
Publi
-Key En
ryption withNon-intera
tive OpeningIvan Damgård1, Dennis Hofheinz2, Eike Kiltz⋆2, and Rune Thorbek1

1 BRICS, Aarhus
2 CWI, AmsterdamAbstra
t. We formally de�ne the primitive of publi
-key en
ryptionwith non-intera
tive opening (PKENO), where the re
eiver of a
ipher-text C
an,
onvin
ingly and without intera
tion, reveal what the resultwas of de
rypting C, without
ompromising the s
heme's se
urity. Thishas numerous appli
ations in
ryptographi
 proto
ol design, e.g., whenthe re
eiver wants to demonstrate that some information he was sent pri-vately was not
orre
tly formed. We give a de�nition based on the UCframework as well as an equivalent game-based de�nition. The PKENO
on
ept was informally introdu
ed by Damgård and Thorbek who sug-gested that it
ould be implemented based on Identity-Based En
ryption.In this paper, we give dire
t and optimized implementations, that workwithout having to keep state information, unlike what one obtains fromdire
tly using IBE.1 Introdu
tionMotivation. Consider the following extremely
ommon s
enario from
ryp-tographi
 proto
ol design: Player A sends a se
ret message to player B who(perhaps at some later time)
he
ks what he re
eives against some publi
 infor-mation. For instan
e, it may be that the message is supposed to be informationfor opening a
ommitment that A established earlier. If the
he
k is OK, B willbe able to pro
eed, but otherwise some �ex
eption handling� must be done. Thestandard solution to this is to have B broad
ast a
omplaint, and A must thenbroad
ast what he
laims to have sent privately, allowing all players to
he
k theinformation. This is se
ure, sin
e the
on�i
t
an only o

ur if at least one of

A,B is
orrupt, so the adversary already knows what is broad
ast. But it has theimportant drawba
k that intera
tion is required, in parti
ular A must be presentto help resolve the
on�i
t. In many
ases, one
annot rely on this assumption.For instan
e, suppose A is one of many
lients who want to provide some in-put to a set of servers, who will then do a se
ure
omputation on the inputs.It is highly desirable that this
an be done without intera
tion, in parti
ular
⋆ Supported by the resear
h program Sentinels (http://www.sentinels.nl). Sentinelsis being �nan
ed by Te
hnology Foundation STW, the Netherlands Organization forS
ienti�
 Resear
h (NWO), and the Dut
h Ministry of E
onomi
 A�airs.

that the servers
an de
ide e�
iently among themselves whi
h
lients providedwell-formed input.Publi
-key en
ryption with non-intera
tive opening. An alternativesolution was suggested by Damgård and Thorbek in [12℄, namely publi
-key en-
ryption with non-intera
tive opening (PKENO). This is based on the observa-tion that in pra
ti
e, the private
ommuni
ation from A to B would typi
ally beimplemented using publi
 key en
ryption, i.e., A sends a
iphertext C en
ryptedunder B's publi
 key pkB. PKENO now means that if B
hooses to reveal theresult m of de
rypting C (typi
ally, if he is unhappy about m), he
an do so,
onvin
ingly and without intera
tion3. That is, he
an broad
ast m, π where πis a proof that
an be
he
ked against pkB and C and demonstrates that in-deed de
rypting C using the se
ret key mat
hing pkB results in m. Of
ourse,this must be done su
h that other
iphertexts remain se
ure, and this ex
ludesthe trivial solution of revealing B's se
ret key. Clearly, if PKENO
an be im-plemented e�
iently, we have a ni
e general tool for removing intera
tion from
ryptographi
 proto
ols.Diffi
ulty of PKENO. Note that having the re
eiver open a
iphertext is lesstrivial than having the sender do so: the sender
ould always be asked to simplyreveal the plaintext and the random
oins used to
onstru
t the
iphertext. Thisdoes not work when the re
eiver does the opening: one has to
onsider the fa
tthat the sender might be
orrupt and hen
e C is adversarially
onstru
ted. Itmay not even be a valid
iphertext, in whi
h
ase �the
oins used to
onstru
t
C� is not a well de�ned
on
ept.Ineffi
ient Constru
tions. A few straightforward solutions for implement-ing PKENO do exist whi
h, however, have various drawba
ks: In prin
iple, one
an implement PKENO if a
ommon referen
e string
an be reliably set up.Then the re
eiver B
an
ommit to his se
ret key initially and π would be a non-intera
tive zero-knowledge proof that the se
ret key
ommitted to mat
hes pkBand produ
es m when used to de
rypt C. Unfortunately, with the known te
h-niques for non-intera
tive zero-knowledge, this solution is very ine�
ient andessentially useless in pra
ti
e. E�
ient solutions are easy to �nd in the randomora
le model, sin
e one
an take known e�
ient and intera
tive zero-knowledgeproofs and make them non-intera
tive using the Fiat-Shamir heuristi
. However,it is un
lear what se
urity guarantees in the random ora
le model mean for thereal world, so in this paper, we will
on
entrate on e�
ient solutions that do notuse random ora
les.Known Constru
tions and their Limitations. In [12℄, the PKENO notionwas informally introdu
ed, and it was suggested that it
ould be implementedbased on identity-based en
ryption (IBE). The idea here is that pkB would bethe publi
 master key of an IBE system, and the se
ret key skB would be these
ret master key. To en
rypt m, one
hooses an identity id (see below for details3 Note that m may not be a meaningful message, it may be a spe
ial reje
t symbol if

C was reje
ted as invalid by the de
ryption algorithm.

on how id is
hosen), and en
rypts m to this identity. Thus, the
iphertext C isthe pair C = (id , IBEenc(id , m)). The re
eiver B uses skB to generate the IBEuser se
ret key usk [id]
orresponding to id and
an then de
rypt. To open C, Bsimply reveals the de
ryption result m and usk [id], this allows anyone to do thede
ryption and
he
k that the result is m. Note that e�
ient IBE s
hemes exist(under spe
i�
 assumptions) that do not require random ora
les [20℄.It follows dire
tly from the properties of IBE that revealing usk [id] does not
ompromise se
urity of
iphertexts dire
ted to other identities, not even if id isadversarially
hosen. This solution is therefore se
ure if we
an guarantee thatidentities
annot be reused � but only then. This would be the
ase if it is usedin a proto
ol that assigns unique labels to all
iphertexts to be sent. Then theselabels
an be used as identities. But note that these labels must be di�erentin di�erent instan
es of the same proto
ol. Alternatively, all players
ould keepstate information allowing to test if a label has been used before. This putssome rather heavy demands on the implementation and hen
e, using IBE in thisstraightforward way is not satisfa
tory in general.An alternative
onstru
tion of PKENO
an be obtained by using publi
-keyen
ryption with witness-re
overing de
ryption (PKEWR) [19℄. Here the re
eiver(i. e., the holder of the se
ret key)
an e�
iently re
onstru
t the �randomness�that was used for en
ryption. This randomness then serves as the proof. Ver-i�
ation performs (deterministi
) re-en
rypting using the randomness and themessages. The proof is valid if the result equals the
iphertext. There exists
on-stru
tion of PKEWR from the De
isional Di�e-Hellman assumption and froman assumption related to latti
es. However, both
onstru
tions are relativelyine�
ient sin
e the
iphertext size is linear in the message length.Our Contributions. In this paper, we make two
ontributions: �rst, we give aformal de�nition of PKENO, in fa
t we give two equivalent de�nitions, one basedon the UC framework, and a game-based de�nition. This allows to show that animplementation is se
ure using the game-based de�nition (whi
h is usually easierthan with UC), while at same time being guaranteed the
omposition propertiesthat follows from the UC theorem. We assume � for simpli
ity � a trusted keyset-up, i.e., all key pairs are
orre
tly generated. We emphasize, however, thatthis assumption is not inherent to the PKENO
on
ept. The de�nitions
an bemodi�ed to do without it and some implementations do not need it.Se
ond, we show some
on
rete implementations of PKENO. One of our te
h-niques gives a simple and general solution to the problem with unique identitiesin the IBE implementation, allowing a stateless solution. To this end we use ate
hnique by Naor and Yung [17℄ that was also used more re
ently by Canetti,Halevi, and Katz [9℄ in a transformation of any
hosen-plaintext se
ure IBEs
heme into a
hosen-
iphertext se
ure PKE s
heme. We adopt the latter trans-formation to
onstru
t PKENO from IBE. The idea is to use, for ea
h PKENOen
ryption, a fresh random veri�
ation key of a one-time signature s
heme asthe �identity� id for IBE en
ryption. In order to tie the IBE
iphertext to thisveri�
ation key it is signed using the
orresponding signing key. This ensures theuniqueness of the identity and hen
e allows a stateless solution of PKENO.

Another te
hnique gives a more dire
t implementation that is not based onIBE and hen
e is more e�
ient. We use a modi�
ation of the pairing-based
hosen-
iphertext se
ure PKE s
heme whi
h was proposed by Boyen, Mei, Wa-ters [5℄ and Kiltz [15℄. We show that it is possible to update their s
heme witha non-intera
tive opening fun
tionality without
ompromising its se
urity. Se-
urity of this s
heme
an be redu
ed to the Bilinear De
isional Di�e-Hellman(BDDH) assumption.2 Preliminaries2.1 Notational
onventionsIf x is a string, then |x| denotes its length, while if S is a set then |S| denotesits size. If k ∈ N then 1k denotes the string of k ones. If S is a set then s ←R

S denotes the operation of pi
king an element s of S uniformly at random.Unless otherwise indi
ated, algorithms are randomized and polynomial time. Anadversary is an algorithm or a tuple of algorithms. A fun
tion f : N → R isnegligible i� there exists c < 0 su
h that |f(k)| < kc for all su�
iently large k.We write f ≈ g if f − g is negligible.2.2 The UC modelCanetti's Universal Composability (UC) framework [6, 7℄ for multi-party
om-putation allows to formulate se
urity and
omposition of multi-party proto
olsin a very general way. The idea of the UC model is to
ompare a proto
ol toan idealization of the respe
tive proto
ol task. Se
urity means that the proto
ol�looks like� the idealization even in fa
e of arbitrary atta
ks and in arbitraryproto
ol environments. This notion of se
urity is very stri
t [8, 2, 13℄, but im-plies useful
ompositional properties [6℄. In fa
t, in a
ertain sense, this notionis even ne
essary for se
ure
omposition of proto
ols [16℄.The real model. We shortly outline the framework for multi-party proto
olsde�ned in [6, 7℄. First of all, parties (denoted by P1 through Pn) are modeledas intera
tive Turing ma
hines (ITMs) (
f. [7℄) and are supposed to run some�xed proto
ol (i.e., program) Π . There also is an adversary, denoted A andmodeled as an ITM as well, that
arries out atta
ks on proto
ol Π . Therefore,
A may
orrupt parties (in whi
h
ase it learns the party's state and
ontrolsits future a
tions), and inter
ept or inje
t messages sent between parties. If A
orrupts parties only before the a
tual proto
ol run of Π takes pla
e, A is
allednon-adaptive, otherwise A is said to be adaptive. In this work, we only
onsidernon-adaptive
orruptions. The respe
tive lo
al inputs for all parties of proto
ol
Π are supplied by an environment ma
hine (modeled as an ITM and denoted
Z), whi
h may also read all proto
ol outputs lo
ally made by the parties and
ommuni
ate with the adversary.The ideal model. The model we have just des
ribed is
alled the real model of
omputation. In
ontrast to this, the ideal model of
omputation is de�ned just

like the real model, with the following ex
eptions: all party ITMs are repla
edwith one single ideal fun
tionality F . The ideal fun
tionality may not be
or-rupted by the adversary, yet may send messages to and re
eive messages fromit. Finally, the adversary in the ideal model is
alled �simulator� and denoted S.The only means of atta
k the simulator has in the ideal model are
orruptions(in whi
h
ase S may supply inputs to and read outputs from F in the nameof the
orrupted party), delaying or suppressing outputs of F , and all a
tionsthat are expli
itly spe
i�ed in F . However, S has no a

ess to the inputs F getsand to the outputs F generates, nor are there any proto
ol messages to inter-
ept. Intuitively, the ideal model of
omputation (or, more pre
isely, the idealfun
tionality F itself) should represent what one ideally expe
ts the proto
ol todo. In fa
t, for a number of standard tasks, there are formulations as su
h idealfun
tionalities (see, e.g., [6℄).Se
urity definition. To de
ide whether or not a given proto
ol Π ful�lls therequirements of our ideal spe
i�
ation F , the framework of [6℄ uses a simulatability-based approa
h: at a time of its
hoi
e, Z may halt and generate output.The random variable des
ribing the �rst bit of Z's output will be denoted byrealΠ,A,Z(k, z) when Z is run with se
urity parameter k ∈ N and initial input
z ∈ {0, 1}∗ in the real model of
omputation, and idealF ,S,Z(k, z) when Z isrun in the ideal model. Now Π is said to se
urely realize F i� for any real ad-versary A, there exists a simulator S su
h that for any environment Z and any(possibly non-uniform) family of initial inputs z = (zk)k, we have

Pr [realΠ,A,Z(k, zk) = 1] ≈ Pr [idealF ,S,Z(k, zk) = 1] . (1)This slightly di�ers from the original formulations in [6, 7℄, but is equivalent andeases our presentation. Intuitively, Equation 1 means that any atta
k against theproto
ol
an be simulated in the ideal model. Hen
e, any weakness of the realproto
ol is already
ontained in the ideal spe
i�
ation (that does not
ontain an�a
tual� weakness by de�nition). Interestingly, the �worst� real atta
k possible isthe one
arried out by the dummy adversary Ã that simply follows Z's instru
-tions. That means that for se
urity, it a
tually su�
es to demand existen
e of asimulator that simulates atta
ks
arried out by Ã.Composition of proto
ols. To formalize the
omposition of proto
ols, therealso exists a model �in between� the real and ideal model of
omputation. Namely,the hybrid model of
omputation is identi
al to the real model, ex
ept that par-ties have a

ess to (multiple instan
es of) an ideal fun
tionality that aids inrunning the proto
ol. This is written as ϕF for the a
tual proto
ol ϕ and theideal fun
tionality F . Instan
es of F are distinguished via session identi�ers(short: session ids, or sids). Note that synta
ti
ally, instan
es of F
an be imple-mented by a proto
ol Π geared towards realizing F . And indeed, the universal
omposition theorem [6, 7℄ guarantees that if one proto
ol instan
e of Π is se-
ure, then many proto
ol instan
es are, even when used in arbitrary proto
ols ϕ.More
on
retely, if Π se
urely realizes F , then ϕΠ se
urely realizes ϕF for anyproto
ol ϕ. Here, ϕF denotes that ϕ uses (up to polynomially many) instan
esof F as a subprimitive, and ϕΠ denotes that ϕ uses instan
es of Π instead.

Conditional se
urity and
omposability. Universal
omposability is avery stri
t notion. So sometimes (e.g., in the
ase of bit
ommitments), it isnot possible to a
hieve full UC se
urity. Hen
e, several weakenings of the notionhave been proposed. One method that will be useful in our
ase is to
onsideronly proto
ol environments that
onform to
ertain rules (see [18, 1℄). Con
retely,se
ure realization with respe
t to a
ertain
lass Z of environments means that inEquation 1, we quantify only over environments in Z. This relaxed se
urity notionstill gives pre
isely those
ompositional guarantees one would expe
t: se
ure
omposition with larger proto
ols that
an be seen as restri
ted environmentsfrom Z (see [18, 1℄ for details).3 Publi
-key en
ryption with non-intera
tive opening3.1 A UC-based de�nitionFigure 1 depi
ts our ideal fun
tionality for publi
-key en
ryption with non-intera
tive openings. FPKENO is an extension of the FPKE fun
tionality [6, 10, 14℄that
aptures IND-CCA se
ure publi
-key en
ryption. The most notable di�er-en
e to FPKE are the additional Prove and Verify queries, whi
h allow the re-
eiver to open a
iphertext and every party to verify openings. Also, we droppedpubli
 keys, sin
e we assume a trusted PKI (i.e., keypair setup) for a realization.Dis
ussion of FPKENO. First, note that the session id sid already determinesthe distinguished re
eiving party Precv . Any party may ask for en
ryptions, butonly Precv may ask for de
ryptions. As for the en
ryption of a message m, theadversary may determine a unique tag C via the algorithm Enc. However, notethat C depends only on the length |m| of m, but not on m itself (ex
ept ifthe re
eiver is
orrupted, in whi
h
ase we obviously
annot guarantee se
re
y).This re�e
ts that ideally, en
ryptions reveal only the length of the message.De
ryption takes
are that
orre
tness is ensured, i.e.,
iphertexts are mappedba
k to the en
rypted messages. (For this, FPKENO stores a list of
iphertextsand asso
iated messages.)Opening and verifying openings is a bit tri
kier. For any
iphertext, the re-
eiver Precv
an obtain a proof π that should ideally prove what message wasen
rypted. Formally, π is determined by the adversary (in form of a pre-storedalgorithm Prove) to ensure that during the simulation, at least the shape of πmat
hes the one of a possible real implementation. However, FPKENO ensuresthat veri�
ation (via Verify queries) satis�es some natural and
ru
ial require-ments. Namely, an honestly (i.e., via FPKENO) generated en
ryption C of m
annot be proven to
ontain a di�erent message m′ 6= m. Also, honestly (i.e., via
FPKENO) generated proofs are always a

epted. In all
ases left open by this (andin parti
ular, if a wrong publi
 key is used with Verify), the adversary is free todetermine the veri�
ation out
ome in order to simulate a real implementation.Note that from the fun
tionality's perspe
tive,
iphertexts and proofs aremerely tags and do not
arry any semanti
s. The adversary is free to deter-mine these tags, but the fun
tionality takes
are that de
ryptions and proofs

are handled as ideally expe
ted. (E.g., the
iphertext tags do not depend on themessages, or honestly generated proofs verify
orre
tly.)Why key management is outsour
ed. Also note that there are no publi
or se
ret keys in the fun
tionality. This is unlike, e.g., in the FPKE modelingsfrom [6, 10, 14℄, whi
h do
ontain a publi
 key. This simpli�
ation is possible,sin
e we will
onsider keys to be already set up, whi
h
orresponds to running apubli
-key en
ryption s
heme proto
ol in the FPKI-hybrid model (see below).The reason why we opted to outsour
e key management into FPKI is thefollowing: if the re
eiving party Precv was allowed to take
are of key generationon its own, then a
orrupted Precv
ould generate keys in a dishonest way. (E.g.,if the publi
 key
ontains a
ommon referen
e string for a non-intera
tive zero-knowledge proof, then Precv
ould generate this CRS along with a trapdoor thatallows Precv to
heat in the proofs. That would not have been possible with anhonest generation of keys.) While our
on
rete s
heme from Se
tion 6 is se
ureeven if a dishonest Precv
hooses its keys arbitrarily, our game-based formulation(De�nition 1) guarantees nothing in that setting. Of
ourse, an adaptation ofboth De�nition 1 and FPKENO is possible, su
h that a dishonest
hoi
e of keysis re�e
ted; we
hose not to do so be
ause be believe that an honest generationof keys is more realisti
.Interpreting a publi
-key en
ryption s
heme as a proto
ol. If weassume that the publi
/se
ret keys have been set up already, then, synta
ti-
ally, any publi
-key en
ryption s
heme PKENO = (Gen, Enc, Dec, Prove, Ver)with non-intera
tive opening
an be interpreted as a proto
ol aimed at realizing
FPKENO. Namely, every party exe
utes Encpk (m) upon (Encrypt, sid , m) inputs,and similarly exe
utes Verpk (C, m, π) upon (Verify, sid , C, m, π) inputs. In ad-dition, the re
eiving party Precv (whi
h is uniquely determined by the session id
sid = (recv , sid ′)) honors Decrypt and Prove inputs by using the Dec and Provealgorithms with Precv 's private sk . Note that although Z is free to
hoose sid , ama
hine
an never be invoked with two di�erent sids (even a
ross invo
ations),so there are not going to be two di�erent se
ret keys that would need to bemanaged by one re
eiving party.It remains to
on
retize how we imagine a trusted key setup. We do so by
onsidering a helper fun
tionality FPKI, as depi
ted in Figure 2. Note that FPKEis parametrized over a key-generation algorithm Gen. That means if we
onsidera s
heme PKENO as a proto
ol, we a
tually mean the proto
ol des
ribed above,run in the FGen

PKI-hybrid model for the key-generation algorithm Gen of PKENO.3.2 A Game-based de�nitionA publi
-key en
ryption s
heme with non-intera
tive opening is a tuple PKENO =
(Gen, Enc, Dec, Prove, Ver) of algorithms su
h that:� The key generation algorithm Gen takes as input a se
urity parameter 1kand outputs a publi
 key pk and a se
ret key sk . We write (pk , sk) ←R

Gen(1k). The publi
 key pk spe
i�es the message spa
e Mpk ← MSpc(pk)by a mapping MSpc.

Fun
tionality FPKENO

FPKENO pro
eeds as follows, running with parties P1, . . . , Pn and an adversary S. All session-ids
sid used in the following are expe
ted to be of the form sid = (recv, sid ′), su
h that sid uniquelydetermines a re
eiving party Precv .1. Upon the �rst a
tivation (no matter with whi
h input), �rst:(a) Hand (KeyGen, sid) to the adversary.(b) Re
eive des
riptions of the plaintext domain M, randomized algorithms Encrypt, Prove,and deterministi
 algorithms Decrypt, Verify from the adversary.Then pro
eed to handle the a
tual query as des
ribed below.2. Upon re
eiving (Encrypt, sid , m) from some party Pj :(a) If m /∈ M then output an error message to Pj .(b) If Precv is not
orrupted, set C ←R Encrypt(length, |m|). If Precv is
orrupted, C ←R

Encrypt(message, m).(
) Hand C to Pj and store the tuple (Encrypt, C, m). If there already is a stored tuple
(Encrypt, C, m′) for some di�erent message m 6= m′, then halt.3. Upon re
eiving (Decrypt, sid , C) from Precv (and Precv only):(a) If there is a tuple (Encrypt, C, m′) (for some m′) stored then set m := m′. Otherwise, set
m← Decrypt(C).(b) Hand m to Precv .4. Upon re
eiving a value (Prove, sid , C) from Precv (and Precv only):(a) If there is a tuple (Encrypt, C, m′) (for some m′) stored then set m := m′. Otherwise, set
m← Decrypt(C).(b) Set π ←R Prove(C, m) and hand π to Precv . Also, store the tuple (Prove, C, m, π); if thetag π already appears in a previously stored Prove tuple then halt.5. Upon re
eiving a value (Verify, sid , C, m, π) from some party Pj , determine res as follows:(a) If there is a stored tuple (Prove, C, m, π), then set res := accept.(b) Else, if there is a tuple (Encrypt, C, m′) for some m′ 6= m, then set res := reject.(
) In all other
ases, set res ← Verify(C, m, π).Finally, hand res to Pj .Fig. 1. Fun
tionality FPKENO for publi
-key en
ryption with non-intera
tiveopenings.� The en
ryption algorithm Enc takes as input a publi
 key pk and a message

m ∈ Mpk and outputs a
iphertext C. We write C ←R Encpk (m).� The deterministi
 de
ryption algorithm Dec takes as input a
iphertext Cand a se
ret key sk . It returns a message m ∈ Mpk or the distinguishedsymbol ⊥ 6∈ Mpk . We write m← Decsk (C).� The proving algorithm Prove takes as input a
iphertext C and a se
ret key
sk . It returns a proof π. We write π ←R Provesk (C).� The deterministi
 veri�
ation algorithm Ver takes as input a tuple (C, m, π, pk),
onsisting of a
iphertext C, a plaintext m, a proof π, and a publi
 key pk .It returns a result res ∈ {accept, reject}. We write res ← Verpk (C, m, π).We require that with probability overwhelming in the se
urity parameter k, anhonestly generated keypair (pk , sk)←R Gen(1k) satis�es the following:� Corre
tness. For all m ∈ Mpk , we have Pr [Decsk (Encpk (m)) = m] = 1.� Completeness. For all
iphertexts C and all possible π ← Provesk (C), wehave that for m← Decsk (C), algorithm Verpk (C, m, π) a

epts.44 Note that m may be ⊥.

Fun
tionality F
Gen
PKI

FGen
PKI

pro
eeds as follows, running with parties P1, . . . , Pn and an adversary S. All session-ids sidused in the following are expe
ted to be of the form sid = (recv, sid ′), su
h that sid uniquely deter-mines a re
eiving party Precv . Furthermore, FPKI is parametrized over a key-generation algorithm
Gen.1. Upon the �rst a
tivation (no matter with whi
h input), �rst run (pk , sk) ←R Gen(1k) togenerate a publi
 key pk along with a se
ret key sk .2. Upon any input from some party Pj or the adversary, send pk to Pj . In addition, if j = recv,send also sk to Pj .Fig. 2. Fun
tionality FPKI that
aptures a trusted key setup.De�nition 1 (PKENO se
urity). A s
heme PKENO is PKENO-se
ure if itis IND-CCPA se
ure and satis�es
omputational proof soundness. We de�nethose two below:

IND-CCPA se
urity. For an adversary A,
onsider the following game:1. Gen(1k) outputs (pk , sk). Adversary A is given 1k and pk .2. The adversary may make polynomially many queries to a de
ryption ora
le
Decsk (·) and a proof ora
le Provesk (·).3. At some point, A outputs two equal-length messages m0, m1. A bit b is ran-domly
hosen and the adversary is given the
hallenge
iphertext C∗ ←
Encpk (mb).4. A may
ontinue to query its de
ryption and its proof ora
le, ex
ept that itmay not query either with C∗.5. Finally, A outputs a guess b′.Denote A's advantage in guessing b′ by

Advind-ccpa
PKENO,A(k) := |Pr [b = b′]− 1/2| .S
heme PKENO is
alled indistinguishable against
hosen-
iphertext and proveatta
ks (IND-CCPA se
ure) if for every adversary A, Advind-ccpa

PKENO,A(·) is negligible.Proof soundness. For an adversary A,
onsider the following game:1. Gen(1k) outputs (pk , sk). Adversary A is given 1k and (pk , sk).2. The adversary
hooses a message m ∈ {0, 1}∗ and gives it to an en
ryptionora
le whi
h returns C ←R Encpk(m).3. The adversary returns (m′, π′).Denote A's probability to forge a proof by
Advsnd

PKENO,A(k) := Pr [accept← Verpk (C, m′, π′) ∧m′ 6= m] .S
heme PKENO is said to satisfy
omputational proof soundness if for everyadversary A, Advsnd
PKENO,A(·) is negligible.

4 Equivalen
eWe will show that PKENO se
urity is equivalent to universal
omposability inthe sense of realizing FPKENO. The idea is simple: the guarantees that FPKENOgives are pre
isely the properties that De�nition 1 requires. However, there is one
at
h: our simulation breaks down on
e proofs are asked in a situation in whi
hboth sender and re
eiver are honest. Te
hni
ally, this stems from a
ommitmentproblem the simulation runs into: if sender and re
eiver are honest, FPKENO de-mands as se
re
y guarantee that a
iphertext C in the system does not dependon the asso
iated message m. However, if later on a proof is requested that Creally de
rypts to m, we would need to break �ironi
ally� exa
tly proof sound-ness for a good simulation. There seems no easy way to
hange FPKENO itselfto prevent this: if FPKENO behaves di�erently depending on whether, e.g., there
eiver is
orrupted or not, the sender
an dedu
e whether the re
eiver is in-deed
orrupted or not. This however would lead to an una
hievable fun
tionality(sin
e the re
eiver might be passively
orrupted).Optimisti
 environments. To establish equivalen
e of the de�nitions, wehen
e restri
t to UC-environments that do not ask for proofs if both senderand re
eiver are un
orrupted. We
all su
h environments optimisti
. It is nat-ural to assume that any larger proto
ol
ontext that uses a PKENO s
heme isoptimisti
: proofs are only requested upon
on�i
ts, whi
h should not happen ifboth parties are honest.Theorem 1. Say that PKENO is a publi
-key en
ryption s
heme with non-intera
tive opening. Then PKENO is PKENO-se
ure (in the sense of De�ni-tion 1) if and only if PKENO (interpreted as a proto
ol as des
ribed in Se
-tion 3.1) se
urely realizes FPKENO in the FGen
PKI-hybrid model, with respe
t tonon-adaptive adversaries and optimisti
 environments.A formal proof will be given in the full version. Here, we give some intuition.To show that universal
omposability implies PKENO se
urity, atta
ks on

PKENO's IND-CCPA and proof soundness properties must be translated into at-ta
ks on PKENO's indistinguishability from FPKENO. Suppose A su

essfully at-ta
ks PKENO's IND-CCPA property. We build an environment Z that internallysimulates A and the whole IND-CCPA experiment. In this, Z obtains de
ryp-tions and proofs via its own proto
ol interfa
e (i.e., via PKENO, resp. FPKENO),and the
hallenge message mb is en
rypted with an Encrypt query. In the realmodel, this yields a true en
ryption of mb, and in the ideal model results insomething independent of b by de�nition of FPKENO. Hen
e the output distri-bution of the internally simulated A is
orrelated with b in the real model, andindependent of b in the ideal model, whi
h allows to distinguish. The translationof atta
ks on PKENO's proof soundness property works similarly.To show that PKENO se
urity implies universal
omposability, we des
ribea simulator S that, in the ideal setting with FPKENO, simulates atta
ks per-formed with the dummy adversary Ã on PKENO. Essentially, S only providealgorithms for FPKENO's Encrypt, Decrypt, Prove, and Verify answers. (Of

ourse, FPKENO enfor
es several rules with its answers, like proof soundnessguarantees, but apart from that, S's algorithms determine these answers.) Al-gorithms for de
ryption, proofs, and veri�
ations are
hosen just as in the realmodel. (Note that S is free to make up a FGen
PKI instan
e on its own, so S knowsand in fa
t
hooses the se
ret keys.) The en
ryption algorithm for the
ase thesender is un
orrupted is simply yields en
ryptions of 1|m| (i.e., all-one en
ryp-tions of the right length), whereas en
ryptions in
ase the sender is
orrupted
an be performed faithfully as in the real model (in this
ase, the en
ryption maydepend on the full message, sin
e so se
re
y is guaranteed then). The proof thatthis simulation is sound pro
eeds by transforming real into ideal model, whileshowing that this transformation preserves Z's view:1. The substitution of m-en
ryptions with 1|m|-en
ryptions
an be justi�edwith PKENO's IND-CCPA property.2. FPKENO's list-based de
ryption of known
iphertexts is simply an enfor
ed
orre
tness, whi
h
an be justi�ed with PKENO's
orre
tness.3. FPKENO's veri�
ation rules
an be justi�ed with PKENO's proof soundness.This sket
hes why the simulation that S provides is
orre
t, and hen
e thetheorem is proven.A
hieving full UC se
urity. It is natural to ask whether FPKENO
an berealized un
onditionally, i.e., without restri
ting Z. (This
orresponds to
om-posability in arbitrary proto
ol
ontexts.) As sket
hed above, to put up a su
-
essful simulation here, it must be possible to produ
e spe
ial
iphertexts (sentbetween an honest sender and an honest veri�er) that
an be opened to an arbi-trary, a-priori unknown message. Intuitively, this seems to break proof soundness;however, this is possible in prin
iple, sin
e in the ideal model, the simulator has
ontrol over the generation of the used keypair (pk , sk). (Note that PKENOse
urity only gives guarantees if this keypair is honestly generated.)To be more
on
rete,
onsider the (ine�
ient) non-intera
tive zero-knowledgebased s
heme from the introdu
tion. By, e.g., produ
ing a CRS in pk with knowl-edge of a trapdoor, S is able to give fake proofs that some
iphertext reallyen
rypts a message m. We stress that this
an not be used to break the intuitiveguarantees that FPKENO provides: FPKENO still
he
ks that the veri�
ation ofthis proof su

eeds only for the �right� message that is asso
iated with a
ipher-text.5 Implementation of PKENO using IBE5.1 Identity-based en
ryptionWe �rst de�ne syntax and required se
urity properties of an identity-based en-
ryption (IBE) s
heme.Syntax. An IBE s
heme is a tuple IBE = (IBEgen, KeyGen, IBEenc, IBEdec) ofalgorithms along with a familyM = (Mk)k of message spa
es su
h that:

� The key generation algorithm IBEgen takes as input a se
urity parameter
1k and outputs a publi
 key pk and a se
ret key sk . We write (pk , sk) ←R

IBEgen(1k).� The en
ryption algorithm IBEenc takes as input a publi
 key pk , an identity
id ∈ {0, 1}∗ and a message m ∈ Mk and outputs a
iphertext c. We write
c←R IBEencpk (id , m).� The deterministi
 de
ryption algorithm IBEdec takes as input a
ipher-text c, an identity id ∈ {0, 1}∗ and a user se
ret key usk [id]. It returnsa message m ∈ Mk or the distinguished symbol ⊥ 6∈ Mk. We write m ←
IBEdecusk [id](c).� The deterministi
 user se
ret key algorithm KeyGen takes as input an identity
id ∈ {0, 1}∗ and a se
ret key sk . It returns a user se
ret key usk [id]. We write
usk [id]← KeyGensk (id).5Consisten
y.We require that for every honestly generated keypair (pk , sk)←R

IBEgen(1k), for all identities id ∈ {0, 1}∗ and messages m ∈ Mk we have
IBEdecKeyGen(sk ,id)(IBEencpk (id , m)) = m with probability one.Here we also require a non-standard soundness property that it is e�
ientlyveri�able if a given user se
ret key usk [id] was properly generated for identity
id .6 We write {accept, reject} ← IBEverpk (id , usk [id]). We require for all hon-estly generated keypair (pk , sk) ←R IBEgen(1k) satis�es the following: For allidentities id ∈ {0, 1}∗ and strings s ∈ {0, 1}∗ we have IBEverpk (id , s) = accepti� s = usk [id], where usk [id]← KeyGensk (id).Se
urity. We only require a relatively weak se
urity property, namely indis-tinguishability against sele
tive-ID
hosen-plaintext atta
ks (IND-sID-CPA) [3℄.Formally, for an adversary A,
onsider the following game:1. Adversary A is given 1k and outputs a target identity id∗2. IBEgen(1k) outputs (pk , sk). Adversary A is given 1k and pk .3. The adversary may make polynomially many queries to a user se
ret-keyora
le KeyGensk (·), ex
ept that it may not query for id∗4. At some point, A outputs two equal-length messages m0, m1. A bit b israndomly
hosen and the adversary is given the
hallenge
iphertext C∗ ←R

IBEencpk (id∗, mb).5. A may
ontinue to query its user se
ret-key ora
le, ex
ept that it may notquery for id∗.6. Finally, A outputs a guess b′.Denote A's advantage in guessing b′ by
Advsid-cpa

IBE,A (k) := |Pr [b = b′]− 1/2| .5 We
an always assume the user se
ret key algorithm KeyGen to be deterministi
. Ifit is not, the owner of the se
ret key ensures using the same randomness for ea
hidentity either by maintaining a state or by deriving the randomness using a PRFapplied to the identity.6 It is not su�
ient to
he
k whether, e.g., some random en
ryptions de
rypt
orre
tly.A given alleged user se
ret key might misbehave on pre
isely one
iphertext.

S
heme IBE is
alled IND-sID-CPA se
ure if Advsid-cpa
IBE,A (·) is negligible for everyPPT adversary A. We remark that there exist e�
ient IND-sID-CPA se
ure IBEs
hemes without random ora
le [3℄.5.2 From IBE to PKENOWe use an adaptation of the IBE-to-PKE transformation by Canetti, Haleviand Katz [9℄. Let IBE = (IBEgen, KeyGen, IBEenc, IBEdec) be an IBE s
heme and

OTS = (SGen, SSign, SVer) be a one-time signature s
heme whi
h we require tobe strongly unforgeable against one-time atta
ks. (Syntax and se
urity propertiesof OTS
an be looked up in [9℄.) We
onstru
t a PKENO s
heme PKENO =
(Gen, Enc, Dec, Prove, Ver) as follows.
Gen(1k). The key generation algorithm runs the IBE key generation algorithm

(pk , sk)←R IBEgen(1k) and returns the key-pair (pk , sk).
Encpk (m). The en
ryption algorithm �rst generates a key-pair of the one-timesignature s
heme by running (vk , sigk)←R SGen(1k). Next, it IBE en
rypts

m with �identity� vk to obtain c ←R IBEencpk (vk , m). Finally, it signs theIBE
iphertext σ ← SSignsigk (c). and returns the PKENO
iphertext C =
(vk , c, σ).

Decsk (C). The de
ryption algorithm parses C as the tuple (vk , c, σ). Next, itveri�es if σ is a
orre
t signature on c by running SVervk (c). If not, it returns
⊥. Otherwise, it
omputes usk [vk] ← KeyGensk (vk) and IBE de
rypts c byrunning m← IBEdecusk [vk](c). Finally, it returns m ∈Mk ∪ {⊥}.

Provesk (C). The prove algorithm parses C as the tuple (vk , c, σ). Next, it veri�esif σ is a
orre
t signature on c by running SVervk (c). If not, it returns ⊥.Otherwise, it
omputes usk [vk]← KeyGensk (vk) and returns π ← usk [vk] asthe proof.
Verpk (C, m, π). The veri�
ation algorithm parses C as the tuple (vk , c, σ). Nextit veri�es if σ is a
orre
t signature on c with respe
t to veri�
ation key

vk by running SVervk (c). If not, it returns reject. Otherwise, it
he
ksif π is a properly generated user se
ret-key for �identity� vk by running
IBEverpk (vk , π). If not, it returns reject. Otherwise, it IBE de
rypts c byrunning m̂ ← IBEdecπ(vk , c), where m̂ ∈ Mk ∪ {⊥}. If m̂ 6= m, it returns
reject. Otherwise it returns accept.It is easy to
he
k that the above s
heme satis�es
orre
tness and
ompleteness.Theorem 2. Assume IBE is IND-sID-CPA se
ure and OTS is SUF-OT se
ure.Then PKENO
onstru
ted above is PKENO se
ure.First note that IBE soundness dire
tly implies perfe
t proof soundness of PKENO.This is sin
e the proof algorithm makes sure that the proof π = usk [vk] is a prop-erly generated user se
ret key for the the �identity� vk from the
iphertext byrunning the veri�
ation algorithm. Hen
e by
onsisten
y of the IBE s
heme thede
rypted message m̂ will always equal the real message m of the
iphertext andhen
e veri�
ation a

epts.

Let us now give some intuition why PKENO is IND-CCPA se
ure. A formalproof (following [9℄) will be given in the full version. Let (c∗, vk∗, σ∗) be the
hallenge
iphertext in the IND-CCPA se
urity experiment. It is
lear that,without any ora
le queries, the value of the bit b remains hidden to the adversary.This is so be
ause c∗ is output by IBEenc whi
h is IND-sID-CPA se
ure, vk∗ isindependent of the message, and σ∗ is the result of applying the one-time signingalgorithm to c∗.We
laim that de
ryption and proof ora
le queries
annot further help theadversary in guessing the value of b. First note that a proof for some
ipher-text enables the adversary to de
rypt the same
iphertext without making thede
ryption query. It remains to
onsider an arbitrary proof query (c, vk , σ) 6=
(c∗, vk∗, σ∗) made by the adversary during the experiment. If vk = vk∗ then
(c, σ) 6= (c∗, σ∗) and the proof ora
le will answer ⊥ sin
e the adversary is unableto forge a new valid signature σ with respe
t to vk∗. If vk 6= vk∗ then the proofquery will not help the adversary sin
e the the proof π = usk [vk] is an IBE userse
ret key for the �identity� vk distin
t from vk∗.6 Dire
t Implementation of PKENO in Bilinear Group6.1 Bilinear Groups and assumptionsOur s
hemes will be parametrized by a pairing parameter generator. This isan algorithm G that on input 1k returns the des
ription of an multipli
ative
y
li
 group G of prime order p, where 2k < p < 2k+1, the des
ription of amultipli
ative
y
li
 group GT of the same order, and a non-degenerate bilinearpairing ê : G×G→ GT . We use G∗ to denote G \ {1}, i.e. the set of all groupelements ex
ept the neutral element. The pairing has to be satisfy the followingtwo
onditions.Non-degenerate: for all g ∈ G∗, ê(g, g) 6= 1 ∈ GT .Bilinear: for all g ∈ G∗, x, y ∈ Zp, ê(gx, gy) = ê(g, g)xy.We use PG = (G,GT , p, ê, g, gT) as shorthand for the des
ription of bilineargroups, where g is a generator of G and gT = ê(g, g) ∈ GT . The Bilinear De
i-sional Di�e-Hellman (BDDH) assumption [4℄ states that the two distributions
(gx, gy, gz, ê(g, g)xyz) and (gx, gy, gz, ê(g, g)r), for x, y, z, r ←R Zp are indistin-guishable for any adversary. More formally we de�ne the advantage fun
tion
Advbddh

G,A (k) of an adversary A as
|Pr[A(PG, gx, gy, gz, ê(g, g)xyz) = 1]− Pr[A(PG, gx, gy, gz, ê(g, g)r) = 1]|where PG ←R G(1

k) and x, y, z, r ←R Zp. We say that the Bilinear De
isionDi�e-Hellman (BDDH) assumption holds relative to G if for every adversary A,
Advbddh

G,A (·) is negligible.

6.2 The PKENO s
hemeOur s
heme uses the �dire
t
hosen
iphertext te
hnique� whi
h results in anadaptation of the IND-CCA se
ure PKE s
heme from [5, 15℄. Let TCR : G→ Zpbe a hash fun
tion that we assume to be target
ollision resistant [11℄. LetPG←R G(k) be a pairing group that is
ontained in the system parameters. Let
(E, D) be a symmetri
 en
ryption s
heme that we assume to be
hosen-
iphertextse
ure.7 We assume that uses elements of the target group GT as se
ret keys.We
onstru
t a PKENO s
heme PKENO = (Gen, Enc, Dec, Prove, Ver) as follows.
Gen(1k). The key generation algorithm pi
ks random exponents x1, x2, y ∈ Zp.The se
ret key is sk = (x1, x2, y) ∈ Z3

p and the publi
 key is pk = (X1, X2, Y) ∈G2 ×GT , where
X1 = gx1 ∈ G, X2 = gx2 ∈ G, Y = ê(g, g)y ∈ GT .

Encpk (m). The en
ryption algorithm �rst pi
ks a random r ∈ Zp. The
iphertextis the tuple (c1, c2, c3), where
c1 = gr, t = TCR(c1), c2 = (Xt

1X2)
r, K ← Y r, c3 ← EK(m)

Decsk (C). The de
ryption algorithm parses C as the tuple (c1, c2, c3). Next,it
omputes t = TCR(c1) and
he
ks if cx1t+x2

1
?

= c2. If not, it returns ⊥meaning the
iphertext is in
onsistent. Otherwise, it
omputes
K ← ê(c1, g

y)and returns m← DK(c3) ∈ M∪ {⊥}.
Provesk (C). The prove algorithm parses C as the tuple (c1, c2, c3). Next, it
om-putes t = TCR(c1) and
he
ks if cx1t+x2

1 = c2. If not, it returns ⊥. Otherwise,it pi
ks s←R Zp. The proof
onsists of π = (d1, d2) ∈ G2, where
d1 = gs, d2 = gy · (Xt

1X2)
s . (2)

Verpk (C, m, π). The veri�
ation algorithm parses C as the tuple (c1, c2, c3) and
π as the tuple (d1, d2). Next, it
omputes t = TCR(c1) and
he
ks if

ê(c2, g)
?

= ê(c1, X
t
1X2) and ê(g, d2)

?

= Y · ê(Xt
1X2, d1) . (3)If one of the
he
ks fails, it returns reject. Otherwise, it
omputes

K̂ ← ê(c1, d2)/ê(c2, d1),and m̂ ← DK̂(c3) ∈ Mk ∪ {⊥}. It returns accept if m̂ = m and reject,otherwise.It is easy to
he
k that the above s
heme satis�es
orre
tness and
ompleteness.7 A symmetri
 en
ryption s
heme is
hosen-
iphertext se
ure if the en
ryptions of twoadversarially-
hosen messages under a random hidden key K remain indistinguish-able even relative to a de
ryption ora
le. We refer to [11℄ for a formal de�nition.

6.3 Se
urityTheorem 3. Assume the BDDH assumption holds relative to G, TCR is a target
ollision-resistant hash fun
tion, and (E, D) is a
hosen-
iphertext se
ure sym-metri
 en
ryption s
heme. Then PKENO
onstru
ted above is PKENO se
ure.The proof of IND-CCPA se
urity is similar to the one from [5, 15℄ and omittedhere.We verify proof soundness. Fix a key-pair and let C = (c1 = gr, c2 =
(Xt

1X2)
r, c3 = EK(m)) be a proper en
ryption of a message m, where K = Y ris the symmetri
 key used for en
rypting m. Now
onsider the veri�
ation algo-rithm run with C, a message m′ 6= m and an arbitrary proof π′ = (d′1, d

′
2). Theright
he
k of (3) implies that π′ = (d′1, d

′
2) is a properly generated proof of theform (2), for some s ∈ Zp and for t = TCR(c1). Hen
e, for the symmetri
 key K̂we have

K̂ = ê(c1, d
′
2)/ê(c2, d

′
1) = ê(gr, gy · (Xt

1X2)
s)/ê((Xt

1X2)
r), gs) = Y r = KBy
onsisten
y of the symmetri
 s
heme the re
overed message m̂ = DK(c3)equals m 6= m′, hen
e veri�
ation always outputs reject.Referen
es[1℄ Mi
hael Ba
kes, Markus Dürmuth, Dennis Hofheinz, and Ralf Küsters. Condi-tional rea
tive simulatability. In Eugene Asarin, Dieter Gollmann, Jan Meier, andAndrei Sabelfeld, editors, Computer Se
urity, Pro
eedings of ESORICS 2006, Le
-ture Notes in Computer S
ien
e, pages 424�443. Springer-Verlag, 2006. Extendedversion online available at http://eprint.ia
r.org/2006/132.ps.[2℄ Mi
hael Ba
kes and Birgit P�tzmann. Limits of the
ryptographi
 realization ofDolev-Yao-style XOR. In Sabrina De Capitani di Vimer
ati, Paul F. Syverson,and Dieter Gollmann, editors, Computer Se
urity, Pro
eedings of ESORICS 2005,number 3679 in Le
ture Notes in Computer S
ien
e, pages 178�196. Springer-Verlag, 2005. Online available at http://eprint.ia
r.org/2005/220.ps.[3℄ Dan Boneh and Xavier Boyen. E�
ient sele
tive-ID se
ure identity based en-
ryption without random ora
les. In Christian Ca
hin and Jan Camenis
h, edi-tors, EUROCRYPT 2004, volume 3027 of LNCS, pages 223�238. Springer-Verlag,Berlin, Germany, May 2004.[4℄ Dan Boneh and Matthew K. Franklin. Identity based en
ryption from the Weilpairing. SIAM Journal on Computing, 32(3):586�615, 2003.[5℄ Xavier Boyen, Qixiang Mei, and Brent Waters. Dire
t
hosen
iphertext se
urityfrom identity-based te
hniques. In Vijayalakshmi Atluri, Catherine Meadows, andAri Juels, editors, ACM CCS 05, pages 320�329. ACM Press, November 2005.[6℄ Ran Canetti. Universally
omposable se
urity: A new paradigm for
rypto-graphi
 proto
ols. In 42th Annual Symposium on Foundations of Computer S
i-en
e, Pro
eedings of FOCS 2001, pages 136�145. IEEE Computer So
iety, 2001.Full version online available at http://www.e

.uni-trier.de/e

-reports/2001/TR01-016/revisn01.ps.

[7℄ Ran Canetti. Universally
omposable se
urity: A new paradigm for
ryptographi
proto
ols. IACR ePrint Ar
hive, January 2005. Online available at http://eprint.ia
r.org/2000/067.ps.[8℄ Ran Canetti and Mar
 Fis
hlin. Universally
omposable
ommitments. In JoeKilian, editor, Advan
es in Cryptology, Pro
eedings of CRYPTO 2001, number2139 in Le
ture Notes in Computer S
ien
e, pages 19�40. Springer-Verlag, 2001.Full version online available at http://eprint.ia
r.org/2001/055.ps.[9℄ Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-
iphertext se
urity fromidentity-based en
ryption. In Christian Ca
hin and Jan Camenis
h, editors, EU-ROCRYPT 2004, volume 3027 of LNCS, pages 207�222. Springer-Verlag, Berlin,Germany, May 2004.[10℄ Ran Canetti, Hugo Kraw
zyk, and Jesper B. Nielsen. Relaxing
hosen-
iphertextse
urity. In Dan Boneh, editor, Advan
es in Cryptology, Pro
eedings of CRYPTO2003, number 2729 in Le
ture Notes in Computer S
ien
e, pages 565�582.Springer-Verlag, 2003. Full version online available at http://eprint.ia
r.org/2003/174.ps.[11℄ Ronald Cramer and Vi
tor Shoup. Design and analysis of pra
ti
al publi
-key en-
ryption s
hemes se
ure against adaptive
hosen
iphertext atta
k. SIAM Journalon Computing, 33(1):167�226, 2003.[12℄ Ivan Damgård and Rune Thorbek. Non-intera
tive proofs for integer multipli-
ation. In Moni Naor, editor, Advan
es in Cryptology, Pro
eedings of EURO-CRYPT 2007, number 4515 in Le
ture Notes in Computer S
ien
e, pages 412�429. Springer-Verlag, 2007. Full version online available at http://eprint.ia
r.org/2007/086.[13℄ Anupam Datta, Ante Derek, John C. Mit
hell, Ajith Ramanathan, and AndreS
redrov. Games and the impossibility of realizable ideal fun
tionality. In ShaiHalevi and Tal Rabin, editors, Theory of Cryptography, Pro
eedings of TCC 2006,number 3876 in Le
ture Notes in Computer S
ien
e, pages 360�379. Springer-Verlag, 2006. Online available at http://eprint.ia
r.org/2005/211.pdf.[14℄ Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. On modeling IND-CCA se
urity in
ryptographi
 proto
ols. Tatra Mountains Mathemati
al Publi-
ations, 2005. 14 pages, to be published.[15℄ Eike Kiltz. Chosen-
iphertext se
urity from tag-based en
ryption. In ShaiHalevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 581�600.Springer-Verlag, Berlin, Germany, Mar
h 2006.[16℄ Yehuda Lindell. General
omposition and universal
omposability in se
ure multi-party
omputation. In 44th Annual Symposium on Foundations of ComputerS
ien
e, Pro
eedings of FOCS 2003, pages 394�403. IEEE Computer So
iety, 2003.Full version online available at http://eprint.ia
r.org/2003/141.ps.[17℄ Moni Naor and Moti Yung. Publi
-key
ryptosystems provably se
ure against
hosen
iphertext atta
ks. In 22nd ACM STOC. ACM Press, May 1990.[18℄ Jesper B. Nielsen. On Proto
ol Se
urity in the Cryptographi
 Model. PhD thesis,University of Aarhus, 2003. Online available at http://www.bri
s.dk/~buus/jbnthesis.ps.gz.[19℄ Chris Peikert and Brent Waters. Lossy trapdoor fun
tions and their appli
ations.Cryptology ePrint Ar
hive, Report 2007/279, 2007. http://eprint.ia
r.org/.[20℄ Brent R. Waters. E�
ient identity-based en
ryption without random ora
les. InRonald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114�127. Springer-Verlag, Berlin, Germany, May 2005.

