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Abstract. We construct the �rst public-key encryption scheme that is
proven secure (in the standard model, under standard assumptions) even
when the attacker gets access to encryptions of arbitrary e�cient func-
tions of the secret key. Speci�cally, under either the DDH or LWE as-
sumption, and for arbitrary but �xed polynomials L and N , we obtain a
public-key encryption scheme that resists key-dependent message (KDM)
attacks for up to N(k) public keys and functions of circuit size up to L(k),
where k denotes the size of the secret key. We call such a scheme bounded
KDM secure. Moreover, we show that our scheme su�ces for one of the
important applications of KDM security: ability to securely instantiate
symbolic protocols with axiomatic proofs of security.
We also observe that any fully homomorphic encryption scheme that ad-
ditionally enjoys circular security and circuit privacy is fully KDM secure

in the sense that its algorithms can be independent of the polynomials L
and N as above. Thus, the recent fully homomorphic encryption scheme
of Gentry (STOC 2009) is fully KDM secure under certain non-standard
hardness assumptions.
Finally, we extend an impossibility result of Haitner and Holenstein
(TCC 2009), showing that it is impossible to prove KDM security against
a family of query functions that contains exponentially hard pseudo-
random functions if the proof makes only a black-box use of the query
function and the adversary attacking the scheme. This shows that the
non-black-box use of the query function in our proof of security is inher-
ent.
Keywords: KDM/clique/circular security; fully homomorphic encryp-
tion; formal security.

1 Introduction

An encryption scheme is key-dependent message (KDM) secure if it is secure
even against an attacker who has access to encryptions of messages that depend
on the secret key. This strong notion of security, introduced by Black et al.
[6], tries to capture scenarios where there could be correlations between the
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secret key and the encrypted messages. At a �rst glance, it may seem that such
correlations only arise from bugs or errors on part of the protocol designer, and
hence achieving such a strong security is not of much importance. It turns out,
however, that such attacks naturally occur when considering complex systems.
For example, in some popular disk encryption utilities, the disk encryption key
can end up being stored in the page �le, and thus is encrypted along with the disk
content [7]. In addition, Camenisch and Lysyanskaya [9] showed that schemes
with a certain restricted form of KDM security known as �circular security�
are useful for constructing Anonymous Credential Systems. Finally, and perhaps
most importantly, KDM security naturally arises as the right notion when one
wishes to securely instantiate symbolic protocols with an axiomatic proof of
formal security (see Section 6).

For a while, building a KDM-secure encryption scheme in the standard model,
under any well studied hardness assumption, seemed too hard a nut to crack.
The only scheme that was shown to resist any kind of KDM attacks was given
by Black et al. [6] in the random-oracle model. Yet, in recent years KDM-secure
encryption schemes were given for some non-trivial families of functions. This
line of work started with the works of Halevi and Krawczyk [18] and Hofheinz
and Unruh [19], who gave private-key encryption schemes secure against signi�-
cantly restricted classes of KDM queries. Concretely, [18] prove security against
arbitrary but �xed KDM queries that are known in advance, and against KDM
queries that do not depend on certain �protected� parts of the key. The construc-
tions from [19] obtain statistical KDM security in the presence of su�ciently
few (arbitrary) KDM queries, as well as a stateful KDM-secure scheme in which
KDM queries may only depend on the current state (but not on previous states).

A major step was taken by Boneh, Halevi, Hamburg, and Ostrovsky [7] who
presented, under the decisional Di�e-Hellman (DDH) assumption, a public-key
encryption scheme that is N(k)-circular secure for every polynomial N , and in
fact is secure against the more general family of attacks allowing the adversary
access to encryptions of arbitrary a�ne functions of the vector of N(k) secret
keys. Applebaum, Cash, Peikert, and Sahai [3] presented more e�cient schemes
that are secure against a similar family of key-dependent attacks, whose security
is based on di�erent assumptions: the learning parity with noise (LPN) assump-
tion in the secret-key case and the learning with errors (LWE) assumption in
the public-key case. In a recent independent work, Brakerski, Goldwasser, and
Kalai [8] presented a transformation from a KDM secure scheme satisfying a
certain property (in particular satis�ed by the DDH and LWE based schemes
of [7, 3]) into a scheme that is KDM secure with respect to a larger class of
functions. While their transformation cannot be used to achieve security against
all circuits of size p(n), it has the bene�t of depending only on the number of
functions in the class, and being independent of their circuit size or number
of keys. In particular they achieve KDM security with respect to the class of
constant degree polynomials and any polynomial number of keys.

Despite the above progress, the families of functions for which KDM security
was achieved prior to our work (in the standard model, under standard assump-



tions) was still quite restricted. In particular, these families were not su�ciently
rich for several of the applications of KDM security in the context of complex sys-
tems and formal protocols. A partial explanation for this rather limited success
was recently given by Haitner and Holenstein [17], who showed the impossibility
of obtaining KDM security based on standard assumptions and using standard
techniques. (In Section 1.2, we will describe their results in more detail, since we
will later extend them to our case of bounded KDM security.)

1.1 Our Results

Our main result is the following:

Theorem 1 (Informal). Under the DDH or LWE assumption, for any given
polynomials L = L(k) and N = N(k), there exists a public-key encryption
scheme that is KDM-secure with respect to the class of circuits of size L(k),
and for N(k) independent keys, where k denotes the size of the keys.

We call such a scheme a bounded KDM-secure encryption scheme. (This is
in contrast with a fully- or unbounded -KDM scheme, where the circuit size and
the number of keys can be an arbitrarily large polynomial in the security pa-
rameter, independent of the scheme's complexity.) We argue that this is the �rst
encryption scheme (under standard cryptographic assumptions) that handles a
rich enough function class to capture most �real life� KDM attacks.

The original motivation for KDM security was to securely instantiate sym-
bolic cryptographic protocols that have a formal proof of security in some ax-
iomatic system. As further evidence for the usefulness of bounded KDM security,
we show that our notion is strong enough for this application:

Theorem 2 (Informal). Let P be a symbolic protocol with operations such
as public-key encryption and digital signatures. Then, instantiating P with a
bounded KDM-secure5 encryption scheme provides a computationally sound im-
plementation.

This yields the �rst soundness result without restrictions (such as assuming
protocols without key-cyclic expressions) in the standard model.

Finally, we show that the above positive results are tight, by extending an
impossibility result of Haitner and Holenstein [17] in the following sense:

Theorem 3 (Informal). An encryption scheme cannot be proven to be KDM-
secure against a family of functions that contains exponentially hard pseudoran-
dom functions, if the proof of security only accesses the query function and the
adversary attacking the scheme in a black-box manner (i.e., as oracles).

Remarks. We note the following points about our result:

5 Actually, the precise notion we use is length-dependent KDM security (see De�ni-
tion 5). This is a slight strengthening of bounded KDM security, and our scheme
satis�es this stronger notion as well.



1. E�ciency. Our scheme, although polynomial time, is not practically e�cient
as it uses the garbled circuit construction and its ciphertext length is at least
L, where L is a bound on the circuit size of the KDM function. There are
more e�cient candidate KDM-secure cryptosystems if one is willing to settle
for non-standard assumptions or the random oracle model.

2. Full KDM security. Although we only prove our scheme to be bounded KDM
secure, it is of course possible that it is KDM secure with respect to any ef-
�cient KDM function. In fact, there seems to be an interesting obstacle to
any KDM attack on our scheme. Suppose that we instantiate the scheme to
be secure with respect to KDM functions of size k3. Now suppose that there
is a successful KDM attack against it, and for simplicity assume the attack
consists of getting one encryption of h(sk) where h is some e�ciently com-
putable function. Then the success of this attack implies that either DDH
is false (assuming we instantiate our scheme from the DDH assumption),
or that h has no circuit of size k3. Hence, a proof that this construction
is insecure against a polynomial-time KDM attacker will provably demon-
strate than either DDH is false, or that P 6⊆ Size(k2) (we lose a factor of
k because h has a k-bit output). The latter is a widely believed fact, but
its proof would be considered a major breakthrough in complexity theory.
(Also, it is not at all clear how to derive such a conclusion directly from the
DDH assumption� typically in cryptography we need to use subexponential
hardness assumptions to get such a condition.) More generally, a successful
attack is some way to certify that h is hard� even though it is easy in time
k3 to generate a random function outside of Size(k2), it is not at all clear
how to generate such a function along with a publicly veri�able certi�cate
of hardness.

3. Black-box-ness. Our scheme makes a non-black-box use of the KDM function
h, where Theorem 3 shows that this use is inherent.

Applications to formal security. A central motivation for the study of KDM
security lies in the connection between formal and computational cryptography.
In formal cryptography (starting with [12, 13, 23]), cryptographic operations like
encryption or digital signatures are abstracted as symbolic operators that (only)
adhere to natural rules. Given such rules, a simple calculus enables machine-
assisted security analysis.

It was proven by Adão et al. [2] that fully KDM-secure encryption schemes
imply computational soundness for arbitrary symbolic protocols. We reconsider
their proof and show (Theorem 9) that bounded KDM security of the type that
we achieve su�ces. Hence, our combined results give the �rst encryption scheme
(under standard cryptographic assumptions) whose security implication can be
veri�ed using formal security methods.

We stress that the clique security achieved by [7, 3] only enables to apply
these formal methods to a very limited class of applications. For more details
see Section 6.



1.2 Our Techniques

We now give an informal overview of the proof of Theorem 1. The following
exposition focuses on a scheme that is secure against a single-key KDM attack.
That is, there is only one public/private key pair (pk , sk) of length k, and the
attacker can obtain encryptions of messages of the form h(sk) for an arbitrary
function h of circuit complexity at most L(k). (Here L = L(k) is an arbitrary
�xed polynomial which a�ects the complexity of the encryption and decryption,
but not the complexity of key generation.) The multiple-key case raises some
additional subtleties that we ignore for the moment.

Recall that a homomorphic public-key encryption scheme is a public-key
encryption scheme (Gen,Enc,Dec) that also has an additional algorithm Eval
for evaluating functions on an encrypted message. Concretely, Eval takes the
public key pk , an encryption of a message M , and a description of a function h
from some family H, and outputs a string from which h(M) can be e�ciently
decrypted using the secret key sk . Our starting point is the following observation:
a su�ciently strong homomorphic encryption is in fact also KDM-secure (with
respect to the same class of functions H), where �su�ciently strong� means that
the scheme satis�es the following additional properties:

1. Self-referential (i.e., 1-circular) security: Encpk (sk) is indistinguishable from
Encpk (0k).

2. Strong function privacy: For every h ∈ H and plaintext M ,
Evalpk (h,Encpk (M)) is indistinguishable from Encpk (h(M)), even against a
distinguisher that knows the secret key.

The basic idea for proving the KDM-security of such a scheme is that a dis-
tinguisher between Encpk (h(sk)) and Encpk (h(0k)) can be used to distinguish
between Encpk (sk) and Encpk (0k) by simply running Eval with the function h
(and thus the �KDM queries� are useless). When turning this idea into a proof
one sees that it is crucial that function privacy hold even with respect to a
distinguisher that knows the secret key.

This observation already implies that Gentry's recent breakthrough fully ho-
momorphic encryption scheme [15] is fully KDM-secure, assuming that it is
circular-secure (an assumption which is anyway necessary in Gentry's case to
get a truly fully homomorphic encryption, where the public key does not grow
with the depth of the circuit).6 Since all natural candidates for public-key en-
cryption schemes are not known to be 1-circular insecure, we �nd this observa-
tion interesting, as the assumption of circular security seems cleaner and more
conservative than assuming full KDM security. (In particular, it is more easily
�falsi�able� in the sense of Naor [25].)

In fact, it turns out that it su�ces to have only weak function privacy, requir-
ing that Evalpk (h,Encpk (M)) be indistinguishable from Evalpk (h′,Encpk (M)) for

6 As Gentry notes, if one assumes his scheme is circular-secure then it also enjoys
strong statistical function privacy.



h, h′,M such that h(M) = h′(M) (again indistinguishability is with respect to
attackers who know the secret key).7 See Theorem 5 for the details.

The latter observation suggests an approach to get KDM security for circuits
of size L under standard assumptions. Consider any two-message protocol for
evaluating a universal function with security against semi-honest parties. Such
a protocol takes an input M from a receiver and a circuit h from a sender, and
delivers the output h(M) to the receiver. Given any such protocol and a stan-
dard public-key encryption (PKE), one can construct a homomorphic scheme
with weak function privacy as follows. The public key is the public key pk of
the PKE. The encryption of M under pk is a triple (C, pk ′, C ′) where C is an
encryption of M under pk , pk ′ is the receiver's �rst message in the protocol on
input M , and C ′ is an encryption under pk of the secret randomness sk ′ used
to generate pk ′ (which is needed to recover the output of the protocol). The
algorithm Eval((C, pk ′, C ′), h) returns the sender's response to pk ′ on input h
along with C ′. Given sk , the output of Eval can be used to decrypt h(M) by �rst
recovering sk ′ and then computing the receiver's output in the protocol.

The advantage of this approach is that it can be instantiated under standard
assumptions by using Yao's protocol [28]. More concretely, a secure two-message
protocol for the universal function can be obtained by combining Yao's garbled
circuit construction and any two-message oblivious transfer (OT) [27, 14] pro-
tocol.8 Unlike the alternative of using fully homomorphic encryption, however,
this protocol has the caveat that the communication must grow with the size of
h, and hence (weak) function privacy can only hold with respect to the class H
of all circuits with some a-priori size bound L.

A more subtle problem is that of making the homomorphic scheme con-
structed in the above way circular-secure. Indeed, encrypting the secret key of
the homomorphic scheme with its own public key results in a circular dependency
between the underlying PKE and the two-message protocol: the secret key sk
of the PKE is encrypted using the �public key� pk ′ of the protocol, whereas
the �secret key� sk ′ of the protocol is encrypted using the public key pk of the
PKE. Even if the PKE is circular-secure, it is not clear that this property will
be respected by the above construction.

Our way to handle this di�culty is by introducing a new notion that we call
�targeted encryption�, which is aimed towards resolving the above dependency
when applied to a two-message protocol based on Yao's technique. Targeted
encryption can be viewed as a circular-secure extension of both public-key en-

7 This is indeed a weaker notion since if y = h(M) = h′(M) then one can see that
strong function privacy implies that Eval(h, Enc(M)) ≈ Enc(y) ≈ Eval(h′, Enc(M)).
Intuitively, weak function privacy allows Eval to map ciphertexts from one domain
to a di�erent domain, while this is ruled out by strong function privacy.

8 Two-message OT is a protocol comprised of one message from the receiver and one
message from the sender, where the receiver has an input selection bit s and the
sender has a pair of input strings X0, X1. In the end of the protocol the receiver only
learns Xs and the sender learns nothing about s. Here we need k parallel instances
of OT, where the receiver has a k-bit input selection vector s and the sender has k
pairs of strings.



cryption and two-message OT. Loosely speaking, one can think of this as an
OT protocol where the receiver has no secret information apart from the input
selection vector s. This may look strange at �rst, and indeed it can be shown to
be inherently at odds with the standard notion of OT, which requires that the
sender learn nothing about s. But it turns out that one can obtain a meaningful
relaxation of the above notion that is strong enough for our purposes. We then
show that both the schemes of Boneh et al. [7] and Applebaum et al. [3] can
be used to construct targeted encryption. The key property we use is that both
schemes enjoy KDM security against a�ne functions, and in fact this is proven
by giving a public algorithm to compute an encryption of any a�ne function of
the secret key. We show that such an algorithm implies targeted encryption.

As mentioned above, multiple-key security adds some additional di�culties.
In particular, targeted encryption on its own does not seem su�cient for multiple
key security, and to handle this case we need to appeal to the multiple-key
circular security of the underlying schemes.

To show our negative result (Theorem 3), we employ the techniques of Hait-
ner and Holenstein [17]. Concretely, they showed that an encryption scheme
cannot be proved to be KDM-secure against the family of all functions, if the
proof of security only accesses the query function and the adversary attacking
the scheme in a black-box manner (i.e., as oracles).9 Here we extend this result to
every family of functions that contains exponentially hard pseudorandom func-
tions. There was no prior scheme that was shown (under a standard assumption)
to be secure with respect to such a family, although many of the applications of
KDM security require that the KDM function can be a cryptographic primitive
such as a signature, a hash function, etc.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, k ∈ N de-
notes the security parameter. For a �nite set X, we denote by x← X the process
of sampling x uniformly from X. For a probabilistic algorithm A, we denote by
y ← A(x) the process of running A on input x and with uniform randomness,
and assigning y the result. If A runs in time polynomial in the security param-
eter k, then A is a ppt machine. (We always assume that k can be e�ciently
computed from the input to the algorithm even if it not explicitly given.) A func-
tion f : N → [0, 1] is negligible i� ∀c ∈ N∃k0 ∈ N∀k > k0 : |f(k)| < k−c. We
say f is overwhelming i� 1− f is negligible. Two collections X = (Xk)k∈N and
Y = (Yk)k∈N of random variables are computationally indistinguishable, written

X
c
≈ Y , i� for every nonuniform polynomial-time distinguisher D, we have that

Pr
[
D(1k, Xk) = 1

]
−Pr

[
D(1k, Yk) = 1

]
is negligible. We use ◦ for concatenation.

9 They also showed that it is impossible to prove (in a black-box way) that a trapdoor-
permutation based scheme is KDM-secure against a family of t-wise independent
hash functions, for t that is longer than the ciphertext size (here a non-black-box
access to the query function is allowed).



Encryption schemes. A public-key encryption (PKE) scheme with message
space M = Mk and secret key space K = Kk, consists of three algorithms
(Gen,Enc,Dec) � Key generation Gen(1k) outputs a public key pk and a se-
cret key sk ∈ Kk. Encryption Encpk (M) takes a public key pk and a message
M ∈ Mk, and outputs a ciphertext C . Decryption Decsk (C ) takes a secret key
sk and a ciphertext C , and outputs a message M . For correctness, we require
Decsk (C ) = M for all M ∈ Mk, all (pk , sk) in the range of Gen(1k), and all C
in the range of Encpk (M). For simplicity, we will assume from now on that both
the key space and the message space are {0, 1}k. Our de�nitions and results,
however, can be easily adapted to the case of messages of arbitrary length.

2.1 Garbled circuits

An essential building block of our KDM secure encryption scheme is Yao's gar-
bled circuit construction, attributed to [28]. Informally, the variant of this con-
struction on which we rely transforms any circuit h with k input bits along with
k pairs of random keys (K1,0,K1,1), . . . , (Kk,0,Kk,1) into a �garbled circuit� GC
such that the following properties hold:

� For any input x ∈ {0, 1}k and any choice of 2k keys, the output h(x) can
be e�ciently decoded (without knowing h) from GC and the k keys Ki,xi

corresponding to x.
� GC together with the k keys corresponding to x computationally hide all
information about h other than the size of h and h(x).

� GC alone computationally hides all information about h other than its size,

where the last two properties hold with respect to a random choice of the keys
and a random execution of the transformation. The existence of a construction
satisfying the above requirements is formally captured by the following theorem.
See the full version of this paper [5] for a derivation of this theorem from the
literature.

Theorem 4 (Garbled circuits). Suppose that one-way functions exist. Then
there is a pair of polynomial-time randomized algorithms (Garble,GCEval) that
for security/input parameter k, output parameter m, and circuit size parameter
s satisfy the following:

Syntax. Garble takes a 2k key tuple K = {Ki,b}i∈[k],b∈{0,1}, where Ki,b ∈
{0, 1}k, and a size s circuit describing a function h : {0, 1}k → {0, 1}m,
and outputs a �garbled circuit� GC . GCEval takes an input x ∈ {0, 1}k, a k
key tuple, and a garbled circuit GC and outputs y ∈ {0, 1}m.

Correctness. We require that if GC = Garble(K,h) then GCEval(Kx,GC ) =
h(x), where we de�ne Kx = {(xi,Ki,xi)}i∈[k].

10

10 For ease of notation we assume that the input x is included in the description of
Kx. This is needed to guarantee correctness even when a pair of keys happen to be
identical. Alternatively, we could avoid giving x as input to GCEval by either settling
for statistical correctness or allowing the keys to be correlated.



Security against receiver. For every polynomials s(k),m(k), every x ∈
{0, 1}k and every h, h′ : {0, 1}k → {0, 1}m(k) of size s(k) such that h(x) =
h′(x), if K is chosen at random then

Kx ◦ Garble(K,h)
c
≈ Kx ◦ Garble(K,h′)

Security against outsiders. For every polynomials s(k),m(k) and every
h, h′ : {0, 1}k → {0, 1}m(k) of size s(k), if K is chosen at random then

Garble(K,h)
c
≈ Garble(K,h′)

2.2 Key-dependent message security

Loosely speaking, the notion of key-dependent message (KDM) security gives an
adversary access to encryptions of messages of the form h(sk), where h : K →
M is a function that the adversary can choose from some family. The formal
de�nition below is taken from Black et al. [6] and allows the function to depend
on some N = N(k) secret keys. While handling multiple keys is important for
the application to formal cryptography (see Section 6), much of the technical
challenge is already manifested in the case N = 1, and so the reader may wish
to focus on this case initially.

De�nition 1 (KDM security). Let PKE = (Gen,Enc,Dec) be a public-key
encryption scheme with message space M and secret key space K. Let pk :=
(pk1, . . . , pkN ) and sk := (sk1, . . . , skN ) be public, resp., secret key vectors, where
N = N(k) > 0 is a positive-valued function. Let A be a ppt machine. Let
� Realpk ,sk be the oracle that on input a function h : KN →M (encoded as a

circuit) and µ ∈ [N ] returns C ← Enc(pkµ, h(sk)), and
� Fakepk be the oracle that on input h, µ as above returns C ← Enc(pkµ, 0k).

The KDM advantage of A is

AdvKDM
PKE,A(k) := Pr

[
ARealpk,sk (·,·)(pk) = 1

]
− Pr

[
AFakepk (·,·)(pk) = 1

]
where (pk i, sk i)← Gen(1k) for i ∈ [N ] in both probabilities. We say that PKE is
KDM secure with respect to a function class H i� for every polynomial N and
every ppt A that only queries its oracle with functions h ∈ H, the advantage
function AdvKDM

PKE,A is negligible in the security parameter. PKE is fully KDM
secure i� PKE is KDM secure with respect to the class H that consists of all
functions.

Examples of KDM function classes. The following examples of KDM func-
tion classes will be important for us.
Clique/circular security. Let SN consist of all functions hi : ({0, 1}k)N →
{0, 1}k for i ∈ [N ], where hi(sk1, . . . , skN ) = sk i. Thus, KDM security
with respect to SN allows the adversary to obtain encryptions Encpki(sk j)



for every i, j ∈ [N ]. This was called �clique security� by Boneh et al.
[7] who gave a scheme that is KDM secure with respect to SN for ev-
ery N that is polynomial in the security parameter. (See Applebaum
et al. [3] for another construction.) Security with respect to SN implies
�N -circular security�. This notion, de�ned by [9] states that for indepen-
dently generated N key pairs (pk1, sk1), . . . , (pkN , skN ), the vector of N
encryptions Encpk1

(sk2),Encpk2
(sk3), . . . ,EncpkN (sk1) is indistinguishable

from Encpk1
(0k), . . . ,EncpkN (0k).

Bounded security. Let CN,L consist of all functions h : ({0, 1}k)N → {0, 1}k
that can be described with circuits of size at most L. We say that a scheme is
(N,L) bounded KDM secure, if it is KDM secure with respect to CN(k),L(k),
where k denotes both the security parameter and the secret key size.11

Full (unbounded) security. Full KDM security is equivalent to requiring that
a scheme is KDM secure with respect to CN,L for every polynomials, in the
security parameter, N and L. Note that this de�nition seems like the best
one should look for, since a ppt adversary cannot generate circuits (i.e.,
queries) of superpolynomial size.

Finally, we say that a scheme has single-key KDM security, if in the KDM attack
above the number of keys N is restricted to being 1. This notion makes sense
with respect to bounded/unbounded security, where in the case of or clique or
circular security it is equivalent to �self reference security� � the adversary has
access to Encpk (sk).

2.3 KDM security from homomorphic encryption

In this section we observe that one can get KDM security from a certain kind of
homomorphic encryption schemes.

De�nition 2 (Homomorphic encryption). Let H = {Hk} be a sequence
of sets of Boolean circuits. A tuple of algorithms ξ = (Gen,Enc,Dec,Eval) is a
homomorphic encryption scheme with respect to H, if (Gen,Enc,Dec) is a public
key encryption scheme, and in addition for every (pk , sk) ← Gen(1k), h ∈ Hk
and message M ∈M

Decsk
(
Evalpk (h,Encpk(M))

)
= h(M)

We say that ξ satis�es strong (statistical) function-privacy if for every

h ∈ Hk, pk in the range of Gen(1k) and M ∈ M, Evalpk (h,Encpk(M))
s
≈

Encpk (h(M)).

11 Requiring the secret key to be at most k prevents trivialities such as making the key
so big that L(k)-sized circuits don't have time to read it. In fact, our scheme will
satisfy a slightly stronger notion which is that the key generation algorithm will be
completely independent of N and L, see De�nition 5.



We say that ξ satis�es weak (statistical) function-privacy if for every
h, h′ ∈ Hk, pk in the range of Gen(1k) and M ∈ M, if h(M) = h′(M) then

Evalpk (h,Encpk(M))
s
≈ Evalpk (h′,Encpk(M)).12

We say that a scheme is fully homomorphic if (1) for every polynomial
s = s(k) it is homomorphic with respect to the family H = {Hk}, where Hk
is the set of all Boolean circuits of size at most s(k), and (2) the running time
(and hence also output size) of both the encryption and decryption algorithm
is a �xed polynomial in the security parameter k. It was a longstanding open
problem to come up with even a plausible candidate for such a scheme, until this
was achieved this year by Gentry [15], who gave such a candidate based on ideal
lattices.13 If a scheme satis�es only (1) (but not necessarily (2)) then we say
that it is size-dependent homomorphic encryption. There is a trivial construction
of a size dependent homomorphic encryption: just have Eval concatenate the cir-
cuit to the ciphertext. Using Yao's garbled circuit construction and two-message
OT one can get a size-dependent homomorphic encryption with weak function
privacy. In contrast, strong function privacy for this class H implies condition
(2).

As mentioned in Section 1.2, we observe that a homomorphic encryption
scheme with respect to a class H that is strongly function-private and is circular
secure, is also KDM secure with respect to the same class. This already implies
that Gentry's scheme is fully KDM secure under certain assumptions that do not
refer to full KDM security (i.e., hardness of a certain bounded-distance decoding
problem on ideal lattices, a sparse subset sum problem, and assuming the scheme
is circular secure). Moreover, for this application we can relax the condition to
weak function-privacy:

Theorem 5. Suppose that there is a homomorphic encryption scheme with re-
spect to a class H that is weakly function private and 1-circular secure. Then
there is a single-key KDM-secure scheme with respect to the same class H.

Proof Sketch Let (Gen,Enc,Dec,Eval) be the homomorphic encryption scheme.
Our encryption scheme (Gen′,Enc′,Dec′) will be as follows:

Key Generation Gen′(1k) runs (pk , sk) ← Gen(1k) and outputs the same se-
cret key sk and as public key the concatenation of pk and C = Encpk (sk).

Encryption Enc′pk ,C(M) outputs Evalpk (constM , C), where constM is the con-
stant function that always outputs M .

Decryption We have Dec′ = Dec.

12 One can naturally de�ne computational versions of weak and strong function privacy,
in which case one needs to allow the distinguisher to get the secret key as part of
the input, and in some applications also the randomness used to generate this secret
key.

13 The fully homomorphic version of Gentry's scheme requires three assumptions: hard-
ness of a certain bounded-distance decoding problem on ideal lattices, hardness of
a sparse version of subset sum, and circular security of his basic ideal-lattice based
scheme.



Correctness follows easily from the homomorphic property. For security,
consider a KDM attacker, that queries an oracle with h and gets back
Enc′pk ,C(h(sk)) = Evalpk (consth(sk), C). We proceed by a hybrid argument. Sup-
pose that the oracle was changed so that it returned Evalpk (h,C). Since C is an
encryption of sk , and obviously consth(sk)(sk) = h(sk), and the scheme satis�es
weak function-privacy this will not change the attacker's output distribution.
(Since we need the secret key to compute consth(sk), we will need here to use the
fact that weak function-privacy holds even with respect to distinguishers that
know the secret key.) The new oracle, however, can be simulated by the attacker
on its own (since it does not use the secret key at all, but only h and C). Hence,
we complete the proof by appealing to the circular security of the encryption,
to argue that C might as well be an encryption of �junk�.

As a corollary, assuming the circular security of a version of Paillier's cryp-
tosystem [26, 11], the homomorphic PKE construction from [20] yields a KDM-
secure encryption scheme with respect to the class of branching programs of a
bounded (polynomial) length, but unbounded (polynomial) size. In other words,
the length of the ciphertexts should only depend on the length of branching
programs computing the KDM function but not on their size. Compared to the
alternative based on the circular-secure version of Gentry's scheme, the con-
clusion is much weaker but the assumption is di�erent (and seemingly more
conservative).

3 Targeted Encryption

The main tool we use to realize our KDM secure scheme is a new notion we call
targeted encryption. This is a variant of a public key encryption scheme that has
the following curious property: the encryption algorithm gets, apart from the
message x, two additional inputs: an index i ∈ [k] (where k is the bit length of
the secret key), and a bit b. The decryption algorithm successfully retrieves x if
the ith bit of the secret key is b, but otherwise gets no information about x.14

De�nition 3 (Targeted encryption). An targeted encryption scheme TES
consists of a tuple of algorithms (TGen,TEnc,TDec) such that on security pa-
rameter k, TGen outputs a pair (pk , sk) with sk = (sk1, . . . , skk) ∈ {0, 1}k and:

Targeted decryption For every message x ∈ {0, 1}n and index i ∈ [k],

TDecsk (TEncpk ,i,ski(x)) = x .

I.e., it is possible for a sender, given (i, b), to encrypt a message x such
that the following hold: if the ith bit of the secret key is b, then the receiver
decrypts this message successfully.

14 We do not actually require a targeted encryption to also have a standard (�un-
targeted�) encryption algorithm, that always succeeds although this can easily be
achieved by, say, concatenating two encryptions using parameters i, 0 and i, 1. Later,
to achieve multiple-key security, we will need to assume such an algorithm with
particular properties, see Section 5.



(Statistical) security against receiver For every x, x′ ∈ {0, 1}n and index
i ∈ [k],

TEncpk ,i,1−ski(x)
s
≈ TEncpk ,i,1−ski(x

′) .

I.e., if the ith bit of the secret key is not b, then the receiver gets no infor-
mation about the message x.15

Security against outsiders For every x, x′ ∈ {0, 1}n, index i ∈ [k], and b ∈
{0, 1},

pk ◦ Encpk ,i,b(x)
c
≈ pk ◦ Encpk ,i,b(x′) .

I.e., outsiders, who do not know the secret key, get no information about the
encryption, even if the ith bit of sk does equal b.

The next theorem states that targeted encryption scheme can be obtained from
either the DDH or the LWE assumptions.

Theorem 6. Suppose that (1) the DDH Assumption holds, or (2) the LWE
assumption holds (with certain parameters),16 then there exists a targeted en-
cryption scheme.

Theorem 6 is proven by showing that targeted encryption is implied by both
the work of Boneh et al. [7] and the work of Applebaum et al. [3] (see the full
version [5] of this paperfor the formal proof). The idea of the proof is as follows.
Both works give schemes that are KDM secure with respect to a�ne functions
over Zkq for some number q, where k being the secret key size. Their proofs,17

however, actually give the following stronger homomorphic property: there exists
an algorithm Eval that gets the public key and an a�ne function h : Zkq →
Z
k
q , and outputs an encryption of h(sk) that is statistically indistinguishable

from Encpk (h(sk)). Note that this is a property that indeed immediately implies
KDM security for a�ne functions. We will use this property to get the following
targeted encryption scheme: to encrypt a message x ∈ {0, 1}n so that it can only
be decrypted if the ith bit of the key is b, we view x as an element inside Zq
(using some natural embedding for large enough q, where if n is too large, we
encrypt x in chunks) and choose a random r ∈ Zq and use the encryption of
scheme to encrypt r · (sk i − b) + x. Note that this is an a�ne function of sk ,18

and its value is independent of x if sk i 6= b, but is equal to x otherwise. Some
complications arise from the fact that in [7] the group is actually given �in the
exponent�, where in [3] the key is not a bit string, but rather a vector in Zkq .
Nevertheless, these issues can be easily handled in both cases.

15 For our purposes we can relax this notion to computational indistinguishability with
respect to distinguishers that get the secret key as additional input.

16 The exact group for DDH and parameters for LWE are inherited from the assump-
tions [7, 3]; one important note is that we need to assume LWE for a prime modulus
that is polynomial in the security parameter.

17 In [7]'s case, the above is true for what they call their �expanded� scheme.
18 Indeed this is the function h(sk) = 〈r, sk〉+ x′, where ri = r, rj = 0 for j 6= i, and

x′ = x− b · r.



Discussion � Targeted encryption and oblivious transfer. Recall that
in a (one out of two) oblivious transfer (OT) protocol, a sender holds a pair of
values (x0, x1), and a receiver has a bit b. At the end of the protocol, the receiver
learns xb and learns nothing about x1−b, while the sender learns nothing about
b. A two-message OT protocol is one that consists of only two messages � the
�rst from the receiver and the second from the sender. It is easy to see that
any two-message OT implies a public-key cryptosystem (with the �rst message
being the public key); in addition, almost all popular candidates for public-key
cryptosystems imply two-message OT protocols.

A targeted encryption scheme can be thought of as a type of �self-referential�
OT where the receiver's input selection bits are equal to the secret information
it keeps after its �rst message (i.e., the secret key). It does not satisfy, however,
the standard notion of OT, since the sender is not guaranteed to learn nothing
about this secret key (although the �security against outsiders� property does
imply that the sender cannot recover it completely). We note that it is possible
(though we do not need to use this fact in this paper) to transform an OT with
such a guarantee into a full-�edged OT, using the techniques of [16, 10].

4 Our Bounded KDM Secure Construction

Let k be the security parameter. Let TES = (TGen,TEnc,TDec) be a tar-
geted encryption scheme. We will construct the following PKE scheme bKDM =
(Gen,Enc,Dec) that is parameterized over polynomials N and L.

Key generation. Gen(1k) samples and outputs (pk , sk)← TGen(1k).
Encryption. Encpk (M) chooses 2k random strings K = (Ki,b)(i,b)∈[k]×{0,1} and

computes the garbled circuit transformation on K and the constant function
constM that outputsM on every input x ∈ {0, 1}k. We use S, which is some
�xed polynomial S(N,L) to be speci�ed later, as the size parameter for the
garbled circuit transformation. Let GC be the resulting output. Enc also
computes for every (i, b) ∈ [k]× {0, 1} the value K̃i,b = TEncpk ,i,b(Ki,b) and
outputs C := (GC , (K̃)i,b)(i,b)∈[k]×{0,1}) as the ciphertext.

Decryption. Decsk (GC , (K̃i,b)i,b) parses sk = (sk1, . . . , skk) ∈ {0, 1}k and

computes the value Ki = TDecsk (K̃i,ski) for every i ∈ [k]. Then, it out-
puts the result of evaluating the garbled circuit GC on K1, . . . ,Kk.

It is easily veri�ed that the decryption will indeed output constM (sk) = M .
We would like to emphasize that key generation does not depend on L or N ,
only encryption does. Hence, we can generate and distribute keys even without
knowing L and N in advance.

4.1 Single-key security of the construction

We now show that bKDM is KDM secure for the case of a single key (i.e.,
N = 1). In Section 5, we show that if the underlying targeted encryption scheme
is circular secure (when suitably interpreted as a PKE scheme), bKDM actually
is secure for an arbitrary number of keys.



Theorem 7. If TES = (TGen,TEnc,TDec) is a targeted encryption scheme,
then for every polynomial L, bKDM instantiated with S(N,L) = L is (1, L)-
bounded KDM secure.

Proof Fix N = 1, an arbitrary L and a ppt adversary A on bKDM's bounded
KDM security. In order to keep the notations simple, we concentrate on the
single query case (i.e., the attacker only asks a single key related query). The
multi query case, however, easily follows from the same lines. We proceed in
games. Let Xi be A's output in Game i, and write Xi ≈ Xj as a shorthand for
Pr [Xi = 1]−Pr [Xj = 1] ∈ negl. See Table 1 for an overview of all games used in
the proof. In all the following games, (sk, pk) are chosen at random using TGen
and the oracles get h : {0, 1}k → {0, 1}k as input.

Game 0 is the real KDM game. Namely, the oracle Realpk ,sk returns the ci-
phertext Encpk (h(sk)). Recall that this is computed by (1) choosing a random 2k
key tuple K, (2) encrypting the keys using TEnc to obtain a tuple of ciphertexts
K̃ where K̃i,b = TEncpk (Ki,b) for every (i, b) ∈ [k] × {0, 1}, and (3) computing

GC = Garble(K, consth(sk)). Ciphertext is C := (GC , K̃).
In Game 1 the oracle sets K̃i,b to TEncpk (0k), instead of TEncpk (Ki,b), for

every (i, b) with ski 6= b. (Note that we still use the original K in the garbled
circuit construction.) Since GC is independent from the random coins used to
encrypt K̃, the �security against receiver� property of TES yields that X0 ≈ X1.

In Game 2 the oracle uses h instead of consth(sk) in the garbled circuit con-
struction (i.e., it computes GC = Garble(K,h)). Since h(sk) = consth(sk)(sk)
and only the keys Ksk = (Ki,ski)i are used outside the garbled circuit con-
struction, the security against receiver of the garbled circuit construction yields
that X1 ≈ X2. We note that the only role of the secret key in this game, is for
deciding which elements of K̃ are replaced by encryptions of 0k.

In Game 3 we go back to using the original K̃ (also for the (i, b) with
b 6= ski). Again, the �security against receiver� property of TES implies that
X2 ≈ X3. Note that in this game the encryption oracle does not use the secret
key at all.

We de�ne Game 4 to be the variant of Game 3 in which we set K̃i,b =
TEncpk (0k) for every i, b (i.e., we ignore the value of K for this part). Since
the secret key is never used in either Game 3 or Game 4, the �security against
outsiders� property of the TES implies that X3 ≈ X4. Note that in this game,
the vector K is independent of K̃.

In Game 5 we change h to const0k in the garbled circuit construction. Since
no information on the key vector K, except for the garbled circuit itself, is given
in both oracles, the �security against outsiders� property of the garbled circuit
construction implies that X4 ≈ X5. (Note that we need to use the �security
against outsiders� and not the �security against receiver� property, since obvi-

ously we have no guarantee that h(sk) = const0k(sk).)
We de�ne Game 6 to be the game in which we go back to using the real K̃.

Since the oracles do not use the secret key, we get that X5 ≈ X6. Observe that
the encryption oracle is exactly the Fake oracle as per De�nition 1, and hence
we have completed the proof.



Game Oracle K̃i,ski K̃i,1−ski Function Remark
needs in GC

0 pk , sk TEnc(Ki,ski) TEnc(Ki,1−ski) consth(sk) Real KDM game

1 pk , sk TEnc(Ki,ski) TEnc(0k) consth(sk) TES's sec. ag. recv.

2 pk , sk TEnc(Ki,ski) TEnc(0k) h GC 's sec. ag. recv.

3 pk TEnc(Ki,ski) TEnc(Ki,1−ski) h TES's sec. ag. recv.

4 pk TEnc(0k) TEnc(0k) h TES's sec. ag. outs.

5 pk TEnc(0k) TEnc(0k) const0
k

GC 's sec. ag. outs.

6 pk TEnc(Ki,ski) TEnc(Ki,1−ski) const0
k

TES's sec. ag. outs.

fake KDM game

Table 1. Overview of the games used in the proof of Theorem 7. We use boxes to
highlight the component that changed from the previous hybrid, and note in the remark
the justi�cation for the fact that the hybrid is indistinguishable from the previous one.

5 Multiple Key Security

While the notion of KDM security for a single key is challenging and elegant,
many of the applications actually require KDM security in the presence of arbi-
trarily (polynomially) many keys. Hence, let now the number of keys N be an
arbitrary polynomial in the security parameter. We will prove that our scheme
bKDM from Section 4 is (N,L)-bounded KDM secure, but now under an addi-
tional assumption, and with di�erent parameters.

Complication and central idea. Recall the proof of Theorem 7. There,
we have �rst substituted the function consth(sk) that is evaluated by GC by
the KDM query function h itself. By the secrecy against receiver property of
the garbled circuit, we could argue that this change goes unnoticed by the re-
ceiver. This modi�cation was a crucial step in our proof, since it allowed to
construct the garbled circuit without knowing sk . Recall that in multiple se-
cret keys case, the security is de�ned with respect to N public and secret keys
pairs ((pk1, sk1), . . . , (pkN , skN )), and the adversary gets encryptions of a query
function h = h(sk) under arbitrary pkµ for µ ∈ [N ]. Hence, we cannot sim-

ply substitute consth(sk) with h directly (the secrecy against receiver property
of the garbled circuit would not help in this case, since we cannot claim that

h(skµ) = consth(sk)).19 Instead, we will substitute consth(sk) with a function h′

for which h′(skµ) = h(sk). This function h′ contains an encryption of sk under
the receiver's public key pkµ. In this, we will have to interpret bKDM's under-
lying targeted encryption scheme TES as a circular-secure encryption scheme.

19 h(skµ) is not even well de�ned; h is expecting a vector of (secret) keys as input, and
not a single key.



(Circular security is required to guarantee that we can later replace these encryp-
tions of secret keys with 0k-encryptions.) Since our targeted encryption scheme
instance is based on the clique-secure encryption schemes of [7, 3], it already has
this property. The remaining part of the proof follows the proof of Theorem 7.

De�nition 4 (Augmented targeted encryption). An augmented targeted
encryption scheme ATES = (TGen,TEnc,TDec,Enc,Dec) is a targeted encryp-
tion scheme (TGen,TEnc,TDec), complemented by ppt algorithms Enc, Dec for
(un-targeted) encryption and decryption. We require that (TGen,Enc,Dec) is a
public-key encryption scheme with message space M ⊆ {0, 1}k. In particular,
Decsk (Encpk (M)) = M for all (pk , sk)← TGen(1k) and M ∈ {0, 1}k.

We say that ATES is circular secure if (TGen,Enc,Dec) is. We stress that
our both TES instances from Theorem 6 are circular secure augmented targeted
encryption schemes with the natural encryption and decryption algorithms from
Boneh et al. [7] and Applebaum et al. [3] respectively. The following theorem
implies our main result (i.e., Theorem 1). We provide a proof in the full version
[5] of this paper.

Theorem 8. If ATES = (TGen,TEnc,TDec,Enc,Dec) is a circular secure aug-
mented targeted encryption scheme, then for every polynomials L and N , bKDM
instantiated with a suitable polynomial S(N,L) is bounded KDM secure.

6 Application to formal cryptography

One of the main motivations to study KDM security lies in the connection be-
tween formal and computational cryptography. In formal cryptography (starting
with [12, 13, 23]), cryptographic operations like encryption or digital signatures
are abstracted as symbolic operators that (only) adhere to natural rules like
DK(EK(M)) = M for symmetric encryption and decryption operators E and
D. A simple calculus like this enables machine-assisted security analysis (e.g.,
[21, 22]). It is not a priori clear, however, that security properties proved in
the symbolic calculus also hold for the computational implementation of the
protocol.

Computational soundness. Abadi and Rogaway [1] were the �rst to relate
the formal and computational views on cryptography. Speci�cally, they showed
that every symbolically proven property also holds in the computational world,
assuming a suitable computational implementation. This is usually referred to
as a soundness result, and suitable computational implementations are dubbed
sound. In order to provide computational soundness in this sense in face of a
passive adversary, an encryption scheme essentially needs to be IND-CPA secure.

Key-cyclic expressions. There is a technical nuisance, however, that limits
the generality and expressivity of [1]'s approach. Namely, the soundness result
only holds for protocols that do not contain key-cyclic expressions. That is, only
protocols in which no expressions with cyclic dependencies of encryption keys



(such as EK1(EK2(K1))) appear are considered. This is for the following reason:
in the symbolic setting, the natural deduction rules explicitly require secret keys
for decryption. Hence, the encrypted plaintexts in such expressions are secret
by de�nition in the symbolic world (i.e., there is no formal way to apply, say,
DK2 on the ciphertext EK1(EK2(K1))). On the other hand, key-dependent mes-
sages like the one above, are not modeled in standard (computational) security
experiments for encryption schemes.20 Hence, there is an asymmetry between
symbolic and computational setting, and any soundness result that connects
symbolic encryption and standard computational encryption notions has to ex-
clude key-cyclic expressions.

Soundness from Bounded KDM Security. It was informally claimed by
Black et al. [6], and formally proven by Adão et al. [2], that fully KDM-secure
encryption schemes imply computational soundness for arbitrary symbolic pro-
tocols. Since we can only achieve bounded KDM security against arbitrary cir-
cuits up to a certain size, we ask whether bounded KDM security su�ces for
computational soundness of arbitrary symbolic protocols. The answer we give is
essentially a�rmative.

To do so, we introduce the following slight strengthening of bounded KDM
security:

De�nition 5 (Length-dependent bounded KDM security). A PKE
scheme with message space M ⊆ {0, 1}∗ is N -key length-dependent bounded
KDM secure, if it is KDM secure with respect to the circuit class of all h :
({0, 1}k)N → {0, 1}b

√
|h|c, where |h| is the circuit size of h.

That is, length-dependent KDM secure schemes are secure against larger
KDM queries if longer messages are encrypted. We stress that our scheme bKDM
from Section 4 is N -key length-dependent bounded KDM secure, if we choose L
suitably (e.g., L = |M |2.1) during encryption. Namely, bKDM's key generation
algorithm does not depend on N or L, and the proofs of Theorems 7 and 8 do
not use that L is �xed.

Theorem 9 (Following [1, 2]: Bounded KDM security implies sound-
ness). Let bKDM be an N -key length-dependent KDM secure PKE scheme, and
let P be a symbolic protocol with N parties in the setting of Adão et al. [2]. Then
bKDM provides a computationally sound implementation of P .

We stress that the choice of symbolic setting [2] was made only for simplicity.
We provide a proof outline in the full version [5] of this paper.

Application of our results. Theorem 9 can be instantiated with our scheme
bKDM from Section 4. (As argued above, bKDM actually is N -key length-
dependent bounded KDM secure.) This yields the �rst encryption scheme that
provides soundness under a standard computational assumption.

20 Some subsequent soundness results (e.g., [4, 24]) consider an active adversary and re-
quire IND-CCA security. We stress that does not change the technical complications
regarding key-cyclic expressions.



Relation to circular security and extensibility. For extremely simple cal-
culi that only feature public-key encryption, along with a few syntactic opera-
tions like pairings of terms, already clique security may enable soundness. (This
is so since all key-dependent encryptions that can possibly occur in a symbolic
protocol can be traced back to simple encryptions of the form EKi(Kj), assum-
ing a suitable way to encrypt longer terms in chunks.) Nevertheless, we stress
that our scheme bKDM allows much richer classes of calculi. For instance, the
above soundness proof also works in the presence of signatures, so that terms
of the form EKi(sig(Kj),K`) may occur. (The crucial observation is that we
can suitably pad, e.g., signatures such that the signing algorithm can be ex-
pressed as a length-dependent KDM circuit.) On the other hand, clique security,
or even security against a polynomial number of arbitrary but predetermined
KDM functions is not su�cient to treat such richer classes of calculi.

7 Extending Haitner and Holenstein's Impossibility

Result

In this section we observe that a result of Haitner and Holenstein [17], showing
that there is no KDM-secure scheme with a proof of security which makes a
black-box use of both the adversary and the KDM function, can be extended to
rule out not just full KDM security but also bounded KDM security. The idea
is simple: while this result used a random function h for the KDM function, a
pseudorandom function could work just as well.
The following de�nition is adopted from [17].

De�nition 6 (Cryptographic games). A cryptographic game is a (possibly
ine�cient) random system Γ , where on security parameter k, Γ interacts with
an attacker A and may output 1. We de�ne the game value of such an interaction,
denoted ΓA(1k), as the probability that Γ outputs 1 in the end of the interaction
with A, where the probability is taken over the random coins of Γ and A. A
cryptographic game is non-interactive if it consists of two messages, from Γ to A
and back.

Examples:

OWF. The security of a one-way function f is equivalent to requiring that the
value of the following game is negligible for any e�cient A. On security
parameter k, the system Γ selects a random x ∈ {0, 1}k and sends y = f(x)
to the adversary. Γ outputs 1 if A outputs x′ ∈ f−1(y).

DDH. The security of the DDH hardness assumption is equivalent to requiring
that the value of the following game is at most negligibly bounded from 1

2
for any e�cient adversary. Let G be an appropriate DDH group (e.g., Z∗p for
some prime p) and let g be a generator in the group. The system Γ chooses a
random bit b, sends the tuple (gx, gy, gz) to the challenger A, where x and y
are random exponents, and z = x · y if b = 0 and a random value otherwise.
Γ outputs 1 i� A has guessed b correctly.



De�nition 7 (Strongly-black-box reductions). An encryption scheme
(Enc,Dec) has a δ-strongly-black-box reduction from its KDM security to a cryp-
tographic game Γ with respect to a family of query function Q, if there exists an
oracle-aided algorithm R with the following guarantee: Let A be an e�cient ad-
versary that breaks the KDM security of the scheme using query functions from
Q with advantage εA = εA(k) (i.e., On security parameter k, A distinguishes be-
tween encryptions of functions of the secret key and encryptions of garbage with
advantage εA(k)). Then the value of ΓRA(1k) ≥ δ(k, εA(k)). Here, we require
that R treat the query functions it gets from A as black boxes � all it can do is
to query them on arbitrary chosen inputs.

Informally, we say that a proof for the KDM security of a scheme is strongly-
black-box with respect to a game Γ and a family of query function Q, if the
value of δ(k, εA(k)) for every non-negligible εA(k) is considered a �break� of Γ
(i.e., δ(k, εA(k)) > 1

2 +negl for the DDH game). We remark that all known KDM
constructions in the literature have strongly-black-box reductions with respect
to the relevant hardness assumption (e.g., DDH) and the class of query functions
they are secure against.

De�nition 8 (Pseudorandom functions (PRF)). An ensemble of functions
F = {Fk = {f : {0, 1}m(k) 7→ {0, 1}`(k)}} is pseudorandom, if, on security pa-
rameter k, an e�cient adversary cannot distinguish with more than negligible
advantage between a random f ∈ Fk, and a truly random function de�ned on
the same input and output domains. Here, the adversary may only access the
function as a black box. The ensemble is α-exponential hard for a constant α > 0,
if no adversary that runs in time 2n

α

wins in the above game with advantage
greater than 2k

α

.

Theorem 10. Let (Enc,Dec) be a δ-strongly-black-box reduction from its KDM
security to a non-interactive cryptographic game Γ with respect to a family of
query functions Q = {Qk}.21 Assume that Qk contains the family of functions
Gk = {gk(x) = f(x, 0t(k)−k)⊕ r : f ∈ Ft(k), r ∈ {0, 1}`(k)}, where t(k) ≥ 2k and

Ft(k) = {f : {0, 1}t(k) 7→ {0, 1}`(k)} is an α-exponential hard PRF with t(k)α ≥
2k. Then, there exists an e�cient algorithm A with ΓA ≥ δ(k, 1− 2−k)− 2−k.

In particular, giving such a strongly-black-box reduction implies that either the
class of query function considered is weak (does not contain exponentially hard
PRF), or the game Γ can be e�ciently broken with probability δ(k, 1−2−k)−2−k.

Proof (sketch) The proof is similar to the proof of [17, Theorem 5]. Consider the
following (ine�cient) adversary A for breaking the KDM security of (Enc,Dec)
with respect to Q. On security parameter k, choose a random g ∈ Gk and make a
KDM query to obtain a ciphertext C. Then check (via exhaustive search) if there

21 Theorem 10 can be shown to hold also against all natural interactive games (see
[17] for details). For the sake of simplicity, however, we choose to focus here on the
non-interactive case.



exists sk ∈ {0, 1}k such that Decsk(C) = g(sk). If positive return 1, otherwise
return 0. It is easy to verify that A breaks the KDM security with advantage
1−2−k (the probability that a decryption of random ciphertext C equals to g(sk)
for some sk, is bounded by

∑
sk Pr[Decsk(C) = g(sk)] =

∑
sk Prr[Decsk(C) =

f(sk)⊕ r] ≤ 2k · 2−2k = 2−k). More interestingly, we notice that the probability
that RA sends a ciphertext C = Encsk (g(sk)) to A without previously making
the query g(sk) is bounded by 2−2k. Assume otherwise, then RA is an algorithm
that runs in time poly ·2k and breaks the security of F . It follows that we can
emulate the execution of RA: throughout the execution, keep track of all queries
that R makes to g, and let T denote the list of queries. When R queries A on a
ciphertext C, act as the ine�cient A above, but only with respect to the secret
keys in T . The above observation yields that we emulate RA with error bounded
by 2−2k.
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