
The Power of Undirected Rewindings
for Adaptive Security

Dennis Hofheinz, Julia Kastner, and Karen Klein

Department of Computer Science
ETH Zurich, Switzerland

{hofheinz,julia.kastner,karen.klein}@inf.ethz.ch

Abstract. Existing proofs of adaptive security (e.g., in settings in which
decryption keys are adaptively revealed) often rely on guessing argu-
ments. Such guessing arguments can be simple (and, e.g., just involve
guessing which keys are revealed), or more complex “partitioning” ar-
guments. Since guessing directly and negatively impacts the loss of the
corresponding security reduction, this leads to black-box lower bounds
for a number of cryptographic scenarios that involve adaptive security.
In this work, we provide an alternative to such guessing arguments: in-
stead of guessing in a security reduction which adaptive choices an adver-
sary A makes, we rewind A many times until we can successfully embed
a given computational challenge. The main benefit of using rewindings is
that these rewindings can be arranged sequentially, and the correspond-
ing reduction loss only accumulates additively (instead of multiplica-
tively, as with guessing). The main technical challenge is to show that
A’s success is not negatively affected after (potentially many) rewind-
ings. To this end, we develop a machinery for “undirected” rewindings
that preserve A’s success across (potentially many) rewindings.
We use this strategy to show
– security of the “Logical Key Hierarchy” protocol underlying the pop-

ular TreeKEM key management protocol, and
– security of the Goldreich-Goldwasser-Micali (GGM) pseudorandom

function (PRF) as a prefix-constrained PRF.
In both cases, we provide the first polynomial reductions to standard
assumptions (i.e., to IND-CPA and PRG security, respectively), and in
case of the GGM PRF, we also circumvent an existing lower bound.

1 Introduction

Security reductions. The security of most cryptographic primitives implies
P ̸= NP, and hence we cannot expect to simply prove them secure. Instead,
we typically rely on security reductions that transform a given adversary A on
the primitive into a problem solver S for a given computational problem.1 For
convincing security guarantees, we often desire reductions to very simple and
“static” problems like integer factorization or the discrete logarithm problem in

1Often, S itself is also denoted as the reduction.

2 D. Hofheinz, J. Kastner, K. Klein

a given group. On the other hand, certain security notions are complex and may
give A a lot of freedom to adaptively influence what information is available
during an attack.

Adaptive security example: signatures. As a concrete example, the stan-
dard notion of security for digital signatures, “EUF-CMA security” [GMR88],
allows an adversary A to receive signatures for arbitrarily and adaptively chosen
(by A) messages before expecting A to actually forge a new signature. Hence,
if we view a signature scheme as a collection of “signature generation” problem
instances (one for each message m), then A first expects to see many solutions
to adaptively chosen instances before generating a solution to a new instance by
itself. Now a security reduction must find a way to embed its own computational
challenge X∗ into this signature setting, in a way such that all instance solutions
requested by A can be solved, but A’s final forgery implies a solution to X∗.

For signatures, several strategies were found to overcome this difficulty. For
instance, “partitioning reductions” (explicitly investigated in [Cor02; Wat05;
HK08], but implicit in many earlier works) embed a given computational chal-
lenge X∗ in a certain fraction ρ of all signature generation instances (i.e., mes-
sages). The hope is that if we choose ρ right, then with small but significant
probability, X∗ is embedded only in the message on which A finally forges, but
not in any message that needs to be signed by the reduction. This leads to a
successful reduction that however fails with a high probability.

Abstraction: guessing strategies. We might (informally, and only for the
purpose of this exposition) call such reduction strategies “guessing strategies”.
These reductions make certain random guesses about A’s behavior, and fail if
those guesses are not accurate. For certain types of primitives, constructions,
or reductions it is often possible to show that there are no better strategies (in
terms of reduction loss) than guessing strategies:
– For unique [Cor02] or rerandomizable [HJK12] signature schemes, a certain2

class of reductions must have a loss that is linear in the number of signature
queries.

– For the security of secret-key encryption under adaptive corruptions (as
formalized by the “generalized selective decryption” notion, which was in-
troduced to prove adaptive security of the “logical key hierarchy” proto-
col [Pan07; WGL00]), a similar class of “straight-line” reductions must have
a superpolynomial reduction loss [Kam+21].

– Similar superpolynomial lower bounds [Kam+21] affect the related “TreeKEM”
protocol [BBR18] for continuous group key agreement, and the GGM pseudo-
random function [GGM84a] when viewed as a prefix-constrained PRF [Kia+13;
BW13; BGI14].

More examples of such lower bounds include specific signature schemes [FF13],
certain types of encryption schemes [LW14; Bad+16; Kam+21], non-interactive
key exchange [Bad+16], and even (composable) zero-knowledge protocols [Can+01].

2These reductions must use A in a black-box way and the corresponding computa-
tional problem must be non-interactive. This covers a large class of existing reductions.

The Power of Undirected Rewindings for Adaptive Security 3

The intuition for these lower bounds is that the reduction can be forced to
guess many of A’s choices simultaneously and early in the security experiment.
This induces a reduction loss that is related to the product of the probabilities
that each guess (for each of A’s choices) is correct. As a consequence, most
(although not all) of the above bounds only consider non-rewinding reductions,
i.e., reductions that run an adversary A in a black-box and straightline manner.3

Our contribution. In this work, we consider rewinding as an alternative to
guessing A’s choices. Hence, we design reductions that do not guess, e.g., which
parties A corrupts, but instead (a) run A in a setting without any embedded
challenges, and then (b) rewind and rerun A in a setting in which challenges
have been embedded based on A’s choices in the first run. Of course, it is not
clear a priori why this might work (since A’s choices might depend on concrete
values that have changed during the runs), and we give details on our concrete
strategy and necessary technical conditions below.

The benefit of the use of rewindings over guesses is that guessing n choices
of A simultaneously leads to a reduction loss exponential in n. In contrast, with
our strategy, the corresponding number of rewindings (when arranged carefully)
and thus the reduction loss is only polynomial in n.

We apply this idea to two of the above settings. We show
– security of the “logical key hierarchy” (LKH) protocol assuming IND-CPA

security of the underlying secret-key encryption scheme, and
– security of the GGM PRF as a prefix-constrained PRF, assuming pseudo-

randomness of the underlying pseudorandom generator.
The corresponding security reductions have a polynomial loss, and thus circum-
vent the above-mentioned lower bounds.4 We believe that these results hint at
the potential of using rewindings instead of guessing strategies.

More related work on rewindings. Rewindings have already numerous
applications in cryptography, including zero-knowledge simulators [GMW87],
signature [PS96] and even encryption schemes [Kuc+20]. In some cases, even
complex nested rewinding strategies have proved useful [RK99; Can+01]. Jump-
ing ahead, one key difference to our approach is that existing works rewind to a
particular point in a previous run. For instance, [PS96] analyze a Fiat-Shamir-
based [FS87] signature scheme in the random oracle model, and rewind an ad-
versary A to the point where a particular random oracle query (related to A’s
eventual forgery) is made. As we will explain below, this means that the second
run (after A’s rewinding) may not have the same distribution as the first run (be-
fore the rewinding). In other words, such “directed rewindings” may change A’s
success probability, and complex technical tools like the “forking lemma” [PS96]
may be necessary to analyze such scenarios.

3An interesting exception is the work of [Cor02] that does consider rewinding re-
ductions. This is possible because the corresponding signature setting and adversary
A is particularly simple (so that rewinding A is of little use).

4Strictly speaking, in case of LKH, lower bounds are only known for the (very
related) “TreeKEM” protocol [Kam+21].

4 D. Hofheinz, J. Kastner, K. Klein

kε

k0

k00

G0

k01

G1

G0

k1

k10

G0

k11

G1

G1

(a) The GGM PRF evaluation.

•

•

•

•

•

•

•
(b) GGM PRF tree with randomized keys
along the path (blue •) and co-path (red •) to
k101, as desirable when x∗ = 101 is selected
as challenge.

Fig. 1: The GGM PRF evaluation (Fig. 1a) and tree (Fig. 1b).

As a consequence, “directed rewindings” may not scale well to settings in
which we want to rewind very liberally to replace complex guessing strategies.
In contrast, we develop a very different, “undirected” rewinding machinery that
will preserve A’s output distribution across rewindings.

1.1 Technical overview

Example: the GGM PRF. Our approach is perhaps easiest to showcase
with the pseudorandom function of Goldreich, Goldwasser, and Micali [GGM84a]
(henceforth “GGM PRF”). Recall that the GGM PRF starts from a length-
doubling pseudorandom generator G : {0, 1}λ → {0, 1}2λ written as G(s) =
G0(s)∥G1(s) for G0,G1 : {0, 1}λ → {0, 1}λ. The PRF output F(k, x∗), for a PRF
key k ∈ {0, 1}λ and an input x∗ ∈ {0, 1}d (for some fixed input length d) is
defined as kx∗ , which is iteratively given through

kε := k, ∀x ∈ {0, 1}<d, b ∈ {0, 1} : kx∥b := Gb(kx). (1)

This evaluation process is illustrated in Fig. 1a.
The GGM PRF as a prefix-constrained PRF. The GGM PRF is known
to have a very nice key delegation feature [Kia+13; BW13; BGI14]. Namely,
observe that an “intermediate key” kx′ (for 0 < |x′| < d) as defined in (1) allows
to compute precisely those outputs kx that start with x′. Furthermore, kx′ can
be efficiently computed from kε, or even any intermediate key kx′′ for an x′′ that
is a prefix of x′. Of course, for security we would also hope that kx′ does not
reveal anything about outputs kx∗ for x∗ that do not start with x′.

This type of delegation property is called “prefix-constrainability”. The cor-
responding security experiment requires pseudorandomness of a single output
F(k, x∗) = kx∗ for an adversarially chosen x∗, even when that adversary has
adaptive access to many constrained keys kx′ (where of course no x′ may be a
prefix of x∗).
Selective security. To set the stage, we first observe that it is relatively easy to
prove a selective version of prefix-constrainability, in which the adversary A has
to commit in advance to x∗. Namely, if x∗ is known, a reduction could proceed in
a hybrid argument and successively embed G-challenges along the path from kε

The Power of Undirected Rewindings for Adaptive Security 5

to kx∗ . This embedding is possible, since A may not ask for constrained keys kx′

that are ancestors of kx∗ , and thus no G-preimage will ever have to be revealed.
Furthermore, this way, gradually all keys on the path (and co-path) to kx∗ will
be randomized (see Fig. 1b). Once kx∗ itself is independently random, A cannot
win the security game anymore.

The difficulty. Interestingly, the situation is completely different in the adap-
tive setting, when A may ask for constrained keys kx′ before committing to x∗.
The difficulty lies in the fact that A can force a security reduction to “commit”
to a large part of the evaluation tree from Fig. 1a by asking for constrained
keys kx′ , but without finally committing itself to the challenge x∗. This forces
a reduction (to the pseudorandomness of G) to decide early on where challenge
G-images are to be embedded, and in essence guess (parts of) x∗ in advance.

Viewed from a different angle, trying to proceed as in the selective case will
require to randomize kx∗ and thus, at least in parts, intermediate keys kx′ for
prefixes x′ of x∗, all while being able to (for constrained key queries) explain the
rest of the evaluation tree as being pseudorandom. Since A may choose x∗ very
late, however, it is not at all clear how to suitably embed G-challenges for this
randomization.

In fact, [Kam+21] formally prove that no black-box, non-rewinding reduction
with polynomial security loss exists in this setting for the GGM PRF. (The hard-
ness of achieving adaptive prefix-constrainability even with more powerful tools
and more complex PRF constructions is also explicitly mentioned in [Dav+20].)
Notwithstanding, [Fuc+14] do manage to give a black-box, non-rewinding reduc-
tion for the GGM PRF with only slightly superpolynomial loss. Their argument
is a clever “pebbling strategy” that manages to, informally, guess x∗ not all at
once, but only in parts. Still, even with this clever strategy, there will be times
when several parts of x∗ have to be guessed simultaneously, which leads to a
superpolynomial security loss.

Our solution. Our approach is not to guess x∗ at all, but to rewind an ad-
versary A in the above setting many times, embedding more and more G-values
along the challenge path to kx∗ (as in Fig. 1b). Of course, when changing A’s
view in any way (and in particular when embedding G-values), the challenge
preimage x∗ chosen by A may change completely. Thus, we will have to en-
sure that during those rewindings, already embedded G-values remain on that
challenge path.

To make things clearer, let us first describe a strategy that only almost works,
but demonstrates the basic ideas. Concretely, consider an adversary A attacking
the GGM PRF of depth d = 3, as in Fig. 1b. Without loss of generality, we
may assume that A eventually asks for all keys kx′ for x′ on the co-path of the
challenge path to x∗. (That is, if A eventually nominates x∗ = 101 as challenge,
we assume that A will have asked for kx′ for all x′ ∈ {0, 11, 100}.) Intuitively,
this means that A eventually knows the whole evaluation tree except for the
challenge path.

Our (preliminary) reduction proceeds as follows:

6 D. Hofheinz, J. Kastner, K. Klein

1. First, run A on an evaluation tree with fully known keys kx (for all x ∈
{0, 1}≤d). For concreteness, let us say that the challenge input that A even-
tually chooses is x∗ = 101, as in Fig. 1b.

2. Next, rewind A back to the point in time t1 at that k1, the first intermediate
key on the challenge path to k101, is computed. (Since every constrained key
query requires to commit to kε, and hence also compute k1, this means we
rewind to the first constrained key query.) Then, rerun A from this point t1
onwards with a fresh G-challenge embedded for (the image of) kε.

3. Continue with the rewound run that includes an embedded G-challenge for
(the image of) kε, and may now feature a new x∗ = 001 ̸= 101. Rewind to
the point t2 in time when the second key kx′ along the new challenge path,
i.e. a key for the length-2 prefix x′ of the new x∗, is computed. Rerun A from
this point t2 onwards with a fresh G-challenge embedded for (the image of)
k0. This embedding is possible since k0 is already uniformly random (as it
is the output of the first embedded G-challenge), and since this is the first
query in which k0 is used. Unfortunately, this embedding also requires that
at no point, any ancestor of kx′ will have to be revealed, even when later
constrained key queries and even x∗ may change after the rewinding. Hence,
rewind repeatedly5, until that particular query at time t2 is the first one to
explicitly use the key for the length-1 prefix of (the now potentially different)
x∗.6 Note that by definition, t2 > t1, so the new rewindings will not replace
the previously embedded G-challenge.

4. Continue with this process for longer prefixes of x∗, eventually embedding
the output of a G-challenge into A’s own challenge kx∗ . In the resulting run,
G-challenges are embedded exactly along the evaluation tree path to the
PRF challenge input x∗, as depicted in Fig. 1b for x∗ = 101. Hence, A’s
final output in this run can be used to break the pseudorandomness of G.

We remark that the choice of queries that involve prefixes of x∗ resembles similar
techniques in the signature setting [NY89; HW09; BK10] (and has also been used
as an ingredient in the context of the GGM PRF [Fuc+14]).

A technical complication. . . While the previous description is largely accu-
rate, it glosses over one crucial detail. Namely, recall that we make liberal use
of rewindings. Moreover, our final argument implicitly uses that runs generated
through rewindings have (at least computationally) the same distribution as non-
rewound ones. In particular, A’s success probability must be preserved across
rewindings. But this is not guaranteed with “directed rewindings” as above, where
the choice of the point in time to rewind to is chosen adaptively, based on what
happened pre-rewinding.

5Polynomially many rewindings will suffice (with high probability), since the con-
dition we require to be preserved is not overly specific.

6We are simplifying here. In particular, this step assumes that k1 is already random,
not only a G-challenge. Our actual proof uses a hybrid argument, much like the one
for selective security from above.

The Power of Undirected Rewindings for Adaptive Security 7

To explain the issue, consider the toy example of a one-dimensional random
walk

T :=

n∑
i=1

ti for independently uniformly random ti ∈ {−1, 1}

of length n. Clearly, the expected value of T is 0. On the other hand, if we
1. sample T (and all ti) as above,
2. then fix the smallest index m ∈ {1, . . . , n − 1} of a local maximum (such

that tm = 1 and tm+1 = −1)7 and
3. resample T conditioned on (t1, . . . , tm) (i.e., keeping the values of (t1, . . . ,

tm)),

then the resulting T has a positive expected value.8 A similar situation may arise
in our reduction above: we resample runs with A conditioned on run prefixes,
where the prefix length is based on A’s behavior up to that point. We cannot
guarantee that this resampling does not bias, e.g., A’s success probability.
. . . resolved. We will overcome this obstacle with “undirected” rewindings, that
rewind to a pre-determined point in time, independently of what happened in
the run prior to rewinding. Going back to the toy example of a random walk
T , observe that when sampling T and then conditioning on (t1, . . . , tm) for any
a-priori fixed prefix length m does not change T ’s distribution. (Since all ti are
independently random, this is just a complicated way of sampling a single T .)
More generally, we will show that rewindings as in our reduction do not change
run distributions if the condition itself that we seek to be preserved during
rewindings does not depend on the initial run.

Recall that for us, the conditions to be preserved across rewindings are of
the form “the query at time t1 is the first one to explicitly use kx′ for a prefix
x′ of x∗”. The problem with this formulation is that this time t1 depends on
the previously sampled run. Our actual solution is hence a bit more complex:
we rewind (repeatedly) at every time index t, and preserve a function on runs
across rewindings. This function is of the form “output the length of the longest
prefix x′ of x∗ such that a key kx′ was explicitly computed/defined before or at
time t”. Preserving this function value across rewindings allows to implement the
above reduction strategy, although at the cost of a higher (but still polynomial)
number of rewindings.
Second application: encryption security under adaptive corruptions.
Our second application concerns the “Logical Key Hierarchy” (LKH) proto-
col [WGL00] (in the “fixed version” [Pan07]) and the related “TreeKEM” proto-
col [BBR18] for continuous group key agreement. In these protocols, a binary

7Such an m exists except with probability (n + 1)/2n. Hence, we ignore the case
that no such m exists.

8For any fixed local maximum m, there are only m possibilities for the values
of (t1, . . . , tm−1): those with (t1, . . . , tm−1) = (−1, . . . ,−1, 1, . . . , 1), all equally likely.
Since tm = 1, this means that the expected value of

∑m
i=1 ti is 1 (conditioned on the

event that m exists). Also, by our resampling strategy,
∑n

i=m+1 ti has expected value
0. Since m exists with high probability, thus

∑m
i=1 ti has positive expectation.

8 D. Hofheinz, J. Kastner, K. Klein

tree of decryption keys kx (for x ∈ {0, 1}≤d) is arranged as in Fig. 1a. Unlike
with the GGM PRF setting, the keys kx themselves are independently chosen.
However, for every x ∈ {0, 1}<d and b ∈ {0, 1}, a ciphertext cx∥b that encrypts
kx under key kx∥b is publicly available.9

This setup enables the owner of any leaf key kx to compute the root key kε,
which can then be used for group communication. We also consider a dynamic
setting, in which users leave or join this group. When user x (i.e., the user who
owns kx) leaves, the shared key kε and all keys on the path to kx are refreshed,
along with all ciphertexts that encrypt these keys. This requires an update of only
O(|x|) many ciphertexts and keys. Similarly, a join only requires the generation
of O(|x|) new ciphertexts.

For security, we desire that an adversary who may adaptively initiate leaves
and joins, and who learns the corresponding keys kx of leaving users, cannot
distinguish the eventual refreshed root key kε from a random key. We will seek
to prove security based on the semantic (or IND-CPA) security of the underlying
encryption scheme.

Our overall strategy will be similar to the GGM PRF case. However, we will
also need to embed challenge ciphertexts (and not only challenge keys) into runs.
Besides, one key difference is that in the LKH security experiment, there is no
single challenge leaf x∗ (as with the GGM PRF). Instead, we will build upon
the intricate “pebbling” strategy of [Jaf+17] to randomize kε, only with guesses
replaced by rewindings. This will translate into a more complex property to be
preserved across rewindings, which also causes a more complex runtime analysis.
Concretely, we will have to switch between games with a bounded number of
rewindings (to be able to use a reduction to a computational assumption), and
ones without such a bound (to be able to switch equivalent preserved properties).

1.2 Roadmap

We recall some relevant preliminaries about probability theory and crypto-
graphic primitives in Section 2. In Section 3, we give an abstract and application-
independent version of our rewinding analysis. In the following sections, we con-
sider the GGM PRF (in Section 4) and adaptive encryption security (in Sec-
tion 5) applications.

2 Preliminaries

2.1 Notation

Security parameter. Throughout the paper, λ ∈ N denotes the security pa-
rameter. Many other variables (such as parameters or distributions) may depend

9The LKH and TreeKEM protocols are very similar, with one key difference being
that the former uses secret-key encryption, while latter employs public-key encryption.
Our results are formulated in the secret-key setting and thus directly apply only to
LKH (although we are confident that our strategy can also be used for TreeKEM).

The Power of Undirected Rewindings for Adaptive Security 9

kε

k0

k00

c00

k01

c01

c0

k1

k10

c10

k11

c11

c1

Fig. 2: A depth-2 binary tree with node and edge names.

on λ. A function δ = δ(λ) is negligible (in λ) if ∀c ∈ N ∃λ0 ∀λ > λ0 : |δ(λ)| <
1/λc.
Sets and bitstrings. We write [n] := {1, . . . , n} and [n]0 := {0, 1, . . . , n}.
For two sets X , Y we denote the symmetric difference between X and Y as
X∆Y := (X \ Y) ∪ (Y \ X). With {0, 1}n, {0, 1}≤n, and {0, 1}<n, we mean
all bitstrings of length exactly n, at most n, and less than n, respectively. The
lexicographic ordering upon bitstrings x is denoted with ≤lex. If x is a prefix of
x′, we write x ≤pfx x′, for a proper pefix we write x <pfx x′. For a finite vector
x = (x1, . . . , xn) ∈ Σn over an alphabet Σ, we denote by pfxj(x) the prefix
(x1, . . . , xj) of x. The symbol ∥ denotes string or sequence concatenation.
Tree notation. For our applications, we will consider complete binary trees
whose depth we generally denote by d. We derive generic names for nodes and
edges from our applications: concretely, we denote the root node as kε (where
ε is the empty bitstring), and the two child nodes of each node kx as kx∥0
and kx∥1. For each x ∈ {0, 1}<d and b ∈ {0, 1}, there is an edge cx∥b be-
tween kx and kx∥b. (See Fig. 2 for an example with d = 2.) For a binary
tree of depth d and a path P = (kx, . . . , kε) from a leaf x ∈ {0, 1}d to the
root, the co-path of P consists of the sibling vertices of the vertices on P .
More formally, writing x = (x1, . . . , xd), the co-path consists of the vertices
(kpfxd−1(x)∥(1−xd), kpfxd−2(x)∥(1−xd−1), . . . , k1−x1

).
Probabilities, distributions, and predicates. If D is a distribution over
some set X , then

ρD(x) := Pr
X←D

[X = x].

Furthermore, if f : X → Y is a function, then f(D) denotes the distribution over
Y that arises by applying f to values sampled from D. If P : X → {true, false}
is a predicate, then D | P denotes the conditional distribution of D conditioned
on P(·) = true. As a special case, we consider equalities as predicates P in the
above sense, and may write, e.g., D | [f(·) = y].

For two random variables X,Y (which may depend on the security parameter
λ), we write X ≡ Y if they are identically distributed, X

s
≈δ Y if their statistical

distance is at most δ, and X
c
≈ Y if they are computationally indistinguishable.

2.2 Probability theory

We will need a special Chernoff bound. We state without proof:

10 D. Hofheinz, J. Kastner, K. Klein

Lemma 1. Let E1, . . . , Eℓ be independent events that each occur with probability
p. Then

Pr
[ℓ∨
t=1

Et

]
≥ 1− 1/eℓp/2.

The following lemma is straightforward:
Lemma 2. Let D be a distribution over X , and f : X → Y be a function.
Consider random variables X,X0 with

X0 ← D X ← D | [f(·) = f(X0)].

Then X is distributed according to D, i.e., we have ∀x ∈ X : Pr[X = x] =
Pr[X0 = x] = ρD(x).

Intuitively, Lemma 2 states that resampling conditioned on a “current value”
f(X0) does not change the distribution.

Proof.

Pr[X = x] =
∑
y∈Y

Pr[X = x ∧ f(X) = y]

=
∑
y∈Y

Pr[X = x | f(X) = y] · Pr[f(X) = y]

=
∑
y∈Y

Pr[X0 = x | f(X0) = y] · Pr[f(X0) = y]

=
∑
y∈Y

Pr[X0 = x ∧ f(X0) = y] = Pr[X0 = x].

The next lemma is a probabilistic version of the “bucket lemma” of Kast-
ner, Loss, and Xu [KLX22], which in turn generalizes the “forking lemma”
of Pointcheval and Stern [PS96].
Lemma 3. Let D be a distribution over X , and f : X → Y be a function with
finite range Y. For any α ∈ [0, 1],

Pr
X←D

[
ρf(D)(f(X)) ≥ α

]
≥ 1− α · |Y|.

Intuitively, Lemma 3 states that it is likely that an X ← D has a “somewhat
common” value of f(X).

Proof.

Pr
X←D

[
ρf(D)(f(X)) ≥ α

]
=

∑
y∈Y

ρf(D)(y)≥α

ρf(D)(y)

=
∑
y∈Y

ρf(D)(y)−
∑
y∈Y

ρf(D)(y)<α

ρf(D)(y) ≥ 1− |Y| · α.

The Power of Undirected Rewindings for Adaptive Security 11

2.3 Cryptographic primitives

For convenience, we define pseudorandom number generators (PRGs) with a
multi-instance security notion (that is however easily seen to be polynomially
equivalent to the ordinary one-instance notion using a hybrid argument):

Definition 1 ((Q, t, δ)-hard pseudorandom generator (PRG)). An effi-
ciently computable function G : {0, 1}n 7→ {0, 1}m with m > n is a (Q, t, δ)-hard
pseudo-random generator (PRG) if every probabilistic adversary A that makes
at most Q oracle queries and runs in time at most t satisfies |AdvPRG,A(λ)| ≤ δ,
where

AdvPRG,A(λ) := Pr[MI-PRGAG (λ) = 1]− 1/2

for the experiment MI-PRGAG defined in Fig. 3.
Asymptotically, we say that G is a secure PRG if for all polynomials Q, t in

λ, there is a negligible δ = δ(λ), so that G is a (Q, t, δ)-hard PRG.

Algorithm 1: MI-PRGAF (λ)
1 b← {0, 1}
2 b′ ← Achallenge(1λ)
3 return [b = b′]

Algorithm 2: challenge()
1 s← {0, 1}n
2 y0 := G(s); y1 ← {0, 1}m
3 return yb

Fig. 3: Multi-instance PRG indistinguishability game

In our setting, we will only be interested in PRGs with n = λ and m = 2λ.

Definition 2 (Prefix-constrained pseudorandom functions). Consider
an efficiently computable function F : {0, 1}λ × {0, 1}n → {0, 1}m that takes
as input a key k ∈ {0, 1}λ and an input x ∈ {0, 1}n, and outputs an image
y ∈ {0, 1}m.

We say that F is a prefix-constrained pseudorandom function (PC-PRF) if
there are polynomial-time algorithms constrain and ceval with the following prop-
erties: constrain may be probabilistic, takes as input a key k ∈ {0, 1}λ and a prefix
x′ ∈ {0, 1}≤n, and outputs a constrained key kx′ . ceval is deterministic, takes as
input such a constrained key kx′ and an input x ∈ {0, 1}n, and outputs an image
y ∈ {0, 1}m. We require that for all λ, k ∈ {0, 1}λ, kx′ ← constrain(k, x′), and
x ∈ {0, 1}n with x′ ≤pfx x, we have

ceval(kx′ , x) = F(k, x).

The main security property of PC-PRFs is indistinguishability:

Definition 3 ((Q, t, δ)-indistinguishability for PC-PRFs). Let F be a PC-
PRF as in Definition 2. We say that F is (Q, t, δ)-indistinguishable if for every
probabilistic adversary A that runs in time at most t, makes at most Q queries

12 D. Hofheinz, J. Kastner, K. Klein

to the constrain oracle and at most one query to the challenge oracle in the
PC-PRFF,A experiment, we have |AdvPC-PRF

F,A (λ)| ≤ δ, where

AdvPC-PRF
F,A (λ) := Pr[PC-PRFAF (λ) = 1]− 1/2

for the experiment PC-PRFAF defined in Fig. 4.
Asymptotically, we say that F is an indistinguishable PC-PRF if for all

polynomials Q, t in λ, there is a negligible δ = δ(λ), so that F is (Q, t, δ)-
indistinguishable.

Algorithm 3: PC-PRFAF (λ)
1 b← {0, 1}
2 k ← {0, 1}λ
3 X := ∅
4 x∗ := ε

5 b′ ← Aconstrain,challenge(1λ)
6 return [b = b′]

Algorithm 4: constrain(x′)
1 if x′ ≤pfx x

∗ then return ⊥
2 X := X ∪ {x′}
3 kx′ ← constrain(k, x′)
4 return kx′

Algorithm 5: challenge(x)
1 if ∃x′ ∈ X : x′ ≤pfx x then return ⊥
2 x∗ := x
3 y∗

0 := F(k, x); y∗
1 ← {0, 1}m

4 return y∗
b

Fig. 4: CP-PRF indistinguishability game

Definition 4 (Secret-key encryption). A secret-key encryption scheme con-
sists of the following algorithms SKE = (Gen,Enc,Dec):
Gen(1λ) takes as input the security parameter encoded in unary, and outputs a

key k.
Enc(k,m) takes as input a key k and a message m ∈M, and outputs a cipher-

text c.
Dec(k, c) takes as input a key k and a ciphertext c and outputs either a message

m ∈M or an error symbol ⊥.
We require correctness, i.e., ∀λ, and m ∈M, we have

Pr[Dec(k, c) = m | k ← Gen(1λ), c← Enc(k,m)] = 1.

Definition 5 (Many-user, many-ciphertext SKE indistinguishability).
A secret-key encryption scheme SKE is (QLoR,QNU, t, δ)-indistinguishable under
chosen-plaintext attacks (short: (Qctxt,QNU, t, δ)-IND-CPA secure) if every proba-
bilistic adversary A that runs in time at most t, and makes at most QLoR and QNU

queries to the LoR and NU oracles below, respectively, satisfies |AdvIND-CPA
SKE,A (λ)| ≤

δ, where
AdvIND-CPA

SKE,A (λ) := Pr[IND-CPAASKE(λ) = 1]− 1/2

The Power of Undirected Rewindings for Adaptive Security 13

Algorithm 6: IND-CPAASKE(λ)
1 b← {0, 1}
2 U := [] // empty array
3 b′ ← ALoR,NU (1λ)
4 return [b = b′]

Algorithm 7: NU

1 k ← Gen(1λ)
2 U [len(U) + 1] := k // append to array

Algorithm 8: LoR(i,m0,m1)

1 c← Enc(U [i],mb) // ⊥ if U [i] undef’d
2 return c

Fig. 5: Many-user, many-challenge IND-CPA game

for the IND-CPAASKE experiment defined in Fig. 5.
Asymptotically, we say that SKE is IND-CPA secure if for all polynomials

QLoR,QNU, t in λ, there is a negligible δ = δ(λ), so that SKE is (QLoR,QNU, t, δ)-
IND-CPA secure.

We remark that this many-user, many-ciphertext formulation of IND-CPA
security is polynomially equivalent (using a standard hybrid argument) to the
traditional one-user, one-ciphertext formulation (as in, e.g., [Bel+97]).

3 Analysis of a repeated resampling algorithm

Overview. In this section, we will provide a few helper results for our upcoming
applications. Specifically, we will investigate what happens when we first sample
some X0 from a distribution (which can be a run with an adversary A), and
then resample conditioned on parts of X0. (This latter operation corresponds to
rewinding and rerunning A until a certain property of the full run is preserved.)

As explained in the introduction, the main difference to previous rewinding
treatments is that we consider “undirected” rewindings, which translates to re-
sampling conditioned on a-priori fixed properties of X0. This will enable us to
deduce that this resampling does not change the output distribution, and that
resampling is likely to preserve any “sufficiently common” property of the initial
X0 in the process.

Generic framework. In the following, let D be a distribution over some set
X , and assume functions f1, . . . , fT : X → Y for a finite set Y. Now consider
Algorithm 9. Algorithm 9 starts with a fresh D-sample, and then repeatedly
resamples while preserving the value of the functions ft on those samples. We
have:

Lemma 4. All Xt defined through Algorithm 9 are distributed according to D,
i.e., ∀t, x : Pr[Xt = x] = ρD(x).

Proof. For X0, this is clear. For Xt−1 ← D, we obtain ∀x : Pr[Xt = x] = ρD(x)
by applying Lemma 2.

14 D. Hofheinz, J. Kastner, K. Klein

Algorithm 9: Repeated resampling, generic
Input: D, f1, . . . , fT

1 X0 ← D
2 for t := 1 to T do
3 Xt ← D | [ft(·) = ft(Xt−1)]
4 end
5 return XT

This in particular holds for Algorithm 9’s output XT . Hence, Algorithm 9
would seem like an unnecessarily complicated way to sample from D. However,
in the following, we will refine Algorithm 9 to better capture our upcoming
rewinding process.

Algorithm 10: Repeated resampling, split
Input: D, g1, . . . , gT , h1, . . . , hT

1 X0 ← D
2 for t := 1 to T do
3 repeat
4 Xt ← D | [ht(·) = ht(Xt−1)]
5 until gt(Xt) = gt(Xt−1)

6 end
7 return XT

Split resampling. Now Algorithm 10 performs the generation of the Xt

through a different, yet conceptually equivalent form of resampling. More con-
cretely, Algorithm 10 conditions not only on one function value ft(Xt−1), but
on two function values gt(Xt−1) and ht(Xt−1). Here, we assume functions gt :
X → Y and ht : X → Z for a finite set Y and a set Z. This “double resampling”
is done in a somewhat peculiar way: the distribution already conditioned on
ht(Xt−1) is sampled until a value Xt with gt(Xt) = gt(Xt−1) appears. Still, we
obtain as before:

Lemma 5. All Xt defined through Algorithm 10 are distributed according to D,
i.e., ∀t, x : Pr[Xt = x] = ρD(x).

Proof. For any t ∈ [T], the repeat loop samples Xt from(
D | [ht(·) = ht(Xt−1)]

)
| [gt(·) = gt(Xt−1)] = D | [ft(·) = ft(Xt−1)]

for the function ft(X) = (gt(X), ht(X)). Hence, Algorithm 10 is equivalent to
Algorithm 9 (for these ft), and Lemma 4 yields the statement.

Additionally, we can bound the runtime of Algorithm 10:

The Power of Undirected Rewindings for Adaptive Security 15

Lemma 6. Let T rep
t be the number of all iterations of the repeat loop for this

value of t in Algorithm 10. For any γ ∈ (0, 1], we have

Pr[∀t ∈ [T] : T rep
t ≤ 2T · ln(2T /γ) · |Y|/γ︸ ︷︷ ︸

=:Tmax(T ,|Y|,γ)

] ≥ 1− γ, (2)

where Y is the (finite) domain of the gt.

Proof. First fix a t ∈ [T]. By Lemma 5, Xt−1 is distributed according to D.
Hence, using Lemma 2, Xt−1 is also distributed according to

D′ := D | [ht(·) = ht(X
∗)]

for some independently chosen X∗ ← D. Since ht(Xt) = ht(X
∗) by definition,

in each iteration of Line 4, Xt is also distributed according to D′. Now invoke
Lemma 3 with α := γ/(2T · |Y|), distribution D′, and function gt. This yields

Pr
Xt←D′

[gt(Xt) = gt(Xt−1)] ≥ α, (3)

except with probability γ/(2T) (over Xt−1).
Recall that T rep

t is the number of iterations of the repeat loop for this t.
Conditioned on (3), Lemma 1 (instantiated with Et as the event that the t-th
iteration succeeds, p := α, and ℓ := 2 ln(2T /γ)/α) shows

Pr

[
T rep
t ≤ 2 ln(2T /γ)

α

]
≥ 1− γ

2T
, (4)

where the probability is taken (only) over the resamplings in the loop. Now a
union bound shows that (3) and the bound from (4) hold for all t, except with
probability γ. This finally yields (2).

The split approach of Algorithm 10 reflects our upcoming rewinding scenario.
In particular, conditioning on a “common partial history” ht(Xt) = ht(Xt−1)
will correspond to rewinding a simulation up to the t-th “branching point”, while
gt(Xt) = gt(Xt−1) is a condition we hope the rewound simulation to fulfill. We
will be able to sample from D|[ht(·) = ht(Xt−1)] directly through rewinding, but
will then have to condition on gt(·) = gt(Xt−1) by a brute-force repeat loop.

4 Adaptive security for the GGM PC-PRF

In this section we use the results on repeated resampling from Section 3 to
prove that the PRF construction by Goldreich, Goldwasser and Micali [GGM84b]
is adaptively secure as a prefix-constrained pseudorandom function (PC-PRF),
based on the security of the underlying PRG.

Definition 6 (GGM PRF). Given a length-doubling PRG G : {0, 1}λ →
{0, 1}2λ and an input length d = d(λ), the GGM PRF Fd : {0, 1}λ × {0, 1}d →
{0, 1}λ with key space {0, 1}λ is defined as

Fd(k, x) = kx where kε = k and ∀x′ ∈ {0, 1}<d : kx′∥0∥kx′∥1 = G(kx′).

16 D. Hofheinz, J. Kastner, K. Klein

It was noted independently in [Kia+13], [BW13], and [BGI14] that the above
PRF construction allows for the use as a prefix-constrained PRF (PC-PRF), with

constrain(k, x′) := (x′,F|x′|(k, x
′)) = (x′, kx′) for x′ ∈ {0, 1}<d.

For ease of presentation, in the following we will often refer to kx′ as the con-
strained key for x′. The algorithm ceval, on input a constrained key (x′, kx′) for
a prefix x′ of x and the string x = x′∥x′′ ∈ {0, 1}d, then computes kx as

ceval((x′, kx′), x) := constrain(kx′ , x′′).

4.1 Proving security from PR

We now define the security experiment ExpGGMPRF
G,A,d . Security in the sense of the

following definition immediately implies adaptive security of the GGM PC-PRF
(see also Remark 1).

Definition 7 (GGMPRF security experiment). Let G : {0, 1}λ → {0, 1}2λ be
a length-doubling PRG, let d = d(λ) an input length, and let A be a probabilistic
adversary. We denote the first half of the output of G on input k by G0(k), the
second half by G1(k). The experiment ExpGGMPRF

G,A,d initially samples uniformly at
random a challenge bit bggmprf ← {0, 1} and a key kε ← {0, 1}λ. The adversary
A can then make the following queries:
– A can adaptively make corruption queries for strings x ∈ {0, 1}≤d. This

initiates the computation of all so far undefined keys kx′b with x′ <pfx x and
b ∈ {0, 1} as kx′b := Gb(kx′), and exposes kx to A.

– At any point, A may stop the game and ask to be challenged on x∗ ∈ {0, 1}d,
and then has to distinguish the real key kx∗ (case bggmprf = 0) from a random
key (case bggmprf = 1). To make the game non-trivial, for the challenge x∗

it must hold that no corruption of any prefix of x∗ was made throughout the
game.

The output of the experiment is 1 if A correctly guesses the bit bggmprf , and 0
otherwise. We define the advantage of A in this game as

AdvGGMPRF
G,A,d (λ) := Pr[ExpGGMPRF

G,A,d (λ) = 1]− 1/2.

We say that GGMPRF security holds (for G and d) if AdvGGMPRF
G,A,d (λ) is negligible

for every probabilistic polynomial-time A.

One can view this security experiment as a game on a binary tree of depth d
as defined in Section 2.1, where the adversary can adaptively compromise labels
kx. For security, we require that keys that cannot be computed trivially from
compromised keys should remain pseudorandom.

Remark 1. We note that we consider adversaries that make their challenge query
as the last query. This is not a restriction as any adaptive adversary can be trans-
formed into such an adversary with only d additional constrained key queries,

The Power of Undirected Rewindings for Adaptive Security 17

using the following reduction: All queries and responses until the challenge query
are forwarded. Once the adversary submits the challenge query, the reduction
queries all constrained keys on the co-path before forwarding the challenge query
and its response. To answer any future constrained key queries, the reduction
uses the previously queried constrained keys on the co-path.

To see that security of the GGM PRF as a PC-PRF follows from our results
on the GGMPRF security experiment, note that a reduction can answer adversar-
ial constrained key queries and PRF evaluation queries in the PC-PRF security
experiment for the GGM PRF by making corresponding corruption queries in
the GGMPRF security experiment. In particular, this means that for any adver-
sary A that has advantage AdvGGMPRF

G,A,d (λ), runs in time tA, and makes Qcorrupt

constrained key queries, there exists an adversary B that runs in time tB roughly
equal10 to tA with

AdvPC-PRF
Fd,A (λ) = AdvGGMPRF

G,A,d (λ)

and makes Q′corrupt ≤ Qcorrupt + d constrained key queries.

Our strategy. Let us fix a length-doubling PRG G and a depth/input length
d = d(λ). Let us first consider a selective setting where an adversary A has to
commit to the challenge x∗ in the beginning of the game. For this setting, we
can bound the success probability of any PPT adversary A by a sequence of
d + 1 hybrid games where in the ith hybrid game, the first i PRG evaluations
on the path from the root to x∗ are replaced by random sampling, i.e. the keys
kx∥0, kx∥1 for all x ≤pfx x

∗ with |x| < i are sampled uniformly at random instead
of computing G(kx). For each i ∈ [d], one can then prove that games i − 1 and
i are indistinguishable based on the security of the PRG G. Furthermore, since
in game d, the key kx∗ is sampled independently and uniformly at random, the
cases bggmprf = 0 and bggmprf = 1 are information-theoretically indistinguishable,
hence the advantage of A is 0 in this game. We thus obtain an upper bound on
A’s advantage in the selective GGMPRF experiment in terms of PR security of
the PRG G, with a security loss linear in d.

Also in the adaptive setting, where A can make its choices on the fly, we
will bound A’s advantage to win the GGMPRF game through a similar hybrid
argument. Again, we will start with the original GGMPRF game above and ap-
ply a number of successive changes until finally A’s view is independent of the
challenge bit bggmprf . Since we make a liberal use of rewindings, it will be helpful
to formalize A’s view:

Definition 8 (Adversarial view). In a run of the experiment ExpGGMPRF
G,A,d

from Definition 7, we define A’s view viewA in this run as a sequence (ev1, . . . ,
evℓ) of events, where each evi can be one of the following:
Query. One of A’s queries (without reply), either of the form (corrupt, x) for a

corruption query, or (challenge, x∗).

10By “roughly equal”, we mean that B runs A only once, but as discussed with up
to d added oracle queries and some additional constrain operations.

18 D. Hofheinz, J. Kastner, K. Klein

New keys. Every time new keys kx∥0, kx∥1 are defined, right before that, a corre-
sponding (PRG, x) event is appended to view. Concretely, a query (corrupt, x)
or (challenge, x∗) in view automatically causes also entries (PRG, x′) for all
proper prefixes x′ of x for which no PRG query has been issued yet, to be
appended immediately after that (corrupt, x) entry. Entries (PRG, x) defined
at the same time are ordered in view with keys closer to the root (i.e., with
shorter x) first.

Corrupted key. A key (key, x, kx) as a response to a corruption query.
Challenge key. The response to the final challenge query, in the form (challenge,

x∗, k) (i.e., depending on bggmprf with either k being the real key kx∗ or a ran-
dom value). This event comes after the corresponding (PRG, x) events which
are triggered by the challenge query.

Decision bit. The final output bit bA of A, in the form (guess, bA). This event
is the last in view, and we may write outA(view) to denote that bit bA.

We are now ready to formulate and prove our main result:

Theorem 1. Let G : {0, 1}λ → {0, 1}2λ be a PRG. Then
– for every GGMPRF adversary A that runs in time tA and makes at most
Qcorrupt corrupt queries,

– for every GGMPRF depth d and every γ ∈ (0, 1],
there is a PR adversary B that runs in time tB, makes at most QB oracle queries,
and for which

AdvPRG,B(λ) ≥
1

2d
·
(
AdvGGMPRF

G,A,d (λ)− γ
)
, (5)

where

tB ⪅
(
2 · ln (2 · T /γ) · T 4/γ

)
· tA and QB ≤ 2 · ln (2 · T /γ) · T 3/γ (6)

with T ≤ ((d+ 2) · Qcorrupt + 2).

Before we proceed to a proof, we notice that Theorem 1 implies asymptotic
security when setting γ accordingly:

Corollary 1 (G secure ⇒ GGM PRF secure PC-PRF). If G is a secure
PRG (as in Definition 1) and d = d(λ) is a polynomial, then the GGM PRF Fd

is an indistinguishable PC-PRF (as in Definition 3).

Proof of Corollary 1. Assume for contradiction that there is a polynomial-time
adversary A′ against the PC-PRF indistinguishability with non-negligible ad-
vantage. By Remark 1, this immediately yields a polynomial-time GGMPRF ad-
versary A with (the same) non-negligible advantage εA := AdvGGMPRF

G,A,d (λ). Since
εA is non-negligible, there exists a polynomial p such that for infinitely many
values of λ, we have εA ≥ 1/p(λ).

Now set γ = 1/(2p(λ)) and invoke Theorem 1. We obtain a PR adversary B
with (by (6)) polynomial runtime and non-negligible advantage

AdvPRG,B(λ)
(5)

≥ 1

2d
·
(
εA − γ

) (∗)
≥ 1

2d
·
(1

p(λ)
− γ

)
=

1

4d · p(λ)
,

where (∗) holds (only) for infinitely many λ.

The Power of Undirected Rewindings for Adaptive Security 19

Proof of Theorem 1. Fix A and d. In the following, we will consider a number
of hybrid games, with Game ggmprf being the original GGMPRF experiment.
Denoting with outi the output of Game i, we trivially get

Pr[outggmprf = 1] = AdvGGMPRF
G,A,d (λ) + 1/2. (7)

Moving on, we will formulate Game i (for 0 ≤ i ≤ d) in a (for us) convenient
way, see Algorithm 11. This formulation outsources the bulk of the game into the
sampling of A’s view view from a suitable distribution Dview

i,bggmprf
. In our upcoming

Algorithm 11: Game i, with the bulk of the work outsourced into the
sampling from Dview

i,bggmprf
.

1 bggmprf ← {0, 1}
2 view← Dview

i,bggmprf
// view has the format from Definition 8

3 return [bggmprf = outA(view)] // returns 1 iff bggmprf = outA(view)

refinements, we will only change Dview
i,bggmprf

and investigate the effects on outi.

The distributions Dview
i,bggmprf

. To define the distribution Dview
i,bggmprf

for Game i with
i ∈ [d]0, we use the following notation:
– Dview

ggmprf,bggmprf
is the distribution of A-views (as in Definition 8) that is induced

by running the GGMPRF experiment with challenge bit bggmprf (that decides
whether A is challenged with kx∗ or a random key).

– len(view) is the length of a given A-view view (measured in events).
– pfxt(view) outputs the prefix of view up to (and including) the t-th event (as

defined in Section 2.1).
– lastpret(view) on input view = (ev1, . . . , evT) outputs the largest index t′ ≤ t

such that event evt′ defines a key on the path from the root to x∗, i.e.,

lastpret(view) := max

({
t′
∣∣∣∣ evt′ = (PRG, x)
∧ t′ ≤ t ∧ x <pfx x

∗

}
∪ {0}

)
.

– B ∈ N is a bound on the number of repetitions of Lines 6 to 13 in Algo-
rithm 12 for each t. In case of B unsuccessful repetitions for one t, the whole
algorithm outputs ⊥. We will fix a suitable value for B later.

Now consider Algorithm 12. Our distribution Dview
i,bggmprf

will be defined almost
like Dview

ggmprf,bggmprf
(i.e., like A’s view in a GGMPRF run), but will additionally

replace PRG evaluations by random sampling as indicated by index i and use
rewindings at every step. Concretely, fix an i and consider Algorithm 12, which
programmatically defines Dview

i,bggmprf
as its output.

For an adversary A with view view = (ev1, . . . , evT) we denote by rewind-
ing the adversary to time t the cutting-off of the view at point t − 1, i.e.
(ev1, . . . , evt−1) and resetting the adversary to the state it had directly before

20 D. Hofheinz, J. Kastner, K. Klein

evt. (By keeping track of A’s state throughout our rewindings, this will always
be possible.)

We say we resample from point t (after rewinding A to t) if we rerun A
from t onwards, using fresh challenger random coins from that point onwards. In
some cases, we will also rerun A with a specific replacement (e.g., an embedded
computational challenge) in evt (if evt contains an answer to one of A’s previous
queries). The view resulting from rewinding to t and then resampling from point
t is view′ = (ev1, . . . , evt−1, ev

′
t, . . . , ev

′
T ′).

Algorithm 12: Sampler for Dview
i,bggmprf

Input: i ∈ {0, . . . , d}, bggmprf ∈ {0, 1}, B ∈ N // len, lastprei,t, B described in
proof

1 view0 ← Dview
ggmprf,bggmprf

2 T := len(viewGGMPRF) // Length of viewGGMPRF (in entries)
3 for t := 1 to T do
4 Write viewt−1 = (evt−1,1, . . . , evt−1,T)
5 repeat // Output ⊥ if B repetitions fail for this t
6 Rewind adversary to point t
7 if evt−1,t = (PRG, x) with |x| ≤ i and lastpret(viewt−1) = t then

// Checks if evt−1,t defines a PRG evaluation to be replaced
by random

8 Sample fresh kx∥0, kx∥1 ← {0, 1}λ // Fresh independent keys
9 Resample from point t+ 1 to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt−1,t, evt,t+1, . . . , evt,τ)
10 else
11 Resample from point t to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,τ)
12 end
13 until lastpret(viewt) = lastpret(viewt−1) and len(viewt) = len(viewt−1)

14 end
15 return viewT

Having defined our hybrid distributions Dview
i,bggmprf

, we will additionally con-

sider the distribution D̃view
0,bggmprf

which is defined as the output of a variant of

Algorithm 12 for i = 0 without a bound B on the runtime. (Hence, D̃view
0,bggmprf

will not be efficiently sampleable in general.) We will first show that the distri-

bution D̃view
0,bggmprf

coincides with the distribution of views in Game ggmprf. Here
we will use our results from Section 3, namely Lemma 5, for the distribution
D = Dview

ggmprf,bggmprf
where functions ht on input view will output the (t− 1)-sized

prefix of view, and resampling conditioned on ht(view) simply means rewinding
and rerunning from point t. The stopping conditions gt(view) will preserve (1)
the value of lastpret(view), and (2) the length of view. Intuitively, preserving

The Power of Undirected Rewindings for Adaptive Security 21

Game ggmprf ˜Dview
0,bggmprf

≡

Dview
0,bggmprf

s≈
γ

Dview
1,bggmprf

c
≈ Dview

2,bggmprf

c
≈ . . . Dview

d,bggmprf

c
≈

c
≈

Fig. 6: Sequence of hybrids. Perfect indistinguishability (≡) is shown in Proposition 1,
statistical distance (

s
≈γ) is shown in Proposition 2, and computational indistinguisha-

bility (
c
≈) is shown in Proposition 3.

lastpret(view) implies that “PRG embedding slots” along the path to the chal-
lenge x∗ defined prior to point t remain the same. This implies that no preimages
of previously embedded PRG images have to be revealed, and the rewinding did
not “undo” any of the progress made so far.

Again using our results from Section 3, namely Lemma 6 with similar inter-
pretation as above, we will then choose the bound B such that the probability of
an abort in Dview

0,bggmprf
can be bounded by γ. Then we will show that A has no ad-

vantage in Game d since the view sampled according to Dview
d,bggmprf

is independent
of bggmprf . Finally, we will argue that Dview

0,bggmprf
is computationally indistinguish-

able from Dview
d,bggmprf

by the pseudorandomness of G. Combining these results will
allow us to conclude the proof. Our path along this sequence of hybrids can be
seen in Fig. 6.

Proposition 1. Dview
ggmprf,bggmprf

≡ D̃view
0,bggmprf

.

Proof. This follows from Lemma 5, where D = Dview
ggmprf,bggmprf

, ht(views) = (evs,1,

. . . , evs,t−1), and gt(views) = (lastpret(views), len(views)). We note that for i = 0,
the if on Line 7 never returns true, and thus the sampling procedure always
enters the else branch which behaves just as in Lemma 5.

Proposition 2 (Abort probability). For

B := 2 · ln (2 · ((d+ 2) · Qcorrupt + 2)/γ) · ((d+ 2) · Qcorrupt + 2)
3
/γ,

we have Pr[⊥ ← Dview
0,blkh

] ≤ γ.

Proof. To prove this claim, we consider the process of sampling from Dview
0,blkh

according to Algorithm 12 and bound the probability that any of the iterations
in the “for” loop runs the “repeat” loop more than B times.

By Lemma 6, with gt(view) = (lastpret(view), len(view)) and ht(view) = (ev1,
. . . , evt) for view = (ev1, . . . , evlen(view)), it holds that for any γ ∈ (0, 1] (thus in
particular the γ from the theorem statement)

Pr[∀t ∈ [T] : T rep
t ≤ 2T · ln(2T /γ) · |Y|/γ] ≥ 1− γ (8)

22 D. Hofheinz, J. Kastner, K. Klein

where T rep
t denotes the number of runs of the “repeat” loop in the t-th iteration

of the “for” loop. We note that

len(view) ≤ Qcorrupt + 1︸ ︷︷ ︸
Query Events

+ d · Qcorrupt︸ ︷︷ ︸
PRG Events

+ Qcorrupt + 1︸ ︷︷ ︸
Corr./Chal. Key Events

for any view resulting from a run of an adversary that makes at most Qcorrupt con-
strained key queries. This means that len(view) can take values up to Tmax = (d+
2)·Qcorrupt+2. Furthermore, lastpret(view) takes values from 0 to len(view). Thus,
we can bound the size of the range Y of the gt with |Y| ≤ ((d+ 2) · Qcorrupt + 2)

2.
Plugging this into (8) yields

Pr
[
∀t ∈ [T] : T rep

t ≤ 2T · ln(2T /γ) · ((d+ 2) · Qcorrupt + 2)
2
/γ

]
≥ 1− γ. (9)

Thus, using the bound for len(view) for T again, i.e. T ≤ (d + 2) · Qcorrupt + 2,
gives Pr [∀t ∈ [T] : T rep

t ≤ B] ≥ 1− γ. which yields the claim.

Proposition 3 (PR ⇒ Dview
0,bggmprf

c
≈ Dview

d,bggmprf
). Let B be as in Claim 2. If G

is PR secure, then the distributions Dview
0,bggmprf

and Dview
d,bggmprf

are computationally
indistinguishable. More precisely, there exists a PR adversary C that runs in
time tC and makes QC oracle queries, such that

AdvPRG,C(λ) =
1

2d
·
(
AdvGGMPRF, 0

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)

)
(10)

tC ⪅
(
2 · ln (2 · Tmax/γ) · T 4

max/γ
)
·tA and QC ≤ 2 · ln (2 · T /γ) ·T 3/γ (11)

with T ≤ Tmax = (d+ 2) · Qcorrupt + 2.

Proof. To generate a sample viewT , our PR adversary C modifies the procedure
of Algorithm 12 by first sampling an index i∗ ← [d] and a bit bpr ← {0, 1}
uniformly at random, and then embedding a PR challenge in the “if ” clause in
the “repeat” loop, see Algorithm 13. C outputs 0 if A succeeds and 1 else.

Note that the key for node pfxi∗−1(x
∗) is sampled freshly and uniformly at

random. Thus, we have that for bpr = 0 and i∗ = i the modified algorithm samples
from exactly the same distribution as Algorithm 12 on input i − 1 (and same
bggmprf ∈ {0, 1}, B ∈ N), and for bpr = 1 and i∗ = i from the same distribution as
Algorithm 12 on input i (and same bggmprf ∈ {0, 1}, B ∈ N). We obtain for the
advantage of C:

AdvPRG,C(λ) = Pr[bC = bpr]−
1

2

=
1

2
· (Pr[bC = 0 | bpr = 0]− Pr[bC = 0 | bpr = 1])

=
1

2
· 1
d
·
∑
i∈[d]

(
Pr

[
bC = 0

∣∣∣∣ bpr = 0
∧ i∗ = i

]
− Pr

[
bC = 0

∣∣∣∣ bpr = 1
∧ i∗ = i

])

The Power of Undirected Rewindings for Adaptive Security 23

=
1

2d
·
∑
i∈[d]

(Pr[outi−1 = 1]− Pr[outi = 1])

=
1

2d
·
(
AdvGGMPRF, 0

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)

)
.

Algorithm 13: Variant of Algorithm 12 for sampling from
Dview

i∗−1+bpr,bggmprf
given oracle access to a PR challenger with challenge

bit bpr. The functions len, lastpret are as described in the proof, B ∈ N
is as in Proposition 2.
1 i∗ ← {1, . . . , d}, bggmprf ← {0, 1}
2 view0 ← Dview

ggmprf,bggmprf

3 T := len(view0) // Length of viewGGMPRF (in entries)
4 for t := 1 to T do
5 Write viewt−1 = (evt−1,1, . . . , evt−1,T)
6 repeat // Output ⊥ if B repetitions fail for this t
7 Rewind adversary to point t
8 if evt−1,t = (PRG, x) with |x| ≤ i∗ and lastpret(viewt−1) = t then

// Checks if evt,t defines a PRG evaluation to be replaced
by random

9 if |x| = i∗ then
10 Request fresh PR challenge (k∗

0 , k
∗
1) from PR challenger

// Fresh PR challenge
11 Set (kx∥0, kx∥1) := (k∗

0 , k
∗
1)

12 else
13 Sample fresh kx∥0, kx∥1 ← {0, 1}λ // Fresh independent

keys
14 end
15 Resample from point t+ 1 to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt−1,t, evt,t+1 . . . , evt,τ)
16 else
17 Resample from point t to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,τ)
18 end
19 until lastpret(viewt) = lastpret(viewt−1) and len(viewt) = len(viewt−1)

20 end
21 return viewT

C runs A at most T ·B times. Bounding T = len(view0) by Tmax = (d+ 2) ·
Qcorrupt+2 (see proof of Claim 2) and plugging in B =

2T ·ln(2T /γ)·((d+2)·Qcorrupt+2)2

γ

leads to the claimed bound on tC . (We assume the time complexity of random
sampling, PR oracle calls and PRG evaluations to be significantly smaller than
tA and thus neglect the corresponding terms in our bound.)

24 D. Hofheinz, J. Kastner, K. Klein

For the upper bound on the number of oracle calls QC , note that for each
possible choice of i∗ there is only one t such that evt−1,t = (PRG, x) with |x| = i∗

and lastpret(viewt−1) = t. Thus, the inner if clause will apply only in one of
the for iterations, which implies that there are as many PR calls as there are
iterations of the repeat loop for that t. Hence, the reduction makes at most B
calls to the PR oracle.

Proposition 4. Dview
d,bggmprf

and bggmprf are independent, so AdvGGMPRF, d
G,A,d (λ) = 0.

Proof. Recall that bggmprf is only used when responding to the challenge query,
which by assumption is the last query the adversary makes. Hence, neither the
abort probability nor any of the events in viewT before the very last events
(challenge, x∗, k) and (guess, bA) depend on bggmprf . The latter also implies that
the values for lastpre and len are independent of bggmprf for all t. As the last two
events of the view (that are the only ones carrying information about bggmprf) are
cut off when rewinding and resampling, no information about bggmprf is carried
from viewt−1 to viewt for any t. Furthermore, in the final view viewT the challenge
key kx∗ is sampled independently and uniformly at random, hence k has the same
distribution for both cases bggmprf = 0 and bggmprf = 0. Thus, A has no advantage
in distinguishing kx∗ from a random independent key.

To finish the proof of the theorem, it only remains to combine the above
claims. In particular, we define the adversary B exactly as C from Proposition 3.
The bound on the runtime of B follows immediately and for the advantage of B
we have

AdvPRG,B(λ) =
1

2d
·
(
AdvGGMPRF, 0

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)

)
≥ 1

2d
·
(

˜
AdvGGMPRF, 0

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)− γ

)
≥ 1

2d
·
(
AdvGGMPRF

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)− γ

)
≥ 1

2d
·
(
AdvGGMPRF

G,A,d (λ)− γ
)
.

5 Adaptive security for LKH

Overview. The main application we have in mind in this section is a multi-
cast key distribution protocol called the Logical Key Hierarchy (LKH) [WHA98;
WGL00; Can+99]; more precisely, we consider the rectified version by Pan-
jwani [Pan07]. Our strategy can easily be generalized to minor modifications of
LKH and therefore we do not focus on specific implementation details. Rather,
we provide a very brief high-level description of the protocol as well as the secu-
rity guarantees we aim to guarantee. More broadly, we believe that our results

The Power of Undirected Rewindings for Adaptive Security 25

provide the core techniques to prove adaptive security also for multicast key
agreement as defined in [BDT22], as well as (various versions of) the related
“TreeKEM” protocol [BBR18; Kle+21] for (public-key) continuous group key
agreement (CGKA).
Multicast key distribution (MKD). A protocol for multicast key distri-
bution (MKD, see [Pan07]) is a server-aided secret-key protocol that enables a
dynamically changing group of users to securely communicate over a broadcast
channel. In an initial registration step, it is assumed that each user establishes
a secret key with the server; this key infrastructure setup is however outside the
protocol specification. The server then uses these shared secret keys to communi-
cate a group key to the current set of user. Upon a join/leave request, the server
refreshes the group key and sends rekey messages to the new set of users, which
allow each user to derive the new group key. In the security experiment, the ad-
versary can request join and leave operations for arbitrary users fully adaptively
and learns all keys of removed users. Finally, it can request a challenge and in
return obtains either the real group key or a random independent key.
Logical key hierarchy (LKH). A trivial MKD protocol would be to simply
encrypt a freshly sampled group key to all current users after each membership
change. However, for large groups this does not scale well, as it requires a linear
number of encryptions. A smarter approach is taken in the Logical Key Hierarchy
(LKH) protocol, as proposed in [WHA98; WGL00; Can+99]. We will consider
the rectified version of LKH by Panjwani [Pan07]: LKH is based on a binary
tree structure, where each node is associated with a secret key kx and edges
represent secret-key encryptions cx∥b of the parent key kx under the child key
kx∥b (see binary tree notation in Section 2.1). The keys associated to leaves in
the tree belong to members participating in the multicast key distribution, the
key kε associated to the root is used as the group key. Users can be added to
or removed from the group, which leads to a state update where all the keys
and ciphertexts associated with nodes and edges on the path from the user’s
leaf to the root are refreshed (except for the edge attached to the leaf in case
of a remove), and also the edges connecting these nodes to co-path nodes are
refreshed (see Fig. 7a). Note that in contrast to the trivial protocol, each remove
or add operation only requires an update of a logarithmic (in the size of the
group) number of ciphertexts.

5.1 Pebbling for LKH

Similarly to the case of GGM, the graphs that occur in the security game of
LKH are trees. But now, we are interested in randomizing the key at the root
of the binary tree structure. This root key can be derived from any of the leaf
keys (and publicly available ciphertexts). Hence, there are now many paths to
the root which we need to take into account in order to randomize the root key.
We therefore will build upon the intricate “edge pebbling” strategy of [Jaf+17]
to randomize kε, only with guesses replaced by rewindings.

Edge pebbling is a multi-round game on a graph—in our case a binary tree—,
where in each step a pebble can be placed on or removed from an edge. The goal

26 D. Hofheinz, J. Kastner, K. Klein

kε

k0

k00

c00

k01

c01

c0

k1

k10

c10

k11

c11

c1

(a) Adding user 4 to a group of 3 users. The
keys and ciphertexts that got refreshed in this
process are denoted in blue.

•

•

• •
⋄

(b) A depth-3 binary tree with red pebbles
(•) at the edges c0, c10, c110, and c111.
This configuration occurs when pebbling this
graph with the pebbling algorithm (see Algo-
rithm 14) at some step i∗. The node leaf3,i∗
is marked with a blue diamond (⋄).

Fig. 7: (a) Adding a user in LKH. (b) A pebbling configuration occuring in the recursive
pebbling strategy from Algorithm 14.

is to “pebble” the tree, which means to reach a pebbling configuration where all
edges incident on the root are pebbled. The rule is the following.
Edge-pebbling rule. We can at any point add or remove a pebble on an edge

cx when all of kx’s incoming edges (i.e., edges cx∥0 and cx∥1, if exist) are
pebbled.

In particular, we can pebble or unpebble leaf edges at any point. It is easy to
see that we can pebble a binary tree in 2d+1 − 2 steps (by pebbling all edges
of the tree, level by level from the leaves to the root). Aiming to reduce the

Algorithm 14: A recursive pebbling algorithm. The “unpebbling” steps
use that all pebbling steps are reversible.

Input: A depth-d binary graph with nodes kx (x ∈ {0, 1}≤d) and edges cx
(1 ≤ |x| ≤ d)

1 if d = 1 then
2 Pebble c0 and c1 // k0 and k1 are leaves
3 else
4 Recursively pebble the subgraph rooted at k0 // Pebbles c00 and c01
5 Pebble c0 // Incoming edges of k0 pebbled
6 Recursively unpebble subgraph rooted at k0
7 Recursively pebble the subgraph rooted at k1 // Pebbles c10 and c11
8 Pebble c1 // Incoming edges of k1 pebbled
9 Recursively unpebble subgraph rooted at k1

10 end

number of pebbles (i.e., the maximum number of pebbled edges at any given
point in time), one can observe that a binary tree of depth d can be pebbled in
Θ(22d) steps with only 2d pebbles, essentially by a straightforward recursion and
removing all used pebbles after pebbling upwards (see Algorithm 14, adapted

The Power of Undirected Rewindings for Adaptive Security 27

from [Jaf+17, Algorithm 5]). While for our approach the number of pebbles is
not that relevant, this recursive strategy will nevertheless turn out useful. In the
following we will derive some useful properties of this strategy.

Definition 9 (Pebbling time). For d ∈ N, let Td be the pebbling time for
depth-d binary trees, i.e., the runtime (measured in the number of times a basic
pebbling rule is applied) of the pebbling algorithm in Algorithm 14 on a depth-d
binary tree.

Lemma 7. We have Td = (2/3) · (22d − 1).

Proof. Td+1 = 4Td + 2 and T1 = 2 follow immediately from the structure of
pebbling algorithm in Algorithm 14 . The claimed closed form of Td can then be
proven, e.g., by induction.

Definition 10 (Edge index set). For a given run of pebbling algorithm in
Algorithm 14 on a depth-d binary tree as above, let edgesd,i denote the set of
indices x of edges cx pebbled after the i-th step (i.e., application of a pebbling
rule).

Hence, edgesd,0 = ∅ and edgesd,Td
= {0, 1}. A related observation to the

following was already used in [Jaf+17].

Lemma 8. For each i ∈ [Td]0, there is a leaf node kx (for x ∈ {0, 1}d) such that
both sets edgesd,i−1 and edgesd,i (where we set edgesd,−1 := ∅) consist only of
edge indices on the path from kx to kε, or its co-path. Formally, for each i, there
is an x ∈ {0, 1}d, such that for each x′∥b ∈ edgesd,i−1∪edgesd,i (for x′ ∈ {0, 1}<d

and b ∈ {0, 1}), we have x′ ≤pfx x.

Proof. For d = 1, this is obvious, as all edges in the tree are incident to the path
from the leftmost leaf to the root.

Assume the statement holds for some fixed d ≥ 1. We will show it holds for
d+1. Note that the edges c0 and c1 lie on the path or co-path of any leaf node.
As the subtrees are pebbled or unpebbled recursively as a whole, there are no
pebbles in the subtree at n1 during the pebbling or unpebbling of n0 and vice
versa. Thus, for any of the subtrees, the edge sets at any point consist of the
edge set of a subtree of depth d united with potentially the edges c0 or c1 which
lie on the path or co-path of any leaf. Therefore, the statement also holds for
d+ 1.

Definition 11. In the situation of Lemma 8, let leafd,i be the lexicographically
smallest such x ∈ {0, 1}d.

The following corollary is an immediate consequence of Lemma 8.

Corollary 2. For every i, we have |edgesd,i| ≤ 2d.

The following result is an easy consequence of the recursive pebbling strategy.

28 D. Hofheinz, J. Kastner, K. Klein

Lemma 9. For each i ∈ [Td]0, let x∗i be the unique index in the symmetric
difference of edgesd,i−1 and edgesd,i, i.e. {x∗i } := edgesd,i−1∆edgesd,i. For each
x′ ∈ edgesd,i−1, it holds that |x′| ≤ |x∗i |+ 1.

Proof. If Algorithm 14 is currently at a recursive depth such that d = 1 (i.e., x∗i
is incident to a leaf node) the statement follows immediately.

Recall that by Lemma 8, all edges in edgesd,i−1 and edgesd,i are incident to
the path from leafd,i to the root. Thus, when x∗i is being pebbled (or unpebbled),
the only other pebbled edges whose label could be longer than |x∗i |+ 1 must be
in the subtree rooted at the bottom of x∗i , as the algorithm first pebbles this
subtree before pebbling x∗i (and thus leafd,i must lie in this subtree). At the point
when x∗i is pebbled or unpebbled, the only other pebbled edges in the graph are
thus incident to the path from x∗i to the root (these edges have a label length
|x′| ≤ |x∗i |), plus the two edges incident to x∗i directly below x∗i (these edges have
|x′| = |x∗i |+ 1).

Lemmas 8 and 9 immediately imply the following corollary.

Corollary 3. Let x∗i be as in Lemma 9. For each i ∈ [Td]0, it holds that all
edges in edgesd,i−1∪edgesd,i are incident on the unique path from x∗i to the root.

As an example, Fig. 7b depicts a state that occurs when pebbling a depth-3
binary tree with Algorithm 14. The set of pebbled edges at this point is edges3,i
= {0, 10, 110, 111} where edge c111 was pebbled in step i (i.e., x∗i = 111), and
leafd,i = 110.

5.2 A technical lemma

In the following we introduce a technical lemma that will help us in proving
closeness of some of the hybrid games for LKH security. In particular, we will be
mixing two sampling algorithms, in each of which a bad event can occur. (Later,
this bad event will correspond to exceeding a certain bound for repetitions of
a loop.) We want to bound the probability for this bad event in a “hybrid”
sampling algorithm that starts out as one of the algorithms, and then switches
to the other when a specific event occurs.

Lemma 10. Let I1, I2, R1, R2 be randomized algorithms. Let G be a function
with the following properties:

1. for any sequence X0, . . . XT s.t. X0 ← I1, Xt ← R1(Xt−1) for t = 1, . . . , T ,
there exists exactly one t such that G(Xt) = 1.

2. for any sequence X0, . . . XT s.t. X0 ← I2, Xt ← R2(Xt−1) for t = 1, . . . , T ,
there exists exactly one t such that G(Xt) = 1.

3. for any index i = 0, . . . , T it holds that

Pr
X0←I1

∀t=1,...T : Xt←R1(Xt−1)

[G(Xi) = 1] = Pr
X0←I2

∀t=1,...T : Xt←R2(Xt−1)

[G(Xi) = 1]

The Power of Undirected Rewindings for Adaptive Security 29

Algorithm 15: Algorithm
P1
1 X0 ← I1()
2 for t := 1 to T do
3 Xt ← R1(Xt−1)
4 end

Algorithm 16: Algorithm
P2
1 X0 ← I2()
2 for t := 1 to T do
3 Xt ← R2(Xt−1)
4 end

Algorithm 17: Algorithm
P3
1 X0 ← I1()
2 t = 0
3 while ¬G(Xt) do
4 t++
5 Xt ← R1(Xt−1)

6 end
7 while t < T do
8 t++
9 Xt ← R2(Xt−1)

10 end

Fig. 8: Algorithms for Lemma 10

4. for any index i = 0, . . . , T , the following identity of distributions holds:Xi

∣∣∣∣∣∣
X0 ← I1

∀t ∈ [T] : Xt ← R1(Xt−1)
G(Xi) = 1

 ≡

Xi

∣∣∣∣∣∣
X0 ← I2

∀t ∈ [T] : Xt ← R2(Xt−1)
G(Xi) = 1


Now consider the algorithms P1, P2, and P3 from Algorithms 15 to 17, and

let F be an event that can occur during the sampling processes I1, I2, R1, R2
such that Pr[F occurs in P1] ≤ γ1 and Pr[F occurs in P2] ≤ γ2.

Then, we have Pr[F occurs in P3] ≤ γ1 + γ2.

Proof. We start with a technical claim:

Proposition 5. There exists exactly one i during any run of P3 such that
G(Xi) = 1.

Proof of Proposition 5. From Item 1 of the lemma hypothesis, we know that
during P3, G will occur at some point, as P3 samples the Xt exactly like P1 up
to when G occurs.

Due to Item 4, we know that when G(Xt∗) holds in either P1 or P2, the
states Xt∗ are identically distributed. As the sampling procedure for P3 uses
R2 (like P2 does as well), and R2 only takes the previous state as input the
“second part” (Xt∗+1, . . . , XT) of a state sequence (X0, . . . , Xt∗ , Xt∗+1, . . . , XT)
(where t∗ is the first index where G(Xt∗) = 1) will be identically distributed
to (X ′t∗+1, . . . , X

′
T) where (X ′0, . . . X

′
t∗ , X

′
t∗+1, . . . , XT) is a state sequence gen-

erated by P2 with G(Xt∗).
Therefore, G(Xt) ̸= 1 for all t > t∗ due to Item 2.

Let t∗ be the value of t when G occurs for the first time (in any of the three
algorithms). We can split up the probability for F as follows:

Pr[F occurs in P3] =Pr[F occurs in P3 up to t∗] + Pr[F occurs in P3 after t∗]

30 D. Hofheinz, J. Kastner, K. Klein

≤ Pr
X0←I1

∀t=1,...T : Xt←R1(Xt−1)

[F] + Pr[F occurs in P3 after t∗]

where by “F occurs in P3 up to t∗”, we denote that F occurs before Xt∗ is
sampled or during the sampling process of Xt∗ and by “F occurs in P3 after t∗”
we denote that F occurs during the sampling processes of Xt∗+1, . . . , XT . We
now want to bound Pr[F occurs in P3 after t∗].

We will write Pr[E occurs in Pi] for i = 1, 2, 3 to denote

Pr

[
E

∣∣∣∣ X0 ← I1
∀t ∈ [T] : Xt ← R1(Xt−1)

]
,

Pr

[
E

∣∣∣∣ X0 ← I2
∀t ∈ [T] : Xt ← R2(Xt−1)

]
,

and

Pr

E
∣∣∣∣∣∣

X0 ← I1
∀t = 1, . . . t∗ : Xt ← R1(Xt−1)

∀t = t∗ + 1, . . . T : Xt = R2(t,Xt−1)

 ,

respectively, i.e., the probability of E happening when the sampling of the states
Xi is done according to the processes P1, P2, or P3, respectively.

Pr[F occurs after t∗ in P3]

Proposition 5
=

T∑
t=0

Pr[F occurs after t∗ in P3 ∧ t∗ = t in P3]

=

T∑
t=0

Pr[F occurs after t∗ in P3 | t∗ = t in P3] · Pr[t∗ = t in P3]

=

T∑
t=0

Pr[F occurs after t∗ in P3 | t∗ = t in P3] · Pr[t∗ = t in P1]

Item 3
=

T∑
t=0

Pr[F occurs after t∗ in P3 | t∗ = t in P3] · Pr[t∗ = t in P2]

Item 4
=

T∑
t=0

Pr[F occurs after t∗ in P2 | t∗ = t in P2] · Pr[t∗ = t in P2]

=

T∑
t=0

Pr[F occurs after t∗ in P2 ∧ t∗ = t in P2]

≤ Pr[F occurs in P2] ≤ γ2

Altogether, this yields

Pr[F occurs in P3] ≤ γ1 + γ2.

The Power of Undirected Rewindings for Adaptive Security 31

5.3 Proving security from IND-CPA

We now define the LKH security experiment ExpLKHSKE,A,d. This game models the
security of LKH as an MKD protocol.

Definition 12 (LKH security experiment). Let SKE = (Gen,Enc,Dec) be
a secret-key encryption scheme and d = d(λ) some depth. The LKH experiment
ExpLKHSKE,A,d initially samples uniformly at random a challenge bit blkh ← {0, 1}
and keys kx ← {0, 1}λ for each x ∈ {0, 1}≤d. It then computes ciphertexts cx∥b
for all x ∈ {0, 1}<d and b ∈ {0, 1}, which encrypt key kx under key kx∥b. The ad-
versary A receives the ciphertexts cx∥b and can then make the following queries:
– A can adaptively corrupt “leaf” keys kx (for x ∈ {0, 1}d). This exposes kx to
A, and results in a refresh of not only kx, but also all kx′ for proper prefixes
x′ of x. Furthermore, fresh encryptions of those kx′ under keys kx′∥0 and
kx′∥1 are generated and exposed to A.

– At any point, A may stop the game by asking to be challenged to distinguish
the then-current key kε (case blkh = 0) from a random key (case blkh = 1).

The output of the experiment is 1 if A correctly guesses the bit blkh, and 0 oth-
erwise. We define the advantage of A in this game as

AdvLKHSKE,A,d(λ) := Pr[ExpLKHSKE,A,d(λ) = 1]− 1/2.

Asymptotically, we say that LKH is secure (with SKE) if for every polynomial-
time A and every constant c ∈ N, the advantage AdvLKHSKE,A,c·log(λ)(λ) is negligi-
ble.11

Our strategy. We will prove that A has a negligible advantage to win the game
ExpLKHSKE,A,d through a large hybrid argument. We will start with the game above
and apply a number of successive changes until finally A’s view is independent
of the real final key kε. Similar to Section 4, we make a liberal use of rewindings,
thus, it will be helpful to formalize A’s view:

Definition 13 (Adversarial view). In a run of the LKH experiment ExpLKHSKE,A,d

from Definition 12, we define A’s view viewA in this run as a sequence (ev1, . . . ,
evT) of events, where each evi can be one of the following:
Query. One of A’s queries (without reply), either of the form (corrupt, x), or

challenge.
New key. Every time a new key kx is defined, right before that, a corresponding

(newkey, x) event is appended to view. Concretely, view starts with (newkey,
x) events for x ∈ {0, 1}≤d. Furthermore, a query (corrupt, x) automatically
causes also entries (newkey, x′) for a prefix x′ of x to be appended immediately
after that corrupt entry. Entries (newkey, x) defined at the same time are
ordered in view with keys further from the root (i.e., with longer x) first.

11Like previous works, we focus on a logarithmic depth and thus to polynomially
many users.

32 D. Hofheinz, J. Kastner, K. Klein

Ciphertext. An event (ctxt, x∥b, cx∥b) for a ciphertext cx∥b = Enc(kx∥b, kx),
either as part of A’s initial input, or as a side effect of a corruption query.
ctxt entries defined at the same time are ordered with ciphertexts furthest
from the root (i.e., with longer x) first, and lexicographically (according to
x∥b) for x of the same length.

Corrupted key. A key (key, x, kx) as a result of a corruption query. We as-
sume that this key appears before the corresponding new key events and the
ciphertexts that are sent to A in the same reply.

Challenge key. The result of the final challenge query, in the form (challenge,
k) (i.e., depending on bB with either k being a key kε or a random value).

Decision bit. The final output bit bA of A, in the form (guess, bA). This event
is the last in view, and we may write outA(view) for the output bit bA.

Remark 2. Note that the ordering of events above implies for an event (corrupt,
x) that it is followed by an event (key, x, kx), then a sequence of events (newkey,
x′) for all prefixes x′ of x, in decreasing length, and then a sequence (ctxt, x′∥b,
cx′∥b) for all strict prefixes x′ of x and bits b ∈ {0, 1}, again ordered by decreas-
ing length, and siblings ordered alphabetically. For example, for depth d = 3,
a (corrupt, 010) event causes the following sequence of events: (key, 010, k010),
(newkey, 010), (newkey, 01), (newkey, 0), (newkey, ε), (ctxt, 010, c010), (ctxt, 011,
c011), (ctxt, 00, c00), (ctxt, 01, c01), (ctxt, 0, c0), and (ctxt, 1, c1).

We are now ready to formulate and prove our main result:

Theorem 2. Let SKE = (Gen,Enc,Dec) be an SKE scheme. Then
– for every LKH adversary A that runs in time tA and places at most Qcorrupt

corruption queries,
– for every LKH depth d and every γ ∈ (0, 1],

there is an IND-CPA adversary B that makes at most QLoR ≤ 2 · ln(2T /γ) · T 4 ·
(d+1)/γ LoR queries, QNU ≤ 2 · ln(2T /γ) · T 3 · (d+1)/γ new user queries, and
runs in time tB and for which

AdvIND-CPA
SKE,B (λ) ≥ 1

2
· 1

Td
·AdvLKHSKE,A,d(λ)−

γ

2
. (12)

where
tB ⪅ 2 · ln (2T /γ) · T 4 · (d+ 1)/γ · tA. (13)

where T ≤ 2d+2 + (3d+ 1) · Qcorrupt.

Again, before proceeding to a proof, we remark that Theorem 2 implies
asymptotic security when setting γ suitably:

Corollary 4 (SKE IND-CPA ⇒ LKH secure). If SKE is IND-CPA secure (as
in Definition 5), then LKH is secure with SKE (in the sense of Definition 12).

Proof of Corollary 4. Fix a depth d = c · log(λ) (for some constant c ∈ N), and
assume for contradiction that there is a polynomial-time adversary A against
the security of LKH with non-negligible advantage εA := AdvLKHSKE,A,d(λ). Since

The Power of Undirected Rewindings for Adaptive Security 33

Algorithm 18: Game i, with the bulk of the work outsourced into the
sampling from Dview

i,blkh
.

1 blkh ← {0, 1}
2 view← Dview

i,blkh
// view has the format from Definition 13

3 return [blkh = outA(view)] // returns 1 iff blkh = outA(view)

εA is non-negligible, there exists a polynomial p such that for infinitely many
values of λ, we have εA ≥ 1/p(λ).

Now set γ = 1/(2Tdp(λ)) (for the value Td from Definition 9, which is poly-
nomially bounded by our choice of d and by Lemma 7), and invoke Theorem 2.
We obtain an IND-CPA adversary B with (by (13)) polynomial runtime and
non-negligible advantage

AdvIND-CPA
SKE,B (λ)

(12)

≥ 1

2Td
· εA −

γ

2

(∗)
≥ 1

2Td
· 1

p(λ)
− γ

2
=

1

4Tdp(λ)
,

where (∗) holds (only) for infinitely many λ.

Proof Overview. Fix SKE, A, and d. In the following, we will consider a
number of hybrid games, with Game lkh being the original LKH experiment.
Denoting with outi the output of Game i, we trivially get

Pr[outlkh = 1] = AdvLKHSKE,A,d(λ) + 1/2. (14)

To move on, we will formulate Game i (for 0 ≤ i ≤ Td) in a (for us) convenient
way, see Algorithm 18. This formulation outsources the bulk of the game into the
sampling of A’s view view from a suitable distribution Dview

i,blkh
. In our upcoming

refinements, we will only change Dview
i,blkh

and investigate the effects on outi.

The distributions Dview
i,blkh

. To define the distribution Dview
i,blkh

for Game i, we use
the following notation:
– Dview

lkh,blkh
is the distribution of A-views (as in Definition 13) that is induced by

running the LKH experiment with challenge bit blkh (that decides whether A
is challenged with kε or a random key).

– edgesd,i is the edge index set from Definition 10 that arises out of pebbling
a depth-d binary tree.

– len(view) is the length of a given A-view view (measured in events).
– pfxt(view) outputs the prefix of view up to (and including) the t-th event (see

Section 2.1).
– maxcori,t(view) on input view = (ev1, . . . , evT) outputs

max
({
|x|

∣∣ evt′ = (ctxt, x, cx) for some t′ > t and x ≤pfx leafd,i
}
∪ {0}

)
.

– lastkeyi(view) on input view = (ev1, . . . , evT) outputs

max { t′ | evt′ = (newkey, x∗i)},

where x∗i := edgesd,i−1∆edgesd,i for i ≥ 1 and x∗0 := edgesd,0∆edgesd,1.

34 D. Hofheinz, J. Kastner, K. Klein

– B ∈ N is a bound on the number of repetitions of Lines 6 to 14 for each t.
In case of B unsuccessful repetitions for one t, the whole algorithm outputs
⊥. We will fix a suitable value for B later.
Below we will prove some useful properties of the functions maxcor and

lastkey, and are now ready to define the distributions Dview
i,blkh

; see Algorithm 19.
Our distribution Dview

i,blkh
is defined like Dview

lkh,blkh
(i.e., like an LKH run with A), but

uses rewinding and resampling (as defined in Section 4) at every step. Addition-
ally, we replace certain ciphertexts cx as indicated by x ∈ edgesd,i during the
rewindings. Concretely, fix an i and consider Algorithm 19, which programmat-
ically describes sampling viewT according to Dview

i,blkh
.

Algorithm 19: Sampler for Dview

i .1 ,blkh

Input: i ∈ {0, . . . , Td}, blkh ∈ {0, 1}, B ∈ N // len, pfxt,maxcori,t, lastkeyi, B
described in proof

1 view0 ← Dview
lkh,blkh

2 T := len(viewlkh) // Length of viewlkh (in entries)
3 for t := 1 to T do
4 Write viewt−1 = (evt−1,1, . . . , evt−1,T)
5 repeat // Output ⊥ if B repetitions fail for this t
6 Rewind adversary to point t // Checks if evt,t defines a

ciphertext to be pebbled
7 if evt−1,t = (ctxt, x, cx) with x ∈ edgesd,i and

maxcor
i +1 ,t+1

(viewt−1) < |x| then

8 Sample fresh c⊥x ← Enc(kx,⊥) // Fresh dummy ciphertext
9 Set evt,t := (ctxt, x, c⊥x) in viewt // Replace cx with c⊥x in

viewt−1

10 Resample from point t+ 1 to obtain
viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, evt,t+1, . . . , evt,τ)

11 else
12 Resample from point t to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,τ)
13 end
14 until maxcor

i +1 ,t+1
(viewt) = maxcor

i +1 ,t+1
(viewt−1) and

len(viewt) = len(viewt−1) and lastkey
i +1

(viewt) = lastkey
i +1

(viewt−1)

15 end
16 return viewT

Having defined our hybrid distributions Dview
i,blkh

, we will additionally consider

potentially inefficient procedures D̃view
i,blkh

which are defined similar to Algorithm 19
but without a bound B on the runtime. We will first show that the distribution
D̃view

0,blkh
coincides with the distribution of views in Game lkh. Next, we will consider

the intermediate distributions Dview
i.1,blkh

(the difference to Dview
i,blkh

being marked gray

The Power of Undirected Rewindings for Adaptive Security 35

in Algorithm 19) and show that for all i ∈ [Td−1]0 it holds that D̃view
i,blkh

and D̃view
i.1,blkh

have the same distribution.
We will then bound the difference in the probability of an abort in the games

Dview
i,blkh

and Dview
i.1,blkh

. To prove this we will need an additional technical lemma
about the abort probability in such mixed sampling procedures and this is the
main difference to Section 4 in which such a mixed resampling procedure does
not occur. Setting the bound B appropriately we will be able to bound the prob-
ability of an abort in Dview

0,blkh
by γ. In the subsequent claim we will show that A

has no advantage in Game Td since the view sampled according to Dview
Td,blkh

is
independent of blkh. Finally, we will conclude the proof by arguing that for all
i ∈ [Td − 1]0 the distributions Dview

i.1,blkh
and Dview

i+1,blkh
are computationally indis-

tinguishable by IND-CPA security of the SKE scheme SKE. See Fig. 9 for an
overview of this sequence of arguments.

Dview
lkh,blkh D̃view

0,blkh
D̃view

0.1,blkh
D̃view

1,blkh
D̃view

1.1,blkh

Dview
0,blkh

Dview
0.1,blkh

Dview
1,blkh

Dview
(Td−1).1,blkh

Dview
Td,blkh

≡

c
≈

c
≈

s≈
γ
0
.1

· · ·

≡

s≈
γ
0

≡
s≈
γ
1

Fig. 9: Sequence of hybrids from the proof of Theorem 2. Perfect indistinguishabilities
(“≡”) are shown in Proposition 6 and Proposition 7, statistical indistinguishabilities
(“

s
≈γi ” and “

s
≈γi.1 ”) with bounds γi and γi.1 follow from our IND-CPA reduction of

Theorem 2 and Proposition 8, and computational indistinguishabilities (“
c
≈”) follow

from the IND-CPA reduction. Note that the statement D̃view
0,blkh

s
≈γ0 Dview

0,blkh
is needed to

bound γ0.1.

Some useful properties of maxcor and lastkey. We prove some useful prop-
erties of maxcor and lastkey.

Lemma 11. For any i ∈ {0, . . . , Td}, any view as described above, and any
t ∈ {1, . . . , len(view)− 1}, it holds that maxcori,t(view) ≥ maxcori,t+1(view).

Proof. This follows from the fact that maxcor considers the suffix of view and so
increasing from t to t+1 only removes events that are considered for maxcor.

We show that for edges that we want to put pebbles on, it does not matter
whether we look at the maxcor value for i or for i + 1 to determine when is a
good time to put a pebble. This will be useful when game hopping later in the
proof.

36 D. Hofheinz, J. Kastner, K. Klein

Lemma 12. For any i ∈ {0, . . . , Td − 1}, any view as described above, any
t ∈ {1, . . . , len(view)}, any x ∈ edgesd,i, it holds

(maxcori,t(view) < |x|)⇔ (maxcori+1,t(view) < |x|).

Proof. Let x′i+1 be the longest common prefix of leafd,i and leafd,i+1.
We note that by Lemma 8, as x ∈ edgesd,i, x lies on the path or the co-path

of x′i+1∥0, so in particular |x| ≤
∣∣x′i+1∥0

∣∣. This holds because edgesd,i is a subset
of both sets of edges incident on the path to leafd,i and leafd,i+1.

If maxcori,t+1(viewt−1) < |x|, this in particular means that the length-maxi-
mal x′ fulfilling the criterion from the definition of maxcori,t+1(viewt−1) must
have |x′| < |x|. Thus, it must be a prefix of x′i+1. Thus, it is also a prefix of
leafd,i+1. As for each (ctxt, x, cx) event, the sibling event (ctxt, pfx|x|−1(x)∥(1 −
x|x|), cpfx|x|−1(x)∥(1−x|x|)) must also occur right before or right after, this yields
that if x′ is the longest prefix of leafd,i after t + 1, it must also be the longest
prefix of leafd,i+1 after t+1. This yields one implication of the equivalence. The
reverse direction follows by a symmetrical argument.

The following lemma states that the last corruption of the relevant key will
already have happened before a pebble is embedded (i.e. before a ciphertext is
replaced by an encryption of ⊥). This will be useful to see that the end conditions
of the repeat loops in different versions of Algorithm 19 are equivalent.

Lemma 13. Let i ∈ [Td] and x ∈ edgesd,i. Then, maxcori,t+1(view) < |x| implies
that lastkeyi(view) < t+ 1 and lastkeyi+1(view) < t+ 1.

Proof. Let x∗i be as in the definition of lastkeyi. By Corollary 3, any x ∈ edgesd,i
is incident on the path from x∗i to the root. Thus |x| ≤ |x∗i |+1. It follows that if
maxcori,t+1(view) < |x|, then also maxcori,t+1(view) < |x∗i | + 1. As any event of
the form (newkey, x∗) triggers events of the form (ctxt, x∗∥b, cx∗∥b) for b ∈ {0, 1},
any (newkey, x∗i) event at or after t+1 implies that maxcori,t+1(view) ≥ |x∗i |+1.
The case for lastkeyi+1 follows from Lemma 12.

We apply the above lemmas to views that share prefixes to find that identical
maxcor values imply identical lastkey values as soon as a pebble is embedded.
This will again be useful in a game hop.

Corollary 5. Let t, i be arbitrary, and let view = (ev1, . . . , evT) be such that
evt = (ctxt, x, cx) with x ∈ edgesd,i and maxcori,t+1(view) < |x|. Then, for any
view′ with pfxt(view

′) = pfxt(view), we have

maxcori,t+1(view
′) = maxcori,t+1(view) ⇒ lastkeyi(view

′) = lastkeyi(view)

and

maxcori+1,t+1(view
′) = maxcori+1,t+1(view) ⇒ lastkeyi+1(view

′) = lastkeyi+1(view).

The Power of Undirected Rewindings for Adaptive Security 37

Proof. As maxcori,t+1(view) < |x|, by Lemma 12 maxcori+1,t+1(view) < |x|. Fur-
thermore, if maxcori,t+1(view) = maxcori,t+1(view

′), then also maxcori,t+1(view
′)

< |x| and the same implication as above holds for view′. From Lemma 13, it fol-
lows that lastkeyi(view) < t+1 and lastkeyi(view

′) < t+1. Therefore, as the pre-
fixes up to t of view and view′ are the same, in fact lastkeyi(view

′) = lastkeyi(view).
Using a similar argument, the implication for i+ 1 also follows.

Proof of Theorem 2. We are now ready to prove Theorem 2.

Proof. We start with a few helper propositions to structure our proof.

Proposition 6. D̃view
0,blkh

≡ Dview
lkh,blkh

.

Proof of Proposition 6. Since edgesd,0 = ∅, the if clause can never return true
and the algorithm always enters the else clause. The statement therefore fol-
lows from Lemma 5, where D = Dview

lkh,blkh
, ht(views) = (evs,1, . . . , evs,t−1), and

gt(views) = (maxcor0,t(views), len(views), lastkey0(views)).

Proposition 7 (D̃view
i,blkh

≡ D̃view
i.1,blkh

). For all i ∈ [Td − 1]0, we have D̃view
i,blkh

≡

D̃view
i.1,blkh

.

Proof of Proposition 7. By Lemma 5, when instantiated once with

ht(view) = pfxt−1(view),

gt(view) = (maxcori,t+1(view), len(view), lastkeyi(view)),

and once with ht as above and

gt(view) = (maxcori+1,t+1(view), len(view), lastkeyi+1(view)),

the distributions of the viewt up until the if in Line 7 of Algorithm 19 returns
true for the first time are identical. Further, by Lemma 12, the conditions for
the if are equivalent, i.e. whenever the if condition would return true for i + 1
it would also return true for i and vice versa. It therefore remains to show that
the end conditions of the repeat loop are also equivalent after the first time the
if returned true.

To see this, note that after the first time the if returned true, maxcori,t+1 as
well as maxcori+1,t+1 are upper bounded by the length of any of the edge labels
in edgesd,i – this follows from Lemma 12 and Lemma 11.

As by Lemma 9, all of these edges are incident on the path from the longest
common prefix of leafd,i and leafd,i+1 to the root or its co-path.

Thus, if maxcori,t+1 and maxcori+1,t+1 are bounded by the length of such an
edge label, it follows in fact that maxcori,t+1(view) = maxcori+1,t+1(view).

By a similar argument, and by Corollary 5, it follows that the part of the
stopping condition that concerns lastkey is equivalent.

38 D. Hofheinz, J. Kastner, K. Klein

Lastly, we see that len(viewt) does not depend on i and thus the stopping
conditions of the repeat loops in the two algorithms are equivalent.

The statement follows.

Proposition 8. For all i ∈ [Td − 1]0, we have

γi.1 = Pr[⊥ ← Dview
i.1,blkh

] ≤ Pr[⊥ ← Dview
i,blkh

] + γ.

Proof of Proposition 8. We use Lemma 10, where event F will be exceeding the
bound B on the iterations of the repeat loop. We further define the procedures
I1, I2, R1i, R2i as listed in Algorithms 20 to 22.

Algorithm 20: I1 and I2

1 view0 ← Dview
lkh,blkh

2 return X0 = (0, view0)

Algorithm 21: R1i
Input: (t− 1, viewt−1)

1 repeat
2 Rewind adversary to point

t
3 Resample from point t

4 until maxcori,t+1(viewt) =
maxcori,t+1(viewt−1) and
len(viewt) = len(viewt−1) and
lastkeyi(viewt) =
lastkeyi(viewt−1)

5 return Xt = (t, viewt)

Algorithm 22: R2i
Input: (t− 1, viewt−1)

1 repeat
2 Rewind adversary to point t
3 if evt,t = (ctxt, x, cx) with

x ∈ edgesd,i and
maxcori+1,t+1(viewt−1) < |x| then

4 Sample fresh c⊥x ← Enc(kx,⊥)
5 Set evt,t := (ctxt, x, c⊥x) in viewt

6 Resample from point t+ 1

7 else
8 Resample from point t
9 end

10 until maxcori+1,t+1(viewt) =
maxcori+1,t+1(viewt−1) and
len(viewt) = len(viewt−1) and
lastkeyi+1(viewt) = lastkeyi+1(viewt−1)

11 return Xt = (t, viewt)

Fig. 10: Algorithms for the proof of Proposition 8

In the following, we will want to map the first placement of a pebble in Al-
gorithm 19 to the event G that triggers switching the algorithms in Lemma 10,
i.e. if G(t, viewt) is true, the next iteration of the for loop will replace a ci-
phertext. We define the event G1(t, viewt) in Algorithm 21 as “t is the smallest
value among all t′ that satisfy evt,t′+1 = (ctxt, x, cx) with x ∈ edgesd,i and
maxcori,t′+2(viewt) < |x|”, and the event G2(t, viewt) in Algorithm 22 as “t is the
smallest value among all t′ that satisfy evt,t′+1 = (ctxt, x, cx) with x ∈ edgesd,i
and maxcori+1,t′+2(viewt) < |x|”.

Note that by Lemma 12, these definitions are in fact equivalent, i.e., G1(t,
viewt) = 1 ⇔ G2(t, viewt) = 1. We will therefore in the following only speak of
G = G1 = G2.

The Power of Undirected Rewindings for Adaptive Security 39

As mentioned above, we define F to be the event that the repeat loop in
R1i or R2i, respectively, is repeated more than B times, where B is defined in
Claim 3.

As both definitions of G refer to the smallest t, it is obvious that the event
G can occur at most once in either a run initiated using I1 and subsequent calls
to R1i, or a run initiated using I2 with subsequent calls to R2i. Thus, G fulfills
Items 1 and 2 from Lemma 10.

Let P1i be defined through I1 and R1i as in Lemma 10. Similarly, let P2i
be defined through I2 and R2i as in Lemma 10. Let P3i be defined through I1,
then sampling using R1i until the first occurrence of G, and then sampling using
R2i.

We note that P1i corresponds to sampling from D̃view
0,blkh

, P2i corresponds to

sampling from D̃view
i.1,blkh

, and P3i corresponds to sampling from D̃view
i,blkh

.

Claim 3. For B := 2T · ln(2T /γ) ·
(
2d+2 + (3d+ 1) · Qcorrupt

)2 · (d + 1)/γ, the
probability of F in P1i, i.e. any run of the repeat loop in Algorithm 21 exceeding
B, is at most γ.

Proof of Claim 3. By Lemma 6, with gt(x) = (maxcori,t(x), len(x), lastkeyi(view))
and ht(view) = pfxt−1(view) it holds that for any γ ∈ (0, 1] (thus in particular
the γ from the theorem statement)

Pr[∀t ∈ [T] : T rep
t ≤ 2T · ln(2T /γ) · |Y|/γ] ≥ 1− γ, (15)

where T rep
t denotes the number of runs of the repeat loop in the t-th iteration

of the for loop, and Y denotes a set large enough to accommodate the range of
any gt. We note

len(view) ≤ Tmax := 2d+2︸︷︷︸
Initial Tree

+Qcorrupt + 1︸ ︷︷ ︸
Query Events

+ d · Qcorrupt︸ ︷︷ ︸
New Key Events

+2 · Qcorrupt · (d− 1)︸ ︷︷ ︸
New ct Events

for any view resulting from a run of an adversary that makes at most Qcorrupt

corruption queries. This means that len(view) can take values up to Tmax =
2d+2 + (3d+ 1) · Qcorrupt. Furthermore, maxcori,t(view) takes values from 0 to d
and lastkeyi(view) takes values from 0 to len(view).

Thus, |Y| ≤
(
2d+2 + (3d+ 1) · Qcorrupt

)2 · (d+ 1).
Plugging this into (15) yields

Pr
[
∀t ∈ [T] : T rep

t ≤ 2T · ln(2T /γ) · T 2
max · (d+ 1)/γ

]
≥ 1− γ. (16)

Thus, we can set

B := 2T · ln(2T /γ) · T 2
max · (d+ 1)/γ

where as before Tmax = 2d+2 + (3d+ 1) · Qcorrupt.

40 D. Hofheinz, J. Kastner, K. Klein

We further note that by Lemma 5 instantiated with

ht(views) =pfxt−1(views)

gt(views) =(maxcori,t+1(views), len(views), lastkeyi(views)),

the Xt defined by P1i are identically distributed to Dview
lkh,blkh

. Also by Lemma 5
instantiated with

ht(views) =pfxt−1(views)

gt(views) =(maxcori+1,t+1(views), len(views), lastkeyi+1(views)),

Xt defined by P1i+1 are identically distributed to Dview
lkh,blkh

.
Since before the occurrence of G in P2i, the sampling of the Xt is equivalent

to that of P1i+1, the Xt up to G are distributed identically to the Xt in P1i+1.
It follows that G also fulfills the criteria Items 3 and 4 from Lemma 10.

Let B be chosen according to Claim 3. Then, the probability of F in P1i is
at most γ. We now consider the probability of F in P2i.

Claim 4. The probability of F in P2i is the same as the probability of ⊥ ← Dview
i,blkh

.

Proof of Claim 4. To see this, recall that by Lemma 12, the conditions for the if
in Line 7 in Algorithm 19 for i are equivalent to the condition for the if in Line 3
in Algorithm 22. By the same argument, the end condition for the repeat loop
is equivalent: The condition on len(viewt) is independent of i and thus the same.
By Lemma 13, if G occurred for Xt, lastkeyi(viewt′) and lastkeyi+1(viewt′) will
be smaller than t+ 1 for any t′ > t. Due to Lemma 11, a similar property holds
for maxcor.

Putting this together and using Lemma 10, the claim follows.

Proposition 9. Dview
Td,blkh

is independent of blkh and in particular AdvLKH, Td

SKE,A,d(λ)
= 0 for every LKH adversary A.

Proof of Proposition 9. Recall that blkh is only used when responding to the chal-
lenge query, which by assumption is the last query the adversary makes. Hence,
neither the abort probability nor any of the events in viewT before the very
last events (challenge, k) and (guess, bA) depend on blkh. The latter implies that
the values of maxcor and lastkey (which are computed from corruption queries
and ciphertext renewal events) as well as len are independent of blkh for all t.
As the resampling procedure cuts off the tail of the view (including the last
two events that may contain information about blkh) when resampling the views,
no information about blkh is carried from viewt−1 to viewt. Furthermore, since
edgesTd

= {0, 1}, the final view viewT does not contain any encryptions of the
root key, and the root key kε is therefore independent of viewT . Thus, A has
no advantage in distinguishing kε from a random independent key sampled by
Gen(1λ).

The Power of Undirected Rewindings for Adaptive Security 41

We are now ready to prove the theorem.

Let A be an arbitrary LKH adversary running in time tA. First, C samples
i∗ ← [Td]. It will then simulate the game (i∗ − 1).1 or i∗ depending on the chal-
lenge it gets from its own challenger. To generate a sample viewT , our IND-CPA
adversary C modifies the procedure of Algorithm 19 by embedding an IND-CPA
challenge in the if clause in the repeat loop, see Algorithm 23.

We briefly describe the algorithm. Let x∗ = edgesd,i−1∆edgesd,i be the edge
that needs to either be pebbled or unpebbled in this game hop. The variable β
indicates whether the former or the latter is the case. The core idea of Algo-
rithm 23 is that it runs Algorithm 19, except that as the edge set it considers
edgesd,i ∪ {x∗}, and when the edge x∗ would be re-sampled during a rewinding
to a ctxt event, the ciphertext is replaced with an IND-CPA challenge, where
the permutation of the challenge messages is chosen depending on whether the
edge is to be pebbled or unpebbled in the game hop (i.e. depending on β), im-
plicitly setting the corresponding encryption key at the lower end of the edge to
the challenge key. This is possible as for an edge to be pebbled or unpebbled,
both other edges incident to its lower vertex need to be pebbled, i.e. both of
the ciphertexts sitting on those edges need to have been replaced by encryptions
of ⊥ already, thus revealing nothing about the challenge key. Furthermore, any
“honest” encryptions that need to be made with regard to this challenge key can
be obtained by calling the LoR oracle provided by the IND-CPA challenger with
two identical messages.

For any x ∈ edgesd,i \ {x∗}, the algorithm C resamples a ciphertext of ⊥
according to the same criteria as Algorithm 19. C outputs 0 if A succeeds and 1
else.

We have that for bindcpa = 0 and i∗ = i the modified algorithm samples
from exactly the same distribution as Algorithm 19 on input i − 1 in the gray
mode (and same blkh ∈ {0, 1}, B ∈ N), and for bindcpa = 1 and i∗ = i from
the same distribution as Algorithm 19 in the plain mode on input i (and same
blkh ∈ {0, 1}, B ∈ N). We obtain for the advantage of C:

AdvIND-CPA
SKE,C (λ) = Pr[bC = bindcpa]−

1

2

=
1

2
· (Pr[bC = 0 | bindcpa = 0] + Pr[bC = 1 | bindcpa = 1]− 1)

=
1

2Td
·
∑

i∈[Td]

(
Pr

[
bC = 0

∣∣∣∣ bindcpa = 0
∧ i∗ = i

]
− Pr

[
bC = 0

∣∣∣∣ bindcpa = 1
∧ i∗ = i

])
=

1

2Td
·
∑

i∈[Td]

(
Pr[out(i−1).1 = 1]− Pr[outi = 1]

)
=

1

2Td
·
∑

i∈[Td]

(
Adv

LKH, (i− 1).1
SKE,A,d (λ)−AdvLKH, i

SKE,A,d(λ)
)
.

42 D. Hofheinz, J. Kastner, K. Klein

Algorithm 23: Variant of Algorithm 19 for sampling from
Dview

i∗−1+bindcpa,blkh
given oracle access to an IND-CPA challenger with chal-

lenge bit bindcpa. The functions len,maxcori∗,t, lastkeyi∗ are described in
the proof, B is as in Claim 3.
1 i∗ ← {1, . . . , Td} // guess which games need to be distinguished
2 blkh ← {0, 1}
3 Initialize ι := 0 // Counter for IND-CPA users
4 y∗∥b∗ := x∗ := edgesd,i∗−1∆edgesd,i∗ , where b∗ ∈ {0, 1} // differing edge

index x∗ = y∗∥b∗
5 β := [x∗ ∈ edgesd,i∗−1] // bit β indicates whether a pebble is added

or removed in i∗th step
6 view0 ← Dview

lkh,blkh

7 T := len(view0) // Length of viewlkh (in entries)
8 t∗ := lastkeyi∗(view0) // Time when last key for x∗ is generated
9 for t := 1 to T do

10 Write viewt−1 = (evt−1,1, . . . , evt−1,T)
11 repeat // Output ⊥ if B repetitions fail for this t
12 Rewind adversary to point t
13 if t = t∗ then
14 ι := ι+ 1 // Update current user index
15 NU() // Embed fresh IND-CPA challenge key
16 end
17 if evt−1,t = (ctxt, x, cx) with x ∈ edgesd,i∗ ∪ {x∗} and

maxcori∗,t+1(viewt−1) < |x| then
// Checks if evt,t defines a ciphertext to be pebbled

18 if x = x∗ then
19 Set k∗

β := ky∗ , k∗
1−β := ⊥

20 c∗ ← LoR(ι, k0, k1) from IND-CPA challenger // Fresh
IND-CPA challenge ciphertext

21 Set evt,t := (ctxt, x∗, c∗) // Replace cx with c∗ in viewt−1

22 else
23 Sample fresh c⊥x ← Enc(kx,⊥) // Fresh dummy ciphertext
24 Set evt,t := (ctxt, x, c⊥x) // Replace cx with c⊥x in viewt−1

25 end
26 Resample from point t+ 1 to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, evt,t+1, . . . , evt,τ)
27 else
28 Resample from point t to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,τ) but with the
following change: for all t′ > t∗ with evt,t′ = (ctxt, x∗, cx∗)
generate cx∗ ← LoR(ι, ky∗ , ky∗)

29 end
30 until maxcori∗,t+1(viewt) = maxcori∗,t+1(viewt−1) and

len(viewt) = len(viewt−1) and lastkeyi∗(viewt) = lastkeyi∗(viewt−1)

31 end
32 return [outA(viewT) = blkh]

The Power of Undirected Rewindings for Adaptive Security 43

By Proposition 8 we have for all i ∈ [Td]

Adv
LKH, (i− 1).1
SKE,A,d (λ)−AdvLKH, i− 1

SKE,A,d (λ) ≥ −γ

and hence we obtain

AdvIND-CPA
SKE,C (λ) =

1

2
· 1

Td
·
∑

i∈[Td]

(
Adv

LKH, (i− 1).1
SKE,A,d (λ)−AdvLKH, i

SKE,A,d(λ)
)

≥ 1

2
· 1

Td
·
∑

i∈[Td]

(
AdvLKH, i− 1

SKE,A,d (λ)−AdvLKH, i
SKE,A,d(λ)− γ

)
≥ 1

2
· 1

Td
·
(
AdvLKHSKE,A,d(λ)−AdvLKH, Td

SKE,A,d(λ)
)
− γ

2
.

Plugging in Proposition 9 yields

AdvIND-CPA
SKE,C (λ) ≥ 1

2
· 1

Td
·AdvLKHSKE,A,d(λ)−

γ

2
.

For the runtime analysis we see that the for loop is called T times and the
repeat loop is called at most B times. During each run of the repeat loop,
the adversary A is called once. This yields the runtime given in the theorem
statement.

References

[Bad+16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. “On the Im-
possibility of Tight Cryptographic Reductions”. In: EUROCRYPT 2016,
Part II. 2016.

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM:
Asynchronous Decentralized Key Management for Large Dynamic Groups
A protocol proposal for Messaging Layer Security (MLS). Research Re-
port. Inria Paris, 2018. url: https://hal.inria.fr/hal-02425247.

[BDT22] Alexander Bienstock, Yevgeniy Dodis, and Yi Tang. “Multicast Key
Agreement, Revisited”. In: Topics in Cryptology – CT-RSA 2022. 2022.

[Bel+97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. “A Con-
crete Security Treatment of Symmetric Encryption”. In: 38th FOCS. 1997.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. “Functional Signatures
and Pseudorandom Functions”. In: PKC 2014. 2014.

[BK10] Zvika Brakerski and Yael Tauman Kalai. A Framework for Efficient Sig-
natures, Ring Signatures and Identity Based Encryption in the Standard
Model. Cryptology ePrint Archive, Report 2010/086. 2010.

[BW13] Dan Boneh and Brent Waters. “Constrained Pseudorandom Functions and
Their Applications”. In: ASIACRYPT 2013, Part II. 2013.

[Can+01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. “Black-box con-
current zero-knowledge requires Omega (log n) rounds”. In: 33rd ACM
STOC. 2001.

[Can+99] Ran Canetti, Juan A. Garay, Gene Itkis, Daniele Micciancio, Moni Naor,
and Benny Pinkas. “Multicast Security: A Taxonomy and Some Efficient
Constructions”. In: IEEE INFOCOM’99. 1999.

44 D. Hofheinz, J. Kastner, K. Klein

[Cor02] Jean-Sébastien Coron. “Optimal Security Proofs for PSS and Other Sig-
nature Schemes”. In: EUROCRYPT 2002. 2002.

[Dav+20] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. “Adaptively Secure Constrained Pseudorandom Func-
tions in the Standard Model”. In: CRYPTO 2020, Part I. 2020.

[FF13] Marc Fischlin and Nils Fleischhacker. “Limitations of the Meta-reduction
Technique: The Case of Schnorr Signatures”. In: EUROCRYPT 2013.
2013.

[FS87] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: CRYPTO’86. 1987.

[Fuc+14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and
Vanishree Rao. “Adaptive Security of Constrained PRFs”. In: ASI-
ACRYPT 2014, Part II. 2014.

[GGM84a] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct
Random Functions (Extended Abstract)”. In: 25th FOCS. 1984.

[GGM84b] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “On the Crypto-
graphic Applications of Random Functions”. In: CRYPTO’84. 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signa-
ture Scheme Secure Against Adaptive Chosen-message Attacks”. In: SIAM
Journal on Computing 2 (1988).

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Prove all
NP-Statements in Zero-Knowledge, and a Methodology of Cryptographic
Protocol Design”. In: CRYPTO’86. 1987.

[HJK12] Dennis Hofheinz, Tibor Jager, and Edward Knapp. “Waters Signatures
with Optimal Security Reduction”. In: PKC 2012. 2012.

[HK08] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Functions and
Their Applications”. In: CRYPTO 2008. 2008.

[HW09] Susan Hohenberger and Brent Waters. “Short and Stateless Signatures
from the RSA Assumption”. In: CRYPTO 2009. 2009.

[Jaf+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski,
Krzysztof Pietrzak, and Daniel Wichs. “Be Adaptive, Avoid Overcom-
mitting”. In: CRYPTO 2017, Part I. 2017.

[Kam+21] Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter.
“The Cost of Adaptivity in Security Games on Graphs”. In: TCC 2021,
Part II. 2021.

[Kia+13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. “Delegatable pseudorandom functions and applica-
tions”. In: ACM CCS 2013. 2013.

[Kle+21] Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath,
Margarita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joël Alwen,
and Krzysztof Pietrzak. “Keep the Dirt: Tainted TreeKEM, Adaptively
and Actively Secure Continuous Group Key Agreement”. In: 2021 IEEE
Symposium on Security and Privacy. 2021.

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. “The Abe-Okamoto Partially
Blind Signature Scheme Revisited”. In: Advances in Cryptology – ASI-
ACRYPT 2022. 2022.

[Kuc+20] Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and
Shifeng Sun. “Measure-Rewind-Measure: Tighter Quantum Random Or-
acle Model Proofs for One-Way to Hiding and CCA Security”. In: EURO-
CRYPT 2020, Part III. 2020.

The Power of Undirected Rewindings for Adaptive Security 45

[LW14] Allison B. Lewko and Brent Waters. “Why Proving HIBE Systems Secure
Is Difficult”. In: EUROCRYPT 2014. 2014.

[NY89] Moni Naor and Moti Yung. “Universal One-Way Hash Functions and their
Cryptographic Applications”. In: 21st ACM STOC. 1989.

[Pan07] Saurabh Panjwani. “Tackling Adaptive Corruptions in Multicast Encryp-
tion Protocols”. In: TCC 2007. 2007.

[PS96] David Pointcheval and Jacques Stern. “Security Proofs for Signature
Schemes”. In: EUROCRYPT’96. 1996.

[RK99] Ransom Richardson and Joe Kilian. “On the Concurrent Composition of
Zero-Knowledge Proofs”. In: EUROCRYPT’99. 1999.

[Wat05] Brent R. Waters. “Efficient Identity-Based Encryption Without Random
Oracles”. In: EUROCRYPT 2005. 2005.

[WGL00] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. “Secure group
communications using key graphs”. In: IEEE/ACM Trans. Netw. 1 (2000).
url: https://doi.org/10.1109/90.836475.

[WHA98] D. M. Wallner, E. J. Harder, and R. C. Agee. Key Management for Mul-
ticast: Issues and Architectures. Internet Draft. 1998.

