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Abstract

We elaborate on the problem of polynomial runtime in
simulatability definitions for multi-party computation. First,
the need for a new definition is demonstrated by showing
which problems occur with common definitions of polyno-
mial runtime. Then, we give a definition which captures in
an intuitive manner what it means for a protocol or an ad-
versary to have polynomial runtime.

We show that this notion is suitable for simulatabil-
ity definitions for multi-party computation. In particular, a
composition theorem is shown for this notion.

Keywords: multi-party computation, reactive simulatability,
universal composability.

1. Introduction

Recently, simulatability-based notions of security for
multi-party protocols received a lot of attention. In partic-
ular, in the “reactive simulatability” modelling of Backes,
Pfitzmann and Waidner (cf. [16, 6]) and the “universal com-
posability” framework of Canetti (cf. [7]), both structural
and constructive results could be formulated.

A simulatability-based notion of security considers a
protocol π secure only relative to an idealisation τ of the re-
spective protocol task. More concretely, π is considered as
secure as τ , iff every attack on π can be simulated by a suit-
able attack on τ . Intuitively, this means that τ already ex-
hibits every weakness of π. For the purpose of comparing
π- and τ -attacks, a protocol user H is introduced,1 which
gives inputs to the parties, reads their outputs, and may talk
to the respective adversary.

For modelling computational security, the mentioned
models bound the computational complexity of all ma-

1 In the framework of [7], this entity is called the (protocol) environ-
ment Z .

chines that participate in a protocol run (i.e., parties, ad-
versary, and user) to strict polynomial-time in the security
parameter k.2 That is, every machine M halts after running
pM(k) steps for a polynomial pM which depends only on the
machine M.

Next, we will describe shortcomings of such a definition
in two common simulatability frameworks to motivate that
this notion of polynomial-time is not intuitive. In Section 3,
we attempt to give a more natural definition, for which we
prove composition features in Section 4. In Section 5, we
relate our definition to the existing one just described.

1.1. The UC framework

In the framework [7] of universal composability (UC),
such a strict polynomial complexity bound on each ma-
chine can cause difficulties. First, it gets hard to formulate
a cryptographic task like public key encryption (see, e.g.,
[7, 14, 11]) without fixing explicit runtime bounds (which
might seem unnatural).

Moreover, the protocol environment may “kill” a poly-
nomially bounded ideal functionality by activating it suffi-
ciently often with nonsense inputs. A real implementation
must now recognise that one party got “too many” inputs
and stop service; this again may, depending on the proto-
col and the network model, not be possible.3

Furthermore, in the simulatability definition, the proto-
col environment Z may depend on the ideal-model adver-
sary S.4 In particular,Z may first of all activate S with non-
sense inputs until S must have halted. In such a situation, τ

2 This excludes a very recent update on the UC framework, to be found
at [10]; see below.

3 It is not helpful to explicitly bound the “dummy parties,” which re-
lay in- and outputs to and from the ideal functionality: In a larger pro-
tocol in which the ideal functionality may be used, these dummy par-
ties are omitted. Consequently, they cannot protect the ideal function-
ality from being “overwhelmed” by inputs. This would contradict se-
cure composition of protocols.

4 S attacks τ and thereby simulates an attack on π.



must still “look like π” even if the ideal-model adversary S
has halted.

The preceding argument shows that in the original for-
mulation from [7], the ideal functionalities FPKE and FSIG

are unrealizable by any real protocol (i.e., by any protocol
which works without other “helping” ideal functionalities).

In the special case of the functionality FPKE for public-
key encryption, a solution was proposed in [14]: keep all
machines polynomial per activation, and quantify only over
environments Z that guarantee a polynomial total running
time of the complete protocol run (with both π and τ ). How-
ever, for other functionalities which may play “ping-pong”5

with the ideal-model adversary, this notion would disallow
any environment.

A similar approach was later used in [8]: here, all ma-
chines are polynomial per activation in the maximum of the
security parameter and the input length; however, environ-
ment and adversary are strictly polynomially bounded. In
this situation, an environment is no longer able to flood (and
thereby disable) the dummy parties with wrong inputs; yet,
Z may still “kill” the ideal-model adversary.

On January 27, after completion of this manuscript, the
paper [10] was updated to contain an alternative approach
to solve the problem of polynomial runtime in an intuitive
manner. This new model seems to be more restrictive than
the model presented here, as a distinction of the real and
the ideal model is possible based on the number of activa-
tions a machine allows before halting [9]. The model here
abstracts from such “denial-of-service-attacks”. Therefore
Canetti’s and our model consider different classes of secure
protocols.

1.2. The Model of Reactive Simulatability

The original formulation of [16] is very similar to [7]
with respect to the computational complexity of protocol
machines. Concretely, [16] demand for computational se-
curity, that all machines are strictly polynomially bounded.
For the notion of “standard simulatability” ([16]’s default
notion of simulatability, in which an ideal-model adversary
may depend on the protocol user6), this is not as difficult as
for “universal simulatability.” The latter notion allows the
protocol user H to depend on the ideal-model adversary7

A2, and thus to “kill” A2 by sending lots of nonsensical in-
put. Furthermore, the issue that an ideal functionality may
be “killed” as described in Section 1.1 is also present.

This problem was addressed in [1, 2, 6] by allowing ev-
ery machine to “block” selected connections. (To do so, a

5 I.e., both adversary and functionality immediately respond to any mes-
sage from each other, thereby creating an infinite loop.

6 The protocol user H is the equivalent of the protocol environment Z
from the universal composability framework of [7].

7 The notation in [16] differs slightly from that in [7].

machine could set its so-called “length function” for that
connection to zero.) So for example, the ideal-model adver-
sary A2 may—from a certain point in time on—block all
connections from the user H, when the corresponding real-
model adversary would have halted or blocked this connec-
tion. Thus, H is not able to “kill” A2 anymore. Similarly, an
ideal functionality is now able to “block” selected ports.

However, there are still reasons why one might con-
sider this solution not satisfying. First, artificial polynomial
bounds have to be stated for an idealisation of, say, public-
key encryption. That is, concrete polynomial limitations on
the message lengths and the number of encryptions have to
be fixed to keep ideal and real protocol strictly polynomi-
ally bounded. So to achieve full generality, protocols have to
be parameterised over, e.g., message lengths and the num-
ber of encryptions (as an example, cf. [5]).

Furthermore, notions like “polynomial fairness” of an
adversary (which means that this adversary schedules mes-
sages between parties after a polynomial number of activa-
tions, cf. [4]) are not compatible with an a priori polynomi-
ally bounded adversary. This is so since the adversary is not
able to schedule messages after it has halted, and thus no
scheduling guarantees can be given.

Finally, the technical tool of length functions (which is
the tool used to “block” a connection) might be considered
artificial. There might be situations in which it is unrealistic
to assume that a machine may block selected communica-
tion channels, but is still able to “listen” on other channels—
consider a dial-in Internet connection, for example.

1.3. Other related work

In [12] the above problems with polynomial runtime
have also been noticed. Their solution consists of intro-
ducing so-called guards, a generalisation of length func-
tions. These guards may reject or modify incoming mes-
sages without wasting any of the total runtime of the con-
cerned machine. This solves the problem of “killing” a ma-
chine by sending nonsensical inputs (these may be removed
by the guard), but still requires that the amount of actual
work a machine does is a priori bounded (e.g., a secure mes-
sage transmission functionality would have an a priori limit
of the number and length of messages transmitted).

1.4. Our Contributions

Motivated by the discussion above we give a new defini-
tion of polynomial runtime for simulatability and prove sev-
eral desirable properties of our definition. The definition is
stated in the model of reactive simulatability, but the con-
cept is model-independent and should carry over to the UC
framework.
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The protocol user H will be chosen to be weakly poly-
nomial (cf. [6]), i.e., it will in each activation be polynomi-
ally limited in the security parameter and the overall size
of the input it gets on incoming ports. The adversary will
be limited in the runtime of H. To guarantee this, two spe-
cific connections between the adversary and the user will be
used to limit the adversary in the message volume commu-
nicated over these lines. A protocol user together with an
adversary limited in this sense will be called continuously
polynomial.

We stress that this definition allows users and adversaries
that do not terminate at all. Specifically, they may run long
enough to break every complexity-based cryptographic sys-
tem. However, the definition guarantees that they may not
do so in polynomial prefixes of H’s view. In fact, the defini-
tion guarantees that in polynomial prefixes of H’s view, both
A and H take only a polynomial number of steps, and both
of them send only messages of at most polynomial size to
the protocol. This captures a very intuitive notion of poly-
nomial runtime for protocol users and adversaries. This se-
curity notion is presented in Section 3.

Polynomial limitations of a protocol will be captured by
the notion of polynomially shaped collections. Roughly, a
set of machines is polynomially shaped if the total length
of all messages sent by these machines is polynomial in the
security parameter k plus the overall length of inputs which
machines from this set got from machines outside this set.
If additionally, all machines in the set are weakly polyno-
mial we call this set polynomially shaped weakly polyno-
mial (ps-wp for short). The notion of ps-wp is a natural def-
inition of a protocol being “polynomially bounded in input
length and security parameter” without having to give ex-
plicit a priori bounds for the lifetime of machines.

In Section 4, we prove a generalised composition theo-
rem for ps-wp protocols. Specifically, in any ps-wp collec-
tion of machines, a functionality may be replaced by a se-
cure implementation if the resulting collection of machines
remains ps-wp.

We note that the set of ps-wp protocols is not closed un-
der composition (i.e., there are ps-wp protocols which yield
a non-ps-wp protocol if composed). We argue that this is
not a flaw of our notion, but a “necessary evil” if one wants
to catch the intuitive notion of a polynomially bounded pro-
tocol. Therefore, we construct an example of two protocols
which are “intuitively polynomial” (and ps-wp), but which
compose to a protocol that is non-polynomial in every intu-
itive way.

Additionally, we give a sub-notion of ps-wp protocols
that is closed under composition. As a simple consequence,
the mentioned ps-wp composition theorem shows that this
notion allows for a secure composition of protocols (with-
out any additional conditions on the complexity of the com-
posed protocols).

In Section 5, we relate our new notion of security to
the existing notion of polynomial security from [6]. More
specifically, we prove that our notion is at least as strict as
the one from [6].

In Section 7, we sketch how to apply our ideas to the UC
framework.

Finally, in Appendix B we show that the generalisa-
tion of simulatable security to machines which are intu-
itively polynomial as defined in this work, but not strictly
polynomial, will allow us to omit the formal concept of
length functions, which was introduced in [1] to solve prob-
lems arising with strictly polynomial functionalities. More
specifically, we show that removing length functions from
protocol machines does not change the notion of security.

2. Review of Reactive Simulatability

In this section, we present the notion of reactive simu-
latability. This introduction only very roughly sketches the
definitions, and the reader is encouraged to read [6] for more
detailed information and formal definitions. A reader fa-
miliar with the model may skip this section and proceed
to Section 3. Additionally, a glossary of important terms in
the reactive simulatability framework can be found in Ap-
pendix A.

Reactive Simulatability is a definition of security which
defines a protocol M̂1 (the real protocol) to be as secure as
another protocol M̂2 (the ideal protocol, the trusted host),
if for any adversary A1 (also called the real adversary), and
any honest user H, there is a simulator A2 (also called the
ideal adversary), s.t. the view of H is indistinguishable in
the following two scenarios:

• The honest user H runs together with the real adver-
sary A1 and the real protocol M̂1

• The honest user H runs together with the simulator A2

and the ideal protocol M̂2.

Note that there is a security parameter k common to all
machines, so that the notion of indistinguishability makes
sense.

This definition allows to specify some trusted host—
which is defined to be a secure implementation of some
cryptographic task—as the ideal protocol, and then to con-
sider the question, whether a real protocol is as secure as the
trusted host (and thus also a secure implementation of that
task). In order to understand the above definitions in more
detail, we have to specify what is meant by machines “run-
ning together”. Consider a set of machines (called a col-
lection). Each machine has so-called simple in-ports (writ-
ten p?), simple out-ports (written p!), and clock out-ports
(written p/!). Ports with the same name (p in our exam-
ple) are considered to belong together and are associated
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Figure 1. A connection

with a buffer p̃. These are then interconnected as in Fig-
ure 1 (note that some or all ports may originate from the
same machine). Now, when a collection runs, the following
happens: At every time, exactly one machine is activated.
It may now read its simple in-ports (representing incoming
network connections), do some work, and then write output
to its simple out-ports. After such an activation the contents
of the simple out-ports p! are appended to the queue of mes-
sages stored in the associated buffer p̃. However, since now
all messages are stored in buffers and will not be delivered
by themselves, machines additionally have after each acti-
vation the possibility to write a number n ≥ 1 to at most one
clock out-port p/!. Then the n-th undelivered message of
buffer p̃ will be written to the simple in-port p? and deleted
from the buffer’s queue. The machine that has the simple in-
port p? will be activated next. So the clock out-ports control
the scheduling. Usually, a connection is clocked by (i.e., the
corresponding clock out-port is part of) the sender, or by
the adversary. Since the most important use of a clock out-
port is to write a 1 onto it (deliver the oldest message in the
buffer), we say a machine clocks a connection or a message
when a machine writes a 1 onto the clock port of that con-
nection.

At the start of a run, or when no machine is activated at
some point, a designated machine called the master sched-
uler is activated For this, the master scheduler has a special
port, called the master clock port clk/?.

Note that not all collections can be executed, only so-
called closed collections, where all connections have their
simple in-, simple out-, and clock out-port. If a collection
is not closed, we call the ports having no counterpart free
ports.

In order to understand how this idea of networks relates
to the above sketch of reactive simulatability, one has to get
an idea of what is meant by a protocol. A protocol is rep-
resented by a so-called structure (M̂, S), consisting of a
collection M̂ of the protocol participants (parties, trusted
hosts, etc.), and a subset of the free ports of M̂ , the so-
called service ports S. The service ports represent the pro-
tocol’s interface (the connections to the protocol’s users).
The honest user can then only connect to the service ports
(and to the adversary), all other free ports of the proto-
col are intended for the communication with the adversary

(they may e.g. represent side channels, possibilities of at-
tack, etc.). Since usually a protocol does not explicitly com-
municate with an adversary, such free non-service ports are
more commonly found with trusted hosts, explicitly mod-
elling their imperfections.

With this information we can review the above “defini-
tion” of security. Namely, the honest user H, the adversary,
and the simulator are nothing else but machines, and the
protocols are structures. The view of H is then the restric-
tion of the run (the transcripts of all states and in-/output
of all machines during the protocols execution, also called
trace) to the ports and state of H.

The definition, as presented so far, still has one draw-
back. We have not introduced the concept of a corruption.
This can be accommodated by defining so-called systems.
A system is a set of structures, where to each “corruption
situation” (set of machines, which are corrupted) one struc-
ture corresponds. That is, when a machine is corrupted, it is
not present anymore in the corresponding structure, and the
adversary takes its place. For a trusted host, the correspond-
ing system usually consists of structures for each corruption
situation, too, where those connections of the trusted host,
that are associated with a corrupted party, are under the con-
trol of the adversary.

We can now refine the definition of security as follows: A
real system Sys1 is as secure as an ideal system Sys2, if ev-
ery structure in Sys1 is as secure as the corresponding struc-
ture in Sys2.

A major advantage of a security definition by simulata-
bility is the possibility of composition. The notion of com-
position can be sketched as follows: If we have on struc-
ture or system A (usually a protocol) implementing some
other structure or system B (usually some primitive), and
we have some protocol XB (having B as a sub-protocol,
i.e. using the primitive), then by replacing B by A in XB ,
we get a protocol XA which is as secure as XB . This al-
lows to modularly design protocols: first we design a proto-
col XB , and then we find an implementation for B.

3. Continuously Polynomial Security

In this section, a new notion of polynomial runtime for
the adversary and the protocol user H, continuously poly-
nomial, is defined. For users and adversaries subject to
our definition, terms like “guaranteed delivery after poly-
nomial time” can be defined in a meaningful way. The
definition of protocols which are polynomially shaped of
Section 4 together with the restriction to weakly polyno-
mial machines (ps-wp protocols) will ensure without ex-
plicit lifetime bounds that only polynomial-time computa-
tions are performed within polynomial time as seen by the
protocol user H.
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First, we demand from the protocol user H that it is
weakly polynomial, as defined in [6]. There it is required
that there is a polynomial p, such that in each activation, H
runs at most p(k + |I|) steps, where k is the security pa-
rameter, and |I| is the length of all inputs H has received
so far.8 We explicitly stress that this allows Hs that do not
halt, i.e., run infinitely long. It also does not forbid H to send
messages to itself (possibly doubling the size of this “loop-
back” message every time to get twice the computational
power for the next activation), or to receive large messages.

To make sure that the induced security notion stays sen-
sible, we will restrict to only polynomial prefixes of H’s
view. That is, we consider only things that happen during
polynomially-sized prefixes of H’s view.9 Here, the size of
a view-prefix is the concatenated size of all inputs and out-
puts on H’s ports.

Second, an adversary A is required to be polynomial in
H’s view. There are two obvious ways to do this: keeping
A polynomial in the messages it receives from H, or keep-
ing A polynomial in the messages it sends to H. We decided
for a combination of both: in our definition, A must be poly-
nomial in the size of the A-H-communication in both direc-
tions. We did so to give A more freedom: with the first no-
tion, it would not be possible, in some cases, for A to sim-
ply forward protocol messages to H. Conversely, the sec-
ond notion may forbid A to forward messages from H to
the protocol. Thus, only our combined notion allows for a
“dummy adversary” (an adversary that only acts as a re-
lay between internal protocol lines and H). The concept of
such a dummy adversary is useful, e.g., for proving concur-
rent composition properties.

However, this preliminary definition gives rise to a sub-
tle problem with the proof of the composition theorem.
In this proof, surrounding protocol machines are, for cer-
tain steps of the proof, simulated by the protocol user H.
So an adversary considered in the proof of composability
may have communication lines which are sometimes con-
nected to protocol machines and sometimes connected to a
protocol user mimicking these machines. Hence an adver-
sary which is polynomial as described above could lose this
property by the “regrouping” of machines during the com-
position proof, and the proof would fail.

Therefore, we introduce two specific communication
lines which are guaranteed to connect the adversary and H.

8 This is similar to [13], where this approach is taken for the special case
of secure function evaluations.

9 Alternatively, one could fix such a prefix with H and “hardwire” that
bound into H to make it strictly polynomial in the traditional sense.
However, in the case of standard security, the simulator is then cho-
sen after H and thus knows the runtime bound of H. When trying to
define notions like fairness (i.e., the property that the adversary even-
tually delivers messages), the simulator could then simply deliver all
messages after the termination of the honest user H. This would cir-
cumvent the idea of a fair delivery.

The ports for these two lines will have names of the form
cpoly . . . , and such ports will not be allowed in any proto-
col. Now the total length of messages exchanged over these
two specific lines is used as a lower bound for the “time”
which has passed for H, and the adversary must be polyno-
mial in this “volume” plus k. This volume includes the mes-
sages which is sent from the adversary to H in the same ac-
tivation.

Counting a message, that is sent to H in the same activa-
tion, to the volume in which the adversary must be polyno-
mial allows the adversary to receive (and, e.g., forward) ar-
bitrarily long messages from the protocol. However, an ad-
versary computing for a long time must send a long mes-
sage to H to ensure that a long “elapse in time” is observed
in the view of H. There is one important detail here: ev-
ery prefix of the view of H is a sequence of results from
whole activations. That is, if an adversary took a superpoly-
nomial “debt” (e.g., by factoring a large integer), then the
superpolynomial message which he is forced to send to H
in the same activation will not be contained in any polyno-
mial prefix of H’s view. So whenever the adversary is per-
forming a superpolynomial number of computation steps, it
is ensured that the result will not, not even in parts, be con-
sidered in the definition of security.

A further condition we impose on the adversary is the
following: The adversary is required to read all incoming
messages completely. This seemingly unnecessary condi-
tion has important consequences: Assume a protocol (e.g.,
for secure message transmission) in which a ciphertext is
transmitted. Assume further that for generating a realistic
first bit of the ciphertext, a runtime linear in the length of
the message is required.10 Then a real adversary A could do
the following: It intercepts the ciphertext, but reads only the
first bit and forwards that bit to the honest user H. Since A
only reads one bit, its running time is independent of the
length of the transmitted message and it does not need to
output anything on the cpoly . . . connection. However, the
simulator now has the task to generate a realistic first bit,
which takes a runtime linear in the length of the message.
In the case of universal security, since the simulator is cho-
sen before the honest user, this length may be larger than the
number of steps the simulator may run without output on the
cpoly . . . connection. So the simulator must output some-
thing there and the honest user can distinguish. By introduc-
ing the condition that the adversary reads all its inputs, this
problem is fixed, since A now has to read the whole mes-
sage, too, and hence also outputs on the cpoly . . . connec-
tion.

10 An example would be if the protocol prepended the bit Hl(0) to the
ciphertext, where l is the length of the message, andH a suitable func-
tion so that computing Hl(0) cannot be done faster than in Ω(l).
Clearly, an IND-CCA2 secure cryptosystem would not lose its secu-
rity by such an addition.
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As a technicality, messages sent from the adversary A
to H over the specific line which influences A’s runtime
must be delivered immediately to ensure the direct corre-
spondence between runtime and messages received by H.11

We turn to the actual definition:

Definition 3.1 (Continuously polynomial honest users
and adversaries). We call an honest user H continu-
ously polynomial, if it is weakly polynomial, has ports
cpoly ha!, cpoly ah? ∈ ports(H), and the length func-
tion for cpoly ah? is ∞ in every non-final state (i.e., all
inputs on cpoly ah? are written in full length to H’s view).

We call an adversary A continuously polynomial, if

• it has ports cpoly ha?, cpoly ah!, cpoly ah/!, and

• there is a polynomial p, s.t. for any closed collection Ĉ
of machines with A ∈ Ĉ, and any possible view of A in
Ĉ (on security parameter 1k), the following holds:

– Let tµ be the total number of Turing steps of A up
to its µ-th activation (inclusive). Let cµ be the to-
tal length of outputs on cpoly ah! and inputs on
cpoly ha? up to A’s µ-th activation (inclusive).
Then for all µ ∈ N it is

tµ ≤ p(cµ + k).

– Whenever A sends a message on cpoly ah!, it is
delivered immediately.

– A never sets its length functions to anything other
than ∞, and A always completely reads all in-
coming messages.12

We can now define continuously polynomial security by
simply restricting honest user and adversary to continuously
polynomial ones:

Definition 3.2 (Continuously polynomial security). Let
(M̂1, S) and (M̂2, S) be structures (i.e., protocols), s.t. M̂1

and M̂2 have no port named cpoly ah or cpoly ha. De-
fine13

Confcpoly(M̂2, S) := {(M̂2, S,H,A) ∈ Conf(M̂2, S) :

A and H are continuously polynomial},
ConfM̂2

cpoly(M̂1, S) := Confcpoly(M̂1, S) ∩ ConfM̂2(M̂1, S).

11 To facilitate the presentation, we say that a message m form a ma-
chine M is delivered immediately over a port p! if the receiving ma-
chine is activated with this message directly after M has entered a
waiting state or a final state. In the model of [16, 6], this happens if the
buffer p̃ is empty and M performs the commands p! := m; p/! := 1.

12 That is, in each activation, A takes at least |I| steps, where |I| is the
length of A’s input in that activation.

13 Remember that in [6] ConfM̂2 (M̂1, S) and Conf(M̂2, S) are the sets
of configurations (M̂, S,H,A) so that H,A are valid honest user and
adversary for the given protocol in the real and ideal model, respec-
tively, and S is the set of service ports of the protocol M̂ = M̂1, M̂2,
resp. Essentially, H and A are called valid if there are no open connec-
tions, and H only connects to service ports.

Less formally, the class of admissible honest users, ad-
versaries and simulators is restricted to continuously poly-
nomial ones.

If view is a view of some machine, then by pfxt(view)
we denote the longest prefix, s.t. the total length of all inputs
and outputs in that prefix is bounded by t ∈ N (we will call
such a prefix a t-prefix).

We call (M̂1, S) continuously polynomially as se-
cure as (M̂2, S) (written: ≥cpoly

sec ), if for every configuration
conf 1 = (M̂1, S,H,A1) ∈ ConfM̂2

cpoly(M̂1, S), there exists a
configuration conf 2 = (M̂2, S,H,A2) ∈ Confcpoly(M̂2, S)
(essentially, this means that for continuously polyno-
mial H, A1 there is a continuously polynomial simulator
A2) s.t. for all polynomials l

pfxl(k)
(
viewconf 1,k(H)

)
≈poly pfxl(k)

(
viewconf 2,k(H)

)
.

That is, for every adversary A1 and user H that run with
M̂1, we require the existence of an adversary A2 that runs
with H and M̂2, such that all polynomial prefixes of H’s view
are indistinguishable in both protocols.

For universal security, (written: ≥cpoly,uni
sec ) we addition-

ally require that A2 does not depend on H.

4. A Generalised Composition Theorem

This section gives a generalised composition theorem for
not necessarily terminating protocols. To this end, a new no-
tion of polynomial runtime for protocols is introduced. For
describing polynomial complexity, it is not only necessary
to limit the computation time of a machine in each acti-
vation. It should also hold that superpolynomial “events”
within the protocol yield a view for the user H having a su-
perpolynomial representation. It should not pass unnoticed
by H if a protocol machine gains superpolynomial com-
puting power through a superpolynomial number of acti-
vations (which intuitively means that superpolynomial time
must have passed) or by playing ping-pong with messages
of growing size.

The definition of a polynomially shaped protocol ensures
that each protocol machine can produce only messages of a
total length which is polynomial in the length of the mes-
sages coming from outside the protocol, e.g. from the pro-
tocol user H or the adversary. The outside of the protocol is
represented by a machine T in the definition below. If addi-
tionally, each protocol machine is weakly polynomial, then
the number of Turing steps a protocol runs between two ac-
tivations of H or the adversary is polynomially limited in
the security parameter and the length of the overall proto-
col input.

Definition 4.1 (Polynomially shaped). A collection Ĉ
of machines containing no master scheduler is called
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p-shaped for a function p : N → N, if for all ma-
chines T s.t. Ĉ ∪ T is closed (i.e., there are no open
connections) the following property holds with overwhelm-
ing probability in the security parameter k:

Let oµ denote the total length of the output of all ma-
chines in Ĉ at position µ in the run of Ĉ ∪ T. Similarly, iµ
denotes the total length of the input of machines in Ĉ on
ports coming from T (i.e., ports p? s.t. p! ∈ ports(T)). Fur-
ther aµ denotes the total number of activations of machines
in Ĉ at that point. Then

oµ + aµ ≤ p(iµ + k).

The adversary or the user could try to gain superpoly-
nomial computing power by playing “ping-pong” with a
protocol which has no lifetime bound. However, this does
not affect the security definition and computational assump-
tions can still be used, because security is defined by com-
paring only polynomial prefixes of the view of the user H.
It is easy to see that results of a superpolynomial ping-pong
cannot be contained in such a polynomial prefix if all ma-
chines are weakly polynomial, the protocol is polynomially
shaped, and the user and the adversary are continously poly-
nomial. A superpolynomial number of invocations of the
protocol either directly implies a superpolynomial view of
the using machine H or it implies a superpolynomial view of
the adversary. A result of such a superpolynomial computa-
tion can only appear in a superpolynomial view of the ad-
versary. For a continously polynomial adversary A and user
H an event not visible in any polynomially view of the ad-
versary cannot be visible in a polynomial prefix of the view
of H. Even though the weakly polynomial machines could,
in the long run, break any cryptosystem this does not im-
ply distinguishability and computational assumptions can
be used.

Next we generalise the composition theorem to contin-
uously polynomial users and adversaries interacting with
polynomially shaped protocols.

Note that the notion of polynomially shaped protocols
is itself not closed under composition. A simple counterex-
ample can be obtained from the two machines M1, M2 as
follows. The machine M1 has two input lines and one out-
put line. It forwards each input to the output line and clocks
the output line. The machine M2 has one input line and one
output line and acts as a repeater. It forwards each input to
the output line and clocks the output line in the same actio-
vation. Both machines are polynomially shaped (as collec-
tions), but if we connect the two machines leaving one in-
put line of M1 open we obtain a collection which can gen-
erate infinite internal communication on one single input.
This is a very bad effect as such a machine could run un-
til it has solved some “hard” problem thereby invalidating
computationmal assumptions.

So the generalised composition theorem states that a
composed protocol is secure if it remains polynomially
shaped. It is in the responsibility of the protocol designer
to avoid “loops” when designing a protocol.

However, one can restrict the security definition to a sub-
class of polynomially shaped protocols which is closed un-
der composition. Then the composition theorem still holds
and e.g. loops cannot arise from composition.

A subclass of polynomially shaped protocols which is
closed under composition can be obtained by restricting to
protocols which give a shorter output then the total length
of inputs given so far. This subclass contains a lot of natu-
ral protocols. It seems very difficult to find a subclass which
is closed under composition and contains all natural proto-
cols: for instnce, a broadcast protocol has a larger output
than the length of the input.

Intuitively, the generalised composition theorem says:
Let a weakly polynomial protocol M̂1 use a sub-protocol
M̂ ′0 such that the composition of M̂1 and M̂ ′0 is polynomi-
ally shaped. Let further M̂0 be a protocol which can connect
to the protocol M̂1 in the same way as M̂ ′0 and for which the
composition of M̂1 and M̂0 is polynomially shaped, too.
Then the following holds: If M̂0 is at least as secure as M̂ ′0
according to Definition 3.2, then M̂ ′0 can be replaced by M̂0

without loss of security.

Theorem 4.2. Let (M̂0, S0), (M̂ ′0, S0), (M̂1, S1) be struc-
tures (i.e., protocols), s.t. no port in M̂1, M̂0, or M̂ ′0
is named cpoly ah or cpoly ha. Let then (M̂#, S) :=
(M̂1, S1)‖(M̂0, S0), (M̂∗, S) := (M̂1, S1)‖(M̂ ′0, S0) (i.e.,
M̂# is the composition of M̂1 and M̂0, while M̂∗ is the
composition of M̂1 and M̂ ′0). Assume that

• The collections of machines M̂# and M̂∗ are polyno-
mially shaped.

• The collection of machines M̂1 is weakly polynomial.

• It is (M̂0, S0) ≥cpoly
sec (M̂ ′0, S0).

• It is ports(M̂ ′0) ∩ Sc1 = ports(M̂0) ∩ Sc1.14

Then we have

(M̂#, S) ≥cpoly
sec (M̂∗, S),

i.e., M̂# is continously polynomially as secure as M̂∗.
The same holds for universal security.

Proof. In the following proof, we assume all polynomials
to be monotone. Furthermore, k always denotes the security
parameter.

14 This is a formally necessary structural condition on the available ports,
which also appear in the original version of the composition theorem,
cf. [6] for details.
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Let conf 1 := (M̂#, S,H,A1) ∈ ConfM̂
∗

cpoly(M̂
#, S) be

given (i.e., let some suitable continuously polynomial hon-
est user H and adversary A1 be given). To prove the theo-
rem, we have to find a continuously polynomial simulator
A2, s.t. conf 2 := (M̂∗, S,H,A2) ∈ Confcpoly(M̂

∗, S) and

pfxl
(
viewconf 1

(H)
)
≈poly pfxl

(
viewconf 2

(H)
)

(1)

for all polynomials l.
To prove universal security, we additionally need, that

A2 does not depend on H.
W.l.o.g. we can restrict our attention to honest users

which do not terminate. Other honest users can be trans-
formed into an honest user H′ which 1. does not terminate,
2. is continuously polynomial, and for which 3. the view of
the original H is a prefix of the new H′.

Consider the combination H′ of H∪M̂1. Since H and M̂1

are weakly polynomial, so is their combination H′. Since H
does not terminate, the length function for cpoly ah of H′ is
always∞, therefore H′ is continuously polynomial.

Since (M̂0, S0) ≥cpoly
sec (M̂ ′0, S0) there is a continuously

polynomial simulator A2, s.t.

pfxL
(
viewM̂0∪H′∪A1

(H′)
)
≈poly pfxL

(
viewM̂ ′0∪H′∪A2

(H′)
)

for all polynomials L.
To show (1) from this, it is sufficient to show that for any

polynomial l there is a polynomial L, s.t. the l-prefix of H is
(with overwhelming probability) contained in the L-prefix
in H′ (intuitively, this means that the view of H does not
grow superpolynomially by inclusion of M̂1).

First, consider the view of H in the real model (i.e. in the
collection H ∪ A1 ∪ M̂#). Fix a polynomial l. Let then the
random variable µk be the index in the run of the last ele-
ment of the l-prefix of H’s view (more formally, the mini-
mal µk, s.t. pfxl(k)(view(H)) is contained in the first µk el-
ements of the run).

Since A1 is continuously polynomial, there exists a poly-
nomial r (dependent on l) s.t. up to the µk-th step in the run
the total length of A1’s output is bounded by r(k).

Since the total length of the output of H up to the µk-
th step is bounded by l(k) (by definition of l), we con-
clude that the total input of M̂# coming from H and A1 is
bounded by l(k)+r(k). Since M̂# is polynomially shaped,
it follows (by Definition 4.1) that the total output of M̂# is
bounded by some polynomial p(k) (dependent on l, r) with
overwhelming probability.

So the length of the inputs and outputs of H′ (being
the combination of H and M̂1 ⊆ M̂#) is bounded by
L1(k) := l(k) + r(k) + l(k) + p(k) + p(k) (the summands
being upper bounds for: in-/output of H; output of A1; out-
put of H; output of M̂1; output of M# (the latter appear-
ing as input to H′)). Therefore the l-prefix of H’s view ap-
pear with overwhelming probability in an L-prefix of the
view of H′ (in the real model).

Using the fact that M̂∗ is polynomially shaped, too, we
get by analogous discussion that the l-prefix of H’s view ap-
pear with overwhelming probability in an L2-prefix of the
view of H′. By choosing L as a polynomial bounding both
L1, L2, the remaining goal is shown, so (1) follows.

5. Relations to Polynomial Security

Continuously polynomial security allows for users and
adversaries which are not strictly polynomial. On the other
hand, every strictly polynomial pair of user and adversary
can be interpreted as continuously polynomial ones—only
the formally necessary cpoly ah and cpoly ha connections
have to be added (but they need not be used).

However, this inclusion does not immediately imply that
continuously polynomial security can be related in any way
to the well-known concept of strictly polynomial security
(for which only strictly polynomially bounded users and ad-
versaries are considered). Namely, in case of continuously
polynomial security, not only real adversaries, but also sim-
ulators may be drawn from a larger pool of possible ad-
versaries. So in principle, continuously polynomial security
of a system could mean that even for strictly polynomially
bounded real attacks, a simulator might be necessary which
is not polynomially bounded; strictly polynomial security
might not follow from continuously polynomial one.

Fortunately, we can still show the following, not imme-
diately obvious relation between continuously polynomial
and strictly polynomial security:

Theorem 5.1. Let (M̂1, S) and (M̂2, S) be polynomially
shaped structures (i.e., protocols) satisfying (M̂1, S) ≥cpoly

sec

(M̂2, S). Then (M̂1, S) ≥poly
sec (M̂2, S), i.e. continuously

polynomial security implies strictly polynomial security for
polynomially shaped protocols.

Proof. Assume (M̂1, S) ≥cpoly
sec (M̂2, S). To prove that

(M̂1, S) ≥poly
sec (M̂2, S) we have to show that for every

conf 1 := (H,A1, M̂1, S) ∈ ConfM̂2

poly(M̂1, S) (i.e., for any
strictly polynomial honest user H and real adversary A1),
there is a simulator A2 with conf 2 := (H,A2, M̂2, S) ∈
Confpoly(M̂2, S) (i.e., a strictly polynomial adversary), s.t.

viewconf 1
(H) ≈poly viewconf 2

(H). (2)

Without loss of generality we can assume that no port of H
and A1 is named cpoly ah or cpoly ha.

First, since H and A1 are strictly polynomial, and M̂1 is
polynomially shaped, there is a polynomial p, s.t. p(k) is
with overwhelming probability an upper bound for the to-
tal length of all messages sent in a run of {H,A1} ∪ M̂1.

Therefore, we can construct a new real adversary Ap1
from A1 as follows: We add new ports cpoly ha?, cpoly ah!,
and cpoly ah/!. Ap1 completely reads all its inputs and
behaves as A1 would (and ignores cpoly ha-messages).
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Only if the total length of the incoming messages received
throughout the run exceeds p(k), all messages are for-
warded to H through cpoly ah instead of simulating A1.
Clearly, since A1 was strictly polynomial, Ap1 is continu-
ously polynomial.

Similarly, we construct a new honest user H′ from H: We
add new ports cpoly ah?, cpoly ha!, cpoly ha/!. The length
function on cpoly ah? is set to∞, but any input on this port
is ignored. No output is ever sent on the new ports. Clearly,
since H was strictly polynomial, H′ is continuously polyno-
mial.

Intuitively, we have added a new connection between H
and A1 which is not used at all, but needed to fulfil the for-
mal requirements of continuously polynomial honest users
and adversaries. Since the new connection is not used, and
Ap1’s communication limit p(k) is reached only with negli-
gible probability, it immediately follows that

viewconf 1
(H) ≈ viewH′∪Ap

1∪M̂1
(H′). (3)

Since the machines H′ and Ap1 are continuously polyno-
mial, by (M̂1, S) ≥cpoly

sec (M̂2, S) there is a continuously
polynomial simulator Ap2 s.t. for all polynomials l

pfxl
(
viewH′∪Ap

1∪M̂1
(H′)

)
≈poly

pfxl
(
viewH′∪Ap

2∪M̂2
(H′)

)
(4)

Since in runs of H′ ∪ Ap1 ∪ M̂1 the adversary Ap1 sends any-
thing on cpoly ah only with negligible probability, Ap2 only
sends with negligible probability on that port, too.

Therefore it is possible to construct a new simulator
A2 from Ap2 by removing the ports cpoly ha?, cpoly ah!,
cpoly ah/! (here A2 simply terminates when Ap2 would have
sent on cpoly ah). Since only with negligible probability
data is ever transmitted over these ports, it is immediate that

viewH′∪Ap
2∪M̂2

(H′) ≈ viewH∪A2∪M̂2
(H) (5)

using the same identification of views as in (3).
Further, since Ap2 is continuously polynomial, and thus

can only make a polynomial number of Turing steps while
not receiving on cpoly ha or sending on cpoly ah, it follows
that A2 is strictly polynomial.

Setting conf 2 := (H,A2, M̂2, S), and combining (3), (4)
and (5), we get

pfxl
(
viewconf 1

(H)
)
≈poly pfxl

(
viewconf 2

(H)
)

(6)

for all polynomials l.
And since H and A1 are strictly polynomial, and M̂1

is polynomially shaped, it follows from Definition 4.1 that
there is a polynomial l s.t.

pfxl
(
viewconf 1

(H)
)
= viewconf 1

(H)

with overwhelming probability (i.e., that the view is almost
always of length at most l(k)).

The analogue holds for H, A2 and M̂2, so from (6) fol-
lows (2), which concludes the proof.

Note that the above proof does not work for univer-
sal security, since A2 depends on p which again depends
on H.

This theorem has several applications: first, it shows that
continuously polynomial security is not “too weak” a secu-
rity notion. In fact, anyone who would accept strictly poly-
nomial security as a sufficiently strong security assump-
tion should also find continuously polynomial security suf-
ficiently strong.

Second, established results which need strictly polyno-
mial security of a given system as a prerequisite can also
be used with continuously polynomially secure systems.
Consider the following example: You have proven continu-
ously polynomial security for each of the many components
of a large e-commerce protocol. The protocol and each of
its components are—to avoid fixing a priori runtimes—
formulated as a ps-wp protocol. Of course you use Theo-
rem 4.2 to derive the security of the composed protocol.
(Note that already this step would not have been possi-
ble with the strictly polynomial version of the composi-
tion theorem from [16], since for its application, the large
protocol must be strictly polynomial-time.) Using [1, The-
orem 5.1]15 and Theorem 5.1, you can now show that, e.g.,
integrity properties—as defined in [1]—the ideal version of
the large protocol has are inherited by the composed (com-
pletely real) protocol. Since these steps involve composition
of ps-wp systems, showing the same integrity properties of
the composed real system is non-trivial when using only re-
sults which deal with strictly polynomial security.

6. A Simple Example

We will show the applicability of our definition using the
very simple example of secure message transmission (SMT)
over an authenticated channel using a one-time-pad. Note
that despite its simplicity, such a functionality could not
have been modelled in earlier approaches without bound-
ing number and length of the messages (e.g., the SMT-
functionality in [16] is parametrised by explicit bounds s
and L for number and length of the messages).

To keep the presentation of this example simple, we as-
sume a key exchange functionality KE that is has the fol-
lowing specification: When receiving a message of the form
1L from party PAlice, a random K ∈ {0, 1}L is sent to the
parties PAlice and PBob and a message 1L is sent (with im-

15 This theorem states the preservation of integrity properties and is ap-
plicable even to protocols which are not polynomial-time.
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mediate scheduling) to the adversary (informing him that a
key exchange took place).16

We now want to implement the following functionality
SMT: Whenever a message m is received from PAlice, a
message 1|m| is sent (and immediately scheduled) to the
adversary, and the message m is sent to PBob. (Note that
here the adversary can reorder the messages, since he may
choose when to schedule the delivery of m from SMT to
PBob.)

The protocol we propose for SMT is fairly straightfor-
ward. When receiving a message m, PAlice first requests a
key of length L := |m|+k from the functionality KE where
k is the security parameter. Upon receipt of the key K it
sends c := (m0k)⊕K to PBob over an authenticated chan-
nel. PAlice repeats this protocol for each new message.

Then, upon reception of a key K from KE and a cipher-
text c from PAlice, PBob calculates m̃ := c⊕K. If m̃ has the
form m0k, PBob outputs m.

Obviously this protocol is ps-wp, for each input of length
L it generates a communication volume of 5L+ 4k.

We now give a proof sketch that this protocol indeed re-
alises SMT: First, consider the case that no party is cor-
rupted. Then, for each adversary A1 we construct a simu-
lator A2 as follows: A2 simulates the adversary, as well as
PAlice and PBob. When the simulator A2 receives a message
1L from SMT (informing it that a message of lengthL is be-
ing sent), a random message m̃ ∈ {0, 1}L is given to PAlice

as input, thus creating as fake view for the adversary. When
PBob finally outputs the message m̃ ∈ {0, 1}L (and the ad-
versary schedules that output), the simulator schedules the
delivery of the corresponding message m from SMT to the
environment.

Since the adversary (and the honest user) does not learn
the key K generated by KE, they may not distinguish
whether the cipertexts intercepted by the adversary corre-
spond to the messages generated by the honest user, or to
random messages of the same length generated by the sim-
ulator. However, one fine point must be taken care of: If sev-
eral messages are in the process of being sent, the adversary
may reorder the keys from KE differently on PAlice’s and
PBob’s side. Then it is possible that wrong messages get de-
coded. However, in order for this to happen, two generated
keys have to match on the last k bits. Since the honest user
H is continuously polynomial, for each prefix of length p of
H’s view at most O(p(k)) messages are sent, thus at most
O(p(k)) keys generated, so the probability of such a collu-
sion of keys is bounded by O(p(k)22−k).

We add a short remark here: If instead of the one-time-
pad an only computationally secure cipher had been used,
we would additionally have to note that since the proto-

16 This key exchange functionality could then easily be implemented by
doing an L-bit Diffie-Hellman-style key exchange.

col is polynomially shaped, and the honest user and adver-
sary are continously polynomial, the adversary and honest
user together can run at most a polynomial number of steps.
Hence, they cannot break the cipher with more than a neg-
ligible probability.

The last thing left to check for the uncorrupted case
is that our simulator is indeed continuously polynomial.
Whenever the simulator gets a message 1L from SMT, a
simulation of PAlice and PBob runs. The runtime needed for
this simulation is polynomial in L. However, in the simu-
lation PAlice immediately sends a message of length L + k
which is passed to the simulated adversary. So the runtime
needed for the simulation is polynomial in the length of
the messages the simulated adversary gets. And since the
simulated adversary is continuously polynomial, its runtime
(which is also an upper bound for its incoming communica-
tion) is polynomial in its communication on the cpoly . . .
ports. So the total runtime of the simulator is polynomial
in its communication on the cpoly . . . ports (since all the
communication of the simulated adversary on these ports is
passed to H), and thus the simulator is continuously poly-
nomial.

So at least in the uncorrupted case, our protocol is a con-
tinuously polynomially secure implementation of SMT.

The cases where PAlice or PBob are corrupted are even
easier, since here the simulator can learn the transmitted
message. Checking that the simulator in these cases is also
continuously polynomial is done very similarly to the un-
corrupted case. We omit the details of these cases.

7. Applying our idea to the UC framework

We have shown how to allow for a more general class
of polynomial-time protocols in the framework of reac-
tive simulatability. Our approach can be adapted to the
UC framework [7]. Several differences between the UC
and the reactive simulatability framework that induce mi-
nor changes in our definitions are worth mentioning here:

• In the UC model, there is no concept of ports, the re-
cipient of a message is dynamically specified by the
sending machine. Therefore in Definition 3.1 we can-
not consider the messages sent only over the cpoly . . .
ports. Instead, the messages intended to be sent over
this connection must be marked in a special way, e.g.,
by a special prefix which is not allowed in messages
sent to the protocol.

• In the UC model, indistinguishability of real and ideal
protocols is not formulated in terms of the view, but in
terms of the final output of the environment. Instead of
quantifying over polynomial prefixes of the views in
Def. 3.1 we would simply quantify only over environ-
ments that must terminate after a polynomial length of
input and output.

10



• In the UC model, it is possibly that additional ma-
chines appear during the execution of the protocol
(these can model e.g., new participants, newly invoked
subroutine threads, multiple instances of a functional-
ity). The definition of a polynomially shaped proto-
col (Def. 4.1) should therefore require, that the out-
puts of all machines (including submachines that are
created only during the execution of the protocol) are
bounded polynomially in the external input of all ma-
chines. Only considering the machines present at the
beginning of the protocol execution would not be suf-
ficient, of course.

8. Conclusions

We have motivated and introduced a novel formulation
of the intuitive requirement of simulatable security with re-
spect to polynomially bounded attacks and protocol runs.
We have shown that the induced security notion allows for
composition and is at least as strong as the established no-
tion of strictly polynomial security.

We have presented our approach in the modelling of re-
active simulatability [6]. The ideas presented here should be
applicable to the UC model [7], too.

Many of the oddities that arise with a combination of
simulatable security and a strict polynomial bounding (as
with strictly polynomial security) of all entities in a protocol
are settled by our approach. Nonetheless, more radical tech-
niques are possible: e.g., message scheduling and schedul-
ing of activations could be separately managed by distin-
guished entities. In such a setting, machines can send mes-
sages which are scheduled while the sending machine re-
mains activated. Then, a very intuitive formulation of “poly-
nomial runtime,” which can even more closely model real-
istic protocol situations, would seem possible.
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A. Glossary

In this section we explain the technical terms of the re-
active simulatability framework used in this paper. Longer
and formal definitions can be found in [6].

[Ĉ][Ĉ][Ĉ]: The completion of the collection Ĉ. Results from
adding all missing buffers to Ĉ. Confx(M̂2, S)Confx(M̂2, S)Confx(M̂2, S): Set of
ideal configurations that are possible for structure (M̂2, S).
ConfM̂2

x (M̂1, S)ConfM̂2
x (M̂1, S)ConfM̂2
x (M̂1, S): Set of real configurations possible for

structure (M̂1, S). ports(M)ports(M)ports(M): The set of all ports, a ma-
chine or collection M has. to clock: To write 1 onto
a clock out-port. EXPSMALL: The set of exponen-
tially small functions. NEGL: The set of negligible func-
tions (asymptotically smaller than the inverse of any poly-
nomial). buffer: Stores message sent from a simple out-
to a simple in-port. Needs an input from a clock port to de-
liver. clock out-port p/!p/!p/!: A port used to schedule connec-
tion. closed collection: A collection is closed, if all ports
have all their necessary counterparts. collection: A set of
machines. combination: The combination of a set of ma-
chines is a new machine simulating the other machines. A
set of machines can be replaced by its combination without
changing the view of any machine. composition: Replac-
ing sub-protocols by other sub-protocols. computational
security: When in the security definition, honest user and
adversary are restricted to machines running in polynomial
time, and the views are computationally indistinguishable.
configuration: A structure together with an honest user
and an adversary. free ports: The free ports of a collection
are those missing their counterpart. honest user: Rep-
resents the setting in which the protocol runs. Also called
environment. intended structure: A structure from
which a system is derived making a structure for every cor-
ruption situation. master clock port clk/?clk/?clk/?: A special port
by which the master scheduler is activated. master sched-
uler: The machine that gets activated when no machine
would get activated. perfect security: When in the se-
curity definition, the real and ideal run have to be identical,
not only indistinguishable. Further the machines are com-
pletely unrestricted.17 run: The transcript of everything

17 In [6] a machine can in every activation for a given input and cur-
rent state only reach one of a finite number of states (this convention
has been chosen for simplicity [3]). However, this cannot even model
the simple Turing machine that tosses (within one activation) coins un-
til a 1 appears, and then stores the number of coin tosses. Therefore
we will here adopt the convention that each state can have a countable
number of potential successor states, from which one is chosen fol-

that happens while a collection is run. Formally a random
variable over sequences. runconf ,k,l is the random variable
of the run when running the configuration conf upon secu-
rity parameter k, restricted to its first l elements. If k is omit-
ted, a family of random variables is meant. If l is omitted,
we mean the full run. service ports: The ports of a struc-
ture to which the honest user may connect. They represent
the interface of the protocol. As service ports are most of-
ten ports of a buffer, they are sometimes specified through
the set Sc of their complementary ports; Sc consists of all
ports which directly connect to a service port. simple
in-port p?p?p?: A port of a machine, where it can receive mes-
sages from other machines. simple out-port p!p!p!: As sim-
ple in-port, but for sending. statistical security: When
in the security definition the statistical distance of polyno-
mial prefixes of the views have a statistical distance which
lies in a set of small functions SMALL (in the security pa-
rameter k). Usually SMALL = NEGL. Further the ma-
chines are completely unrestricted.17 structure: A col-
lection together with a set of service ports, represents a pro-
tocol. view: A subsequence of the run. The view(M)
of some collection or machine M consists of the run re-
stricted to the ports and states of M . Possible indices are as
with runs.

B. Length Functions

In Section 1, we mentioned that in security definitions
which handle only strictly polynomial protocols it is of-
ten necessary to restrict the amount of data (lengths of in-
puts, number of invocations) a protocol can handle by some
polynomial in the security parameter. We saw in Section 4
that the notion of continuously polynomial security allows
to consider a much larger class of protocols, namely proto-
cols which are ps-wp. This frees protocols from the neces-
sity of terminating after some amount of input; rather pro-
tocols are only required to be polynomial in the “input from
outside”.

In earlier versions of the reactive simulatability defini-
tions and the modelling of universal composability (e.g.,
in [7]), the following problem arose: consider e.g. the seem-
ingly trivial functionality/trusted host, that has two in-ports
and two out-ports (representing two parties) and on each
pair of in-/out-port would just echo every input. In order to
make this functionality strictly polynomial, it is now neces-
sary to restrict the amount of echoed data to some polyno-
mial p. Then the functionality has to terminate after receiv-
ing p messages on the first port, otherwise it might have to
spend superpolynomial time by ignoring the incoming mes-
sages on that port. Then of course the functionality would
not echo anything on the second port, even if no message

lowing some distribution depending on the input and the current state.

12



has been echoed there yet. This introduces a flow of infor-
mation between the two echo ports which certainly was not
the intention of the original functionality.

To handle this artefact and allow functionalities to
“switch off” selected ports, [1] introduces so-called
length functions. These allow a machine to set the maxi-
mal length of messages it can receive through a given port
at a given time. In particular, by setting the length func-
tion on a port to 0, the port is blocked and will not be
activated by messages on that port, so that ignored mes-
sages do not consume runtime.

Since with continuously polynomial security, we do
not need strictly polynomial protocols, one might won-
der whether it is still necessary to consider and use
length functions in this modelling, since these are an an-
swer to a problem which is actually solved by our mod-
elling in another manner. This question will be addressed
in the present section, where we will show that we can in
fact assume all protocol machines to have no length func-
tions.18

The question is therefore whether a ps-wp proto-
col/functionality with length functions can be modi-
fied into another ps-wp protocol/functionality without
length functions so that the security is not affected. For-
tunately the following straightforward modification al-
ready has the desired property: we say a machine M′

results from another machine M by removing length func-
tions if M′ has no length functions, but otherwise behaves
as M does. That is, when receiving a message, the con-
tent of the message after the prefix the length function of M
indicates is ignored, and only that prefix is used for the sim-
ulation of M (or the message is ignored, if the length
function is 0). In other words, M′ simulates the length func-
tions of M without actually having them. When M̂ is
a collection, removing length functions means remov-
ing them from every machine in M̂ .19

Since obviously the difference between M and M′ is only
a formal property, not a difference in behaviour, we would
expect M′ to be a suitable replacement for M. This is con-
firmed by the following

Lemma B.1. Let M̂i (i = 1, 2) be collections without
master schedulers, and let M̂ ′i result from M̂i by remov-
ing length functions. Then it holds that

• M̂i is polynomially shaped iff M̂ ′i is.

• If M̂i is weakly polynomial, so is M̂ ′i .

18 Formally, by a machine without length functions we mean a machine,
whose length functions are ∞ in every non-final state.

19 A careful study of the definition of machines in [6] shows, that for-
mally we can define the machine resulting from removing length func-
tions from a machine M = (name,Ports,States, δ, l, Ini ,Fin)
simply as M′ = (name,Ports,States, δ,∞, Ini ,Fin), where ∞
denotes the length function yielding ∞ for all ports and non-final
states.

• The following are equivalent:

(M̂1, S) ≥sec (M̂2, S), (M̂1, S) ≥sec (M̂
′
2, S),

(M̂ ′1, S) ≥sec (M̂2, S), (M̂ ′1, S) ≥sec (M̂
′
2, S)

Here ≥sec denotes one of the following security no-
tions: perfect / statistical / strictly polynomial / contin-
uously polynomial in the flavours of standard or uni-
versal security.

The main idea of the proof is that the removal of length
functions does not change the behaviour of the protocol,
therefore the equivalences of the three security relations.
Then it remains to be seen that the machines do not need
superpolynomial runtime in the input to ignore the inputs
(this shows the modified machines to be weakly polyno-
mial), and that the amount of output does not change (this
shows the resulting structures to be polynomially shaped).
Note that such a property would not hold for strictly poly-
nomial structures, since by removing a length function from
a blocked port the resulting machine would have to ignore
but accept an unbounded number of messages on that port,
which is not allowed for strictly polynomial machines. The
full proof goes as follows:

Proof. Let Ĉi be some collection, s.t. M̂i ∪ Ĉi is a closed
collection (i.e., no port is unconnected). Then removing the
length functions from M̂i yields a collection M̂ ′i ∪ Ĉi, so
that the run of M̂ ′i ∪ Ĉi differs from that of M̂ ′i ∪ Ĉi only
in the following points: 1. the inputs of machines in M̂ ′i
are changed (i.e., they are longer since with unmodified M̂i

they were added to the run in truncated form), 2. there are
additional activations of machines in M̂ ′1 with empty out-
puts.

Now let any machine T without length functions be
given, s.t. M̂i ∪ T is closed. Consider then a run run of
T∪M̂i with security parameter k and the corresponding run
run′ of T ∪ M̂ ′i (i.e, the runs result from the same random
choices). Let µ ∈ N. Then let tµ denote the total length of
the output of T, aµ the number of activations of machines in
M̂i, and oµ the total length of the output of machines in M̂i,
all up to the µ-th activation of T in run (cf. Definition 4.1).
Let t′µ, a′µ, and o′µ be defined analogously for run′. By set-
ting Ĉi := {T} the considerations at the beginning of the
proof tell us that

aµ ≤ a′µ, tµ = t′µ, oµ = o′µ.

Note further that whenever a simple machine (no master
scheduler) is activated, some other machine necessarily sent
a nonempty message to that effect. This allows to conclude
a′µ ≤ t′µ + o′µ.

13



If then M̂i is p-shaped then from these inequalities we
get with overwhelming probability for all µ

a′µ + o′µ ≤ t′µ + 2o′µ = t′µ + 2oµ
≤ t′µ + 2p(tµ + k) ≤ (2p+ id)(t′µ + k),

so M̂ ′i is (2p+ id)-shaped.
If on the other hand M̂ ′i is p-shaped, it is

aµ + oµ ≤ a′µ + o′µ ≤ p(t′µ + k) = p(tµ + k),

so M̂i is p-shaped. So the claim follows that M̂i is polyno-
mially shaped iff M̂ ′i is.

Now assume some weakly polynomial machine M is
given, and M′ results by removing length functions. Let
some input sequence for M resp. M′ be given. Then for ac-
tivation µ we distinguish two cases: First, the length func-
tion of M is not zero on the port containing input. Then M′

only has to ignore any trailing input, which can be done
with an overhead polynomial in the running time of M in
that activation. Second, if the length function of M is zero,
the overhead of M′ is constant, i.e., in particular polynomi-
ally bounded in the size of the non-empty input. So sum-
marising we see that the overhead of M′ is polynomial in
the running time of M and the length of the input, so M′ is
weakly polynomial, too. Therefore this shows the claim M̂ ′1
is weakly polynomial if M̂1 is.

Considering again the results from the beginning of the
proof, and letting Ĉ1 be the honest user together with the
real adversary, we see that the view of the honest user is
not changed by removing the length functions from the ma-
chines in M̂1, so (M̂1, S) ≥sec (M̂2, S) is equivalent to
(M̂ ′1, S) ≥sec (M̂2, S) and (M̂1, S) ≥sec (M̂

′
2, S) is equiv-

alent with (M̂ ′1, S) ≥sec (M̂ ′2, S). Similarly with Ĉ2 be-
ing the honest user together with the simulator, we see that
(M̂1, S) ≥sec (M̂2, S) is equivalent with (M̂1, S) ≥sec

(M̂ ′2, S). This shows the third claim.
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