:
• RecognizeOnion((n + 1) + j←, O,R) = True

.. then the challenger outputs nothing.
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8. The adversary produces guess b′.

Hybrid 2 As Hybrid 1), but with differences in the following step:

5. The challenger creates the onion as before but the blocks Bn−j+2
j+1 , ..., B2N−1

j+1
are replaced with Rn−j+2, . . . R2N−1 with Ri being randomly chosen blocks
to calculate Oj+1:

Bi
j+1 = (Ri) for n− j + 2 ≤ i ≤ 2N − 1 with Ri being randomly generated

H1 ⇒ H2: Security loss:

|Pr(X1)− Pr(X2)| ≤ ϵPRP-CCA

with ϵPRP-CCA being the CCA-advantage of some efficient adversary against our
used PRP; argued similarly to LU→, j < n + 1,H3 ⇒ H4. Note that we do not
need to replace the keys of the honest relay j before this step (as we do in the
LU→ proof) because the early onion layers O<j are never given to the adversary
in TI↔.
Hybrid 3 As Hybrid 2), but with differences in the following steps:

5. The challenger creates the onion as before, but encrypts 0 . . . 0 instead of
kη←

j← , kγ←
j← , ∆←j← for E←j← (but still encrypts other blocks of the header with

the real kη←
j← , the payload with the real ∆←j← and MACs with kγ←

j←):

E←j← = PK.EncPKj (0, . . . , 0)

The challenger calculates the new MAC for the blocks. All the later layers
E←≥j←+1, Bi←

≥j←+1 are constructed as before but using the replacements for
the calculations, i.e. the onion layer O←j← is wrapped as before.

7. RecognizeOnion now checks for the adapted header (as constructed above)
and if E←j← is reused in a not recognized onion, the original keys kη←

j← , kγ←
j← ,

∆←j← are returned as decryption.

H2 ⇒ H3:
|Pr(X2)− Pr(X3)| ≤ ϵPK-CCA2

with ϵPK-CCA2 being the CCA2-advantage of some efficient adversary against
our PK encryption scheme; argued similarly to LU→, j < n + 1,H1 ⇒ H2.
Hybrid 4 As Hybrid 3) but with differences in the following step:

7. If an onion is handed to the oracle that reuses E←j← , but changes another
part of the header, i.e. is not the recognized as challenge onion processing,
processing fails.
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H3 ⇒ H4: Security loss:

|Pr(X3)− Pr(X4)| ≤ ϵSUF−CMA

with ϵSUF−CMA being the SUF − CMA-advantage of some efficient adversary
against our used MAC scheme; argued similarly to LU→, j < n + 1,H2 ⇒ H3.
Hybrid 5 As Hybrid 4), but with differences in the following step:
5. The challenger creates the onion as before but the block B1←

j← is replaced with
the receiver signal PRP.Enc(⊥,⊥,⊥) the blocks B2←

j← , . . . , B(n←−j←+1)←
j← are

replaced with R2, . . . Rn←−j←+1 with Ri being randomly chosen blocks to cal-
culate the backward header embedded in Oj+1’s payload:

E←j← = PK.EncPKj
(0, . . . , 0)

Bi←
j← = PRP.Enckη←

j←
(⊥,⊥,⊥)

Bi←
j← = (Ri) for 2 ≤ i ≤ n← − j← + 1 with Ri being randomly generated

The challenger continues to wrap the onion with the replaced B←j←s to create
the backwards header and embed it in Oj+1.

7. RecognizeOnion now checks for the adapted header (as constructed above),
i.e. E←j← and Bi←

j← . In this case, the challenger does not output anything, as
usual before.
H4 ⇒ H5: Security loss:

|Pr(X4)− Pr(X5)| ≤ 2 · ϵPRP-CCA

with ϵPRP-CCA being the CCA-advantage of some efficient adversary against our
used PRP; argued similarly to LU→, j < n + 1,H3 ⇒ H4. Note that technically,
we need to replace the B1←

j← with randomness first, before we can replace it
back to the receiver signal PRP.Enc(⊥,⊥,⊥), which accounts for the factor of 2
above.
Remaining hybrids: The remaining hybrids just revert changes done in earlier
hybrids and are argued similarly to these.

F Security of our SNARG-Based Scheme

In this section, we prove that our SNARG-based scheme also realizes the ideal
functionality by showing our properties. We start by describing FormOnion for
other layers than the first one and continue to show the proofs. As they are
similar to the ones in the UE-based solution, we sketch them here and only
detail the differences.
FormOnion - later layers. FormOnion for i > 1 uses the SNARG-trapdoor
to create a valid SNARG, encrypts random strings for the ring buffer entries C j ,
and creates the other onion parts deterministically as described in the protocol
for the current layer. In contrast to the UE-based scheme also the payload is
deterministic in the SNARG-based scheme.
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F.1 Forwards Layer Unlinkability

Case 1 – Honest Relay (j < n + 1). We first replace all SNARG-related
parts to unlink them from the SNARG information of other layers and also from
the secret information included in them. Then we replace the temporary keys
of the honest party included in the header, to be able to change the blocks of
the header and the payload corresponding to the b = 1 case. For the oracles we
further need to ensure, that RecognizeOnion does not mistreat any processing
of e.g. modified onions. Therefore, we leverage the SNARG properties for the
payload protection and the MAC for the header. An overview of the proof is in
Table 12 and an overview of the used hybrids in Table 13 of Appendix F.2.

Table 12. Overview Proof for LU→, j < n + 1

Hybrid Description Reduction
1) The LU→ game with challenge bit chosen as 0
2) We simulate the SNARGs for the challenge onion. SNARG Simulatability
3) We replace the first ring buffer entry C 1

1 with a fresh encryption
of sim for the special bitstring sim.

IND-CPA/rerand. of PKM

4) We replace the ring buffer elements C i
j+1 for all i with fresh

encryptions of random strings (not sim) [as FormOnion does for
layers i > 1].

IND-CPA/rerand. of PKM

5) We replace the temporary keys kη
j , kγ

j , kδ
j at the honest relay by

0..0 before they are encrypted in Ej (and adapt recognizeOnion
to the new header), but still use the real keys for the processing.

PK-CCA2

6) We let the oracles in step 7 output a fail, if the challenge Ej is
recognized, but other parts of the header differ.

SUF-CMA

7) & 8) We replace the blocks B1
j , ..., B2N−j

j by (sim, sim), R2, . . . , RN−j

with Ri being randomly chosen (and adapt recognizeOnion to
the new header), but use the real blocks for the processing.

PRP-CCA

9) We let oracles in step 7 output a fail, if the challenge header ηj

is recognized, but the payload differs.
SNARG simulation soundness

10) We let the oracles in step 7 output the replicated layer j +
1:(FormOnion(j + 1,R, m,P→,P←, (PK)P→ , (PK)P←)), if the
challenge ηj is recognized, the payload matches, and real pro-
cessing of the given onion would not fail.

Same behavior due to defini-
tion of recognition and form-
ing of later layers

11) We replace the content δj by a random string of the same length. PRP-CCA
12) We revert the changes made in Game 9). SNARG simulation soundness

13) & 14) We replace the blocks B1
j , ..., B2N−j

j by (⊥,⊥,⊥), R2, . . . , R2N−j

with Ri being randomly chosen (and adapt recognizeOnion to
the new header).

PRP-CCA

15) We revert the changes made in Game 6). SUF-CMA
16) We revert the changes made in Game 5). PK-CCA2
17) We revert the changes made in Game 3): The ring buffer entry

C 1
1 now includes the sender info as in the b = 1 case.

IND-CPA/rerand. of PKM

18) We use FormOnion with the parameter of the b = 1 case to
generate the first challenge onion layer.

Same behavior except for new
draw of randomness

19) The LU→ game with challenge bit chosen as 1 SNARG Simulatability

Proof

Hybrid 1) LU→(b=0). As Hybrid 1 for the LU→, j < n + 1-proof for the UE
based protocol.
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Hybrid 2). As Hybrid 1, but with differences in the following step:

6. The challenger replaces the SNARGs πi of the challenge Oi’s with simulated
SNARG πs

i that were created with the SNARG trapdoor before handing O1
to the adversary.

Hybrid 1) ≈IND Hybrid 2). Assume there exists a distinguisher D that can
distinguish the hybrids with non-negligible advantage. This is a direct contra-
diction to the simulatability of the SNARG.
Hybrid 3). As Hybrid 2, but with the following differences:

5. The challenger creates the onion as before, but replaces the first ring buffer
element C 1

1 as fresh encryptions of sim for the special bitstring sim.

We note that this change is meaningful, since by our change in Hybrid 2, all
SNARGs are simulated, and no witness to the fact that the ring buffer has been
generated honestly is required.
Hybrid 2) ≈IND Hybrid 3). Recall that the first ring buffer element C 1

1 is
a fresh encryption under PKM in Hybrid 2, while in the later layers it is re-
randomized for C i

k. By the IND-CPA security of the used encryption scheme,
hence C 1

1 is indistinguishable in both hybrids. Furthermore, the re-randomizability
of that scheme also guarantees that the other C i

k are indistinguishable.
Hybrid 4). As Hybrid 3), but with the following differences:

7. The challenger processes the onion as before to answer Proc(PH , O) with
η = ηj , i.e. RecognizeOnion is true; if η is not on the ηH -list and processing
of O would not have failed, but replaces the Ci

j+1 with encryptions for random
strings under PKM

Hybrid 3) ≈IND Hybrid 4). Follows from the IND-CPA security and the re-
randomizability of the master encryption scheme similar to the indistinguisha-
bility between Hybrid 2) and 3).
Hybrid 5). As Hybrid 4), but with differences in the following step:

5. The challenger creates the onion as before, but encrypts 0 . . . 0 instead of
kη

j , kγ
j , kδ

j for Ej (but still encrypts other blocks of the header with the real
kη

j , the payload with the real kδ
j and MACs with kγ

j ):

Ej = PK.EncPKj
(0, . . . , 0)

B1
j = PRP.Enckη

j
(Pj+1, Ej+1, γj+1)

Bi
j = PRP.Enckη

j
(Bi−1

j+1) for 2 ≤ i ≤ 2N − 1

The challenger calculates the new MAC for the blocks. All the later layers
E≥j+1, Bi

≥j+1 are constructed as before but using the replacements for the
calculations, i.e. the onion layer Oj is wrapped as before.
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6. The challenger gives the final O1 to the adversary.
7. RecognizeOnion now checks for the adapted header (as constructed above)

and if Ej is reused in a not recognized onion, the original keys kη
j , kγ

j , kδ
j are

returned as decryption.

Hybrid 4) ≈IND Hybrid 5). As H1 to H2 in the corresponding proof of the
UE-based scheme.
Hybrid 6). As Hybrid 5) but with differences in the following step:

7. If an onion is handed to the oracle that reuses Ej , but changes another
part of the header, i.e. is not the recognized as challenge onion processing,
processing fails.

Hybrid 5) ≈IND Hybrid 6). As H2 to H3 in the corresponding proof of the
UE-based scheme.
Hybrid 7). As Hybrid 6), but with differences in the following step:

5. The challenger creates the onion as before but the blocks B1
j , . . . , B2N−j

j are
replaced with R1, R2, . . . R2N−j with Ri being randomly chosen blocks to cal-
culate O1:

Ej = PK.EncPKj
(0, . . . , 0)

Bi
j = (Ri) for 1 ≤ i ≤ 2N − j with Ri being the randomly generated

The challenger continues to wrap the onion with the replaced Bjs to create
O1.

7. The challenger answers oracles as in Hybrid 6), except if the header reuses Ej

and Bi
j . In this case, the challenger checks the SNARG, replaces the header

with the one first calculated for this position and processes it as usual, except
that it skips the SNARG check.

Hybrid 6) ≈IND Hybrid 7). As H3 to H4 in the corresponding proof of the
UE-based scheme.
Hybrid 8). As Hybrid 7, but with differences in the following step:

5. The challenger creates the onion as before but the block B1
j is replaced with

(sim, sim, sim) to calculate O1:

B1
j = PRP.Enckη

j
((sim, sim, sim))

The challenger further wraps the onion to receive O1 as before.

Hybrid 7) ≈IND Hybrid 8). Similarly to the step from Hybrid 6) to 7).
Hybrid 9). As Hybrid 8) but with differences in the following step:
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7. The challenger replies with a fail to all Proc(PH , O) requests with η = ηj , i.e.
RecognizeOnion is true - the header corresponds to the one we created and
δ ̸= δj , i.e. the payload was modified. Otherwise, the challenger processes
the onions for the oracles as before.

Hybrid 8) ≈IND Hybrid 9). Note that replying with a fail is also what
happens in the original processing of the onion by the protocol if the SNARG
check fails. To distinguish the hybrids the distinguisher must thus query the
oracle with an onion for which the header is the same as for the challenge, the
payload differs and the SNARG is valid.

Assume the distinguisher could find such an onion with non-negligible prob-
ability. Then, we construct an adversary Aext that succeeds in breaking the
simulation-soundness of the used SNARG.

First, Aext simulates Hybrid 8, including the LU distinguisher A, and embed-
ding the SNARG CRS from Aext’s own simulation-soundness game. Aext uses
its own SNARG simulation oracle to generate simulated proofs π1∗, . . . , πn∗ for
the challenge onion O∗. Note that since Aext knows all secret keys (except for
the SNARG simulation trapdoor), it can answer all Proc oracle requests made
by A.

Now if A manages to submit an onion O as above (with the same header as
O∗ but different payload), then Aext proceeds as follows. First, it decrypts C 1,
the first element of the ring buffer, using the ring buffer secret key SKM. We
may assume that C 1 decrypts to one of the following:
(1) random coins R that allow to explain O as the output of FormOnion (such

that the corresponding message can be retrieved from O and R), or
(2) a secret key SK and SNARG proofs π1′, . . . , πn′, such that SK can be used

to compute a predecessor onion O′ to O (with a ring buffer that is smaller
than O’s by one ciphertext), and for which π1′, . . . , πn−1′ are valid SNARG
proofs.

(If neither of these conditions hold, Aext can output O and πn as an invalid
SNARG statement with forged proof.)

Now case (1) above cannot actually occur: since O has the same header as
O∗, at least one Bi (i ≤ N) from O will encrypt the message sim by our change
from Hybrid 8. This means that O cannot be explained as a FormOnion output
(since the latter never produces Bi which encrypt sim).

In case (2), we can iterate the process above and use SKM to decrypt the first
element of the (reduced) ring buffer of O′. Note that by definition of ProcOnion,
no sequence of onions O1, . . . , On+1 exists such that Oi+1 is a valid output of
ProcOnion(Oi) for all i = 1, . . . , n. Hence, the above process must terminate
with a SNARG forgery.
Hybrid 10). As Hybrid 9), but with differences in the following step:
7. The challenger uses Pj+1 and FormOnion(j + 1,R, m,P→,P←, (PK )P→ ,

(PK )P←) to answer Proc(PH , O) requests with η = ηj , i.e. RecognizeOnion
is true; if η is not on the ηH -list and processing of O would not have failed.
Otherwise, the challenger processes the onions for the oracles as before.
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Hybrid 9) ≈IND Hybrid 10). Every honest processing is recognized by our
definition of RecognizeOnion (the header evolves deterministically) and the lay-
ers used to answer only differ in the simulated SNARG and ring buffer C (if the
header differs it is not recognized, if the payload differs it will be rejected as in
Hybrid 9). Finally, both the SNARG and ring buffer in Hybrid 9) and in Hybrid
10) are simulated in the same way.
Hybrid 11). As Hybrid 10), but with differences in the following step:

5. The challenger creates the onion as before but with random payload:

δj = R with R being the randomly generated replacement for the message

The challenger wraps the onion until O1 as before.
7. The expected payload for the recognized onion is adapted to be δj . Other-

wise, the oracle works as before.

Hybrid 10) ≈IND Hybrid 11). Assume there exists a distinguisher D that
can distinguish Hybrid 10) and 11). We can build an attack ACCA on the PRP-
CCA security of the PRP:

1. ACCA picks an honest router’s name Pj and public key PK as ChLU→ would
and gives both to D.

2. ACCA answers the oracle queries from the D as ChLU→ would (including
rejecting already seen headers).

3. ACCA gets the challenge choices from D.
4. ACCA checks the challenge choices from D as ChLU→ would.
5. ACCA constructs the onion O1 as before and sends the block δj+1 to the

challenger ChCCA. The challenger replies with blocks δ̃j . ACCA replaces the
calculated content δj with the one received from the challenger. ACCA wraps
this new onion to create O1 and simulates the SNARG and ring buffer as
before.

6. ACCA answers the oracle for D by calculating the processing, except if it
receives the challenge header. In this case, it checks whether the payload is
δ̃1 and outputs FormOnion(j + 1,R, m,P→,P←, (PK )P→ , (PK )P←).

7. ACCA receives the guess from D and uses it as its own guess.

Note that ACCA simulates Hybrid 10) for b = 0 and Hybrid 11) for b = 1
and thus wins the PRP-CCA game with the same advantage as D distinguishes
the hybrids. As the PRP is secure, there cannot be a successful distinguisher D.
Hybrid 12). As Hybrid 11) but with differences in the following step:

7. The challenger replies with the normal processing to Proc(PH , O) requests
with η = ηj and δ ̸= δj , again.

Hybrid 11) ≈IND Hybrid 12). Note that replying with a fail (as in Hybrid
11)) is also what happens in the original processing of the onion by the protocol
if the SNARG check fails. So, to distinguish the hybrids the distinguisher must
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query the oracle with an onion for which the header is the same as for the
challenge, the payload differs and the SNARG is valid – the same situation as in
the indistinguishability between Hybrid 8) and 9) and the same argumentation
applies.
Hybrid 13). As Hybrid 12), but with differences in the following step:

5. The challenger creates the onion as before but the block B1
j is replaced with

a random string to calculate O1:

B1
j = PRP.Enckη

j
(R), with R being a random string

The challenger wraps the onion to create O1 as before.

Hybrid 12) ≈IND Hybrid 13). Similarly to the step from Hybrid 6) to 7).
Hybrid 14). As Hybrid 13), but with differences in the following step:

5. The challenger creates the onion as before but the block B1
j is replaced with

(⊥,⊥,⊥) to calculate O1:

B1
j = PRP.Enckη

j
((⊥,⊥,⊥))

The challenger wraps the onion further to create O1 as before.

Hybrid 13) ≈IND Hybrid 14). Similarly to the step from Hybrid 6) to 7).
Hybrid 15). As Hybrid 14 but with differences in the following step:

7. If an onion is handed to the oracle that reuses Ej , but changes another part
of the header, processing is done normally again.

Hybrid 14) ≈IND Hybrid 15). Similarly to the step from Hybrid 5) to 6).
Hybrid 16). As Hybrid 15), but with differences in the following step:

5. The challenger creates the onion O1 as before, but replaces

Ej = PK.EncPKj
(kη

j , kγ
j , kδ

j )

before wrapping further.

Hybrid 15) ≈IND Hybrid 16). Similarly to Hybrid 4) ≈IND Hybrid 5).
Hybrid 17). As Hybrid 16), but with the following differences:

5. The challenger creates the onion as before, but after wrapping it, the chal-
lenger builds the ring buffer element C1

1 as follows from FormOnion in the
b = 1 case of LU→, i.e. with the real encrypted sender information.

Hybrid 16) ≈IND Hybrid 17). Similarly to the step from Hybrid 3) to 4).
Hybrid 18). As Hybrid 17), but with differences in the following step:
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5. The challenger constructs the replacement onion with the first part of the
forward path P̄→ = (P1, . . . , Pj), a random message m̄ ∈M, and an empty
backward path P̄← = (), fresh randomness R̄:

Ō1 ← FormOnion(1, R̄, m̄, P̄→, P̄←, (PK )P̄→ , (PK )P̄←)

6. The challenger gives Ō1 to the adversary.
7. The challenger processes all requests as in step 2) except if

– Request is Proc(PH , O) with RecognizeOnion(j, R̄) = True, η is not on
the ηH -list and ProcOnion(SKH , O, PH) ̸=⊥: The challenger outputs
(Pj+1, FormOnion(j + 1,R, m,P→,P←, (PK)P→ , (PK)P←)) and adds
η to the ηH -list.

Hybrid 17) ≈IND Hybrid 18). The Hybrids are identical, except that the
keys are now chosen with randomness R̄, instead of randomness R, but both are
chosen in the same way by the challenger.
Hybrid 19): LU→(b=1) The LU→ game with challenge bit b = 1.
Hybrid 18) ≈IND Hybrid 19). Hybrid 18) and 19) are identical, except for
the use of the simulation trapdoor/ honest generation of the SNARG (similar to
Hybrid 1 ≈IND Hybrid 2).
Case 2 – Honest Receiver (j = n + 1): We sketch the proof in Table 14
and 15 of Appendix F.2. The steps are the same as for the first case of LU→,
but in Hybrid 10) we need to treat Reply and Proc requests separately. Note that
the earlier restrictions on the oracles work both for Reply and Proc requests.

F.2 Other properties

We sketch the proofs for the other properties in Table 16 – 21.
Backwards Layer Unlinkability. We distinguish the cases that the honest
node is the receiver (j← = 0) and that it is a backward relay (j← > 0).

Case 1 – Honest receiver (j← = 0). The steps are similar to the ones for
LU→ Case 1: We replace the SNARG information and temporary keys of honest
routers, before we exclude bad events at the oracle and finally set the header and
payload parts to correspond to the b = 1 case. Note that for LU← we can skip
the steps related to the modification of the payload (and SNARG properties).
As the forward message is known to the adversary anyways and the backward
message (as the final processing) is never given to the adversary, she cannot
exploit payload modification at the oracle to break LU← in this case.

Case 2 – Honest Relay (j← > 0). The steps are similar to Case 1 for LU←.
Repliable Tail-Indistinguishability The steps are similar to Case 2 for LU←,
except that we can skip more steps. For the same reasons as before, we do not
need the payload protection in TI↔. Further, due to the use of FormOnion (for
layers > 1) the ring buffer entries C>j+1 do not encrypt any sensitive informa-
tion, but only random bits and thus do not need to be replaced in the beginning.
Finally, the adversary does not obtain any leakage related to kη

j and thus the
blocks in the forward header (Step 3)) can be replaced right away.
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Table 13. Overview Hybrids for LU→, j < n + 1

all SNARGs O1: kη
j , kγ

j , kδ
j in Ej B1

j , . . . , B2N−j
j δj Oracle

1) real param. b = 0 real kη
j , kγ

j , kδ
j contains path after Pj contains m honest proc.

2) simulated
3) C 1

1 fresh sim
4) encrypts random

strings for Ci
j+1

5) (0, . . . , 0)
6) fail, if E1 = exp, η modif.
7) R1, R2, . . . , R2N−j

8) (sim, sim, sim), R2, . . . , R2N−j

9) fail, if η1 = exp , δ modif.
10) recog+ create
11) rdm m̄

12) proc, if η1 = exp , δ modif.
13) R1, R2, . . . , R2N−j

14) (⊥,⊥,⊥), R2, . . . , R2N−j

15) proc, if E1 = exp, η modif.
16) real kη

j , kγ
j , kδ

j

17) C 1
1 enc real info

18) FormOnion with
b = 1 param.

19) real param. b = 1 (real kη
j , kγ

j , kδ
j ) (receiver signal and rdm blocks) (contains m̄) (recog.+ create)

Table 14. Overview Proof for LU→, j=n+1

Hybrid Description Reduction
1) The LU→ game with challenge bit chosen as 0
2) We simulate the SNARGs for the challenge onion. SNARG Simulatability
3) We replace the first ring buffer entry C 1

1 with a fresh encryption
of sim for the special bitstring sim.

IND-CPA/rerand. of PKM

4) We replace the ring buffer elements C i
j+1 for all i with fresh

encryptions of random strings (not sim) [as FormOnion does for
layers i > 1].

IND-CPA/rerand. of PKM

5) We replace the temporary keys kη
j , kγ

j , kδ
j at the honest relay by

0..0 before they are encrypted in Ej (and adapt recognizeOnion
to the new header), but still use the real keys for the processing.

PK-CCA2

6) We let the oracle in step 7 output a fail, if the challenge Ej is
recognized, but other parts of the header differ.

SUF-CMA

7) & 8) We replace the blocks B1
j , ..., B2N−j

j by (sim, sim),
R2, . . . , R2N−j with Ri being randomly chosen (and adapt
recognizeOnion to the new header), but use the real blocks for
the processing.

PRP-CCA

9) We let oracle in step 7 output a fail, if the challenge header ηj

is recognized, but the payload differs.
SNARG simulation soundness

10) We let the oracle in step 7 output the replicated layer j +
1:(F ormOnion(j + 1,R, m←,P→,P←, (P K)P→ , (P K)P←)) for
Reply(PH , O, m←) and we output (⊥, m) for Proc(PH , O), if the
challenge ηj is recognized, the payload matches, and real pro-
cessing of the given onion would not fail.

Same behavior due to defini-
tion of recognition and form-
ing of later layers

11) We replace the content δj by a random string of the same length. PRP-CCA
12) We revert the changes made in Game 10). SNARG simulation soundness

13) & 14) We replace the blocks B1
j , ..., B2N−j

j by (⊥,⊥,⊥), R2, . . . , R2N−j

with Ri being randomly chosen (and adapt recognizeOnion to
the new header).

PRP-CCA

15) We revert the changes made in Game 6). SUF-CMA
16) We revert the changes made in Game 5). PK-CCA2
17) We revert the changes made in Game 3): The ring buffer entry

C 1
1 now includes the sender info as in the b = 1 case.

IND-CPA/rerand. of PKM

18) We use FormOnion with the parameter of the b = 1 case to
generate the first challenge onion layer.

Same behavior except for new
draw of randomness

19) The LU→ game with challenge bit chosen as 1 SNARG Simulatability
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Table 15. Overview Hybrids for LU→, j = n + 1

all SNARGs O1: kη
j , kγ

j , kδ
j in Ej B1

j , . . . , B2N−j
j δj Oracle

1) real param. b = 0 real kη
j , kγ

j , kδ
j contains path after Pj contains m honest proc.

2) simulated
3) C 1

1 fresh sim
4) encrypts random

strings for Ci
j+1

5) (0, . . . , 0)
6) fail, if E1 = exp, η modif.
7) R1, R2, . . . , R2N−j

8) (sim, sim, sim), R2, . . . , R2N−j

9) fail, if η1 = exp , δ modif.
10) recog+ create reply
11) rdm m̄

12) proc, if η1 = exp , δ modif.
13) R1, R2, . . . , R2N−j

14) (⊥,⊥,⊥), R2, . . . , R2N−j

15) proc, if E1 = exp, η modif.
16) real kη

j , kγ
j , kδ

j

17) C 1
1 enc real info

18) FormOnion with
b = 1 param.

19) real param. b = 1 (real kη
j , kγ

j , kδ
j ) (receiver signal and rdm blocks) (contains m̄) (recog.+ create)

G Performance

OR and Mix networks are used for a variety of applications with different per-
formance requirements. For example email services tolerate high latencies, while
applications like web browsing, instant messaging or teleconferencing require
very low latencies. Further, often high bandwidth is available and networks are
built to be scalable.

G.1 UE-Based Scheme - Performance

Onion size In the following, we detail a concrete instantiation of our SNARG-
based protocol. All sizes in the following are in bits:

– Kurosawa-Desmedt [27] as the CCA-secure PKE: |PK | = 512, |C| = |M |+
640.
• Remark: we count only user-specific parts in pk, the rest can be pushed

into global public parameters. pk contains 2 group elements, and C con-
tains 2 group elements and an authenticated encryption of M .

– SHA-3 [2] as hash: |P | = |γ| = 256 (for HMAC-based MACs with |kγ
i | = 128)

• Remark: we count an identity as the size of a hash value (like previous
approaches).

– AES-128 [1] as symmetric encryption scheme: |kη
i | = 128

– The NYUAE scheme from [24] for the payload: |k∆
i | = 2560, |∆i| = 1536,

|δi = 37376|
• remark: We consider a pairing-based group setting e : G1 × G2 → GT

with p = |G1| = 256 and |G2| = 512. A key consists of 4 Fp, 2 G1, and
2 G2 elements, whereas a token consists of 4 Fp, and 2 G1 elements. As
header ciphertexts should not leak whether they contain a key or token,
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Table 16. Overview Proof for LU←, j← = 0

Hybrid Description Reduction
1) The LU← game with challenge bit chosen as 0
2) We simulate the SNARGs for the challenge onion. SNARG Simulatability
3) We replace the first ring buffer entry C 1

1 with a fresh encryption
of sim for the special bitstring sim.

IND-CPA/rerand. of PKM

4) We replace the first ring buffer entry C 1←
j←+1 with a fresh en-

cryption of sim for the special bitstring sim.
IND-CPA/rerand. of PKM

5) We replace the temporary keys kη
n+1, kγ

n+1, kδ
n+1 on the forward

path at the honest receiver with 0 . . . 0 in their encryption for
En+1 (and adapt recognizeOnion to the new header), but still
use the real keys for the processing.

PK-CCA2

6) We let the oracle in step 6 output a fail, if the challenge En+1
is recognized, but other parts of the header differ.

SUF-CMA

7) We replace the block B1
n+1, . . . , B2N−1

n+1 by a random blocks when
forming the challenge onion (and adapt recognizeOnion to the
new header), but use the real block for the processing. (In par-
ticular, in this way we get rid of all kη←

>j← , kγ←
>j← , kδ←

>j←)

PRP-CCA

8) We let the keys kη←
>j← , kγ←

>j← , kδ←
>j← used in step 6 be freshly

chosen by P←j← .
Games are equivalent

9) We replace the content δ←1 by a random string of the same length
during ReplyOnion.

PRP-CCA

10) We revert the changes made in Game 7). PRP-CCA
11) We revert the changes made in Game 6). SUF-CMA
12) We revert the changes made in Game 5). PK-CCA2
13) We revert the changes made in Game 4): C 1←

j←+1 contains now
the information of P←j← as sender.

IND-CPA/rerand. of PKM

14) We revert the changes made in Game 3). IND-CPA/rerand. of PKM
15) The LU← game with challenge bit chosen as 1 SNARG Simulatability

we need to pad to the maximum of both. The payload consists of about
58 G1, and 44 G2 elements.

Hence:

– |Ei| = 2 · 128 + 20 · 128 + 640 = 3456,
– |γi| = 256,
– |Bj

i | = 256 + 3456 + 256 = 3968:
– |ηi| = (2N − 1) · 3968 + 3456 + 256 = (2N − 1) · 3968 + 3712.
– In total: |Oi| = |ηi|+ |δi| = (2N − 1) · 3968 + 3712 + 37376 bits.

A realistic value for N (maximal path length) can be N = 3 or N = 4, which
leads to an onion size overhead (over |m|) of about 7.5 kbytes, resp. 8.5 kbytes.

G.2 SNARG-Based Scheme - Performance

Onion size In the following, we detail a concrete instantiation of our SNARG-
based protocol. As before, all sizes in the following are in bits:

– SNARKs of Groth and Maller [21]: |π| = 1024
• Remark: this building block operates in a pairing setting with a pairing

e : G1 × G2 → GT , where we can assume. In this setting, G1-, resp.
G2-elements can be set to have 256, resp. 512 bits.
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Table 17. Overview Hybrids for LU←, j← = 0

all SNARGs C1
1 δn+1 B1

n+1, . . . , B2N−1
n+1 kη

n+1, kγ
n+1, kδ

n+1 δ←1 (bw) Oracle (Reply)
1) real real real contains path-end-block, real contains m← recog.+ honest reply

bw path, padding (adv. chosen)
2) simulated
3) contains sim
4) in proc result of challenge onion:

C 1←
j←+1 = PKM.Enc(sim)

5) (0, . . . , 0) (adapt recog.)
6) fail, if En+1 = exp, η modif.
7) random (treat B1

n+1 as path-end)
8) use fresh kη←

>j , kγ←
>j , kδ←

>j

9) random
10) contains path-end-block, use actual content of B1

n+1
bw path, padding

11) verify MAC, in case if En+1 = exp, η modif.
12) real
13) in proc result of challenge onion:

C 1←
j←+1 contains real sender info

14) real secrets
15) real real real contains path-end-block, real random use fresh kη←

>j , kγ←
>j , kδ←

>j

bw path, padding

– (Multi-generator-)ElGamal as the rerandomizable PKE: |C| = |M |+ 256
• Remark: we represent a plaintext string of ℓ · 256 bits as a vector of ℓ

group elements m1, . . . , mℓ (of a suitably-sized group G) and can then
set C = (gr, hr

1m1, . . . , hr
kmk) for random r and public key elements

h1, . . . , hk. Hence |pk| = ℓ · 256. In our setting, ℓ = 4N + 9 since we
encrypt (N + 2) · 1024 + 256 bits (see below). Rerandomization adds
(componentwise) an encryption of (1G)ℓ.

– Kurosawa-Desmedt [27] as the CCA-secure PKE: |PK | = 512, |C| = |M |+
640.
• Remark: as in the UE-based protocol, we count only user-specific parts

in PK . Recall that then, the public key PK contains 2 group elements,
and the ciphertext C contains 2 group elements and an authenticated
encryption of M .

– SHA-3 [2] as hash: |P | = |γ| = 256 (for HMAC-based MACs with |kγ
i | = 128)

• Remark: we count an identity of a relay as the size of a hash value (like
previous OR approaches). Note that identities do not (have to) contain
public keys.

– AES-128 [1] as symmetric encryption scheme: |kη
i | = |kδ

i | = 128

Hence:

– |Ei| = 3 · 128 + 640 = 1024,
– |γi| = 256,
– |Bj

i | = 256 + 1024 + 256 = 1536:
– |ηi| = (2N − 1) · 1536 + 1024 + 256 = (2N − 1) · 1536 + 1280.
– Cj

i : These are ElGamal ciphertexts for messages of size 1024 + N · 1024 +
1024 + 256 = (N + 2) · 1024 + 256 each. This size calculation uses that
• all Cj

i have the same size, and that
• C1

i has a shorter actual (i.e., in its unpadded form) plaintext than Cj
i

(j > 1), since the m encrypted in C1
i can be made implicit and recon-

structed from R and the encrypted payload in O1.
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Table 18. Overview Proof for LU←, j← > 0

Hybrid Description Reduction
1) The LU← game with challenge bit chosen as 0
2) We simulate the SNARGs for the challenge onion. SNARG Simulatability
3) We replace the first ring buffer entry C 1

1 with a fresh encryption
of sim for the special bitstring sim.

IND-CPA/rerand. of PKM

4) We replace the first ring buffer entry C 1←
j←+1 with a fresh en-

cryption of sim for the special bitstring sim.
IND-CPA/rerand. of PKM

5) We replace the temporary keys kη←
j← , kγ←

j← , kδ←
j← at the honest

relay with 0 . . . 0 in their encryption for E←j← (and adapt recog-
nizeOnion to the new header) as part of the payload of O1, but
still use the real keys for the processing.

PK-CCA2

6) We let the oracle in step 6 output a fail, if the challenge E←j← is
recognized, but other parts of the header differ.

SUF-CMA

7) We replace all B1←
j← , ..., B2N−1←

j← while constructing the
header with randomness, but use the real header for j← + 1
as answer to the corresponding Proc oracle request. Note that
replacing all B←j←s results in not including any keys for > j← in
the earlier header.

PRP-CCA

8) We let the keys kη←
>j← , kγ←

>j← , kδ←
>j← used in step 6 be freshly

chosen by P←j← .
Games are equivalent

9) We replace the content δ←j← with a random string of the same
length during .

PRP-CCA

10) We revert the changes made in Game 7). PRP-CCA
11) We revert the changes made in Game 6). SUF-CMA
12) We revert the changes made in Game 5). PK-CCA2
13) We revert the changes made in Game 4): C 1←

j←+1 contains now
the information of P←j← as sender.

IND-CPA/rerand. of PKM

14) We revert the changes made in Game 3). IND-CPA/rerand. of PKM
15) The LU← game with challenge bit chosen as 1 SNARG Simulatability

• We do not count the “proc” string at the beginning of each Cj
i (j > 1),

since this string can be encoded as a single bit.
– σi contains N Cj

i ’s and N SNARGs: |σi| = N · (1024 + N + 2) · 1024 + 256 +
256) = N2 · 1024 + N · 3584.

– |δi| = |m| (encrypted in-place)
– In total: |Oi| = |ηi|+|σi|+|δi| = |m|+N2·1024+N ·3584+(2N−1)·1536+1280

bits.

A realistic value for N (maximal path length) can be N = 3 or N = 4, which
leads to an onion size overhead (over |m|) of about 3kbytes, resp. 5kbytes.
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Table 19. Overview Hybrids for LU←, j← > 0

all SNARGs C1
1 B1←

j← , ..., kη←
j← , kγ←

j← , kδ←
j← B(n−j←+2)←

j←+1, . . . , δ←j (bw) Oracle (bw)
B2N−1←

j← in E←j← (bw) B(2N−1)←
j←+1 (bw)

1) real real secrets real real kη
j← , kγ

j← , kδ
j← PRP.Deci(0, . . . , 0) contains m← recog.+ honest proc

(Relay padding) (adv. chosen)
2) simulated
3) sim
4) in proc result of challenge onion:

C 1←
j←+1 = PKM.Enc(sim)

5) (0, . . . , 0) use kη
j← , kγ

j← , kδ
j← if E←j← is recognized

6) fail, if E←j← = exp, η modif.
7) random Rn−j←+2, . . . , R2N−1 use sender’s kη

>j← , kγ
>j← , kδ

>j← for challenge onion
8) use fresh kη

>j← , kγ
>j← , kδ

>j← for challenge onion
9) random
10) real
11) proc, if E←j← = exp, η modif.
12) real kη

j← , kγ
j← , kδ

j←

13) in proc result of challenge onion:
C 1←

j←+1 contains real sender info
14) real secrets
15) real (real secrets) (real) (real kη

j← , kγ
j← , kδ

j←) (Sender padding) (contains rdm msg) (recog.+ Ō1) (new constructed fwd onion)

Table 20. Overview Proof for T I

Hybrid Description Reduction
1) The T I↔ game with challenge bit chosen as 0
2) We simulate the SNARGs for the challenge onion. SNARG Simulatability
3) We replace the blocks B

2N−(j+1)
j+1 , ..., B2N−1

j+1 in step 5 by ran-
dom strings Rn−j+2, . . . , RN−1 (and adapt recognizeOnion to
the new header).

PRP-CCA

4) We replace the temporary keys kη←
j← , kγ←

j← , kδ←
j← at the honest

relay with 0 . . . 0 in their encryption for E←j← (and adapt recog-
nizeOnion to the new header) as part of the payload of Oj+1,
but still use the real keys for the processing.

PK-CCA2

5) We let the oracle in step 7 output a fail, if the challenge E←j← is
recognized, but other parts of the header differ.

SUF-CMA

6) We replace the block B1←
j← with a path-end-block and

B2←
j← , . . . , B(n←+1−j←)←

j← with random blocks in the payload
part of the challenge onion representing the backward header.

PRP-CCA

7) We replace the first ring buffer entry C 1
j+1 with the information

of Pj as sender.
IND-CPA/rerand. of PKM

8) We revert the changes of Game 5). SUF-CMA
9) We revert the changes of Game 4). PK-CCA2
10) The T I↔ game with challenge bit chosen as 1 SNARG Simulatability

Table 21. Overview Hybrids for T I

all SNARGs kη
j , kγ

j , kδ
j in Ej B2N−(j+1)

j , . . . , B2N−1
j C1

j+1 kη←
j← , kγ←

j← , kδ←
j← B2←

j← , . . . , B(n←−j←+1)←
j← Oracle (bw)

in E←j← (bw) (bw)
1) real real contains real processing random real complete path fail, if recog. b=0 answer
2) simulated
3) R2N−(j+1), . . . , R2N−1

4) (0, . . . , 0) (adapt recog.)
5) fail, if E←j← = exp, η modif.
6) (⊥,⊥,⊥), R2, . . . , Rn←−j←+1

7) real sender info
8) proc, if E←j← = exp, η modif.
9) real
10) real real Sender padding real sender info real shortened path fail if recog. b=1 answer
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