Public-Key Encryption with
Non-interactive Opening

Ivan Damgard!, Dennis Hofheinz?, Eike Kiltz*2, and Rune Thorbek!

L BRICS, Aarhus
2 CWI, Amsterdam

Abstract. We formally define the primitive of public-key encryption
with non-interactive opening (PKENO), where the receiver of a cipher-
text C can, convincingly and without interaction, reveal what the result
was of decrypting C, without compromising the scheme’s security. This
has numerous applications in cryptographic protocol design, e.g., when
the receiver wants to demonstrate that some information he was sent pri-
vately was not correctly formed. We give a definition based on the UC
framework as well as an equivalent game-based definition. The PKENO
concept was informally introduced by Damgard and Thorbek who sug-
gested that it could be implemented based on Identity-Based Encryption.
In this paper, we give direct and optimized implementations, that work
without having to keep state information, unlike what one obtains from
directly using IBE.

1 Introduction

MoTivATION. Consider the following extremely common scenario from cryp-
tographic protocol design: Player A sends a secret message to player B who
(perhaps at some later time) checks what he receives against some public infor-
mation. For instance, it may be that the message is supposed to be information
for opening a commitment that A established earlier. If the check is OK, B will
be able to proceed, but otherwise some “exception handling” must be done. The
standard solution to this is to have B broadcast a complaint, and A must then
broadcast what he claims to have sent privately, allowing all players to check the
information. This is secure, since the conflict can only occur if at least one of
A,B is corrupt, so the adversary already knows what is broadcast. But it has the
important drawback that interaction is required, in particular A must be present
to help resolve the conflict. In many cases, one cannot rely on this assumption.
For instance, suppose A is one of many clients who want to provide some in-
put to a set of servers, who will then do a secure computation on the inputs.
It is highly desirable that this can be done without interaction, in particular

* Supported by the research program Sentinels (http://www.sentinels.nl). Sentinels
is being financed by Technology Foundation STW, the Netherlands Organization for
Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

that the servers can decide efficiently among themselves which clients provided
well-formed input.

PUBLIC-KEY ENCRYPTION WITH NON-INTERACTIVE OPENING. An alternative
solution was suggested by Damgard and Thorbek in [12], namely public-key en-
cryption with non-interactive opening (PKENO). This is based on the observa-
tion that in practice, the private communication from A to B would typically be
implemented using public key encryption, i.e., A sends a ciphertext C encrypted
under B’s public key pkg. PKENO now means that if B chooses to reveal the
result m of decrypting C (typically, if he is unhappy about m), he can do so,
convincingly and without interaction®. That is, he can broadcast m, ™ where 7
is a proof that can be checked against pkg and C' and demonstrates that in-
deed decrypting C' using the secret key matching pkg results in m. Of course,
this must be done such that other ciphertexts remain secure, and this excludes
the trivial solution of revealing B’s secret key. Clearly, if PKENO can be im-
plemented efficiently, we have a nice general tool for removing interaction from
cryptographic protocols.

DirricurTy oOF PKENO. Note that having the receiver open a ciphertext is less
trivial than having the sender do so: the sender could always be asked to simply
reveal the plaintext and the random coins used to construct the ciphertext. This
does not work when the receiver does the opening: one has to consider the fact
that the sender might be corrupt and hence C is adversarially constructed. It
may not even be a valid ciphertext, in which case “the coins used to construct
C” is not a well defined concept.

INEFFICIENT CONSTRUCTIONS. A few straightforward solutions for implement-
ing PKENO do exist which, however, have various drawbacks: In principle, one
can implement PKENO if a common reference string can be reliably set up.
Then the receiver B can commit to his secret key initially and 7 would be a non-
interactive zero-knowledge proof that the secret key committed to matches pkg
and produces m when used to decrypt C. Unfortunately, with the known tech-
niques for non-interactive zero-knowledge, this solution is very inefficient and
essentially useless in practice. Efficient solutions are easy to find in the random
oracle model, since one can take known efficient and interactive zero-knowledge
proofs and make them non-interactive using the Fiat-Shamir heuristic. However,
it is unclear what security guarantees in the random oracle model mean for the
real world, so in this paper, we will concentrate on efficient solutions that do not
use random oracles.

KNOWN CONSTRUCTIONS AND THEIR LIMITATIONS. In [12], the PKENO notion
was informally introduced, and it was suggested that it could be implemented
based on identity-based encryption (IBE). The idea here is that pkg would be
the public master key of an IBE system, and the secret key skg would be the
secret master key. To encrypt m, one chooses an identity id (see below for details

% Note that m may not be a meaningful message, it may be a special reject symbol if
C was rejected as invalid by the decryption algorithm.

on how id is chosen), and encrypts m to this identity. Thus, the ciphertext C' is
the pair C' = (id, |BEenc(id, m)). The receiver B uses skg to generate the IBE
user secret key usk[id] corresponding to id and can then decrypt. To open C, B
simply reveals the decryption result m and usk[id], this allows anyone to do the
decryption and check that the result is m. Note that efficient IBE schemes exist
(under specific assumptions) that do not require random oracles [20].

It follows directly from the properties of IBE that revealing usk[id] does not
compromise security of ciphertexts directed to other identities, not even if id is
adversarially chosen. This solution is therefore secure if we can guarantee that
identities cannot be reused — but only then. This would be the case if it is used
in a protocol that assigns unique labels to all ciphertexts to be sent. Then these
labels can be used as identities. But note that these labels must be different
in different instances of the same protocol. Alternatively, all players could keep
state information allowing to test if a label has been used before. This puts
some rather heavy demands on the implementation and hence, using IBE in this
straightforward way is not satisfactory in general.

An alternative construction of PKENO can be obtained by using public-key
encryption with witness-recovering decryption (PKEWR) [19]. Here the receiver
(i. e., the holder of the secret key) can efficiently reconstruct the “randomness”
that was used for encryption. This randomness then serves as the proof. Ver-
ification performs (deterministic) re-encrypting using the randomness and the
messages. The proof is valid if the result equals the ciphertext. There exists con-
struction of PKEWR, from the Decisional Diffie-Hellman assumption and from
an assumption related to lattices. However, both constructions are relatively
inefficient since the ciphertext size is linear in the message length.

OUR CONTRIBUTIONS. In this paper, we make two contributions: first, we give a
formal definition of PKENO, in fact we give two equivalent definitions, one based
on the UC framework, and a game-based definition. This allows to show that an
implementation is secure using the game-based definition (which is usually easier
than with UC), while at same time being guaranteed the composition properties
that follows from the UC theorem. We assume — for simplicity — a trusted key
set-up, i.e., all key pairs are correctly generated. We emphasize, however, that
this assumption is not inherent to the PKENO concept. The definitions can be
modified to do without it and some implementations do not need it.

Second, we show some concrete implementations of PKENO. One of our tech-
niques gives a simple and general solution to the problem with unique identities
in the IBE implementation, allowing a stateless solution. To this end we use a
technique by Naor and Yung [17] that was also used more recently by Canetti,
Halevi, and Katz [9] in a transformation of any chosen-plaintext secure IBE
scheme into a chosen-ciphertext secure PKE scheme. We adopt the latter trans-
formation to construct PKENO from IBE. The idea is to use, for each PKENO
encryption, a fresh random verification key of a one-time signature scheme as
the “identity” id for IBE encryption. In order to tie the IBE ciphertext to this
verification key it is signed using the corresponding signing key. This ensures the
uniqueness of the identity and hence allows a stateless solution of PKENO.

Another technique gives a more direct implementation that is not based on
IBE and hence is more efficient. We use a modification of the pairing-based
chosen-ciphertext secure PKE scheme which was proposed by Boyen, Mei, Wa-
ters [5] and Kiltz [15]. We show that it is possible to update their scheme with
a non-interactive opening functionality without compromising its security. Se-
curity of this scheme can be reduced to the Bilinear Decisional Diffie-Hellman
(BDDH) assumption.

2 Preliminaries

2.1 Notational conventions

If © is a string, then |z| denotes its length, while if S is a set then |S| denotes
its size. If k € N then 1* denotes the string of k ones. If S is a set then s «g
S denotes the operation of picking an element s of S uniformly at random.
Unless otherwise indicated, algorithms are randomized and polynomial time. An
adversary is an algorithm or a tuple of algorithms. A function f : N — R is
negligible iff there exists ¢ < 0 such that |f(k)| < k¢ for all sufficiently large k.
We write f ~ g if f — g is negligible.

2.2 The UC model

Canetti’s Universal Composability (UC) framework [6, 7] for multi-party com-
putation allows to formulate security and composition of multi-party protocols
in a very general way. The idea of the UC model is to compare a protocol to
an idealization of the respective protocol task. Security means that the protocol
“looks like” the idealization even in face of arbitrary attacks and in arbitrary
protocol environments. This notion of security is very strict [8, 2, 13], but im-
plies useful compositional properties [6]. In fact, in a certain sense, this notion
is even necessary for secure composition of protocols [16].

THE REAL MODEL. We shortly outline the framework for multi-party protocols
defined in [6, 7]. First of all, parties (denoted by P; through P,) are modeled
as interactive Turing machines (ITMs) (cf. [7]) and are supposed to run some
fixed protocol (i.e., program) IT. There also is an adversary, denoted A and
modeled as an ITM as well, that carries out attacks on protocol I7. Therefore,
A may corrupt parties (in which case it learns the party’s state and controls
its future actions), and intercept or inject messages sent between parties. If A
corrupts parties only before the actual protocol run of IT takes place, A is called
non-adaptive, otherwise A is said to be adaptive. In this work, we only consider
non-adaptive corruptions. The respective local inputs for all parties of protocol
IT are supplied by an environment machine (modeled as an ITM and denoted
Z), which may also read all protocol outputs locally made by the parties and
communicate with the adversary.

THE IDEAL MODEL. The model we have just described is called the real model of
computation. In contrast to this, the ideal model of computation is defined just

like the real model, with the following exceptions: all party ITMs are replaced
with one single ideal functionality F. The ideal functionality may not be cor-
rupted by the adversary, yet may send messages to and receive messages from
it. Finally, the adversary in the ideal model is called “simulator” and denoted S.
The only means of attack the simulator has in the ideal model are corruptions
(in which case S may supply inputs to and read outputs from F in the name
of the corrupted party), delaying or suppressing outputs of F, and all actions
that are explicitly specified in F. However, S has no access to the inputs F gets
and to the outputs F generates, nor are there any protocol messages to inter-
cept. Intuitively, the ideal model of computation (or, more precisely, the ideal
functionality JF itself) should represent what one ideally expects the protocol to
do. In fact, for a number of standard tasks, there are formulations as such ideal
functionalities (see, e.g., [6]).

SECURITY DEFINITION. To decide whether or not a given protocol I7 fulfills the
requirements of our ideal specification F, the framework of [6] uses a simulatability-
based approach: at a time of its choice, Z may halt and generate output.
The random variable describing the first bit of Z’s output will be denoted by
REALj7 4,z (k,z) when Z is run with security parameter £ € N and initial input
z € {0,1}* in the real model of computation, and IDEALx s z(k,z) when Z is
run in the ideal model. Now [T is said to securely realize F iff for any real ad-
versary A, there exists a simulator S such that for any environment Z and any
(possibly non-uniform) family of initial inputs z = (z)x, we have

Pr[REALp 4 z(k,2x) = 1] = PrIDEALF s z(k, 2k) = 1]. (1)

This slightly differs from the original formulations in [6, 7], but is equivalent and
eases our presentation. Intuitively, Equation 1 means that any attack against the
protocol can be simulated in the ideal model. Hence, any weakness of the real
protocol is already contained in the ideal specification (that does not contain an
“actual” weakness by definition). Interestingly, the “worst” real attack possible is
the one carried out by the dummy adversary A that simply follows Z’s instruc-
tions. That means that for security, it actually suffices to demand existence of a

simulator that simulates attacks carried out by A.

COMPOSITION OF PROTOCOLS. To formalize the composition of protocols, there
also exists a model “in between” the real and ideal model of computation. Namely,
the hybrid model of computation is identical to the real model, except that par-
ties have access to (multiple instances of) an ideal functionality that aids in
running the protocol. This is written as ¢” for the actual protocol ¢ and the
ideal functionality F. Instances of F are distinguished via session identifiers
(short: session ids, or sids). Note that syntactically, instances of F can be imple-
mented by a protocol IT geared towards realizing F. And indeed, the universal
composition theorem [6, 7] guarantees that if one protocol instance of IT is se-
cure, then many protocol instances are, even when used in arbitrary protocols .
More concretely, if IT securely realizes F, then ¢! securely realizes o7 for any
protocol ¢. Here, 7 denotes that ¢ uses (up to polynomially many) instances
of F as a subprimitive, and ! denotes that ¢ uses instances of IT instead.

CONDITIONAL SECURITY AND COMPOSABILITY. Universal composability is a
very strict notion. So sometimes (e.g., in the case of bit commitments), it is
not possible to achieve full UC security. Hence, several weakenings of the notion
have been proposed. One method that will be useful in our case is to consider
only protocol environments that conform to certain rules (see [18, 1]). Concretely,
secure realization with respect to a certain class 3 of environments means that in
Equation 1, we quantify only over environments in 3. This relaxed security notion
still gives precisely those compositional guarantees one would expect: secure
composition with larger protocols that can be seen as restricted environments
from 3 (see [18, 1] for details).

3 Public-key encryption with non-interactive opening

3.1 A UC-based definition

Figure 1 depicts our ideal functionality for public-key encryption with non-
interactive openings. Fpkrno is an extension of the Fpkg functionality [6, 10, 14]
that captures IND-CCA secure public-key encryption. The most notable differ-
ence to Fpkg are the additional Prove and Verify queries, which allow the re-
ceiver to open a ciphertext and every party to verify openings. Also, we dropped
public keys, since we assume a trusted PKI (i.e., keypair setup) for a realization.

DiscussioN OF Fpkeno. First, note that the session id sid already determines
the distinguished receiving party Prec,. Any party may ask for encryptions, but
only Py, may ask for decryptions. As for the encryption of a message m, the
adversary may determine a unique tag C via the algorithm Enc. However, note
that C' depends only on the length |m| of m, but not on m itself (except if
the receiver is corrupted, in which case we obviously cannot guarantee secrecy).
This reflects that ideally, encryptions reveal only the length of the message.
Decryption takes care that correctness is ensured, i.e., ciphertexts are mapped
back to the encrypted messages. (For this, Fpkrno stores a list of ciphertexts
and associated messages.)

Opening and verifying openings is a bit trickier. For any ciphertext, the re-
ceiver P, can obtain a proof m that should ideally prove what message was
encrypted. Formally, 7 is determined by the adversary (in form of a pre-stored
algorithm Prove) to ensure that during the simulation, at least the shape of 7
matches the one of a possible real implementation. However, Fpxgno ensures
that verification (via Verify queries) satisfies some natural and crucial require-
ments. Namely, an honestly (i.e., via Fpkrno) generated encryption C of m
cannot be proven to contain a different message m’ # m. Also, honestly (i.e., via
FrkeNo) generated proofs are always accepted. In all cases left open by this (and
in particular, if a wrong public key is used with Verify), the adversary is free to
determine the verification outcome in order to simulate a real implementation.

Note that from the functionality’s perspective, ciphertexts and proofs are
merely tags and do not carry any semantics. The adversary is free to deter-
mine these tags, but the functionality takes care that decryptions and proofs

are handled as ideally expected. (E.g., the ciphertext tags do not depend on the
messages, or honestly generated proofs verify correctly.)

WHY KEY MANAGEMENT IS OUTSOURCED. Also note that there are no public
or secret keys in the functionality. This is unlike, e.g., in the Fpkg modelings
from [6, 10, 14], which do contain a public key. This simplification is possible,
since we will consider keys to be already set up, which corresponds to running a
public-key encryption scheme protocol in the Fpki-hybrid model (see below).

The reason why we opted to outsource key management into Fpgkp is the
following: if the receiving party Pj.., was allowed to take care of key generation
on its own, then a corrupted Py, could generate keys in a dishonest way. (E.g.,
if the public key contains a common reference string for a non-interactive zero-
knowledge proof, then Py, could generate this CRS along with a trapdoor that
allows Pyec, to cheat in the proofs. That would not have been possible with an
honest generation of keys.) While our concrete scheme from Section 6 is secure
even if a dishonest P,.., chooses its keys arbitrarily, our game-based formulation
(Definition 1) guarantees nothing in that setting. Of course, an adaptation of
both Definition 1 and Fpkgno is possible, such that a dishonest choice of keys
is reflected; we chose not to do so because be believe that an honest generation
of keys is more realistic.

INTERPRETING A PUBLIC-KEY ENCRYPTION SCHEME AS A PROTOCOL. If we
assume that the public/secret keys have been set up already, then, syntacti-
cally, any public-key encryption scheme PKENO = (Gen, Enc, Dec, Prove, Ver)
with non-interactive opening can be interpreted as a protocol aimed at realizing
Frkeno- Namely, every party executes Encyi(m) upon (Encrypt, sid, m) inputs,
and similarly executes Verp,(C, m,m) upon (Verify, sid, C,m,) inputs. In ad-
dition, the receiving party Pyre, (which is uniquely determined by the session id
sid = (recv, sid’)) honors Decrypt and Prove inputs by using the Dec and Prove
algorithms with P,..,’s private sk. Note that although Z is free to choose sid, a
machine can never be invoked with two different sids (even across invocations),
so there are not going to be two different secret keys that would need to be
managed by one receiving party.

It remains to concretize how we imagine a trusted key setup. We do so by
considering a helper functionality Fpki, as depicted in Figure 2. Note that Fpkg
is parametrized over a key-generation algorithm Gen. That means if we consider
a scheme PKENO as a protocol, we actually mean the protocol described above,
run in the Fg&-hybrid model for the key-generation algorithm Gen of PKENO.

3.2 A Game-based definition

A public-key encryption scheme with non-interactive opening is a tuple PKENO =
(Gen, Enc, Dec, Prove, Ver) of algorithms such that:

— The key generation algorithm Gen takes as input a security parameter 1*
and outputs a public key pk and a secret key sk. We write (pk,sk) «r
Gen(1%). The public key pk specifies the message space M,y < MSpc(pk)
by a mapping MSpc.

Functionality Frkeno

FprkeENO proceeds as follows, running with parties P;,..., P, and an adversary S. All session-ids
sid used in the following are expected to be of the form sid = (recv, sid’), such that sid uniquely
determines a receiving party Preco-

1. Upon the first activation (no matter with which input), first:
(a) Hand (KeyGen, sid) to the adversary.
(b) Receive descriptions of the plaintext domain M, randomized algorithms Encrypt, Prove,
and deterministic algorithms Decrypt, Verify from the adversary.
Then proceed to handle the actual query as described below.
2. Upon receiving (Encrypt, sid, m) from some party P;:
(a) If m ¢ M then output an error message to P;.
(b) If Prey is not corrupted, set C «r Encrypt(length, |m|). If P, is corrupted, C «—gr
Encrypt(message, m).
(c) Hand C to P; and store the tuple (Encrypt,C, m). If there already is a stored tuple
(Encrypt, C, m’) for some different message m # m’, then halt.
3. Upon receiving (Decrypt, sid, C') from Pjrey (and Preey only):
(a) If there is a tuple (Encrypt, C, m’) (for some m’) stored then set m := m’. Otherwise, set
m «— Decrypt(C).
(b) Hand m t0 Precy-
4. Upon receiving a value (Prove, sid, C') from Py, (and Prec, only):
(a) If there is a tuple (Encrypt, C, m’) (for some m’) stored then set m := m’. Otherwise, set
m «— Decrypt(C).
(b) Set m «—gr Prove(C,m) and hand 7 to Prec,. Also, store the tuple (Prove, C, m,w); if the
tag m already appears in a previously stored Prove tuple then halt.
5. Upon receiving a value (Verify, sid, C, m,) from some party P;, determine res as follows:
(a) If there is a stored tuple (Prove, C, m, 7), then set res := accept.
(b) Else, if there is a tuple (Encrypt, C, m’) for some m’ # m, then set res := reject.
(c) In all other cases, set res « Verify(C, m,).
Finally, hand res to P;.

Fig. 1. Functionality Fpxrno for public-key encryption with non-interactive
openings.

— The encryption algorithm Enc takes as input a public key pk and a message
m € My, and outputs a ciphertext C'. We write C' < Enc,i(m).

— The deterministic decryption algorithm Dec takes as input a ciphertext C
and a secret key sk. It returns a message m € My or the distinguished
symbol L & M. We write m « Decg (C).

— The proving algorithm Prove takes as input a ciphertext C' and a secret key
sk. It returns a proof w. We write 7 «g Proves (C).

— The deterministic verification algorithm Ver takes as input a tuple (C, m, 7, pk),
consisting of a ciphertext C, a plaintext m, a proof 7, and a public key pk.
It returns a result res € {accept,reject}. We write res «— Verp,(C,m, 7).

We require that with probability overwhelming in the security parameter k, an
honestly generated keypair (pk, sk) «r Gen(1¥) satisfies the following:

— Correctness. For all m € My, we have Pr [Decg,(Encyi(m)) = m] = 1.
— Completeness. For all ciphertexts C and all possible 7 < Provey (C), we
have that for m « Decg; (C), algorithm Ver,;(C, m,) accepts.?

4 Note that m may be L.

Functionality FS

FIEEK"I proceeds as follows, running with parties P;,..., P, and an adversary S. All session-ids sid
used in the following are expected to be of the form sid = (recv, sid’), such that sid uniquely deter-

mines a receiving party Pje.,. Furthermore, Fpkr is parametrized over a key-generation algorithm
Gen.

1. Upon the first activation (no matter with which input), first run (pk, sk) <= Gen(1%) to
generate a public key pk along with a secret key sk.

2. Upon any input from some party P; or the adversary, send pk to P;. In addition, if j = recwv,
send also sk to Pj.

Fig. 2. Functionality Fpk; that captures a trusted key setup.

Definition 1 (PKENO security). A scheme PKENO is PKENO-secure if it
is IND-CCPA secure and satisfies computational proof soundness. We define
those two below:

IND-CCPA SECURITY. For an adversary A, consider the following game:

1. Gen(1%) outputs (pk, sk). Adversary A is given 1% and pk.

2. The adversary may make polynomially many queries to a decryption oracle
Decy(+) and a proof oracle Proveg(-).

3. At some point, A outputs two equal-length messages mg, my. A bit b is ran-
domly chosen and the adversary is given the challenge ciphertext C* «—
Encpk (mb)

4. A may continue to query its decryption and its proof oracle, except that it
may not query either with C*.

5. Finally, A outputs a guess b'.

Denote A’s advantage in guessing b’ by
ind-ccpa
AdVPKENg,A(k) = [Prib=10]—-1/2|.

Scheme PKENO is called indistinguishable against chosen-ciphertext and prove

attacks (IND-CCPA secure) if for every adversary A, Adv?ﬁéc,\fg;(-) is negligible.

PROOF SOUNDNESS. For an adversary A, consider the following game:

1. Gen(1%) outputs (pk, sk). Adversary A is given 1% and (pk, sk).

2. The adversary chooses a message m € {0,1}* and gives it to an encryption
oracle which returns C' g Encpi(m).

3. The adversary returns (m’, 7).

Denote A’s probability to forge a proof by
AdvEkino.a(k) == Prlaccept « Ver,, (C,m',n') Am’ # m].

Scheme PKENO is said to satisfy computational proof soundness if for every
adversary A, Adv?,lélENQA(-) is negligible.

4 Equivalence

We will show that PKENO security is equivalent to universal composability in
the sense of realizing Fpxgpno. The idea is simple: the guarantees that Fpkpno
gives are precisely the properties that Definition 1 requires. However, there is one
catch: our simulation breaks down once proofs are asked in a situation in which
both sender and receiver are honest. Technically, this stems from a commitment
problem the simulation runs into: if sender and receiver are honest, Fpxgno de-
mands as secrecy guarantee that a ciphertext C in the system does not depend
on the associated message m. However, if later on a proof is requested that C'
really decrypts to m, we would need to break —ironically— exactly proof sound-
ness for a good simulation. There seems no easy way to change Fpkgno itself
to prevent this: if Fpkpno behaves differently depending on whether, e.g., the
receiver is corrupted or not, the sender can deduce whether the receiver is in-
deed corrupted or not. This however would lead to an unachievable functionality
(since the receiver might be passively corrupted).

OPTIMISTIC ENVIRONMENTS. To establish equivalence of the definitions, we
hence restrict to UC-environments that do not ask for proofs if both sender
and receiver are uncorrupted. We call such environments optimistic. It is nat-
ural to assume that any larger protocol context that uses a PKENO scheme is
optimistic: proofs are only requested upon conflicts, which should not happen if
both parties are honest.

Theorem 1. Say that PKENO is a public-key encryption scheme with non-
interactive opening. Then PKENO is PKENO-secure (in the sense of Defini-
tion 1) if and only if PKENO (interpreted as a protocol as described in Sec-
tion 3.1) securely realizes Fpkrno in the Fg%-hybrid model, with respect to
non-adaptive adversaries and optimistic environments.

A formal proof will be given in the full version. Here, we give some intuition.

To show that universal composability implies PKENO security, attacks on
PKENOQO’s IND-CCPA and proof soundness properties must be translated into at-
tacks on PKENQ’s indistinguishability from Fpkeno. Suppose A successfully at-
tacks PKENQO’s IND-CCPA property. We build an environment Z that internally
simulates A and the whole IND-CCPA experiment. In this, Z obtains decryp-
tions and proofs via its own protocol interface (i.e., via PKENO, resp. FpkrNno),
and the challenge message my, is encrypted with an Encrypt query. In the real
model, this yields a true encryption of my, and in the ideal model results in
something independent of b by definition of Fpxpno- Hence the output distri-
bution of the internally simulated A is correlated with b in the real model, and
independent of b in the ideal model, which allows to distinguish. The translation
of attacks on PKENQO’s proof soundness property works similarly.

To show that PKENO security implies universal composability, we describe
a simulator S that, in the ideal setting with Fpkgno, simulates attacks per-
formed with the dummy adversary A on PKENO. Essentially, S only provide
algorithms for Fpkrno’s Encrypt, Decrypt, Prove, and Verify answers. (Of

course, Fpkeno enforces several rules with its answers, like proof soundness
guarantees, but apart from that, S’s algorithms determine these answers.) Al-
gorithms for decryption, proofs, and verifications are chosen just as in the real
model. (Note that S is free to make up a FS& instance on its own, so S knows
and in fact chooses the secret keys.) The encryption algorithm for the case the
sender is uncorrupted is simply yields encryptions of 11! (i.e., all-one encryp-
tions of the right length), whereas encryptions in case the sender is corrupted
can be performed faithfully as in the real model (in this case, the encryption may
depend on the full message, since so secrecy is guaranteed then). The proof that
this simulation is sound proceeds by transforming real into ideal model, while
showing that this transformation preserves Z’s view:

1. The substitution of m-encryptions with 1/”l-encryptions can be justified
with PKENQ’s IND-CCPA property.

2. Fpkeno’s list-based decryption of known ciphertexts is simply an enforced
correctness, which can be justified with PKENO’s correctness.

3. FpkEeNoO’s verification rules can be justified with PKENQO’s proof soundness.

This sketches why the simulation that S provides is correct, and hence the
theorem is proven.

ACHIEVING FULL UC SECURITY. It is natural to ask whether Fpxgno can be
realized unconditionally, i.e., without restricting Z. (This corresponds to com-
posability in arbitrary protocol contexts.) As sketched above, to put up a suc-
cessful simulation here, it must be possible to produce special ciphertexts (sent
between an honest sender and an honest verifier) that can be opened to an arbi-
trary, a-priori unknown message. Intuitively, this seems to break proof soundness;
however, this is possible in principle, since in the ideal model, the simulator has
control over the generation of the used keypair (pk, sk). (Note that PKENO
security only gives guarantees if this keypair is honestly generated.)

To be more concrete, consider the (inefficient) non-interactive zero-knowledge
based scheme from the introduction. By, e.g., producing a CRS in pk with knowl-
edge of a trapdoor, S is able to give fake proofs that some ciphertext really
encrypts a message m. We stress that this can not be used to break the intuitive
guarantees that Fpxrno provides: Fpkeno still checks that the verification of
this proof succeeds only for the “right” message that is associated with a cipher-
text.

5 Implementation of PKENO using IBE

5.1 Identity-based encryption
We first define syntax and required security properties of an identity-based en-
cryption (IBE) scheme.

SYNTAX. An IBE scheme is a tuple IBE = (IBEgen, KeyGen, IBEenc, IBEdec) of
algorithms along with a family M = (My,)i of message spaces such that:

— The key generation algorithm IBEgen takes as input a security parameter
1*¥ and outputs a public key pk and a secret key sk. We write (pk, sk) «r
IBEgen(1%).

— The encryption algorithm IBEenc takes as input a public key pk, an identity
id € {0,1}* and a message m € M, and outputs a ciphertext c¢. We write
¢ < IBEency (id, m).

— The deterministic decryption algorithm IBEdec takes as input a cipher-
text ¢, an identity id € {0,1}* and a user secret key usk[id]. It returns
a message m € My, or the distinguished symbol 1 & M;j. We write m «
IBEdeCusk[id] (C)

— The deterministic user secret key algorithm KeyGen takes as input an identity
id € {0,1}* and a secret key sk. It returns a user secret key usk[id]. We write
usk[id] « KeyGen g (id).

CoNSISTENCY. We require that for every honestly generated keypair (pk, sk) «g
IBEgen(1%), for all identities id € {0,1}* and messages m € M, we have
IBEdeckeyGen(sk,id) (IBEency (id, m)) = m with probability one.

Here we also require a non-standard soundness property that it is efficiently
verifiable if a given user secret key wusk[id] was properly generated for identity
id.® We write {accept,reject} « IBEver,;(id, usk[id]). We require for all hon-
estly generated keypair (pk, sk) «r IBEgen(1%) satisfies the following: For all
identities id € {0,1}* and strings s € {0,1}* we have IBEver,(id, s) = accept
iff s = usk[id], where usk[id] — KeyGen,(id).

SECURITY. We only require a relatively weak security property, namely indis-
tinguishability against selective-ID chosen-plaintext attacks (IND-sID-CPA) [3].
Formally, for an adversary A, consider the following game:

1. Adversary A is given 1* and outputs a target identity id*

2. IBEgen(1%) outputs (pk, sk). Adversary A is given 1% and pk.

3. The adversary may make polynomially many queries to a user secret-key
oracle KeyGen (+), except that it may not query for id*

4. At some point, A outputs two equal-length messages mg, mi. A bit b is
randomly chosen and the adversary is given the challenge ciphertext C* «pg
IBEencyy (id*, my).

5. A may continue to query its user secret-key oracle, except that it may not
query for d*.

6. Finally, A outputs a guess b'.

Denote A’s advantage in guessing b’ by
Advisg P (k) = |Pr[b=b]—1/2|.

> We can always assume the user secret key algorithm KeyGen to be deterministic. If
it is not, the owner of the secret key ensures using the same randomness for each
identity either by maintaining a state or by deriving the randomness using a PRF
applied to the identity.

6 It is not sufficient to check whether, e.g., some random encryptions decrypt correctly.
A given alleged user secret key might misbehave on precisely one ciphertext.

Scheme IBE is called IND-sID-CPA secure if Adv,sé(g;pa(-) is negligible for every
PPT adversary A. We remark that there exist efficient IND-sID-CPA secure IBE
schemes without random oracle [3].

5.2 From IBE to PKENO

We use an adaptation of the IBE-to-PKE transformation by Canetti, Halevi
and Katz [9]. Let IBE = (IBEgen, KeyGen, IBEenc, IBEdec) be an IBE scheme and
OTS = (SGen, SSign, SVer) be a one-time signature scheme which we require to
be strongly unforgeable against one-time attacks. (Syntax and security properties
of OTS can be looked up in [9].) We construct a PKENO scheme PKENO =
(Gen, Enc, Dec, Prove, Ver) as follows.

Gen(1%). The key generation algorithm runs the IBE key generation algorithm
(pk, sk) «r IBEgen(1¥) and returns the key-pair (pk, sk).

Enc,i(m). The encryption algorithm first generates a key-pair of the one-time
signature scheme by running (vk, sigk) «—r SGen(1%). Next, it IBE encrypts
m with “identity” vk to obtain ¢ «g IBEency;(vk, m). Finally, it signs the
IBE ciphertext o « SSign;.;(c). and returns the PKENO ciphertext C' =
(vk,c,0).

Decy,(C). The decryption algorithm parses C' as the tuple (vk,c, o). Next, it
verifies if o is a correct signature on ¢ by running SVer,;(c). If not, it returns
L. Otherwise, it computes usk[vk] < KeyGen,, (vk) and IBE decrypts ¢ by
running m « IBEdec, [,k (c). Finally, it returns m € M; U {L1}.

Provey, (C). The prove algorithm parses C' as the tuple (vk, ¢, o). Next, it verifies
if o is a correct signature on ¢ by running SVer,(c). If not, it returns L.
Otherwise, it computes usk[vk] — KeyGen (vk) and returns = «— usk[vk] as
the proof.

Verp,(C,m,). The verification algorithm parses C' as the tuple (vk, ¢, o). Next
it verifies if ¢ is a correct signature on ¢ with respect to verification key
vk by running SVer,;(c). If not, it returns reject. Otherwise, it checks
if m is a properly generated user secret-key for “identity” vk by running
IBEver,; (vk,m). If not, it returns reject. Otherwise, it IBE decrypts ¢ by
running 7 « |IBEdec,(vk, ¢), where i € My U {L}. If m # m, it returns
reject. Otherwise it returns accept.

It is easy to check that the above scheme satisfies correctness and completeness.

Theorem 2. Assume IBE is IND-sID-CPA secure and OTS is SUF-OT secure.
Then PKENO constructed above is PKENO secure.

First note that IBE soundness directly implies perfect proof soundness of PKENO.
This is since the proof algorithm makes sure that the proof m = usk[vk] is a prop-
erly generated user secret key for the the “identity” vk from the ciphertext by
running the verification algorithm. Hence by consistency of the IBE scheme the
decrypted message m will always equal the real message m of the ciphertext and
hence verification accepts.

Let us now give some intuition why PKENO is IND-CCPA secure. A formal
proof (following [9]) will be given in the full version. Let (¢*,vk™,o*) be the
challenge ciphertext in the IND-CCPA security experiment. It is clear that,
without any oracle queries, the value of the bit b remains hidden to the adversary.
This is so because ¢* is output by IBEenc which is IND-sID-CPA secure, vk™ is
independent of the message, and o* is the result of applying the one-time signing
algorithm to c*.

We claim that decryption and proof oracle queries cannot further help the
adversary in guessing the value of b. First note that a proof for some cipher-
text enables the adversary to decrypt the same ciphertext without making the
decryption query. It remains to consider an arbitrary proof query (c, vk,o) #
(c*, vk™,0*) made by the adversary during the experiment. If vk = vk™ then
(¢,0) # (¢*,0*) and the proof oracle will answer L since the adversary is unable
to forge a new valid signature o with respect to vk*. If vk # vk™ then the proof
query will not help the adversary since the the proof m = usk[vk] is an IBE user
secret key for the “identity” vk distinct from vk*.

6 Direct Implementation of PKENO in Bilinear Group

6.1 Bilinear Groups and assumptions

Our schemes will be parametrized by a pairing parameter generator. This is
an algorithm G that on input 1* returns the description of an multiplicative
cyclic group G of prime order p, where 28 < p < 281 the description of a
multiplicative cyclic group G of the same order, and a non-degenerate bilinear
pairing é : G X G — Gp. We use G* to denote G \ {1}, i.e. the set of all group
elements except the neutral element. The pairing has to be satisfy the following
two conditions.

Non-degenerate: for all g € G*, é(g,9) # 1 € Gr.
Bilinear: for all g € G*, z,y € Zy, é(¢*, g¥) = é(g,9)*".

We use PG = (G, Gr,p,é,9,9r) as shorthand for the description of bilinear
groups, where g is a generator of G and gr = é(g,g) € Gr. The Bilinear Deci-
sional Diffie-Hellman (BDDH) assumption [4] states that the two distributions
(9%,9Y,9%,€é(g,9)*¥*) and (g%, 9Y,9%,€(g,9)"), for z,y,z,r <R Z, are indistin-
guishable for any adversary. More formally we define the advantage function
Advg‘fﬁh(k) of an adversary A as

|PrA(PG, g%, 9%, 9%, é(9,9)"*) = 1] = Pr[A(PG, g%, 9%, 9%, é(g,9)") = 1]|
where PG «g G(1%) and z,y,z,7 «r Z,. We say that the Bilinear Decision

Diffie-Hellman (BDDH) assumption holds relative to G if for every adversary A,
Ad"tg)(,lgh(-) is negligible.

6.2 The PKENO scheme

Our scheme uses the “direct chosen ciphertext technique” which results in an
adaptation of the IND-CCA secure PKE scheme from [5, 15]. Let TCR : G — Z,,
be a hash function that we assume to be target collision resistant [11]. Let
PG g G(k) be a pairing group that is contained in the system parameters. Let
(E, D) be a symmetric encryption scheme that we assume to be chosen-ciphertext
secure.” We assume that uses elements of the target group Gr as secret keys.
We construct a PKENO scheme PKENO = (Gen, Enc, Dec, Prove, Ver) as follows.

Gen(1%). The key generation algorithm picks random exponents z1,z2,y € Z,.
The secret key is sk = (21, 22,y) € Zg and the public key is pk = (X1, X3,Y) €
G? x G, where

Xi=¢g""€eG, Xo=g"eG, Y =2¢é(g,9)"e€Gr.

Enc,i(m). The encryption algorithm first picks a random r € Z,,. The ciphertext
is the tuple (¢, ¢2, ¢3), where

Cc1 = gr, t= TCR(Cl), Coy = (XfXQ)T, K YT, C3 < EK(m)

Decy,(C). The decryption algorithm parses C' as the tuple (c1,co,c3). Next,
it computes ¢ = TCR(c;) and checks if ¢7***"2 = ¢,. If not, it returns L
meaning the ciphertext is inconsistent. Otherwise, it computes

K —é(c1,9")

and returns m < Dg(c3) € MU {1}.

Provey, (C). The prove algorithm parses C' as the tuple (¢1, ¢z, ¢3). Next, it com-
putes t = TCR(c1) and checks if ¢{*"72 = ¢,. If not, it returns L. Otherwise,
it picks s «—g Zj,. The proof consists of m = (d1,d2) € G?, where

dy =g°, da=g" (X{X2)". (2)

Ver,; (C,m,). The verification algorithm parses C' as the tuple (¢, c2,¢3) and
7 as the tuple (dq,dz). Next, it computes t = TCR(c1) and checks if

é(ca,9) = é(c1, X1Xy) and é(g,dy) =Y - (X1 Xy, dy) . (3)
If one of the checks fails, it returns reject. Otherwise, it computes
f(— é(Cl, dQ)/é(CQ, dl),

and m «— Dy (c3) € My U{L}. It returns accept if 7 = m and reject,
otherwise.

It is easy to check that the above scheme satisfies correctness and completeness.

" A symmetric encryption scheme is chosen-ciphertext secure if the encryptions of two
adversarially-chosen messages under a random hidden key K remain indistinguish-
able even relative to a decryption oracle. We refer to [11] for a formal definition.

6.3 Security

Theorem 3. Assume the BDDH assumption holds relative to G, TCR is a target
collision-resistant hash function, and (E,D) is a chosen-ciphertext secure sym-
metric encryption scheme. Then PKENO constructed above is PKENO secure.

The proof of IND-CCPA security is similar to the one from [5, 15] and omitted
here.

We verify proof soundness. Fix a key-pair and let C = (c7 = ¢",c0 =
(XtX5)", c3 = Ex(m)) be a proper encryption of a message m, where K = Y™
is the symmetric key used for encrypting m. Now consider the verification algo-
rithm run with C, a message m’ # m and an arbitrary proof ©’ = (d,d5). The
right check of (3) implies that 7' = (d},d}) is a properly generated proof of the
form (2), for some s € Z, and for t = TCR(c;). Hence, for the symmetric key K
we have

K = é(cr,dy)/e(ca,dy) = e(g", 9" - (X{X2)")/e((X{X2)"),¢") =Y = K

By consistency of the symmetric scheme the recovered message 7 = Dg/(c3)
equals m # m’, hence verification always outputs reject.

References

[1] Michael Backes, Markus Diirmuth, Dennis Hofheinz, and Ralf Kiisters. Condi-
tional reactive simulatability. In Eugene Asarin, Dieter Gollmann, Jan Meier, and
Andprei Sabelfeld, editors, Computer Security, Proceedings of ESORICS 2006, Lec-
ture Notes in Computer Science, pages 424—-443. Springer-Verlag, 2006. Extended
version online available at http://eprint.iacr.org/2006/132.ps.

[2] Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization of
Dolev-Yao-style XOR. In Sabrina De Capitani di Vimercati, Paul F. Syverson,
and Dieter Gollmann, editors, Computer Security, Proceedings of ESORICS 2005,
number 3679 in Lecture Notes in Computer Science, pages 178-196. Springer-
Verlag, 2005. Online available at http://eprint.iacr.org/2005/220.ps.

[3] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based en-
cryption without random oracles. In Christian Cachin and Jan Camenisch, edi-
tors, EUROCRYPT 2004, volume 3027 of LNCS, pages 223-238. Springer-Verlag,
Berlin, Germany, May 2004.

[4] Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil
pairing. SIAM Journal on Computing, 32(3):586-615, 2003.

[5] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security
from identity-based techniques. In Vijayalakshmi Atluri, Catherine Meadows, and
Ari Juels, editors, ACM CCS 05, pages 320-329. ACM Press, November 2005.

[6] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42th Annual Symposium on Foundations of Computer Sci-
ence, Proceedings of FOCS 2001, pages 136—145. IEEE Computer Society, 2001.
Full version online available at http://wuw.eccc.uni-trier.de/eccc-reports/
2001/TR01-016/revisnOl.ps.

7]

18]

[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. IACR ePrint Archive, January 2005. Online available at http://
eprint.iacr.org/2000/067.ps.

Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, Advances in Cryptology, Proceedings of CRYPTO 2001, number
2139 in Lecture Notes in Computer Science, pages 19-40. Springer-Verlag, 2001.
Full version online available at http://eprint.iacr.org/2001/055.ps.

Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Christian Cachin and Jan Camenisch, editors, EU-
ROCRYPT 2004, volume 3027 of LNCS, pages 207—222. Springer-Verlag, Berlin,
Germany, May 2004.

Ran Canetti, Hugo Krawczyk, and Jesper B. Nielsen. Relaxing chosen-ciphertext
security. In Dan Boneh, editor, Advances in Cryptology, Proceedings of CRYPTO
2003, number 2729 in Lecture Notes in Computer Science, pages 565-582.
Springer-Verlag, 2003. Full version online available at http://eprint.iacr.org/
2003/174.ps.

Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167-226, 2003.

Ivan Damgard and Rune Thorbek. Non-interactive proofs for integer multipli-
cation. In Moni Naor, editor, Advances in Cryptology, Proceedings of EURO-
CRYPT 2007, number 4515 in Lecture Notes in Computer Science, pages 412—
429. Springer-Verlag, 2007. Full version online available at http://eprint.iacr.
org/2007/086.

Anupam Datta, Ante Derek, John C. Mitchell, Ajith Ramanathan, and Andre
Scredrov. Games and the impossibility of realizable ideal functionality. In Shai
Halevi and Tal Rabin, editors, Theory of Cryptography, Proceedings of TCC 2006,
number 3876 in Lecture Notes in Computer Science, pages 360-379. Springer-
Verlag, 2006. Online available at http://eprint.iacr.org/2005/211.pdf.
Dennis Hotheinz, J6rn Miiller-Quade, and Rainer Steinwandt. On modeling IND-
CCA security in cryptographic protocols. Tatra Mountains Mathematical Publi-
cations, 2005. 14 pages, to be published.

Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581-600.
Springer-Verlag, Berlin, Germany, March 2006.

Yehuda Lindell. General composition and universal composability in secure multi-
party computation. In /4th Annual Symposium on Foundations of Computer
Science, Proceedings of FOCS 2003, pages 394-403. IEEE Computer Society, 2003.
Full version online available at http://eprint.iacr.org/2003/141.ps.

Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd ACM STOC. ACM Press, May 1990.

Jesper B. Nielsen. On Protocol Security in the Cryptographic Model. PhD thesis,
University of Aarhus, 2003. Ounline available at http://www.brics.dk/~buus/
jbnthesis.ps.gz.

Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
Cryptology ePrint Archive, Report 2007/279, 2007. http://eprint.iacr.org/.
Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114—
127. Springer-Verlag, Berlin, Germany, May 2005.

