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Abstract

We present a new strategy for partitioning proofs, and use it to obtain new tightly secure
encryption schemes. Specifically, we provide the following two conceptual contributions:
• A new strategy for tight security reductions that leads to compact public keys and ciphertexts.
• A relaxed definition of non-interactive proof systems for non-linear (“OR-type”) languages.

Our definition is strong enough to act as a central tool in our new strategy to obtain tight
security, and is achievable both in pairing-friendly and DCR groups.

We apply these concepts in a generic construction of a tightly secure public-key encryption
scheme. When instantiated in different concrete settings, we obtain the following:
• A public-key encryption scheme whose chosen-ciphertext security can be tightly reduced to

the DLIN assumption in a pairing-friendly group. Ciphertexts, public keys, and system pa-
rameters contain 6, 24, and 2 group elements, respectively. This improves heavily upon a
recent scheme of Gay et al. (Eurocrypt 2016) in terms of public key size, at the cost of using a
symmetric pairing.

• The first public-key encryption scheme that is tightly chosen-ciphertext secure under the DCR
assumption. While the scheme is not very practical (ciphertexts carry 28 group elements), it
enjoys constant-size parameters, public keys, and ciphertexts.

∗Karlsruhe Institute of Technology, Dennis.Hofheinz@kit.edu. Supported by DFG grants HO 4534/4-1 and
HO 4534/2-2.
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1 Introduction

Tight security. Ideally, the only way to attack a cryptographic scheme S should be to solve
a well-investigated, presumably hard computational problem P (such as factoring large in-
tegers). In fact, most existing constructions of cryptographic schemes provide such security
guarantees, by exhibiting a security reduction. A reduction shows that any attack that breaks
the scheme with some probability εS implies a problem solver that succeeds with probability
εP. Of course, we would like εP to be as large as possible, depending on εS.

Specifically, we could call the quotient ` := εS/εP the security loss of a reduction.1 A small
value of ` is desirable, since it indicates a tight coupling of the security of the scheme to the
hardness of the computational problem. It is also desirable that ` does not depend, e.g., on
the number of considered instances of the scheme. Namely, when ` is linear in the number of
instances, the scheme’s security guarantees might vanish quickly in large settings. This can be
a problem when being forced to choose concrete key sizes for schemes in settings whose size
is not even known at setup time.

Hence, let us call a security reduction tight if its security loss ` only depends on a global
security parameter (but not, e.g., on the number of considered instances, or the number of
usages). Most existing cryptographic reductions are not tight. Specifically, it appears to be
a nontrivial problem to construct tightly secure public-key primitives, such as public-key en-
cryption, or digital signature schemes. (A high-level explanation of the arising difficulties can
be found in [17].)
Existing work on tight security. The importance of a tight security reduction was already
pointed out in 2000 by Bellare, Boldyreva, and Micali [4]. However, the first chosen-ciphertext
secure (CCA secure) public-key encryption (PKE) scheme with a tight security reduction from
a standard assumption was only proposed in 2012, by Hofheinz and Jager [17]. Their scheme
is rather inefficient, however, with several hundred group elements in the ciphertext. A num-
ber of more efficient schemes were then proposed in [2, 7, 5, 25, 20, 26, 3, 14, 16, 12]. In
particular, Chen and Wee [7] introduced a very useful partitioning strategy to conduct tight
security reductions. Their strategy leads to very compact ciphertexts (of as few as 3 group ele-
ments [12], plus the message size), but also to large public keys. We will describe their strategy
in more detail later, when explaining our techniques. Conversely, Hofheinz [16] presented a
different partitioning strategy that leads to compact public keys, but larger ciphertexts (of 60
group elements). We give an overview over existing tightly secure PKE schemes (and some
state-of-the-art schemes that are not known to be tightly secure for reference) in Fig. 1.
Our contribution. In this work, we propose a new strategy to obtain tightly secure encryption
schemes. This strategy leads to new tightly secure PKE schemes with simultaneously compact
public keys and compact ciphertexts (cf. Fig. 1). In particular, our technique yields a practical
pairing-based PKE scheme that compares well even with the recent tightly secure PKE scheme
of Gay, Hofheinz, Kiltz, and Wee [12]. However, we should also note that our scheme relies
on a symmetric pairing (unlike the scheme of [12], which can be instantiated even in DDH
groups). Hence, the price we pay for a significantly smaller public key is that the scheme
of [12] is clearly superior to ours in terms of computational efficiency. Besides, the use of a
symmetric pairing might entail larger group sizes for comparable security.

Our technique also yields the first PKE scheme whose security can be tightly reduced to the
Decisional Composite Residuosity (DCR [28]) assumption in groups of the form Z∗

N2
for RSA

numbers N = PQ. To obtain the DCR instance of our scheme, we also introduce a new type
of “OR-proofs” (i.e., a proof system to show disjunctions of simpler statements) in the DCR
setting. We give more details on these proofs below.

1Technically, we also need to take into account the complexity of the attacks on S and P. However, for this
exposition, let us simply assume that the complexity of these attacks is comparable.
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Scheme |pk| |C| − |M| sec. loss assumption pairing
CS98 [8] 3 3 O(q) DDH no
KD04, HK07 [24, 18] k + 1 k + 1 O(q) k-LIN (k ≥ 1) no
HJ12 [17] O(1) O(λ) O(1) DLIN yes
ADKNO13 [2] O(1) O(λ) O(1) DLIN yes
HKS15 [20] O(λ) 2 O(λ) subgroup yes
LPJY15 [25, 26] O(λ) 47 O(λ) DLIN yes
AHY15 [3] O(λ) 12 O(λ) DLIN yes
GCDCT16 [14] O(λ) 6k + 4 O(λ) k-LIN (k ≥ 1) yes
H16 [16] 2 60 O(λ) SXDH yes
GHKW16 [12] 2kλ 3k O(λ) k-LIN (k ≥ 1) no
This work 2k(k + 5) k + 4 O(λ) k-LIN (k ≥ 2) yes
CS02 [9] 9 2 O(q) DCR —
CS03 [6] 3 2 O(q) DCR —
This work 20 28 O(λ) DCR —

Figure 1: Comparison of CCA-secure public-key encryption schemes. λ is the
security parameter, and q is the number of challenge ciphertexts. The sizes
|pk| and |C| − |M| of public key (excluding public parameters) and ciphertext
overhead are counted in group elements. For the ciphertext overhead |C|− |M|,
we do not count smaller components (like MACs) inherited from the used
symmetric encryption scheme.

We remark that our main scheme is completely generic, and can be instantiated both with
prime-order groups, and in the DCR setting. Only some of our building blocks (such as the
“OR-proofs” mentioned above) require setting-dependent instantiations, which we give both
in a prime-order, and in the DCR setting.

Hence, we view our main contribution as conceptual. Indeed, in terms of computational
efficiency, our encryption schemes do not outperform existing (non-tightly secure) schemes,
even when taking into account our tight security reduction in the choice of key sizes. Still, we
believe that specializations of our technique can lead to schemes whose efficiency is at least on
par with that of existing non-tightly secure schemes.

1.1 Technical overview

Technical goal. To explain our approach, consider the following security game with an ad-
versary A. First, A obtains a public key, and then may ask for many encryptions of arbitrary
messages. Depending on a single bit b chosen by the security game, A then either always
gets an encryption of the desired message, or an encryption of a random message. Also, A
has access to a decryption oracle, and is finally supposed to guess b (i.e., whether the en-
crypted ciphertexts contain the desired, or random messages). If no efficient A can predict b
non-negligibly better than guessing, the used PKE scheme is considered CCA secure in the
multi-challenge setting. Note that regular (i.e., single-challenge) CCA security implies CCA
security in the multi-challenge setting using a hybrid argument (over the challenge encryp-
tions A gets), but this hybrid argument incurs a large security loss. Hence, the difficulty in
proving multi-challenge security is to randomize many challenge ciphertexts in as few steps
as possible.
General paradigm. All of the mentioned works on tightly secure PKE follow a general
paradigm. Namely, in these schemes, each ciphertext C = (c, π) carries some kind of “con-
sistency proof” π that the plaintext message encrypted in c is intact. What this concretely
means varies in different schemes. For instance, in some works [17, 2, 25, 26, 16], π is explicit
and proves knowledge of the plaintext or of a valid signature on c. In other works [7, 5, 20,
3, 14, 12], π is implicit, and proves knowledge of the plaintext or of a special authentication
tag for that ciphertext. All of these works, however, use π to enable the security reduction
to get leverage over the adversary A, as follows. For instance, in the signature-based works
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above, the security reduction will be able to produce proofs π for ciphertexts with unknown
plaintexts (by proving knowledge of a signature), while an adversary can only construct proofs
from which the plaintext can be extracted. This enables the security reduction to implement a
decryption oracle, while being able to randomize plaintexts encrypted for A.
Chen and Wee’s approach. Chen and Wee [7] implement the above approach with an eco-
nomic partitioning strategy (that in turn draws from an argument of Naor and Reingold [27]).
Specifically, in their scheme, π implicitly proves knowledge of the plaintext or of a special tag
T . Initially, T is constant, and committed to in the public key. In their security analysis, Chen
and Wee introduce dependencies of T on the corresponding c. Specifically, in the i-th step of
their analysis, they set T = F(τ..i), where F is a random function, and τ..i is the i-bit prefix of
the hash τ of c. After a small number of such steps, T is a random value that is individual
to each ciphertext. At this point, T is unpredictable for A on fresh ciphertexts, and hence A’s
decryption queries must prove knowledge of the respective plaintext. At the same time, the
security game (which defines F) can also prepare valid ciphertexts with unknown messages,
and thus randomize all challenge ciphertexts at once.

We call the approach of Chen and Wee a partitioning strategy, since each hybrid step above
proceeds as follows:
1. Partition the ciphertext space into two halves (in this case, according to the i-th bit of τ).
2. Change the definition of the “authentication tag” T for all ciphertexts from one half. (Keep

the authentication tag for ciphertexts from the other half unchanged.)
In particular, the second step introduces an additional dependency of T on the bit τi. Most
existing works use a partitioning strategy based on the individual bits of (the hash of) the
ciphertext. An exception is the recent work [16], which implements a similar strategy based
on an algebraic predicate of the ciphertext. This latter approach leads to shorter public keys,
but requires relatively complex proofs π, and thus not only entails larger ciphertexts, but also
requires a pairing.
Our approach. Here, we also follow the generic paradigm sketched above, but refine the
partitioning strategy of Chen and Wee. Namely, instead of partitioning the ciphertext space
statically (e.g., through the hash of c), we add a special (encrypted) bit to π that determines the
half in which the corresponding ciphertext is supposed to be. In contrast to previous works,
that bit is not always known, not even to the security reduction itself. This change has several
consequences:
• The bit that determines the partitioning in each ciphertext is easily accessible with a suitable

decryption key, and so leads to a simple consistency proof π (and thus small ciphertexts).
(This is in contrast to the scheme from [16], which proves complex statements in π.)
• The partitioning bit can by changed dynamically in challenge ciphertexts in different steps

of the proof. Hence, a single “bit slot” can be used to partition the ciphertext space in
many different ways during the proof. Eventually, this leads to compact public keys, since
only few statements (about this single bit slot) need to be proven. (This is in contrast to
partitioning schemes in which one proof for each bit position is generated.)
• However, since also the adversary can dynamically determine the partitioning of his ci-

phertexts from decryption queries, the security analysis becomes more complicated. Specif-
ically, the reduction must cope with a situation in which an adversary submits a ciphertext
for which the partitioning bit is not known.

In particular the last consequence will require additional measures in our security analysis.
Namely, we will in some cases need to accept several authentication tags T in A’s decryption
queries, simply because we do not know in which half of the partitioning the corresponding
ciphertext is. In fact, we will not be able to force A to use “the right” authentication tag in
his decryption queries. We will only be able to force A to use an authentication tag T from
a previous challenge ciphertext (since all other tags are unpredictable to A). Hence, in order
to eventually exclude that A produces ciphertexts without a proof of knowledge of the corre-
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sponding plaintext, we will need to work a bit more.
At this point, our main conceptual idea will be to introduce a dependency of T on a suitable

value τ that is individual to each ciphertext. (While the construction in our scheme is slightly
more complicated, one can think of τ as being simply the hash of the ciphertext.) Hence, in the
first part of our analysis, we forceA to reuse a tag T from a previous challenge ciphertext, while
we tie this T to a ciphertext-unique value τ in the second part. When this is done, A’s proofs π
from decryption queries must prove knowledge of the encrypted plaintext message, or break
the collision-resistance of the used hash function. Since the hash function will be assumed to
be collision-resistant, A must prove knowledge of the respective plaintext in each decryption
query. Hence, we can proceed with a proof of CCA security as in previous schemes.
Building blocks. To implement our strategy, we require a variety of building blocks. Specif-
ically, like previous works, we require re-randomizable (chosen-plaintext-secure) encryption,
and universal hash proof systems for linear languages. We also require tightly secure one-time
signatures, for which we give the first construction in the DCR setting. However, apart from
our new partitioning strategy, the main technical innovation from our work is the construction
of a non-interactive proof system for disjunctions (of simpler statements) in the DCR setting.

Namely, our proof system allows to prove that, given two ciphertexts c1, c2, at least one of
them decrypts to zero. (In fact, the syntactics are a little more complicated, and in particular,
honest proofs can only be formulated when the first ciphertext decrypts to zero. However,
proofs that one of the two ciphertexts decrypts to zero can always be simulated using a special
trapdoor, and we have soundness even in the presence of such simulated proofs.)

Such a proof system for disjunctions already exists in pairing-friendly groups [1]. However,
a construction without pairings is far from obvious. Intuitively, the reason is that the language
of pairs (c1, c2) as above (with at least one ci that encrypts zero) is not closed under addition (of
the respective plaintexts). Hence, disjunctions as above do not correspond to linear languages,
and most common constructions (e.g., for universal hash proof systems [9, 22]) do not apply.
Our DCR-based construction thus is not linear, and relies on new techniques.

Concretely, our proof system can be viewed as a randomized variant of a universal hash
proof system. Namely, depending on how many of the ci do not encrypt zero, a valid proof
reveals zero, one, or two linear equations about the secret verification key of our system. How-
ever, proofs in our system are randomized, and the revealed equations are also blinded with
precisely one random value. Hence, up to one equation about the secret key is completely
blinded. But as soon as both ci encrypt nonzero values, a valid proof contains nontrivial infor-
mation about the secret key. Thus, such proofs cannot be produced by an adversary who only
sees proofs for valid statements (with at least one ci that encrypts zero). Hence, soundness
follows as with regular universal hash proof systems.
Acknowledgements. I would like to thank Antonio Faonio for pointing out a problem in the
formulation of Definition 4.4, and Dingding Jia and Ryo Nishimaki for a careful proofreading.
In particular, Dingding spotted a mistake in the description of honest key derivation. I am
also indebted to Lin Lyu, who found a flaw in an earlier version of the DCR-based one-time
signature scheme OTSDCR, a gap in the proof of Lemma 6.3 (that in fact made Lemma 6.4
necessary), and many smaller mistakes in an earlier version in a very thorough proofreading.
Finally, I would like to thank the reviewers for helpful comments concerning the presentation.

2 Preliminaries

Notation and conventions. For a group G of order |G|, a group element g ∈ G, and a vector
u = (u1, . . . , un)

> ∈ Zn
|G|

, we write gu := (gu1 , . . . , gun)> ∈ Gn. Similarly, we define gM ∈
Gn×m for matrices M ∈ Zn×m

|G|
. For integers x,N ∈ Z with N > 0, we define [x]N := x mod N,

and [x]N to be the unique integer with x = [x]N+N · [x]N. Furthermore, we define the “absolute
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modular value” |x|N through

|x|N :=

{
[x]N if [x]N < N/2
[−x]N if [x]N ≥ N/2,

such that 0 ≤ |x|N ≤ N/2 in any case. Finally, we let
(
x
N

)
denote the Jacobi symbol of x

modulo N. For a bit b ∈ {0, 1}, we denote with b = 1 − b the complement of b. For a bitstring
x = (x1, . . . , xn) ∈ {0, 1}n, we denote with x..i = (x1, . . . , xi) the i-bit prefix of x, and with
xi.. = (xi, . . . , xn) the (n − i + 1)-bit postfix of x. For random variables X, Y ∈ {0, 1}∗, we let
SD
(
X ; Y

)
denote their statistical distance, and H∞(X) the min-entropy of X.

Global public parameters. To simplify notation, we assume that all algorithms in this work
(including adversaries) implicitly receive public parameters pp as input. In our case, these
public parameters will contain the description of algebraic groups and related algorithms, and
a collision-resistant and a universal hash function. We give more details on these parameters
when we discuss the algebraic setting, collision-resistant hashing, and our key extractor (which
uses the universal hash function).
Collision-resistant hashing. We require collision-resistant hashing, which we define now:

Definition 2.1 (Collision-resistant hashing). A hash function generator is a PPT algorithm CRHF
that, on input 1λ, outputs (the description of) an efficiently computable function H : {0, 1}∗ → {0, 1}`H .
We say that CRHF outputs collision-resistant hash functions H (or, slightly abusing notation, that
CRHF is collision-resistant), if

Advcrhf
CRHF,A(λ) = Pr

[
x 6= x ′ ∧ H(x) = H(x ′)

∣∣∣ H← CRHF(1λ), (x, x ′)← A(1λ, H)]
is negligible for every PPT adversary A.

We assume that the public parameters pp contain a function H sampled with a hash func-
tion generator CRHF.
Universal hashing, and randomness extraction. We also assume a family UHF = UHFλ of
universal hash functions h : {0, 1}∗ → {0, 1}λ. Since universal hash functions are good ran-
domness extractors, we in particular have that for any random variable X with min-entropy
H∞(X) ≥ 3λ,

SD
(
(h, h(X)) ; (h, R)

)
≤ 1/2λ,

where h ∈ UHFλ and R ∈ {0, 1}λ are uniformly chosen.
Key encapsulation mechanisms, and multi-challenge security. A key encapsulation mech-
anism (KEM) KEM consists of PPT algorithms (Gen,Enc,Dec). Key generation Gen(1λ) out-
puts a public key pk and a secret key sk. Encapsulation Enc(pk) takes a public key pk, and
outputs a ciphertext c, and a session key K. Decapsulation Dec(sk, c) takes a secret key sk, and
a ciphertext c, and outputs a session key K. For correctness, we require that for all (pk, sk) in
the range of Gen(1λ), and all (c, K) in the range of Enc(pk), we always have Dec(sk, c) = K.
Security is defined as follows:

Definition 2.2 (Multi-challenge ciphertext indistinguishability). Given a key encapsulation scheme
KEM, consider the following game between a challenger C and an adversary A:
1. C samples a keypair through (pk, sk)← Gen(1λ), and chooses a uniform bit b← {0, 1}.
2. A is invoked on input (1λ, pk), and with (many-time) access to the following oracles:
• Oenc() runs (c, K)← Enc(pk), sets K0 = K, samples a fresh K1 ← {0, 1}λ, and returns (c, Kb).
• Odec(c) returns ⊥ if c is a previous output of Oenc. Otherwise, Odec returns K← Dec(sk, c).

3. Finally, A outputs a bit b ′, and C outputs 1 iff b = b ′.
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Let
Advmcca

KEM,A(λ) = Pr [C outputs 1] − 1/2.

We say that KEM has indistinguishable ciphertexts under chosen-ciphertext attacks in the multi-
challenge setting (short: is IND-MCCA secure) iff Advmcca

KEM,A(λ) is negligible for all PPT A.

We note that secure KEM schemes imply secure PKE schemes [8], and that the correspond-
ing security reduction is tight also in the multi-challenge setting. Hence, like [12], we will focus
on obtaining an IND-MCCA secure KEM scheme in the following.

3 The generic algebraic setting

3.1 The generic setting

3.1.1 Groups and public parameters

In the following, let G be a group of order |G|. We require that |G| is square-free, and only has
prime factors larger than 2λ. Furthermore, we assume two subgroups G1,G2 ⊆ G of order |G1|
and |G2|, respectively, and such that G1 · G2 = {h1 · h2 | h1 ∈ G1, h2 ∈ G2} = G. Note that we
neither require nor exclude that |G| (or |G1| or |G2|) is prime, or that G1 ∩G2 is trivial.

We assume that the global public parameters pp include
• (descriptions of) G, G1, and G2,
• fixed generators g of G, g1 of G1 and g2 of G2,
• the group order |G2| of G2,
• a positive integer `B, and a matrix gB

1 , for B ∈ Z`B×`B
|G1|

.2

We stress that these parameters may depend on λ, and note that |G|, |G1|, and B do not need to
be public. However, we do require that there are efficient algorithms for the following tasks:
• performing the group operation in G,
• sampling uniformly distributed Z|G1|-elements,
• recognizing G (i.e., deciding group membership in G).

Since we assume |G2| to be public, we also have algorithms for deciding membership in G2,
and for uniformly sampling from Z|G2| and G2, and thus also from Z|G| and G.

3.1.2 Computational assumptions

In our generic setting, we will use an assumption that can be seen as a combination of the
Extended Decisional Diffie-Hellman assumption from [15], and the Matrix Decisional Diffie-
Hellman assumption from [10].

Definition 3.1 (Generalized DDH, combining [15, 10]). We say that the Generalized Decisional
Diffie-Hellman (GDDH) assumption holds in our setting if the following advantage is negligible for
every PPT adversary A, and for uniformly chosenω, r ∈ Z`B

|G1|
:

Advgddh
G,A (λ) =

1

2

(
Pr
[
A(1λ, gω>B

1 , gBr
1 , g

ω>Br
1 ) = 1

]
− Pr

[
A(1λ, gω>B

1 , gBr
1 , g

ω>Br
1 g2) = 1

] )
.

Besides GDDH, we will also assume that it is infeasible to find a nontrivial element gu2 ∈ G2
that does not already generate G2:

Definition 3.2 (G2-factoring assumption). We say that the factoring G2 is hard in our setting if
the following advantage is negligible for every PPT adversary A whose output (gu12 , . . . , g

uq
2 ) ∈ Gq2 is

always a vector of G2-elements:

Advfact
G2,A(λ) = Pr

[
∃i : gcd(|G2|, ui) /∈ {1, |G2|}

∣∣∣ (gu12 , . . . , guq2 )← A(1λ)] .
2How `B and B are chosen depends in the concrete instance. In the prime-order setting, `B and B determine

what concrete computational problem is reduced to. Conversely, in the DCR setting, `B = 1, and B = 1 is trivial.
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3.1.3 Generalized ElGamal encryption

To simplify our notation, and to structure our presentation, we consider the following gener-
alized variant of ElGamal:
Keypairs. Keypairs (epk, esk) are of the form (epk, esk) = (gω

>B
1 ,ω) forω ∈ Z`B

|G1|
.

Encryption. To encrypt u ∈ Z|G2| with random coins r ∈ Z`B
|G1|

, compute

Eepk(u; r) = c = (c0, c1) = (gBr
1 , g

ω>Br
1 gu2 ) ∈ G`B ×G.

If we omit r and only write Eepk(u), then r is implicitly chosen uniformly from Z`B
|G1|

.
Decryption. A ciphertext c = (c0, c1) = (gγ, gδ) is decrypted to

Desk(c) = gδ−ω
>γ ∈ G.

Note that we encrypt exponents, while decryption only retrieves the respective group element.
It will also be useful to generalize this encryption to vectors of plaintexts with reused ran-

dom coins: for pk = (epk1, . . . , epkn) and sk = (esk1, . . . , eskn) with (epki, eski) = (g
ω>i B
1 ,ωi),

and u = (u1, . . . , un) ∈ Zn
|G2|, let

Epk(u; r) = (c0, (c1, . . . , cn)) = (gBr
1 , (g

ω>1 Br
1 gu12 , . . . , g

ω>nBr
1 gun2 )) ∈ G`B ×Gn

Dsk(c) = (gδ1−ω
>
1 γ, . . . , gδn−ω

>
nγ) ∈ Gn for c = (gγ, (gδ1 , . . . , gδn)).

When no confusion is possible, we may write (c0, c1, . . . , cn) instead of the more cumber-
some (c0, (c1, . . . , cn)). Sometimes, it will also be convenient to write Ω = (ω1|| . . . ||ωn) ∈
Z`B×n
|G1|

, such that pk = gΩ
>B

1 and

Epk(u; r) = (gBr
1 , g

Ω>Br
1 gu

2 )

Dsk(c) = gγ−Ω
>δ for c = (gγ, gδ) ∈ G`B ×Gn.

While this variant of ElGamal encryption will mainly be a notational tool, it is also a very
simple tightly (chosen-plaintext) secure encryption scheme:

Definition 3.3 (IND-MCCPA security game for (E,D)). Consider the following game (which we
call the IND-MCCPA security game, for “indistinguishability against multiple (partial) corruptions
and chosen-plaintext attacks”) between a challenger C and an adversary A:
1. A(1λ) picks n ∈ N, and an index i∗ ∈ {1, . . . , n}.

2. C samples b ∈ {0, 1}, and ω1, . . . ,ωn ∈ Z`B
|G1|

, and sets (epki, eski) = (g
ω>i B
1 ,ωi), and pk =

(epk1, . . . , epkn) and sk = (esk1, . . . , eskn).
3. Next, A is run on input (epki)

`B
i=1, (eski)i6=i∗ , and with (many-time) access to the following oracle:

• Oenc(u(0),u(1)), for u(j) = (u
(j)
1 , . . . , u

(j)
n ) ∈ Zn

|G2| (j ∈ {0, 1}), first checks that u(0)i = u
(1)
i for all

i 6= i∗, and returns ⊥ if not. Then, Oenc computes and returns c = Epk(u(b)).
4. If A terminates with output b ′, then C outputs 1 iff b = b ′.
Let

Advmccpa
G,A (λ) = Pr [C outputs 1] − 1/2.

Lemma 3.4 (Tight security of (E,D)). For every A, there exists an adversary B (of essentially the
same complexity as the IND-MCCPA game with A) for which

Advgddh
G,B (λ) = Advmccpa

G,A (λ). (1)
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Proof. B gets epk∗ = gω
∗>B

1 and c∗ = (c∗0, c
∗
1) = (gBr∗

1 , gω
∗>Br∗

1 gb2) (for unknown b ∈ {0, 1}) as
input. Now B first runs A to obtain n and i∗. Then, B generates public and secret keys as
follows:
• For i 6= i∗, B samplesωi ∈ Z`B

|G1|
, and sets (epki, eski) = (gω

>
i B,ωi).

• B sets epki∗ = g
ω∗>B
1 , and thus implicitly defines eski∗ =ωi∗ =ω

∗.
Then, B runs A, on input pk = (epki)i and (eski)i 6=i∗ , and implements oracle Oenc as follows:
• Upon an Oenc(u(0),u(1)) query with u(0)i = u

(1)
i for i 6= i∗, B first samples a fresh r ′ ∈ Z`B

|G1|
,

implicitly defines r = (u
(1)
i∗ − u

(0)
i∗ )r

∗ + r ′, and sets up

c0 = g
(u

(1)
i∗ −u

(0)
i∗ )Br∗+Br ′

1 = g
B((u(1)

i∗ −u
(0)
i∗ )r∗+r ′)

1 = gBr
1

ci = g
(u

(1)
i∗ −u

(0)
i∗ )ω>i Br∗

1 g
ω>i Br ′

1 g
u
(0)
i

2 = g
ω>i Br
1 g

u
(0)
i

2 for i 6= i∗

ci = g
(u

(1)
i∗ −u

(0)
i∗ )ω∗>Br∗+ω∗>Br ′

1 g
(u

(1)
i∗ −u

(0)
i∗ )·b+u(0)

i∗
2 = g

ω>
i∗Br

1 g
u
(b)
i∗
2

For the resulting c = (c0, c1, . . . , cn), we have that c = Epk(u(b); r) for (independently and

uniformly distributed) random coins r = (u
(1)
i∗ − u

(0)
i∗ )r

∗ + r ′. Hence, Oenc returns c.
Finally, B relays any guess b ′ from A as its own output.

Observe that B perfectly simulates the game from Lemma 3.4 (with the same challenge bit
b). We obtain (1).

3.2 The prime-order setting

The groups. We consider two concrete instantiations of our generic setting. The first is a
prime-order setting, in which G = G1 = G2 has prime order |G| = |G1| = |G2|. In these cases,
we assume that |G| > 2λ is public, and hence most syntactic requirements from Section 3.1.1 are
trivially met. However, we will additionally need to assume that membership in G is efficiently
decidable. We have numerous candidates for such groups (including, e.g., subgroups of Z∗p, or
elliptic curves). In such groups, plausible assumptions include the Decisional Diffie-Hellman
(DDH) assumption, the k-Linear (k-LIN) assumption [29, 18], or a whole class of assumptions
called Matrix-DDH assumptions [10].
Hardness of the GDDH and factoring problems. All of the mentioned assumptions imply
our GDDH assumption for suitable `B and B. For instance, GDDH with `B = 1 and uniform
B is nothing but a reformulation of the DDH assumption. More generally, GDDH with uni-
form B is actually the so-called U`B-MDDH assumption. In particular, this means that the
k-LIN assumption implies GDDH with `B = k and uniform B (see [10]). Additionally, we note
that the G2-factoring assumption we make is trivially satisfied in prime-order settings (since
Advfact

G2,A(λ) = 0 for all A if |G2| = |G| is prime).
Pairing-friendly groups. In Section 5.4.1, we also exhibit a building block in the prime-order
setting that uses a symmetric pairing G × G → GT (for a suitable target group GT ). Also for
such pairing-friendly groups, we have a variety of candidates in case `B ≥ 2. (Unfortunately,
for `B = 1, a symmetric pairing can be used to trivially break the GDDH assumption.)

3.3 The DCR setting

The public parameters. The second setting we consider is compatible with the Decisional
Composite Residuosity (DCR) assumption [28]. In this case, the global public parameters
include an integer N = PQ, for distinct safe primes P,Q (i.e., such that P = 2P ′ + 1 and
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Q = 2Q ′ + 1 for prime P ′, Q ′ > 2λ).3 We also assume that P,Q, P ′, Q ′ are pairwise differ-
ent, and that gcd(P + Q − 1,N) = 1 (the latter of which ensures that N is invertible modulo
ϕ(N) = (P − 1)(Q− 1) = 4P ′Q ′).

We implicitly set `B = 1, and the matrix B ∈ Z|G1|×|G1| from Section 3.1.1 to be trivial (i.e., the
identity matrix). Hence, neither `B nor gB

1 will have to be included in the parameters. However,
we also include a generator g1 of G1 in the public parameters, chosen as described below.
The groups. We now define the groups G, G1, and G2. Since G should only have large prime
factors, we should avoid setting G = Z∗

N2
. Instead, we could set G1 and G2 to be the subgroups

of order ϕ(N)/4 andN, respectively, and then G = G1 ·G2. However, in this case, membership
in G would not be efficiently decidable in an obvious way. So here, we define our groups in a
slightly more complex way, following the approach of signed quadratic residues [13, 11, 19].

Equipped with the notation |x|N and
(
x
N

)
from Section 2, we set

G1 =
{
|xN|N2

∣∣ x ∈ Z∗N2 ,
(
xN

N

)
= 1
}
⊆ Z∗N2

G2 =
{
|(1+N)e|N2

∣∣ e ∈ ZN
}
⊆ Z∗N2

G =
{
|y|N2

∣∣ y ∈ Z∗N2 ,
( y
N

)
= 1
}
.

These sets are groups, when equipped with the group operation a · b = |a · b|N2 . Indeed, since
P,Q = 3 mod 4, we have

(
−1
N

)
= 1, and thus

(
|y1y2|N2

N

)
=
(
y1y2
N

)
= 1 for

(
y1
N

)
=
(
y2
N

)
= 1.

Hence, G1 and G are closed under group operation. It is then straightforward to check that G1,
G2 and G are groups.

A canonical generator g2 of G2 is |1 +N|N2 , and a generator g1 of G1 (to be included in the
public parameters) can be randomly chosen as |xN|N2 for a uniform x ∈ ZN2 .
Properties of the groups. We claim that |G1| = ϕ(N)/4. Indeed, we have that∣∣{ |xN|N ∣∣ x ∈ Z∗N2

}∣∣ =
∣∣{ |xN|N2 ∣∣ x ∈ Z∗N2

}∣∣ = ϕ(N)/2.

In other words, |xN|N uniquely determines |xN|N2 . Furthermore, since N is invertible modulo
ϕ(N), the map f : Z∗

N2
→ Z∗N with f(x) = xN mod N is surjective. Hence, the set of all |xN|N with(

xN

N

)
= 1 has cardinality ϕ(N)/4 (cf. [19, Lemma 1]). Using that |xN|N fixes |xN|N2 , we obtain

|G1| = ϕ(N)/4. Moreover, for e ∈ ZN, we can write |(1 +N)e|N2 = |1 + eN|N2 = e/|e| + |e|NN,
and thus |G2| = N. Finally, we have G = G1 · G2, since every |y|N2 ∈ G can be written as
|y|N2 = |xN(1+N)e|N2 with

(
xN

N

)
= 1. Hence, since |G1| = ϕ(N)/4 = P ′Q ′ and |G2| = N = PQ

are coprime, |G| = |G1| · |G2| = N ·ϕ(N)/4 is square-free.
We also note that the discrete logarithm problem is easy in G2. Indeed, for gu2 ∈ G2, we

have

gu2 = |(1+N)e|N2 = |1+ eN|N2 =

{
[e]NN+ 1 if [e]N < N/2
[−e]NN− 1 if [e]N > N/2.

A simple case distinction thus allows to compute [e]N.
Membership testing and sampling exponents. It is left to note that membership in G can
be efficiently decided (by checking that y ∈ ZN2 is invertible, lies between −N2/2 and N2/2,
and satisfies

(
y
N

)
= 1). However, since |G1| will not be public, exponents s ∈ Z|G1| can only

be sampled approximatively, e.g., by uniformly sampling s ∈ ZbN/4c. This incurs a statistical
defect of O(1/2λ) upon each such sampling. In the following, we will silently ignore these
statistical defects (and assume that there is an algorithm that uniformly samples s ∈ Zϕ(N)) in

3We note that our DCR-based OR-proofs from Section 5.4.2 require P,Q to be somewhat larger, although still
compatible with practical parameter choices.
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our generic constructions for simplicity and ease of presentation. However, we note that the
concrete bound (22) also holds for such an approximative sampling in the DCR setting.
Hardness of the GDDH and factoring problems. We claim that in the setting described
above, the Decisional Composite Residuosity (DCR) assumption [28] implies the GDDH as-
sumption. This connection has already been established in [15, Theorem 2] for a slight vari-
ant of the groups G, G1, G2 above. (In their setting, G1 consists of elements xN ∈ ZN2 with(
xN

N

)
= 1, instead of elements |xN|N2 with

(
xN

N

)
= 1.) In fact, their proof applies also to our

setting, and we obtain that the DCR assumption implies the GDDH assumption with ` = 1

and trivial B = 1 in G (as in Definition 3.1).
Furthermore, we note that the DCR assumption also implies the G2-factoring assumption

(Definition 3.2). We sketch how any G2-factoring adversary A can be transformed into a DCR
adversary B. First, B runs A, and obtains elements gu12 , . . . , g

uq
2 . Then, B uses that the discrete

logarithm problem is easy in G2, and retrieves the corresponding u1, . . . , uq ∈ Z|G2|. Now if
gcd(|G2|, ui) /∈ {1, |G2|} for some ui, then gcd(N,ui) ∈ {P,Q} directly allows to factorN. Hence,
if A succeeds, then B can factor N, and solve its own DCR challenge (e.g., by computing the
order of its input).

4 Tightly secure building blocks

In this section, we describe two building blocks for our main KEM construction. The first,
tightly secure one-time signature schemes, is fairly standard, but requires a new instantiation
in the DCR setting to achieve tight security. The second is, key extractors, is new, but similar
building blocks have been been used at least in the prime-order setting implicitly in previous
works on tight security (e.g., [12]).

4.1 One-time signature schemes

Definition 4.1 (Signature scheme). A digital signature scheme OTS = (SGen,SSig,SVer) con-
sists of the following PPT algorithms:
• SGen(1λ) outputs a keypair (ovk, osk). We call ovk and osk the verification, resp. signing key.
• SSig(osk,M), for a messageM ∈ {0, 1}∗, outputs a signature σ.
• SVer(ovk,M, σ), outputs either 0 or 1.

We require correctness in the sense that for all (ovk, osk) in the range of SGen(1λ), allM ∈ {0, 1}∗, and
all σ in the range of SSig(osk,M), we always have SVer(ovk,M, σ) = 1.

We only require one-time security (and call a signature scheme secure in this sense also a
one-time signature scheme):

Definition 4.2 (EUF-MOTCMA security). Let OTS be a digital signature scheme as in Defini-
tion 4.1, and consider the following game between a challenger C and an adversary A:
1. C runs A on input 1λ, and with (many-time) oracle access to the following oracles:
• Ogen() samples a fresh keypair (ovk, osk)← SGen(), and returns ovk.
• Osig(ovk,M) first checks if ovk has been generated by Ogen, and returns ⊥ if not. Next, Osig

checks if there has been a previous Osig(ovk, ·) query (i.e., an Osig query with the same ovk), and
returns ⊥ if so. Let osk be the corresponding secret key generated alongside ovk. (If ovk has been
generated multiple times by Ogen, take the first such osk.) Osig returns σ← SSig(osk,M).

2. If A returns (ovk∗,M∗, σ∗), such that SVer(ovk∗,M∗, σ∗) = 1, and ovk∗ has been returned by
Ogen, but σ∗ has not been returned by Osig(ovk∗,M∗), then C returns 1. Otherwise, C returns 0.

Let Advots
OTS,A(λ) be the probability that C finally outputs 1 in the above game. We say that OTS

is strongly existentially unforgeable under many one-time chosen-message attacks (EUF-MOTCMA
secure) iff for every PPT A, the function Advots

OTS,A(λ) is negligible.
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We remark, however, that our security notion is “strong”, in the sense that a forger is al-
ready successful when he manages to generate a new signature for an already signed message.

4.1.1 A construction in the prime-order setting

In case G = G1 = G2 with |G| prime and public, [17] already give a simple construction of a
digital signature scheme that achieves EUF-MOTCMA security under the discrete logarithm
assumption. Most importantly for our case, their security reduction is tight (i.e., only loses a
constant factor). We refer to their paper for details.

4.1.2 A construction in the DCR setting

In the DCR setting (as in Section 3.3), there exist simple and efficient EUF-MOTCMA secure
signature schemes from the factoring [23] or RSA assumptions [21]. However, these schemes
are not known to be tightly secure.

Hence, in this section, we construct a new digital signature scheme whose EUF-MOTCMA
security can be tightly reduced to the GDDH assumption in the DCR setting.

LetN = PQ and G, G1, G2 be defined as in Section 3.3. In particular, we have |G1| = ϕ(N)/4,
and |G2| = N. We are going to assume that the global public parameters pp contain a hash
functionH : {0, 1}∗ → {0, 1}`H from a collision-resistant hash function generator CRHF, and that
|G2| = N > 2`H . Now our signature scheme OTSDCR is defined by the following algorithms:
• SGen() uniformly samples d0, d1 ∈ G, and outputs ovk = (D0, D1) = (dN0 , d

N
1 ) ∈ G21 and

osk = (d0, d1).
• SSig(osk,M) uniformly samples d ′0, d

′
1 ∈ G, and computes

(D ′0, D
′
1) = (d ′0

N
, d ′1

N
) ∈ G21

e ′ = |d ′1
κ ′
d ′0|N ∈ {0, . . . , bN/2c} for κ ′ = H(M)

e = |dκ1d0|N ∈ {0, . . . , bN/2c} for κ = H(D ′0, D
′
1).

(2)

The signature is defined as σ = (D ′0, D
′
1, e
′, e) ∈ G2 × {0, . . . , bN/2c}2.

• SVer(ovk,M, σ), for ovk as above, outputs 1 iff σ = (D ′0, D
′
1, e
′, e) ∈ G2 × {0, . . . , bN/2c}2,

and the following equations hold, where e, e ′ are interpreted4 as elements of G:

e ′
N

= D ′1
κ ′
D ′0 for κ ′ = H(M)

eN = Dκ1D0 for κ = H(D ′0, D
′
1).

(3)

Correctness of this scheme follows from (2), (3), and Footnote 4. Essentially, this scheme is the
combination of two instances of a simpler, non-adaptively secure one-time signature scheme.
Thus, we could explain our scheme in a more modular way. However, since we only use that
scheme as a building block, we prefer to give a brief exposition and analysis. Specifically:

Lemma 4.3 (EUF-MOTCMA security of OTSDCR). Under the GDDH assumption, and if CRHF
is collision-resistant, the above signature scheme OTSDCR is EUF-MOTCMA secure. Concretely, for
every adversary A, there exist adversaries Bgddh and Bcrhf (of essentially the same complexity as the
EUF-MOTCMA experiment with OTSDCR and A) such that

Advots
OTSDCR,A(λ) ≤ 2Advgddh

G,Bgddh(λ) + Advcrhf
CRHF,Bcrhf(λ). (4)

4To interpret an element |x|N ∈ {0, . . . , bN/2c} as a G-element, we use the embedding φ : {0, . . . , bN/2c} → G
with φ(y) = y mod N2. By our definition of G, this means that for every x ∈ G, there is an i ∈ ZN with φ(|x|N) =
x+ i ·N ∈ G. In particular, note that φ(|x|N)N = xN ∈ G for every x ∈ G. This last property will imply correctness.
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Proof. In the following, write (ovk∗,M∗, σ∗) with ovk∗ = (D∗0, D
∗
1) and σ∗ = (D ′0

∗, D ′1
∗, e ′∗, e∗)

for A’s forgery. Let badcoll be the event that A’s forgery induces a hash collision (in the sense
thatH(M∗) = H(M) for some previously signedM 6=M∗, or thatH(D ′0

∗, D ′1
∗) = H(D ′0, D

′
1) for

some (D ′0, D
′
1) 6= (D ′0

∗, D ′1
∗) from a previous Osig query). A straightforward reduction shows

Pr [badcoll] ≤ Advcrhf
CRHF,Bcrhf(λ) (5)

for an adversary Bcrhf on CRHF that simulates the EUF-MOTCMA game with OTSDCR and A
and outputs any such collision upon badcoll.

Next, let badfresh denote the event that badcoll does not occur, andA submits a valid forgery
for some (D ′0

∗, D ′1
∗) that has not been output upon a previous Osig(ovk,M) query with ovk =

ovk∗. (In other words, badfresh occurs if A forges a signature with a fresh pair (D ′0
∗, D ′1

∗) that
has been not generated previously by the game itself.) To bound the probability for badfresh,
consider the following adversary Bgddh

fresh on the DCR assumption. Bgddh
fresh gets as input a value

Z = gr1g
b
2 , for random r ∈ Z|G1| and b ∈ {0, 1}. Bgddh

fresh internally simulates the EUF-MOTCMA
game with OTSDCR and A, with the following exceptions:
• Upon an Ogen query from A, Bgddh

fresh first generates a fresh pair (d ′0, d
′
1) (as necessary for sig-

natures), sets (D ′0, D
′
1) = (d ′0

N, d ′1
N) and κ = H(D ′0, D

′
1), computes (D0, D1) = (sN0 /Z

κ, sN1 Z)
for uniformly chosen s0, s1 ∈ G, and outputs ovk = (D0, D1).
• Upon an Osig query from A, Bgddh

fresh uses the previously generated corresponding values
(d ′0, d

′
1) to generate e ′ as in (2). The value e is generated as e = |sκ1s0|N. (Note that this

implies eN = sNκ1 s
N
0 = Dκ1D0, cf. Footnote 4.) The final signature is σ = (D ′0, D

′
1, e
′, e).

Finally, Bgddh
fresh outputs 1 iff badfresh occurs.

We turn to Bgddh
fresh ’s analysis. First, if b = 0 (i.e., if Z = gr1), then Bgddh

fresh perfectly simulates
the EUF-MOTCMA game with OTSDCR and A. However, if b = 1, then badfresh cannot occur.
Indeed, for contradiction, assume a valid forgery (ovk∗,M∗, σ∗) with ovk∗ = (D∗0, D

∗
1), and

σ∗ = (D ′0
∗, D ′1

∗, e ′∗, e∗). Now badfresh would imply that (D ′0
∗, D ′1

∗) 6= (D ′0, D
′
1) for the pair

(D ′0, D
′
1) previously generated upon A’s Ogen query. Since badfresh implies ¬badcoll, we may

also assume that κ∗ = H(D ′0
∗, D ′1

∗) 6= H(D ′0, D
′
1) = κ. However, the key ovk∗ = (D∗0, D

∗
1)

output by Ogen satisfies (D∗1)
κ∗D∗0 = (sκ1s0)

NZκ
∗−κ = gz1g

κ∗−κ
2 for some z ∈ Z|G1|. Hence, there

is no value e with eN = (D∗1)
κ∗D∗0 (since the order of eN divides ϕ(N)/4, while the order of

(D∗1)
κ∗D∗0 = g

z
1g
κ∗−κ
2 is a nontrivial multiple of N). Thus, σ∗ cannot be valid in the sense of (3).

In summary, we have
Pr [badfresh] ≤ |Advgddh

G,Bgddh
fresh

(λ)|. (6)

Similarly, let badreused denote the event that badcoll does not occur, and A submits a valid
forgery as above, but with a pair (D ′0

∗, D ′1
∗) that has been output upon a previous Osig(ovk,M)

query with ovk = ovk∗. (In other words, badreused occurs if A reuses a pair (D ′0
∗, D ′1

∗).)
To bound the probability for badreused, consider the following adversary Bgddh

reused on the DCR
assumption. Like Bgddh

fresh above, Bgddh
reused internally simulates the EUF-MOTCMA game with

OTSDCR and A, but embeds its own challenge Z = gr1g
b
2 into the (D ′0, D

′
1) pairs. Specifi-

cally, Bgddh
reused computes (D ′0, D

′
1) = (sN0 /Z

κ ′ , sN1 Z) for fresh random s0, s1 upon eachOsig queries
(where κ ′ = H(M) as with SSig). Finally, Bgddh

reused outputs 1 if badreused occurs.
As with Bgddh

fresh , it is easy to see that Bgddh
reused perfectly simulates the EUF-MOTCMA game if

b = 0. We also claim that Bgddh
reused never outputs 1 if b = 1. For contradiction, assume a valid

forgery as above, but with reused (D ′0
∗, D ′1

∗) = (D ′0, D
′
1) generated by Bgddh

reused. We may assume
that M∗ 6= M for the message M previously signed by Osig under ovk∗. Indeed, M∗ = M

would imply e ′N = (e ′∗)N. But this means e ′ = e ′∗ (since e ′ 6= e ′∗ would imply that e ′/e ′∗ ∈ G
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is a nonzero element whose order divides ϕ(N)), and similarly e = e∗. Hence, any successful
forgery withM∗ =Mwould imply σ∗ = σ, and thus be rejected by the EUF-MOTCMA game.

Since Bgddh
reused implies ¬badcoll, we may even assume κ∗ 6= κ. However, (D ′1

∗)κ
∗
D ′0
∗ =

(D ′1)
κ∗D ′0 = gz1g

κ∗−κ
2 for a suitable gz1 ∈ Z|G1|, and thus no e ′ with e ′N = (D ′1

∗)κ
∗
D ′0
∗ exists.

As a consequence, σ∗ cannot be valid in the sense of (3), and we get

Pr [badreused] ≤ |Advgddh

G,Bgddh
reused

(λ)|. (7)

Now any successful forgery either implies badcoll, or badfresh, or badreused. Hence, combining
(5), (6), and (7) yields (4) if we combine the two adversaries Bgddh

fresh and Bgddh
reused into one.

4.2 Key extractors

Intuition. Intuitively, a key extractor derives a pseudorandom key K from a given encryption
c = E(0; r) of 0. This K can be derived either publicly, using a public extraction key xpk and
the witness r, or secretly, using a secret extraction key xsk and only the ciphertext c. We desire
security in the sense keys derived secretly (i.e., using xsk) from random ciphertexts c = E(R; r)
for random R cannot be distinguished from truly random bitstrings K. This should hold even
for many such challenges, and in the face of oracle access to xsk on “consistent” ciphertexts
c = E(0; r).

In this sense, key extractors give a computational form of the soundness guarantee pro-
vided by universal hash proof systems. We also note that a similar tool has been implicitly
used in [12] for a similar purpose in the prime-order setting. Hence, we abstract and general-
ize their construction in a straightforward way.
Definition. In the following, fix a function `ext = `ext(λ). In the following definition, we will
choose the value R encrypted in random ciphertexts uniformly from Z2`ext . Our subsequent
generic construction of key extractors works for any `ext ≥ 3λ (and |G2| ≥ 23λ).

Definition 4.4 (Key extractor). A key extractor EXT = (ExtGen,Extpub,Extpriv) for G consists of
the following PPT algorithms
• ExtGen(1λ, epk), on input a public encryption key epk = gω

>B
1 ∈ G`B1 for (E,D) (as in Sec-

tion 3.1.3), outputs a keypair (xpk, xsk). We call xpk the public and xsk the private extraction key.
• Extpub(xpk, c, r), for c = Eepk(0; r), outputs a key K ∈ {0, 1}λ.
• Extpriv(xsk, c) also outputs a session key K ∈ {0, 1}λ.

We require the following:
Correctness. For all epk = gω

>B
1 , all keypairs (xpk, xsk) in the range of ExtGen(1λ, epk), all r ∈

Z`B
|G1|

, and all c = Eepk(0; r), we always have Extpub(xpk, c, r) = Extpriv(xsk, c).
Indistinguishability. Consider the following game between a challenger C and an adversary A:

1. C uniformly samples ω ∈ Z`B
|G1|

and sets (epk, esk) = (gω
>B

1 ,ω). Then, C generates an EXT
keypair (xpk, xsk)← ExtGen(1λ, epk), and finally samples b ∈ {0, 1}.

2. A is run on input (1λ, epk, xpk), with (many-time) access to oracles Ocha and Oext that operate
as follows:
• Ocha() uniformly chooses a fresh R ∈ Z2`ext , computes c ← Eepk(R) and K0 = Extpriv(xsk, c),

and uniformly chooses K1 ∈ {0, 1}λ. Finally, Ocha returns (c, Kb).
• Oext(c) first checks if Desk(c) = g02. If not, then we say that A fails, and C terminates with

output 0 immediately. Otherwise, Oext computes and returns K = Extpriv(xsk, c).
• Finally, A outputs a bit b ′, and C outputs 1 iff b = b ′ (and 0 otherwise).

Let Advext
EXT,A(λ) = Pr [C outputs 1] − 1/2. We require that for all PPT A, Advsnd

PS,A(λ) ≤ ε for a
negligible function ε = ε(λ).
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4.2.1 A generic construction

For our GDDH-based key extractor, we assume that a function h chosen from a family of
universal hash functions UHFλ is made public in the global public parameters pp. Then, our
extractor EXTgddh = (ExtGengddh,Extgddh

pub ,Extgddh
priv ) is defined as follows:

• ExtGengddh(1λ, epk), for epk = gω
>B

1 , uniformly samples s ∈ Z`B
|G|

and t ∈ Z|G|, and computes

gw>
1 := gs>B+t·ω>B

1 ∈ G`B1 . The output of ExtGengddh is xpk = gw>
1 and xsk = (s, t).

• Extgddh
pub (xpk, c, r), for xpk as above and c = Eepk(0; r), outputs K = h(gw>·r

1 ).

• Extgddh
priv (xsk, c), for c = (gγ, gδ) ∈ G`B ×G, outputs K = h(gs>γ+t·δ).

Given gw>
1 = gs>B+t·ω>B

1 and a ciphertext c = E(0; r) = (gγ, gδ) = (gBr
1 , g

ω>Br
1 ), we have

gw>r
1 = gs>Br+t·ω>Br

1 = gs>γ+t·δ,

and correctness follows. Indistinguishability follows from the following lemma:

Lemma 4.5. For `ext ≥ 3λ and |G2| ≥ 23λ, EXTgddh above satisfies the indistinguishability property
of Definition 4.4, assuming GDDH in G. Specifically, for every adversary A that makes at most q
oracle queries, there is an adversary B (with roughly the same complexity as the indistinguishability
experiment with EXTgddh and A), such that

Advext
EXTgddh,A(λ) ≤ Advgddh

G,B (λ) + q/2λ. (8)

Proof. Fix an adversary A in the sense of Definition 4.4, and consider the following GDDH
adversary B. First, B gets as input (gω

>B
1 , gBr

1 , g
ω>Br
1 g

β
2 ) for β ∈ {0, 1}, and sets epk = gω

>B
1 .

Then, B simulates the indistinguishability experiment from Definition 4.4 with EXTgddh and
A, as follows.
B begins by choosing s ′ ∈ Z`B

|G|
, t ′ ∈ Z|G|, and a bit b ∈ {0, 1} uniformly, and then sets

gw ′>
1 = gs ′B+t ′·ω>B

1 , and xpk = gw ′>
1 . Then, B runs A on input (1λ, epk, xpk), and implements

A’s oracles Ocha and Oext as follows:
• Ocha() first chooses uniformly r ′ ∈ Z`B

|G1|
and R ∈ Z2`ext , and sets

c = (gγ, gδ) = (gR·ω
>Br+ω>Br ′

1 , gR·ω
>Br+ω>Br ′

1 g
Rβ
2 ) = (g

ω>B(Rr+r ′)
1 , g

ω>B(Rr+r ′)
1 g

Rβ
2 ).

Observe that this way, c is a fresh encryption of Rβ. Next, Ocha sets K0 = h(gs ′>γ+t ′·δgR2 ),
samples K1 ∈ {0, 1}λ, and returns (c, Kb) to A.
• Oext(c), for c = (gγ, gδ), computes and returns K = (gs ′>γ+t ′·δ) to A.

Finally, B returns 1 iff A finally correctly predicts b.
Observe that B’s internal simulation differs from the indistinguishability experiment with

EXTgddh and A in two aspects:
• Ciphertexts prepared by B’s oracle Ocha only encrypt R (for random R ∈ Z2`ext ) if B’s own

challenge has β = 1. (Otherwise, Ocha prepares ciphertexts that always encrypt 0.)
• If b = 0, “raw keys” gs ′>γ+t ′·δgR2 prepared by B’s Ocha oracle have an extra gR2 term.

In a nutshell, these changes have the following effect: if β = 1, then B perfectly simulates the
indistinguishability experiment, unlessA fails (in the sense of Definition 4.4). But if β = 0, then
B outputs 1with probability essentially 1/2. After proving these claims formally, we will show
that combining them yields (8).

We start by formalizing and proving the first claim, namely

Pr [B outputs 1 | β = 1] ≥ Advext
EXT,A(λ) + 1/2. (9)

(Note that the right-hand side of (9) is precisely the probability that C outputs 1 in the indistin-
guishability experiment of Definition 4.4.)
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To show (9), let fail be the event that A fails, i.e., that A submits a ciphertext c to Oext with
Desk(c) 6= g02. Furthermore, recall that epk = gω

>B
1 . Hence, if we set (s, t) = (s ′ −ω, t ′ + 1),

we get that (s, t) and (s ′, t ′) are two secret keys that act identically on ciphertexts of the form
c = Eepk(0):

D(s,t)(c) = g
(s+t·ω)>Br
1 = g

(s ′+t·ω)>Br
1 = D(s ′,t ′)(c) for c = (gBr

1 , g
ω>Br
1 ).

Further, for c = (gγ, gδ) = (gBr
1 , g

ω>Br
1 gR2 ), we get D(s,t)(c) = D(s ′,t ′)(c)gR2 . In other words, ifβ =

1, and unless fail occurs, B perfectly emulates the indistinguishability game with secret key
(s, t) (instead of (s ′, t ′)). Since the challenger C outputs 0 upon fail in the indistinguishability
game, we get (9).

Our second claim is

Pr [B outputs 1 | β = 0] ≤ 1/2+ q/2λ. (10)

Indeed, observe that when β = 0, Ocha queries contain ciphertexts c = (gBr
1 , g

ω>Br
1 ) that do

not depend on the respective (freshly and independently chosen) R ∈ Z2`ext . Thus, if b = 0,
the “raw keys” gs ′>Br+t ′·ω>Br

1 gR2 have at least 3λ bits of min-entropy (since `ext ≥ 3λ, and the
order of g2 is greater than 23λ). Hence, the keys K = K0 = h(gs ′>Br+t ′·ω>Br

1 gR2 ) are statistically
1/2λ-close to uniform. But also if b = 1, the corresponding keys K = K1 are truly random
by definition. Hence, A receives an (at least almost) independently random K in either case.
Taking into account the statistical defect from h, we obtain (10).

Finally, combining (9) and (10), we directly get (8).

Summing up, we obtain

Theorem 4.6. Under the GDDH assumption, and for `ext ≥ 3λ and |G2| ≥ 23λ, EXTgddh is a key
extractor in the sense of Definition 4.4.

5 Benign proof systems

Intuition. Benign proof systems are the central technical tool in our KEM construction. In-
tuitively, a benign proof system for some language L is a non-interactive designated-verifier
zero-knowledge proof system with strong soundness guarantees. Concretely, the system guar-
antees soundness even if simulated proofs for potentially false statements x /∈ L are known.
However, we do not quite require “simulation-soundness”, in the sense that this should hold
for simulated proofs for arbitrary false statements. (We note that simulation-sound proof sys-
tems are extremely useful in the context of tight security proofs, but they are also very hard to
construct.)

Instead, we only require that no adversary can forge proofs for statements x /∈ L that
are “more false” than any statement for which a simulated proof is known. A little more
specifically, we require that even if simulated proofs for statements x ∈ L ′ ⊇ L are known,
an adversary cannot forge a proof for some x /∈ L ′. The main benefit over existing soundness
notions is that L ′ does not even have to be known during the construction of the scheme. (For
instance, our first proof system provides a “graceful soundness degradation”, in the sense that
it is sound in this sense for arbitrary linear languages L ′ ⊇ L.)
Overview over our constructions. Apart from the abstraction, we also provide generic and
setting-specific constructions of benign proof systems. Our generic constructions (for a lin-
ear, and a “dynamically parameterized” linear language) can be viewed as abstractions and
generalizations of universal hash proof systems. For L ′ = L, soundness in the above sense fol-
lows immediately from the correctness property of hash proof systems. (Indeed, hash proofs
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for valid instances x ∈ L are unique and completely determined by public information.) For
L ′ ) L, we will use additional properties of specific (existing) hash proof systems. In fact, the
mentioned “graceful degradation” guarantees have already been used implicitly in the work
of [12].

However, we also consider a somewhat nonstandard (and in our application crucial) “OR-
language”. Here, we give a prime-order instantiation in pairing-friendly groups (which is
directly implied by the universal hash proof systems for disjunctions from [1]), and a new
instance in the DCR setting. This DCR instance will be the key to the DCR-based instantiation
of our KEM.

5.1 Definition

Definition 5.1 (Proof system). Let L = {Lpars} be a family of languages5 with Lpars ⊆ Xpars, and with
efficiently computable witness relation R. A non-interactive designated-verifier proof system (NID-
VPS) PS = (PGen,PPrv,PVer,PSim) for L consists of the following PPT algorithms:
• PGen(1λ, pars) outputs a keypair (ppk, psk). We call ppk the public and psk the private key.
• PPrv(ppk, x,w), for x ∈ L andR(x,w) = 1, outputs a proof π.
• PVer(psk, x, π), for x ∈ X and a proof π, outputs a verdict b ∈ {0, 1}.
• PSim(psk, x), for x ∈ L, outputs a proof π.

We require correctness in the following sense:
Completeness. For all pars, all (ppk, psk) in the range of PGen(1λ, pars), all x ∈ L, and all w with
R(pars, x,w) = 1, we always have PVer(psk, x,PPrv(ppk, x,w)) = 1.

All relevant security properties of a NIDVPS are condensed in the following definition.

Definition 5.2 (Benign proof system). Let PS be an NIDVPS for L as in Definition 5.1, and let
Lsim = {Lsim

pars}, Lver = {Lver
pars}, and Lsnd = {Lsnd

pars} be families of languages. We say that PS is
(Lsim,Lver,Lsnd)-benign if the following properties hold:
(Perfect) zero-knowledge. For all pars, all (ppk, psk) in the range of PGen(1λ, pars), and all x ∈ L

and w withR(pars, x,w) = 1, we have the following equivalence of distributions:

PPrv(ppk, x,w) ≡ PSim(psk, x).

(Statistical) (Lsim,Lver,Lsnd)-soundness. Consider the following game between a challenger C and
an adversary A:
1. A is run on input 1λ, and chooses pars.
2. C generates (ppk, psk)← PGen(1λ, pars).
3. A is run again on input (1λ, ppk), and with (many-time) access to oracles Osim and Over that

operate as follows:
• Osim(x) checks if x ∈ Lsim

pars, and if yes, returns PSim(psk, x). Otherwise, Osim returns ⊥.
• Over(x, π) checks if x ∈ Lver

pars, and, if so, returns PVer(psk, x, π). Otherwise, Over returns ⊥.
Finally,A wins iff it has queriedOver with (x, π) such that x ∈ Xpars \Lsnd

pars and PVer(psk, x, π) =
1. Let Advsnd

PS,A(λ) the probability thatAwins. We require that for all (not necessarily computation-
ally bounded) A that only make a polynomial number of oracle queries, Advsnd

PS,A(λ) is negligible.

Intuitively, the soundness condition of Definition 5.2 thus states that no proofs for X \Lsnd
pars-

statements can be forged, even when (simulated) proofs for Lsim
pars-statements are available, and

proofs for Lver
pars-statements can be verified.

5These languages may also implicitly depend on the global public parameters pp.
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5.2 The generic linear language

We will be interested in proof systems for “linear languages”, in the sense that instances are
vectors of group elements, and the language is closed under vector addition (i.e., component-
wise group operation).

In the following, let D ∈ N and pk = (epk1, . . . , epkD) = (g
ω>1 B
1 , . . . , g

ω>DB
1 ) ∈ (G`B1 )

D. For a
concise notation, writeΩ = (ω1|| . . . ||ωD) ∈ Z`B×D

|G1|
. Also, fix a Z|G2|-module

U = {Mx | x ∈ Zd|G2|} ⊆ ZD|G2| (11)

defined by a matrix M ∈ ZD×d
|G2|

. Our languages are parameterized over parslin = (pk,M),
although Llin

pk only depends on pk, and not on M. Namely, consider

Llin
pk =

{
Epk(u; r) | r ∈ Z`B

|G1|
, u = 0 ∈ ZD|G2|

}
Llin

sim,(pk,M) = Llin
ver,(pk,M) = Llin

snd,(pk,M)

=
{

Epk(u; r) | r ∈ Z`B
|G1|
, u ∈ U

}
X lin = G`B+D,

(12)

and set Llin = {Llin
pk} and Llin

sim = Llin
ver = Llin

snd = {Llin
sim,(pk,M)}. A witness for x ∈ Llin

pk is r.

5.2.1 A generic construction

Our generic construction is a simple variant of a universal hash proof system [9]. Like Llin
pk,

our construction itself only depends on pk, and not on M. Hence, parameter generation only
takes pk as input. Specifically, our (Llin

sim,Llin
ver,Llin

snd)-benign proof system PSlin for Llin is given
by the following algorithms:

• PGenlin(1λ,pk), for pk = (g
ω>1 B
1 , . . . , g

ω>DB
1 ) ∈ GD×`B1 , uniformly chooses s ∈ Z`B

|G|
and

t ∈ ZD
|G|

, and then computes and outputs

ppklin = gw>
1 = gs>B+t>Ω>B

1 ∈ G`B1
psklin = (s, t).

(13)

• PPrvlin(ppklin, x, r) (with ppklin = gw>
1 ∈ G`B1 and x = Epk(0; r)) computes and outputs

πlin = gw>r
1 ∈ G1.

• PVerlin(psklin, x, πlin) (with psklin = (s, t) as above, x = (gγ, gδ) ∈ G`B × GD, and πlin ∈ G)
outputs 1 iff

πlin = gs>γ+t>δ. (14)

• PSimlin(psklin, x) (for psklin = (s, t) and x = (gγ, gδ) as above) computes πlin as in (14).
Correctness and the zero-knowledge property of PSlin follow from

gs>γ+δ>t = gs>Br+t>Ω>Br
1 = gw>r

1

for gγ = gBr
1 and gδ = gΩ

>Br
1 . The soundness property is proved conceptually similarly to the

smoothness of universal hash proof systems [9] (see also [22]):

Lemma 5.3. PSlin is statistically (Llin
sim,Llin

ver,Llin
snd)-sound in the sense of Definition 5.2. Concretely,

for an adversary A in the soundness game from Definition 5.2 that makes at most q = q(λ) oracle
queries,

Advsnd
PSlin,A(λ) ≤ q/2λ. (15)
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Proof. Fix any pk = (g
ω>1 B
1 , . . . , g

ω>DB
1 ) ∈ (G`B1 )

D and M ∈ ZD×d
|G2|

. Let us consider the informa-
tion made available to A through ppklin and oracle queries:
• By (13), ppklin only reveals s>B + t>Ω>B = (s +Ωt)>B mod |G1|.
• Now consider an Osim query on some x = (gγ, gδ). We may assume that x ∈ Llin

sim (since
otherwise, Osim(x) = ⊥), which means that x = Epk(Mx; r) for some r ∈ Z`B

|G1|
and x ∈ Zd

|G2|.
Hence, by (14), the corresponding proof πlin computed by Osim only depends on ppklin and
t>M mod |G2|.
• Since proofs πlin are unique, the result of any Over query can be computed from the result

of the corresponding Osim query. Hence, Over queries do not reveal more information than
Osim queries.

Hence,A’s view depends only on (s+Ωt)>B mod |G1| and t>M mod |G2|. It remains to bound
the probability that Amanages to submit an Over query (x, πlin) with x ∈ X lin \ Llin

snd,(pk,M) and
a valid proof πlin. So consider any Over query (x, πlin) with x = (gγ, gδ) ∈ X lin \ Llin

snd,(pk,M).

This means that γ and δ cannot be represented as γ = |G|

|G1| · Br mod |G| and δ = |G|

|G1| ·Ω
>Br +

|G|

|G2| ·Mx mod |G| for suitable r and x. Hence, since |G| was assumed to be square-free, there

is a prime factor p of |G| such that γ mod p and δ mod p cannot be represented as γ = |G|

|G1| ·
Br mod p and δ = |G|

|G1| ·Ω
>Br + |G|

|G2| ·Mx mod p.

Let Vp ⊆ Z`B+Dp be the vector space spanned by the columns of |G|

|G1| ·
(

B
Ω>B

)
mod p, and

by the columns of |G|

|G2| ·
(

0
M

)
mod p, where 0 ∈ Z`B×dp is the all-zero matrix. By the discussion

above, the view of A only depends on (s>, t>) · Up (i.e., on the value of the inner products
(s>, t>) · v mod p for suitable v ∈ Up). However, for any v ∈ Z`B+Dp \Up, we have that (s>, t>) ·

v mod p is independent ofA’s view. In particular,
(
γ

δ

)
mod p /∈ Up, and thus, s>γ+ t>δ mod

p looks random given A’s view. Since p > 2λ by assumption about |G|, this means that A
would have to predict an independently random value s>γ+ t>δ mod p in order to submit an
x ∈ X lin \ Llin

snd,(pk,M) with a valid proof πlin. Hence, the probability that any particular query
(x, πlin) with x ∈ X lin \ Llin

snd,(pk,M) has a valid proof πlin is bounded by 1/2λ. Since A makes at
most q such queries, we get (15).

Summing up, we get

Theorem 5.4. PSlin is an (Llin
sim,Llin

ver,Llin
snd)-benign NIDVPS for Llin.

5.3 A dynamically parameterized linear language

In our scheme, we will also use a slight variant of the generic linear language above. Specif-
ically, we will consider a simple “dynamically parameterized” linear language, where one
parameter (i.e., coefficient) is determined by the language instance. For a formal description,
let parshash = pk = (epk1, epk2) ∈ (G`B1 )

2, and

Lhash
pk =

{(
Epk(u; r), τ

)
| u = 0 ∈ Z2|G2|

}
Lhash

sim,pk = Lhash
ver,pk = Lhash

snd,pk

=
{(

Epk(u; r), τ
)

| u = (u1, u2)
> ∈ Z2|G2|, u2 = τu1

}
X hash

pk =
{(

Epk(u; r), τ
)

| u ∈ Z2|G2|
}
,

(16)

where r and τ always range over Z`B
|G1|

and Z|G2|, respectively. A witness for x ∈ Lhash is r. The
families Lhash, Lhash

sim , Lhash
ver , and X hash are defined in the obvious way.
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5.3.1 A generic construction

We can give a generic construction of a benign proof system for Lhash essentially by combin-
ing two instances of our generic benign proof system PSlin from Section 5.2.1. That is, our
(Lhash

sim ,Lhash
ver ,Lhash

snd )-benign proof system PShash for Lhash is given by the following algorithms:
• PGenhash(1λ,pk) samples two public keys

(ppklin, psklin) ← PGenlin(1λ, epk1) (ppk ′lin, psk ′lin) ← PGenlin(1λ, epk2)

and outputs ppkhash = (ppklin, ppk ′lin) and pskhash = (psklin, psk ′lin).
• PPrvhash(ppkhash, x, r) (for ppklin = (ppklin, ppk ′lin) and x = (c, τ) for c = (gγ, gδ) = E(0; r) and
δ = (δ1, δ2)) computes

πlin = PPrvlin(ppklin, (g
γ, gδ1), r) π ′lin = PPrvlin(ppk ′lin, (g

γ, gδ2), r)

and outputs πhash = πτlin · π
′
lin ∈ G.

• PVerhash(pskhash, x, πhash) (with pskhash = (psklin, psk ′lin) and x = (c, τ) with c = (gγ, gδ) for
δ = (δ1, δ2)), outputs 1 iff

πhash =
(
PSimlin(psklin, (g

γ, gδ1))
)τ · PSimlin(psk ′lin, (g

γ, gδ2)). (17)

• PSimhash(pskhash, x) (for pskhash and x as in PVerhash), outputs πhash as defined in (17).
Our proof system is generic in the sense that it does not make any assumption about the under-
lying group structure. (Specifically, it works both in the prime-order, and in the DCR setting.)
However, we stress that it builds on the specific (generic) proof system PSlin from Section 5.2.1.

Completeness and the zero-knowledge property of PShash follow from those properties of
PSlin. Soundness can be proved with the same ideas as for PSlin:

Lemma 5.5. PShash is statistically (Lhash
sim ,Lhash

ver ,Lhash
snd )-sound in the sense of Definition 5.2. Con-

cretely, for an adversary A in the soundness game from Definition 5.2 that makes at most q = q(λ)
oracle queries,

Advsnd
PShash,A(λ) ≤ q/2λ. (18)

Proof. We proceed as in the proof of Lemma 5.3, and in particular use the notation from there.
In that notation, ppkhash only reveals (s +ω1t)

>B mod |G1| and (s ′ +ω2t
′)>B mod |G1| about

the secret key pskhash = (psklin, psk ′lin) = ((s, t), (s ′, t ′)).
Furthermore, consider an Osim query x = (gγ, gδ) ∈ Lhash

sim with δ = (δ1, δ2). By definition
of Lhash

sim , we can writeγδ1
δ2

 =
|G|

|G1|
·

 1
ω>1
ω>2

Br +
|G|

|G2|
·

 0

u1
u2

 mod |G| (19)

for the identity matrix 1 ∈ Z`B×`B
|G1|

, u2 = τu1, and u1, u2, τ ∈ Z|G2|. Hence, the query only reveals

τ · (s>, t)
(
γ

δ1

)
+ (s ′>, t ′)

(
γ

δ2

)
(19)
=

|G|

|G1|
·
(
τ(s +ω1t) + s ′ +ω2t

′)>Br +
|G|

|G2|
(
τtu1 + t

′u2
)

u2=τu1=
|G|

|G1|
·
(
τ(s +ω1t) + s ′ +ω2t

′)>Br +
|G|

|G2|
(t+ t ′)u2 mod |G|.

Specifically, aside from information already revealed through ppkhash, this query only depends
on t + t ′ mod |G2|. Since an Over query can be implemented with an Osim query in case of
PShash, the same holds for Over queries. In particular, ppk and all oracle queries yield 2`B + 1
linear equations over Z|G| for the 2`B + 2 unknowns from s, s ′, t, t ′. A similar argument as in
the proof of Lemma 5.3 shows that any Over query with x ∈ X hash \ Lhash

snd and a valid proof
πhash would have to correctly guess a previously unknown linear equation about t, t ′ mod p
for a suitable prime p > 2λ. SinceAmakes at most q oracle queries, (18) follows as desired.
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Summing up, we obtain

Theorem 5.6. PShash is an (Lhash
sim ,Lhash

ver ,Lhash
snd )-benign NIDVPS for Lhash.

5.4 The generic OR-language

We will also be interested in the following family L∨, together with its “simulation”, “verifica-
tion” and “soundness” counterparts L∨sim, L∨ver and L∨snd. Here, the actual languages in L∨ are
linear like those in Llin. However, soundness also holds when L∨sim-instances are simulated,
and those instances have an “OR flavor”.

The language parameters are pars∨ = (pk, `∨) for pk = (epk1, epk2) ∈ (G`B1 )
2, and a function

`∨ = `∨(λ). The familiesL∨, L∨sim, L∨ver, L∨snd, andX∨ are comprised of the following languages,
where we consider all r ∈ Z`B

|G1|
, and u = (u1, u2) ∈ (Z∗

|G2| ∪ {0})2:

L∨pk = L∨ver,pk =
{

Epk(u; r) | u1 = 0
}

L∨sim,(pk,`∨) =
{

Epk(u; r) | u1 = 0 ∨ (|u1| < 2
`∨ ∧ u2 = 0)

}
L∨snd,pk =

{
Epk(u; r) | u1 = 0∨ u2 = 0

}
X∨

pk =
{

Epk(u; r)
}
.

Here, the value |u1| (in the definition of L∨sim,(pk,`∨) is to be understood simply as the absolute
value for signed Z|G2|-values in the prime-order setting, and as |u1| = |u1|N in the DCR setting.
Observe that L∨pk ⊆ L

∨
sim,(pk,`∨) ⊆ L

∨
snd,pk ⊆ X

∨
pk. A valid witness for x ∈ L∨ is r.

5.4.1 A construction in pairing-friendly groups

Now assume that G = G1 = G2 is a prime-order group equipped with a symmetric pairing.
Then, a benign proof system for L∨ can be constructed from the universal hash proof systems
for disjunctions from [1]. Specifically, [1] construct universal hash proof systems for languages
of the form L = {(x1, x2) | x1 ∈ L1 ∨ x2 ∈ L2}, where Li ⊆ G` are linear languages (i.e., vector
spaces over Z|G|). In our case, given pk = (epk1, epk2), we can thus set

L1 =
{

Eepk1(0; r)
}

L2 =
{

Eepk2(0; r)
}

L =
{
x = (c0, c1, c2) | (c0, c1) ∈ L1 ∨ (c0, c2) ∈ L2

}
.

(20)

Invoking [1] with these languages yields a NIDVPS PS∨
pair that achieves:

Theorem 5.7. PS∨
pair is an (L∨sim,L∨ver,L∨snd)-benign NIDVPS for L∨.

5.4.2 A construction in the DCR setting

In the following, we assume an N = PQ, and groups G, G1, G2 as in Section 3.3. In particular,
we have `B = 1, and B is the trivial (identity) matrix. Furthermore, fix an `∨ = `∨(λ). We
additionally assume that P,Q > 2`∨+4λ. Recall that g1, epk1, epk2 ∈ G1 are of order |G1| =
ϕ(N)/4, and that g2 ∈ G2 is of order |G2| = N.

Our (L∨sim,L∨ver,L∨snd)-benign proof system PS∨
DCR for L∨ is given by the following algo-

rithms:
• PGen∨(1λ) uniformly picks s1, s2 ∈ ZbN2/4c and outputs ppk∨ = (epks11 , epks21 ) and psk∨ =

(s1, s2).
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• PPrv∨(ppk∨, x, r) (with ppk∨ = (epks11 , epks21 ), and x = (c0, c1, c2) = (gr1, epkr1, epkr2g
u2
2 )) uni-

formly chooses t1, t2 ∈ ZN, and outputs

π∨ = (π0, π1, π2) =
(
ct1+N·t22 , (epks11 )r · gt12 , (epks21 )r · gt22

)
.

• PVer∨(psk∨, x, π∨) (with psk = (s1, s2), x = (c0, c1, c2), and π∨ = (π0, π1, π2)) first checks
that π1/c

s1
1 = gt12 and π2/c

s2
1 = gt22 for some t1, t2 ∈ ZN (and outputs 0 if not). PVer then

computes6 these t1, t2, and outputs 1 iff π0 = c
t1+N·t2
2 .

• PSim∨(psk∨, x) (for psk = (s1, s2) and x = (c0, c1, c2)) uniformly picks t1, t2 ∈ ZN2 and
outputs

π∨ = (π0, π1, π2) =
(
ct1+N·t22 , cs11 · g

t1
2 , c

s2
1 · g

t2
2

)
.

The completeness and zero-knowledge properties of PS∨
DCR follow directly from the fact

that csi1 = (epkr1)
si = (epksi1 )

r. To show the soundness of PS∨
DCR, we prove a helpful technical

lemma:

Lemma 5.8. Let s1, s2, t1, t2 be distributed as in PS∨
DCR, and fix any u ∈ Z with |u| < 2`∨ . Let7

aux := ([s1]ϕ(N)/4, [s2]ϕ(N)/4, [t1 +N · t2]ϕ(N)/4, [us1 + t1]N, [us2 + t2]N),

and write8 w1 := [s1/α]N (with the division performed in ZN) for α := [N]ϕ(N)/4. Then, for an
independently random R ∈ Z2λ , we have

ε := SD
(
([w1]2λ , aux) ; (R, aux)

)
≤ 3/2λ.

In other words, w1 (and thus s1) is unpredictable, even given aux.

Proof. Without loss of generality, assume u ≥ 0. (For u < 0, we can invoke the lemma with
−u, −t1, and −t2 in place of u, t1 and t2.) We proceed in steps, in each step modifying aux, and
bounding the impact on ε. Specifically, in the following, we will define a number of random
variables auxi, and abbreviate εi := SD

(
([w1]2λ , auxi) ; (R, auxi)

)
. As a starting point, consider

aux1 := ([t1 +N · t2]ϕ(N)/4, [us1 + t1]N, [us2 + t2]N).

Now note that w1 = [s1/α]N and the [usi + ti]N (for i ∈ {1, 2}) only depend on [si]N. However,
our uniform choice of si ∈ ZbN2/4c is statistically 2/2`∨+4λ-close to a uniform choice of si ∈
ZN·ϕ(N)/4 (in which case [si]N and [si]ϕ(N)/4 are independently and uniformly random). Hence,
the [si]ϕ(N)/4 are essentially independent ofw1 and aux1, and we obtain ε ≤ ε1+4/2`∨+4λ. Next,
consider

aux2 := ([t1]α, [t2]
α, [t1]

α + [t2]α, [us1 + t1]N, [us2 + t2]N).

Since t1 + α · t2 = [t1]α + α · ([t1]α + [t2]α) + α
2 · [t2]α, we have that aux1 is a function of aux2,

and so ε1 ≤ ε2. Similarly, we can refine the last two components of aux2 to obtain

aux3 := ([t1]α, [t2]
α, [t1]

α + [t2]α, [us1 + α · [t1]α]N, [us2 + [t2]α]N).

Again, ε2 ≤ ε3 since aux3 fully defines aux2. Similar to our first step, now [t1]α and [t2]
α

are essentially independent of the remaining parts of aux (up to a statistical defect of at most
2/2`∨+4λ for each). Hence, for

aux4 := ([t1]
α + [t2]α, [us1 + α · [t1]α]N, [us2 + [t2]α]N),

6Here, we implicitly use that computing discrete logarithms in G2 is easy, see Section 3.3.
7In this lemma and its proof, we heavily rely on the notation of [s]N and [s]N from Section 2.
8Here, we use our assumption that [N]ϕ(N)/4 = P +Q − 1 and N are coprime.
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we get that ε3 ≤ ε4 + 4/2`∨+4λ. Now let w2 := [s2]N, and consider

aux5 := ([t1]
α + [t2]α, uw1 + [t1]

α, uw2 + [t2]α).

Since aux4 can be computed from aux5, we have ε4 ≤ ε5. Next, we release w1 +w2 (over Z):

aux6 := ([t1]
α + [t2]α, w1 +w2, uw1 + [t1]

α).

Again, aux5 can be computed from aux6, and hence ε5 ≤ ε6. Since we consider the statistical
distance between [w1]2λ and R, we can release (and then drop) [w1]2

λ
. Concretely, consider

aux7 := ([t1]
α + [t2]α, [w1]2λ +w2, u · [w1]2λ + [t1]

α, [w1]
2λ),

aux8 := ([t1]
α + [t2]α, [w1]2λ +w2, u · [w1]2λ + [t1]

α)

aux9 := ([t1]
α + [t2]α, u · [w1]2λ + [t1]

α).

Here, ε6 ≤ ε7 since aux6 can be computed from aux7. Moreover, recall that N > 22`∨+8λ by our
choice of P,Q > 2`∨+4λ. Hence, ε7 ≤ ε8 + 1/22`∨+7λ, since [w1]2λ and [w1]

2λ are independent up
to a statistical defect of at most 1/22`∨+7λ. Finally, ε8 ≤ ε9 + 1/22`∨+7λ, since w2 is uniformly
and independently random chosen from ZN.

Similarly, we can show that [t2]α blinds [[t1]α]2`∨+2λ :

aux10 := ([[t1]
α]2`∨+2λ + [t2]α, u · [w1]2λ + [[t1]

α]2`∨+2λ , [[t1]
α]2

`∨+2λ

),

aux11 := ([[t1]
α]2`∨+2λ + [t2]α, u · [w1]2λ + [[t1]

α]2`∨+2λ ,

aux12 := (u · [w1]2λ + [[t1]
α]2`∨+2λ).

With the same reasoning as in aux7-aux9 (and using that α,N/α > 2`∨+4λ/2 by P,Q > 2`∨+4λ),
we get ε9 ≤ ε10, as well as ε10 ≤ ε11 + 1/22λ, and ε11 ≤ ε12 + 1/22λ. Finally, if we set aux13 := ()
to be the empty sequence, we get ε12 ≤ ε13 + 1/2λ + 2/2`∨+4λ, since [t1]

α is 2/2`∨+4λ-close to
uniform over ZdN/αe (which implies that [[t1]α]2`∨+2λ blinds u · [w1]2λ). It is left to observe that
ε13 = SD

(
[w1]2λ ; R

)
≤ 1/22`∨+7λ, since w1 ∈ ZN is uniformly random. Summing up, we get

ε ≤ 1/2λ + 2/22λ + 10/2`∨+4λ + 3/22`∨+7λ ≤ 3/2λ, as desired.

We can now proceed to show the soundness of PS∨
DCR:

Lemma 5.9. PS∨
DCR is statistically (L∨sim,L∨ver,L∨snd)-sound in the sense of Definition 5.2. Concretely,

for an adversary A that makes at most q = q(λ) oracle queries in the soundness game from Defini-
tion 5.2,

Advsnd
PS∨

DCR,A
(λ) ≤ 4q/2λ. (21)

Proof. Fix `∨ and pk, and let viewA beA’s view in a run of the computational soundness game
from Definition 5.2. Specifically, viewA consists of A’s input ppk∨ = (epks11 , epks21 ), as well as
all oracle queries (and the corresponding answers). We first consider to what extent viewA
determines the secret key psk∨ = (s1, s2).
• A’s input ppk∨ = (epks11 , epks21 ) only depends on [s1]ϕ(N)/4 and [s2]ϕ(N)/4 (since epk1 has order
ϕ(N)/4).
• Each Osim oracle query of A reveals a value π∨ = (π0, π1, π2) = (ct1+N·t22 , cs11 · g

t1
2 , c

s2
1 · g

t2
2 )

forA-supplied c1, c2 and fresh t1, t2. We may assume that c1 = epkr1 · g
u1
2 and c2 = epkr2 · g

u2
2

with u1 = 0 or |u1|N < 2`∨ ∧ u2 = 0 (since otherwise, Osim rejects the query). Hence, such a
query reveals

(π0, π1, π2) = (epkr(t1+N·t2)2 gu2t12 , epkrs11 · g
u1s1+t1
2 , epkrs21 · g

u1s2+t2
2 ),

which only depends on [s1]ϕ(N)/4, [s2]ϕ(N)/4, [t1+N · t2]ϕ(N)/4, [u2t1]N, as well as [u1s1+ t1]N
and [u1s2 + t2]N. Thus, if u1 = 0, the query reveals only [s1]ϕ(N)/4 and [s2]ϕ(N)/4 about
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(s1, s2). But if u1 6= 0 (and thus u2 = 0), we can apply Lemma 5.8 with u := u1, where we
represent u1 ∈ ZN as an integer between −N/2 and N/2. This yields that the query leaves
[w1]2λ undetermined, up to a small statistical defect. A hybrid argument over all of A’s
Osim queries shows that the overall statistical defect is bounded by 3q/2λ.
• An Over query on input (x, π∨) yields ⊥ unless x ∈ L∨ver,(pk,`∨) = L∨(pk,`∨). But for x =

(c0, c1, c2) = (gr1, epkr1, epkr2g
u2
2 ) ∈ L∨(pk,`∨), we get that Over’s output only depends on csi1 =

epkrsi1 , and hence only on [si]ϕ(N)/4 (for i = 1, 2).
To summarize, viewA is essentially independent of [w1]2λ , up to a statistical defect of 3q/2λ.

It remains to prove that any Over query on some (x, π∨) with x ∈ X∨ \ L∨snd,pk (i.e., an x
with x = (c0, c1, c2) = (gr1, epkr1 · g

u1
2 , epkr2 · g

u2
2 ) for u1, u2 ∈ Z∗N) is invalid in the sense that

PVer(psk∨, x, π∨) = 0with high probability. To this end, write

π∨ = (π0, π1, π2) = (epkρ02 · g
α0
2 , epkρ11 · g

α1
2 , epkρ21 · g

α2
2 )

for suitable ρ0, ρ1, ρ2, α0, α1, α2. Recall that (x, π∨) is valid only if for i = 1, 2, we have πi/c
si
1 =

gti2 for some ti ∈ ZN, and if π0 = ct1+N·t22 for those ti. Hence, if (x, π∨) is valid, then the
following holds for some t1, t2:

ρ0 = [r(t1 +N · t2)]ϕ(N)/4 α0 = [u2t1]N

ρ1 = [rs1]ϕ(N)/4 α1 = [u1s1 + t1]N

ρ2 = [rs2]ϕ(N)/4 α2 = [u1s2 + t2]N.

By assumption, u2 ∈ Z∗N, and thus α0 determines t1. Using also u1 ∈ Z∗N, hence α0 and α1
determine [s1]N, and thus also w1 = [s1/α]N. However, as we have argued above, viewA is
essentially independent of [w1]2λ . The probability that A correctly guesses an independently
and uniformly random [w1]2λ with a single query is exactly 1/2λ. Since A makes at most
q guesses, the probability for a correct guess is bounded by q/2λ. Taking into account the
mentioned statistical defect in viewA, we obtain (21).

Taking things together, we obtain

Theorem 5.10. PS∨
DCR is an (L∨sim,L∨ver,L∨snd)-benign NIDVPS for L∨.

6 The key encapsulation scheme

In the following, we present our main construction of an IND-MCCA secure key encapsulation
(KEM) scheme. (This directly implies a PKE scheme with the same security properties [8].)

6.1 The construction

Ingredients and public parameters. In our construction, we use the following ingredients:
• groups G, G1, G2 with |G2| > 23λ (see Section 3.1.1 for a description of the generic setting),
• the generalized ElGamal scheme (E,D) implicitly defined through G, G1, G2 (Section 3.1.3),
• an EUF-MOTCMA secure one-time signature scheme OTS = (SGen,SSig,SVer) (Sec-

tion 4.1),
• a key extractor EXT = (ExtGen,Extpub,Extpriv) for G (see Section 4.2) with `ext = 3λ,
• an (Llin

sim,Llin
ver,Llin

snd)-benign proof system PSlin = (PGenlin,PPrvlin,PVerlin,PSimlin) for Llin

(Section 5.2),
• a (Lhash

sim ,Lhash
ver ,Lhash

snd )-benign proof system PShash = (PGenhash,PPrvhash,PVerhash,PSimhash)

for Lhash (Section 5.3),
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• an (L∨sim,L∨ver,L∨snd)-benign proof system PS∨ = (PGen∨,PPrv∨,PVer∨,PSim∨) for L∨
(Section 5.4) with `∨ = 3λ, and
• a collision-resistant hash function generator CRHF (Section 2) with `H = 2λ.9

We can use the presented generic constructions for EXT, PSlin, and PShash, and, in the prime-
order and DCR settings, the presented concrete constructions for OTS and PS∨. (We note,
however, that the DCR-based proof system PS∨

DCR additionally requires that |G| has no prime
factors smaller than 27λ.) Specifically, we obtain instantiations both in the prime-order (with
symmetric pairing) and DCR settings.

We also assume public parameters pp that contain whatever public parameters our build-
ing blocks require. Specifically, pp defines groups G, G1, and G2 (as described in Section 3.1.1),
and contains a hash function H output by CRHF.
The algorithms. Now our KEM KEM is defined through the following algorithms:
• Gen(1λ) first uniformly picks ω1, . . . ,ω4 ∈ Z`B

|G1|
, and sets (pk, sk) = (epki, eski)4i=1 =

(g
ω>i B
1 ,ωi)

4
i=1. Next, Gen samples

(ppklin, psklin) ← PGenlin(1λ,pk)

(ppkhash, pskhash) ← PGenhash(1λ, (epk1, epk2/epk3))

(ppk∨,1, psk∨,1) ← PGen∨(1λ, (epk1, epk1))

(ppk∨,2, psk∨,2) ← PGen∨(1λ, (epk4, epk4))

(ppk∨,3, psk∨,3) ← PGen∨(1λ, (epk4, epk1))

(ppk∨,4, psk∨,4) ← PGen∨(1λ, (epk2/epk3, epk4))

(ppk∨,5, psk∨,5) ← PGen∨(1λ, (epk2/epk3, epk4))

(ppk∨,6, psk∨,6) ← PGen∨(1λ, (epk2/epk3, epk1))

(xpk, xsk) ← ExtGen(1λ, epk2),

sets ppk = (ppklin, ppkhash, ppk∨,1, . . . , ppk∨,6) and psk = (psklin, pskhash, psk∨,1, . . . , psk∨,6),
and finally outputs

pk = (pk,ppk, xpk) sk = (sk,psk, xsk).

• Enc(pk) (for pk as above) selects a random r, and computes

c = (c0, c1, . . . , c4) = E(pk, 0; r)
(ovk, osk) ← SGen()

τ = H(ovk)

πlin ← PPrvlin(ppklin, c, r)

πhash ← PPrvhash(ppkhash, ((c0, c1, c2/c3), τ), r)

π∨,1 ← PPrv∨(ppk∨,1, (c0, c1, c1/g2), r)

π∨,2 ← PPrv∨(ppk∨,2, (c0, c4, c4/g2), r)

π∨,3 ← PPrv∨(ppk∨,3, (c0, c4, c1/g2), r)

π∨,4 ← PPrv∨(ppk∨,4, (c0, c2/c3, c4), r)

π∨,5 ← PPrv∨(ppk∨,5, (c0, c2/c3, c4/g2), r)

π∨,6 ← PPrv∨(ppk∨,6, (c0, c2/c3, c1/g2), r)

9Since we assume collision-resistance (and not only target collision-resistance), we will have to take into ac-
count, e.g., birthday attacks on the hash function. This unfortunately entails `H ≥ 2λ.
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π = (πlin, πhash, π∨,1, . . . , π∨,6)

σ ← SSig(osk, (c,π))
K = Extpub(xpk, (c0, c2), r).

Here, we interpret τ = (τ1, . . . , τ2λ) ∈ {0, 1}2λ as an integer τ =
∑2λ
i=1 2

i−1τi ∈ {0, . . . , 22λ−1},
with τ1 being interpreted as the least significant bit.
The final output of Enc is C = (c,π, ovk, σ) and K.
• Dec(sk, C) (for sk and C as above), first verifies σ and all proofs in π using ovk and sk, and,

if all are valid, returns
K = Extpriv(xsk, (c0, c2)).

Explanation. The proofs inπ require some explanation. They prove various (seemingly highly
redundant) properties of the vector u = (ui)

4
i=1 ∈ Z4

|G2| encrypted in c. Some of these properties
will be violated in different steps of our security analysis already by the security game, and we
will then rely on the remaining properties. For instance, πlin always guarantees that the vectors
u encrypted in decryption queries lie in the subspace spanned by the vectors u encrypted in
challenge ciphertexts. (That subspace is initially trivial, since honest encryptions contain u = 0,
but will be larger in later parts of the analysis.) πhash guarantees that τu1 = u2 − u3 in A’s
decryption queries (unless generated challenge ciphertexts already violate that relation).

The PS∨-proofs π∨,i are a bit more delicate. First, π∨,1 and π∨,2 guarantee that u1, u4 ∈
{0, 1}. The condition u1 ∈ {0, 1} only simplifies the analysis, but u4 ∈ {0, 1} is instrumental to
enforce our partitioning strategy. In particular, u4 will be the bit that determines the partition-
ing of ciphertexts in our partitioning argument. Depending on the value of u4, π∨,4 and π∨,5
give further guarantees: π∨,4+b guarantees u2 = u3 ∨ u4 = b. At each point in our analysis, at
least one of these conditions (for one value of b) is never violated. Hence, u2 = u3 is guaran-
teed in decryption queries whenever u4 6= b. Finally, the proofs π∨,3 and π∨,6 ensure technical
conditions (u4 = 0 ∨ u1 = 1 and u2 = u3 ∨ u1 = 1) that will help to deal with the somewhat
limited soundness guarantees of PS∨. (In particular, these proofs help to cope with the fact
that the soundness game of PS∨only allows a limited type of verification queries.)
Correctness. The correctness of KEM follows directly from the correctness of the underlying
primitives.

6.2 Security analysis

Theorem 6.1 (Security of KEM). If the ingredients from Section 6.1 are secure, then KEM is IND-
MCCA secure. Specifically, for every IND-MCCA adversary A that makes at most q oracle queries,
there are adversaries Bcrhf, Bots, Bfact, Bmccpa, Blin, Bhash, and B∨ with

|Advmcca
KEM,A(λ)| ≤ Advcrhf

CRHF,Bcrhf(λ) + Advots
OTS,Bots(λ)

+ O(λ)Advfact
G2,Bfact(λ) + O(λ)Advmccpa

G,Bmccpa(λ) + O(λ)Advsnd
PSlin,Blin(λ)

+ O(λ)Advsnd
PShash,Bhash(λ) + O(λ)Advsnd

PS∨,B∨(λ) + O(λq)/2λ. (22)

6.2.1 The main proof

Outline. The goal of our proof will be to randomize all keys handed out by Oenc along with
challenge ciphertexts. In order to do so, we rely on the indistinguishability of the key extractor
EXT. However, to apply EXT’s indistinguishability (Definition 4.4), we first need to establish a
certain kind of “unfairness”. Specifically, we will randomize the u2 component of all challenge
ciphertexts, while rejecting all decryption queries with u2 6= 0. (Note that this in particular
means that the experiment does not need to be able to decrypt challenge ciphertexts.)
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Establishing this unfairness thus is the key to proving chosen-ciphertext security. But it
will also form the main difficulty of the proof, and we will outsource this process into several
helper lemmas (Lemmas 6.2 to 6.4).

Proof of Theorem 6.1. Our proof is game-based. Let εi be the probability that Awins in Game i.
We give an overview of the games in Fig. 2 (on p. 31).

GameM0 is the original IND-MCCA game with KEM and A. Of course,

εM0 = Advmcca
KEM,A(λ). (23)

GameM1 rejects every Odec query from A which reuses a value τ from a previous Oenc
ciphertext. Note that any such query that would not already have been rejected in GameM0
implies either aH-collision (in case the ovk values are different), or an OTS forgery (in case also
ovk is reused). Hence, reductions to the collision-resistance of CRHF, and the unforgeability of
OTS yield

|εM0 − εM1| ≤ Advcrhf
CRHF,Bcrhf

M1

(λ) + Advots
OTS,Bots

M1
(λ) (24)

for the following adversaries Bcrhf
M1 and Bots

M1. First, Bcrhf
M1 (1

λ, H) simulates GameM1, embedding
H into pars, and outputs anyH-collisionH(ovk) = τ = H(ovk ′) for ovk, ovk ′ fromOenc, resp.Odec
queries. Second, Bots

M1(1
λ) also simulates GameM1, and uses its own Ogen and Osig oracles to

create OTS public keys and signatures for Oenc, and outputs any OTS-forgery from an Odec
query.

In GameM2, we prepare challenge ciphertexts C = (c,π, ovk, σ) and the corresponding
keys K slightly differently. Namely, instead of using a witness r to prepare π and K, we now
use the secret keys psk and xsk, as follows:

πlin ← PSimlin(psklin, c)

πhash ← PSimhash(pskhash, ((c0, c1, c2/c3), τ))

π∨,1 = PSim∨(psk∨,1, (c0, c1, c1/g2))

π∨,2 = PSim∨(psk∨,2, (c0, c4, c4/g2))

π∨,3 = PSim∨(psk∨,3, (c0, c4, c1/g2))

π∨,4 = PSim∨(psk∨,4, (c0, c2/c3, c4))

π∨,5 = PSim∨(psk∨,5, (c0, c2/c3, c4/g2))

π∨,6 = PSim∨(psk∨,6, (c0, c2/c3, c1/g2))
K ← Extpriv(xsk, (c0, c2)).

Intuitively, this change enables the game to “forget” the witness r, and change c subsequently.
By the perfect zero-knowledge property of PSlin and PS∨, and the perfect correctness of EXT,
we have

εM1 = εM2. (25)

In GameM3, we letOenc encrypt the vector u = (1,G(τ), 0, 0)> in each challenge ciphertext
(using c = E(pk,u; r)), where G : {0, 1}∗ → Z23λ is a truly random function. Since at this point,
we neither use r nor esk1 or esk2, we can invoke the IND-MCCPA security of (E,D) (twice) to
obtain

εM2 − εM3 = 2Advmccpa
G,Bmccpa

M3

(λ) (26)

for an adversary Bmccpa
M3 that simulates GameM2, resp. GameM3, depending on the challenge

bit b of the IND-MCCPA game.
GameM4 rejects allOdec queries with u1 6= 0. (In general, when we speak of values ui from

an Odec query we mean the values ui defined through gui2 = Deski(c0, ci), where we set ui = ⊥
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if Deski(c0, ci) /∈ G2.) In other words, while GameM4 keeps preparing challenge ciphertexts
that are inconsistent (in the sense that they have u1 6= 0), now all inconsistent decryption
queries from A are rejected. The justification for this game change is somewhat complex, and
outsourced into Lemma 6.2 (see below). We obtain:

|εM3 − εM4| ≤ (12λ+ 1)Advfact
G2,Bfact

M4

(λ) + (24λ+ 3)Advmccpa
G,Bmccpa

M4

(λ) + (8λ+ 3)Advsnd
PSlin,Blin

M4

(λ)

+ Advsnd
PShash,Bhash

M4

(λ) + (32λ+ 1)Advsnd
PS∨,B∨M4

(λ) + O(q/2λ) (27)

for suitable Bfact
M4 , Bmccpa

M4 , Blin
M4, Bhash

M4 , and B∨M4.
GameM5 finally randomizes the keys K output by Oenc. Specifically, GameM5 chooses

K ∈ {0, 1}λ uniformly and independently for each challenge ciphertext. Essentially, we are
going to justify this change with the indistinguishability of EXT. However, since the EXT
indistinguishability experiment provides only a comparatively weak extraction oracle, we will
need to make a few preparations first. Specifically, we will argue that a number of annoying
“bad events” can only happen with negligible probability in GameM4 and GameM5.

Namely, let badc denote the event that A places an Odec query with valid π, but in which
c is not even in the range of E(pk,u) for any u. Also, let badu3 denote the event that A places
an Odec query with valid π, but with u1 = 0 and u3 6= 0. We can use the soundness of PSlin

to exclude badc and badu3 both in GameM4 and GameM5. Specifically, an adversary Blin
M5 on

PSlin’s soundness simulates GameM5 until pk is generated, then submits its own language
parameter (pk,M) for

M =


1 0

0 1

0 0

0 0

 ,
and then embeds the received public key ppklin into its own simulation. To generate and verify
PSlin-proofs, Blin

M5 uses its own Osim and Over oracles as follows. First, to generate PSlin proofs
for encryptions generated by Blin

M5’s internally simulated Oenc oracle, Blin
M5 submits the corre-

sponding ciphertext c to its Osim oracle. By definition of GameM5, we have c ∈ Llin
sim,(pk,M),

and thus Osim returns a simulated proof πlin that Blin
M5 can then embed into its own simulation.

Furthermore, to verify proofs πlin during an Odec query from A, Blin
M5 submits πlin with the cor-

responding c to its Over oracle. If Over returns ⊥ (which means that c /∈ Llin
ver,(pk,M), i.e., that c is

not in the range of E, or that u3 6= 0 or u4 6= 0), then Blin
M5 counts the proof as invalid, and thus

rejects A’s Odec query.
Observe that this Blin

M5 perfectly simulates GameM5 untilA submits anOdec query with c /∈
Llin

ver,(pk,M) but valid π. (In this case, Blin
M5 rejects that query, while GameM5 would accept it.)

However, in that case, Blin
M5 would have won its own soundness game, since it has submitted

a c /∈ Llin
snd,(pk,M) with a valid proof πlin to its own Over oracle. Since badc ∨ badu3 implies

c /∈ Llin
snd,(pk,M), we can deduce that

Pr [badc ∨ badu3 in GameM5] ≤ Advsnd
PSlin,Blin

M5

. (28)

Analogously, we get

Pr [badc ∨ badu3 in GameM4] ≤ Advsnd
PSlin,Blin

M4

(29)

for an adversary Blin
M4 on PSlin that simulates GameM4 instead of GameM5.

Similarly, let badfact denote the event thatA places anOdec query withu1 ∈ Z|G2|\(Z
∗
|G2|∪{0})

or u2−u3 ∈ Z|G2| \ (Z
∗
|G2| ∪ {0}). In other words, badfact occurs whenA produces an encryption
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of a “funny message” that would allow to factor G2 in the sense of Definition 3.2. Hence, a
straightforward reduction to the G2-factoring assumption yields

Pr [badfact in GameM4] ≤ Advfact
G2,Bfact

M4

Pr [badfact in GameM5] ≤ Advfact
G2,Bfact

M5

(30)

for adversaries Bfact
M4 and Bfact

M5 that simulate GameM4, resp. GameM5, and use sk to retrieve
and output u upon every Odec query from A.

Finally, let badu2 denote the event thatA places anOdec query with u1 = 0 and u2 6= u3. We
will rely on the soundness of the 6-th instance of PS∨to exclude badu2 , and a corresponding
adversary B∨,6M5 can proceed similarly to Blin

M5 above. However, it is important to note that B∨,6M5
feeds its Osim oracle only instances (c0, c2/c3, c1/g2) ∈ L∨sim,((epk2/epk3,epk1),`∨) for `∨ = 3λ, since

|u2−u3|N < 2
3λ and u1 = 1 in ciphertexts prepared byOenc. (Hence, B∨,6M5 can obtain fromOsim

all proofs π∨,6 as necessary to implement Oenc.) The analysis of Over queries requires a little
more care, since the “verification” languages in L∨ver are rather restricted. In particular, Over
returns ⊥ (in which case B∨,6M5 rejects the query) as soon as badc or badfact occur, or u2 6= u3
holds (independently of u1). However, if u1 6= 0, the Odec query would have been rejected by
the rules of GameM5 anyway, and if u1 = 0, then a valid proof π∨,6 would constitute a PS∨-
forgery (since both branches of the “OR” statement are violated). Hence, B∨,6M5 only deviates
from GameM5 if it can produce a valid forgery, or if badc ∨ badfact occurs. Since a valid
forgery implies u2 6= u3 and thus badu2 , we obtain

Pr [badu2 | ¬(badc ∨ badfact) in GameM4] ≤ Advsnd
PS∨,B∨,6M4

Pr [badu2 | ¬(badc ∨ badfact) in GameM5] ≤ Advsnd
PS∨,B∨,6M5

(31)

where B∨,6M4 is defined like B∨,6M5 , except that it simulates GameM4 (and not GameM5).
We are now ready for our final reduction to the indistinguishability of EXT. Concretely,

consider an adversary Bext
M5 that initially obtains a public key epk from its own indistinguisha-

bility game, along with access to challenge and extraction oracles Ocha and Oext. Internally,
Bext
M5 simulates GameM5, and embeds epk into that simulation as epk2. Upon an Oenc query

from A, Bext
M5 queries Ocha, and embeds the obtained ciphertext as c0 and c2 into its own simu-

lation. (The corresponding ci for i ∈ {1, 3, 4} can be generated from c0 and eski as in the proof
of Lemma 3.4.) The obtained key K is used in place of a real key K0 in GameM5. The keys
K for decryption queries from A are obtained via Oext(c0, c2). Finally, Bext

M5 outputs whatever
the game outputs. Note that Bext

M5 fails in the indistinguishability game only if A manages to
submit a decryption query not in the range of E, or one that satisfies u2 6= 0. However, this
event would imply at least one of badc, badu2 , or badu3 . Hence, using (28), (29), and (31), and
combining adversaries, we get

εM4 − εM5 = 3Advfact
G2,Bfact

M4M5

(λ) + 2Advsnd
PSlin,Blin

M4M5

(λ) + 2Advsnd
PS∨,B∨,6M4M5

(λ) + Advext
EXT,Bext

M5
(λ)

(32)
for suitable Bfact

M4M5, Blin
M4M5, B∨,6M4M5, and Bext

M5. At this point, note that εM5 = 0, since A gets
no information about the challenge bit b anymore. Combining this observation with (23)-(32)
yields (22).

Of course, the main work still lies ahead of us, since we need to prove (27). We do so now.

6.2.2 Enforcing consistent decryption queries

Outline. The next lemma establishes the “unfairness” mentioned in the outline of the main
proof. In particular, it will force the adversary to use u1 = 0 in decryption queries, while chal-

30



# u K computed as game knows Odec checks remark

M0


0

0

0

0

 in Oenc: Extpub(xpk, (c0, c2), r)
in Odec: Extpriv(xsk, (c0, c2))

for Oenc: ppk, xpk, r
for Odec: psk, xsk — IND-MCCA game

M1


0

0

0

0

 in Oenc: Extpub(xpk, (c0, c2), r)
in Odec: Extpriv(xsk, (c0, c2))

for Oenc: ppk, xpk, r
for Odec: psk, xsk τ fresh

CRHF collision-res.,
OTS-unforgeability

M2


0

0

0

0

 in Oenc: Extpriv(xsk, (c0, c2))
in Odec: Extpriv(xsk, (c0, c2))

for Oenc: psk, xsk
for Odec: psk, xsk

τ fresh ZK of PSlin, PS∨,
EXT-correctness

M3


1

G(τ)

0

0

 in Oenc: Extpriv(xsk, (c0, c2))
in Odec: Extpriv(xsk, (c0, c2))

for Oenc: psk, xsk
for Odec: psk, xsk τ fresh (E,D) IND-MCCPA

M4


1

G(τ)
0

0

 in Oenc: Extpriv(xsk, (c0, c2))
in Odec: Extpriv(xsk, (c0, c2))

for Oenc: psk, xsk
for Odec: psk, xsk, esk1

τ fresh
u1 = 0

Lemma 6.2

M5


1

G(τ)
0

0

 in Oenc: random
in Odec: Extpriv(xsk, c)

for Oenc: psk, xsk
for Odec: psk, xsk, esk1

τ fresh
u1 = 0

G2-factoring,
PSlin-soundness,
PS∨-soundness,

EXT-indist.

Figure 2: Games in the main proof of Theorem 6.1. Here, “u” denotes the vec-
tor encrypted upon Oenc queries, “K computed as” denotes how the session
key K is computed during Oenc and Odec queries from C, “game knows” de-
notes which information is necessary to perform the game, and “Odec checks”
indicates additional consistency checks that Odec performs on its inputs. (If
one of those checks fails, Odec outputs ⊥.)

lenge ciphertexts contain u1 = 1. (This unfairness can be used in the main proof to randomize
u2 in challenge ciphertexts, while enforcing u2 = 0 in decryption queries.)

We can view this unfairness as a special kind of simulation-soundness. Namely, the proofs
π (together with the encrypted u2, u3, u4) from ciphertexts act as consistency proofs that show
(among other things) that u1 = 0. With this view, we now show that we can simulate valid-
looking consistency proofs π for inconsistent ciphertexts, while preserving soundness for ad-
versarially generated proofs.

To establish unfairness, we revisit the idea of “authentication tags” from the introduction.
Namely, we first establish that all ciphertexts with u1 6= 0must carry a valid authentication tag
in u2. Initially, that authentication tag will be a random (but constant) value X. Next, through a
series of hybrid games (outsourced into Lemmas 6.3 and 6.4), we change the definition of valid
authentication tags. In the j-th challenge ciphertext, we will have u2 = X+τ(j), where τ(j) is the
corresponding hash value τ from that ciphertext. Additionally, we will force the adversary to
reuse one such value u2 = X + τ(j) (for a τ(j) from a previous challenge ciphertext) in his own
decryption queries with u1 6= 0. (This somewhat unusual “reusal rule” arises naturally out of
our randomization strategy in Lemma 6.3) constitutes a departure from previous strategies to
obtain chosen-ciphertext security or simulation-soundness.)

Finally, we employ the dynamically parameterized hash proof system PShash to tie the
value of the authentication tag u2 to X + τ for the hash value τ of the current ciphertext. In
particular, since all challenge ciphertexts (with u2 = X + τ(j)) now satisfy the relation en-
forced by PShash, the soundness of PShash guarantees that any decryption query must do so
as well. In particular, u1 6= 0 must now satisfy contradictory requirements: PShash enforces
u2 = X + τ for the hash value τ of that ciphertext, while the reusal rule established before en-
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forces u2 = X + τ(j) for a hash value τ(j) from a previous challenge ciphertext. Taken together
(and using the uniqueness of hash values), this implies that all decryption queries with u1 6= 0
are rejected, as desired.

Lemma 6.2. In the proof of Theorem 6.1, (27) holds, i.e., we have

|εM3 − εM4| ≤ (12λ+ 1)Advfact
G2,Bfact(λ) + (24λ+ 3)Advmccpa

G,Bmccpa(λ) + (8λ+ 3)Advsnd
PSlin,Blin(λ)

+ Advsnd
PShash,Bhash(λ) + (32λ+ 1)Advsnd

PS∨,B∨(λ) + O(q/2λ)

for adversaries Bfact, Bmccpa, Blin, Bhash, and B∨ of essentially the same complexity as GameM4.

Proof. Observe first that the only difference between GamesM3 and M4 is that GameM4 ex-
plicitly checks and rejects Odec queries with u1 6= 0. Denote with badu1 the event that A sub-
mits an Odec query with u1 6= 0 that would not be rejected according to the rules of GameM3.
In the following, we will bound the probability that badu1 occurs in GameM3. This bound
will automatically yield a bound for the difference |εM3 − εM4|.

It will be useful to call an Odec query of A a critical query if it has u1 6= 0, but would be
accepted by Odec in GameM3 (i.e., carries a fresh τ, and a valid π). Note that badu1 occurs iff
A places a critical query at some point. We proceed in a sequence of games, and denote with εi
the probability that Game i eventually outputs 1. Fig. 3 (on p. 35) provides an overview over
the games in this proof.

Game C0 is defined like GameM3, except that each Odec query is checked to be critical.
Furthermore, Game C0 outputs 1 iff badu1 occurs, i.e., ifA places a critical query. Without loss
of generality, A immediately terminates (with output 1) after a critical query. (This way, there
is at most one critical query.) By the above discussion,

|εM3 − εM4| ≤ εC0. (33)

Game C1 still immediately terminates after a critical query, but then only outputs 1 if the
query satisfies u1 = 1 (i.e., if c1 decrypts to g2 under esk1). Hence, the difference between
Game C0 and Game C1 can be bounded by the probability that Amanages to submit a critical
query with u1 6= 1. We claim that suitable adversaries Blin

C1, B∨,1C1 , and Bfact
C1 achieve

εC0 ≤ εC1 + Advsnd
PSlin,Blin

C1

+ Advfact
G2,Bfact

C1

(λ) + Advsnd
PS∨,B∨,1C1

(λ). (34)

Similar to GameM5, let badc denote the event that A places an Odec query with c not in the
range of E(pk,u) for any u. Also, let badfact denote the event thatA submits anOdec query that
satisfies u1 ∈ Z|G2| \(Z

∗
|G2|∪ {0}) or u1−1 ∈ Z|G2| \(Z

∗
|G2|∪ {0}). As in GameM5, we can construct

adversaries Blin
C1 and Bfact

C1 with Pr [badc] ≤ Advsnd
PSlin,Blin

C1

(λ) and Pr [badfact] ≤ Advfact
G2,Bfact

C1

(λ).

Moreover, we describe an adversary B∨,1C1 that attacks PS∨. Specifically, B∨,1C1 internally
simulates Game C1, and embeds its own public key ppk∨ as ppk∨,1. To generate and verify
PS∨-proofs, B∨,1C1 uses its own oracles as follows. Upon an Oenc query from A, B∨,1C1 uses its
own Osim-oracle to generate a proof π∨,1. (This is possible, since the corresponding statement
satisfies u1 = 1.) Upon an Odec query from A, B∨,1C1 feeds the corresponding proof π∨,1 into its
Over oracle. If Over replies with ⊥, then B∨,1C1 interprets this as a 0 (i.e., as a failed verification),
and continues its simulation of Game C1. B∨,1C1 finally outputs whatever Game C1 outputs.

Let us denote with badC1 the event that A submits a critical query (i.e., an Odec query with
fresh τ, valid π, but u1 6= 0). Observe that B∨,1C1 perfectly simulates Game C1 (and in fact
also Game C0), unless badC1 occurs. Namely, upon badC1, B∨,1C1 would reject that query, while
Game C1 and Game C0 would recognize the query as critical and terminate. More precisely,
Game C0 would always output 1 upon badC1, while Game C1 would only output 1 if u1 = 1.
Hence, Game C0 and Game C1 only differ if badC1 occurs with u1 6= 1. But if badC1 occurs
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with u1 6= 1, then either badc ∨ badfact occurs (if u1 /∈ Z∗
|G2| or u1 − 1 /∈ Z∗

|G2|), or B∨,1C1 wins its
own soundness game. Using our bounds on Pr [badc] and Pr [badfact], we get (34).

Game C2 initially chooses a uniformly random value X ∈ Z23λ and encrypts the vector
u = (1, X, X, 0)> in each challenge ciphertext. We can invoke the IND-MCCPA security of
(E,D) (i.e., Lemma 3.4) twice to obtain

εC1 ≤ εC2 + 2Advmccpa
G,Bmccpa

C2

(λ). (35)

for an adversary Bmccpa
C2 .

Game C3 further refines the additional check enforced on critical queries. Concretely,
Game C3 checks not only u1 = 1, but also u2 = X. We stress again that we do not change
the definition of a critical query, only the requirements for the game to output 1 upon a critical
query. (In any case, the game terminates upon a critical query.) Hence, the difference between
Game C2 and Game C3 can be bounded by the probability that Amanages to submit a critical
query with u2 6= X. Now if we let M = (1, X, X, 0)> ∈ Z4×1

|G2|
, we can invoke the soundness of

PSlin for pk and M (see (11) and (12)). This gives

εC2 ≤ εC3 + Advsnd
PSlin,Blin

C3

(λ) (36)

for an adversary Blin
C3 that internally simulates Game C3, and uses its own oracles Osim and

Over as follows (and much like Blin
C1 above). Osim is used to generate PSlin-proofs for challenge

ciphertexts, and Over is used to determine the validity of PSlin-proofs πlin in Odec queries from
A. In case Over answers ⊥ (which means that the corresponding u is not in the span of M),
Blin
C3 rejects that Odec query and proceeds with the game as if πlin had been invalid. Observe

that Blin
C3’s internal simulation perfectly simulates Game C3 and Game C2, unless Amanages to

construct a ciphertext with u /∈ span(M) and valid πlin. In that case, however, Blin
C3 wins its own

soundness game, and follows.
In Game C4, we let Oenc encrypt the vector u = (1,F(τ),F(τ), 0)> in a challenge ciphertext

with hash value τ. Here, F : {0, 1}∗ → Z23λ is a truly random function chosen by the game.
Additionally, we change the additional winning condition introduced in Game C1 and refined
in Game C3. To describe our change, let τ(j) denote the value τ from the j-th Oenc query of A.
Now we let Game C4 finally only output 1 if u1 = 1 and if there is an index j of an Oenc query
such that the critical query satisfies u2 = F(τ(j)). (In other words, A must reuse a value F(τ(j))
previously obtained through Oenc in order to win.)

The justification for this step requires a somewhat complex hybrid argument, which we
outsource into Lemma 6.3. This lemma yields

εC3 ≤ εC4 + 2λ ·
(
3Advfact

G2,Bfact
C4

(λ) + 6Advmccpa
G,Bmccpa

C4

(λ)

+ 8Advsnd
PS∨,B∨C4

(λ) + 2Advsnd
PSlin,Blin

C4

(λ) + q/23λ
) (37)

for suitable Bfact
C4 , Bmccpa

C4 , B∨C4, and Blin
C4.

Game C5 again alters the vectors u encrypted by Oenc, in the following way. Namely,
instead of u = (1,F(τ),F(τ), 0)>, we let Oenc now encrypt the vector u = (1, X + τ, X + τ, 0)>

for a single, initially randomly chosen X ∈ Z23λ . Besides, a final critical query is checked for
u1 = 1 and u2 = X+ τ(j). Also here, an argument that we outsource into Lemma 6.4 shows

εC4 ≤ εC5 + 2λ ·
(
3Advfact

G2,Bfact
C5

(λ) + 6Advmccpa
G,Bmccpa

C5

(λ)

+ 8Advsnd
PS∨,B∨C5

(λ) + 2Advsnd
PSlin,Blin

C5

(λ) + O(q/2λ)
) (38)

for suitable Bfact
C5 , Bmccpa

C5 , B∨C5, and Blin
C5.
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In Game C6, we change the third vector component u3 in challenges prepared by Oenc.
Specifically, instead of u = (1, X + τ, X + τ, 0)>, we now let Oenc encrypt u = (1, X + τ, X, 0)>.
As in Game C2, we can invoke Lemma 3.4 to obtain

εC5 ≤ εC6 + Advmccpa
G,Bmccpa

C6

(λ) (39)

for a suitable adversary Bmccpa
C6 .

Game C7 finally extends the final check on a critical query. Namely, while Game C6 only
checked for u1 = 1 and u2 = X + τ(j), Game C7 now checks the following equalities (and only
outputs 1 if all of them hold):

u1 = 1 (40)

u2 = X+ τ(j) for some τ(j) from a previous Oenc query (41)
u2 = u3 + τ (42)
u3 = X. (43)

(40) and (41) are already enforced in Game C6, but (42) and (43) require some justification.
First, all ciphertexts prepared by Oenc satisfy u3 = Xu1. Thus, an adversary Blin

C7 on PSlin

can generate proofs πlin through its Osim oracle, and use its Over oracle to process Odec queries
from A. An analysis as in Game C3 shows that the introduction of (43) causes a statistical
defect of at most Advsnd

PSlin,Blin
C7

(λ).

Next, (42) is guaranteed by the soundness of PShash. Namely, all ciphertexts prepared by
Oenc satisfy u2 = u3 + τu1. Hence, an adversary Bhash

C7 on PShash can generate proofs πhash
through its ownOsim oracle, and use itsOver oracle to check the proofs πlin inA’sOdec queries.
(If Over answers ⊥, Bhash

C7 rejects that decryption query and proceeds with the game.) An anal-
ysis as in Game C3 shows that the introduction of (42) causes a statistical defect of at most
Advsnd

PShash,Bhash
C7

(λ). We note, however, that here, we also rely on πlin to exclude the event that A
submits an inconsistent ciphertext with ui = ⊥.

Taken together, we obtain

εC6 ≤ εC7 + Advsnd
PShash,Bhash

C7

(λ) + Advsnd
PSlin,Blin

C7

(λ). (44)

It is left to observe that the combined equations (40)-(43) imply that there is an index jwith
τ = τ(j). However, any such Odec query is already rejected by our change from GameM1, and
thus the query cannot be critical. Thus, A cannot win in Game C7 anymore, and we get

εC7 = 0. (45)

Summing up (33)-(45) yields (27), as desired.

6.2.3 Randomizing challenge ciphertexts

Outline. The following lemma is one of two core ingredients to establish the “reusal rule”
mentioned in the outline of Lemma 6.2 (see Section 6.2.2). In a nutshell, this lemma ran-
domizes the authentication tags in the u2 component of challenge ciphertexts from u2 = X

to u2 = F(τ(j)) (for a random function F, and the hash value τ(j) from that challenge cipher-
text). Additionally, the adversary is forced to reuse one of those F(τ(j)) values (for a previous
τ(j) from a challenge ciphertext) as u2 in his decryption queries with u1 6= 0.

A little more concretely, the proof proceeds in a series of hybrids. The i-th hybrid enforces
the rules above for u2 = F(τ(j)..i ), where τ(j)..i is the i-bit prefix of τ(j). To get from the i-th to the
(i+ 1)-st hybrid, we again proceed in several steps:
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# u M game knows winningcondition remark

C0


1

G(τ)
0

0



1 0

0 1

0 0

0 0

 psk, xsk,
esk1

u1 6= 0
like M3, but outputs 1 iff
A submits Odec query with
u1 6= 0 that is not rejected

C1


1

G(τ)
0

0



1 0

0 1

0 0

0 0

 psk, xsk,
esk1

u1 = 1
G2-factoring,

PS∨-soundness

C2


1

X

X
0



1

X

X

0

 psk, xsk,
esk1

u1 = 1 (E,D) IND-MCCPA

C3


1

X

X

0



1

X

X

0

 psk, xsk,
esk1, esk2

u1 = 1
u2 = X PSlin-soundness

C4


1

F(τ)

F(τ)
0



1 0

0 1

0 1

0 0

 psk, xsk,
esk1, esk2

u1 = 1

u2 = F(τ(j))
for some τ(j) from
a prev. Oenc query

Lemma 6.3

C5


1

X + τ

X + τ
0



1 0

0 1

0 1

0 0

 psk, xsk,
esk1, esk2

u1 = 1

u2 = X + τ(j)
Lemma 6.4

C6


1

X + τ

X
0



1 0

0 1

X 0
0 0

 psk, xsk,
esk1, esk2

u1 = 1
u2 = X + τ(j)

(E,D) IND-MCCPA

C7


1

X + τ
X

0



1 0

0 1

X 0

0 0

 psk, xsk,
esk1, esk2, esk3

u1 = 1
u2 = X + τ(j)

u2 = u3 + τ

u3 = X

PShash-soundness,
PSlin-soundness

Figure 3: Games in the proof of Lemma 6.2. The “u” column denotes the
vector encrypted upon Oenc queries, the columns of the matrix “M” span the
vector space generated by all “u” values used in Oenc queries, “game knows”
denotes which information is necessary to perform the game, and “winning
condition” denotes the conditions on a critical query under which the game
finally outputs 1. (Any critical query that does not satisfy these conditions
causes the game to output 0 immediately.)

Partitioning. First, we partition the set of challenge queries into two parts, according to the
(i + 1)-st bit τ(j)i+1 of the hash value τ(j) of that ciphertext. This partitioning is encoded into

u4 in the sense that u4 = τ
(j)
i+1 in all challenge queries. However, we stress that there is

nothing that would force the adversary to use u4 = τi+1 for the corresponding hash value
τ in his own decryption queries.

Decoupling the components of the partitioning. Next, we independently randomize the u2
value in all challenge ciphertexts, in the sense that we set u2 = F

τ
(j)
i+1

(τ
(j)
..i ) for two indepen-

dent random functions F0,F1. To justify this step, we use a double encryption technique
(that replicates u2 in u3) to modify encrypted values in the presence of a decryption oracle.
This double encryption technique also entails that decryption needs to accept authentica-
tion tags Fb(τ

(j)
..i ) for both b = 0 and b = 1.

Un-partitioning. Finally, if we set F(τ(j)..i+1) := F
τ
(j)
i+1

(τ
(j)
..i ), we obtain the (i+ 1)-st hybrid.

Lemma 6.3. In the proof of Lemma 6.2, (37) holds. Concretely, there are Bfact, Bmccpa, Blin, and B∨
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(with roughly the same complexity as Game C3) such that

εC3 ≤ εC4 + 2λ ·
(
3Advfact

G2,Bfact(λ) + 6Advmccpa
G,Bmccpa(λ)

+ 8Advsnd
PS∨,B∨(λ) + 2Advsnd

PSlin,Blin(λ) + O(q/2λ)
)
.

(46)

Proof. We show (46) with a series of hybrids. To this end, recall our notation τ..i for the i-bit
prefix (τ1, . . . , τi) of τ = (τ1, . . . , τ2λ). Now consider the following hybrid Game Hyb6.3i , which
is defined like Game C3, with the following exceptions:
• The vector u encrypted by Oenc is (1,F(τ..i),F(τ..i), 0)> (and not (1, X, X, 0)>).
• Analogously, a critical query is checked for u1 = 1 and u2 = F(τ..i) (instead of u2 = X).

By definition, these hybrids interpolate between Games C3 and C4, in the sense that

εHyb6.30
= εC3 and εHyb6.32λ

= εC4. (47)

Hence, to show the lemma, it suffices to show that for any i ∈ {0, . . . , 2λ − 1}, the outputs of
Games Hyb6.3i and Hyb6.3i+1 are close. So fix an i, and consider the following sequence of games
that interpolate between Game Hyb6.3i and Game Hyb6.3i+1. An overview over the games is given
in Fig. 4 (on p. 40).

Game R0 is defined exactly like Game Hyb6.3i . Hence, by definition,

εR0 = εHyb6.3i
. (48)

In Game R1, we change the vector u encrypted in ciphertexts generated by Oenc from
(1,F(τ..i),F(τ..i), 0)> to (1,F(τ..i),F(τ..i), τi+1)>. (That is, we encrypt τ’s (i + 1)-th bit τi+1 in
u4 now.) Since the secret key esk4 is not used at this point, a straightforward reduction to the
IND-MCCPA security of (E,D) yields

εR0 ≤ εR1 + Advmccpa
G,Bmccpa

R1

(λ) (49)

for a suitable adversary Bmccpa
R1 .

In Game R2, we abort with output 0 if a critical query does not satisfy u4 ∈ {0, 1}. We claim
that

εR1 ≤ εR2 + Advfact
G2,Bfact

R2

(λ) + Advsnd
PS∨,B∨,2R2

(λ) + Advsnd
PS∨,B∨,3R2

(λ) (50)

for adversaries Bfact
R2 , B∨,2R2 , and B∨,3R2 to be described. First, with an adversary Bfact

R2 , we can
bound the probability of any Odec query with u4, u4 − 1, or u1 that lie in Z|G2| \ (Z∗

|G2| ∪ {0}).
(This enables further reductions to the soundness of π∨,2 and π∨,3, and can be formalized as in
GameM5.)

Next, B∨,2R2 simulates Game R2, and uses its own Osim and Over oracles to generate and
check PS∨-proofs π∨,2. (Recall that π∨,2 intuitively enforces u4 ∈ {0, 1}.) As in previous re-
ductions, B∨,2R2 considers a proof π∨,2 invalid if Over returns ⊥. This happens if u4 6= 0 in the
corresponding ciphertext, or if the ciphertext is no possible output of E. The analysis of B∨,2R2 is
similar to the one of Blin

C3 from Game C3, but with an important difference.
Namely, B∨,2R2 may falsely rejectOdec queries (with u1 = 0 and u4 = 1) that neither constitute

PS∨-forgeries nor would lead to the immediate termination of Game R1 or Game R2. Such
queries are problematic, as they lead to a divergence of B∨,2R2 ’s simulation from Game R1 and
Game R2, without obtaining a forged proof from that divergence. Let bad2 be the event that A
places such a query (i.e., one with u1 = 0, u4 = 1, and valid proofs).

We additionally use the soundness of π∨,3 (which intuitively ensures u4 = 0 ∨ u1 = 1) to
exclude that bad2 happens before B∨,2R2 submits a valid forgery to its Over oracle. Consider an
adversary B∨,3R2 on PS∨that also simulates Game R2, and uses its own Osim and Over oracles to
generate and check PS∨-proofs π∨,3. Again, if Over returns ⊥ (which is the case when u4 6= 0),
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then B∨,3R2 considers the proof invalid. As above, B∨,3R2 perfectly simulates Game R2 until A
places an Odec query with valid π and u4 6= 0. Let us call that event bad3.

Observe that B∨,3R2 and B∨,2R2 perfectly simulate Game R2 and Game R1, as long as neither
bad2, nor bad3, nor a critical query (i.e., one with u1 6= 0 and valid π) occurs. However, if bad2
occurs first, then B∨,3R2 can extract a PS∨-forgery from that query. Similarly, if bad3 occurs first,
then B∨,2R2 can extract a PS∨-forgery. Finally, if a critical query occurs, then B∨,2R2 can extract a
PS∨-forgery if that query distinguishes Game R1 and Game R2 (i.e., if u1 = 1 and u4 6= {0, 1}).
Taken together, we get (50).

In Game R3, we initially independently and uniformly guess a bit β ∈ {0, 1}, and later on
abort (with output 0) if a critical query does not satisfy u4 = β. Since we already enforced
u4 ∈ {0, 1} in Game R2, this change exactly halves the probability to output 1:

εR2 = 2εR3. (51)

Game R4 changes the vector u encrypted in challenge ciphertexts. Specifically, on top
of the already used random function F : {0, 1}∗ → Z23λ , Game R4 defines another, indepen-
dently and uniformly random function F̃ : {0, 1}∗ → Z23λ . For an easier exposition, we will
write Fβ := F and Fβ := F̃. (Recall our notation β = 1 − β.) Now Game R4 encrypts
u = (1,F(τ..i),Fτi+1(τ..i), τi+1)

> in challenge ciphertexts. Hence, if τi+1 = β, then Game R4
encrypts (1,F(τ..i),F(τ..i), τi+1)> as before, and if τi+1 = β, then (1,F(τ..i), F̃(τ..i), τi+1)>. (This
means that compared to Game R3, we only change encryptions when τi+1 = β.)

Since Game R4 only modifies u3 (and does not use the corresponding secret key esk3), our
change can be justified with the IND-MCCPA security of (E,D). Specifically, we have

εR3 ≤ εR4 + Advmccpa
G,Bmccpa

R4

(λ) (52)

for a suitable adversary Bmccpa
R4 .

Game R5 now uses esk3 (instead of esk2) in checking critical queries. Specifically, recall that
Game R4 checks a critical query for three conditions:
(a) u1 = 1,
(b) u2 = F(τ(j)..i ) for some τ(j) from a previous Oenc query, and
(c) u4 = β.
Here, we only change (b). Namely, instead of (b), we let Game R5 check for
(b’) u3 = F(τ(j)..i ) for some τ(j) from a previous Oenc query.
Hence, Game R5 only differs from Game R4 if Amanages to submit a critical query with u2 6=
u3. However, note that we cannot rely on the soundness of PSlin at this point, since Game R5
also generates challenge ciphertexts with u2 6= u3.

Instead, observe that all challenge ciphertexts satisfy u2 = u3∨u4 = β and |u2−u3|N < 2
2λ.

Hence, no challenge violates the soundness of the (4 + β)-th PS∨instance, and we would like
to conclude that also the critical query must satisfy u2 = u3∨u4 = β. (Since u4 = β is enforced
at this point on critical queries, this means that u2 = u3.) Due to the same complications as
in Game R2, however, we will also require the soundness of π∨,6, as well as the G2-factoring
assumption.

First, we invoke the G2-factoring assumption to ensure that none of u4, u4− 1, u2−u3, and
u1−1 lie in Z|G2|\(Z

∗
|G2|∪ {0}). A detailed reduction (including an adversary Bfact

R5 that simulates
Game R5) works exactly as in GameM5.

Next, consider an adversary B∨,4+βR5 that simulates Game R5, and uses its own Osim and
Over oracles to generate and check proofs π∨,4+β. As usual, if Osim outputs ⊥, the proof is
considered invalid. Let bad4+β be the event that A places an Odec query with u1 = 0, u2 6= u3,
u4 = β, and valid π. Observe that the simulation in B∨,4+βR5 perfectly simulates Game R5 until
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it either extracts a forged PS∨-proof, or bad4+β occurs. (In the latter case, B∨,4+βR5 falsely rejects
the query without extracting a forged PS∨-proof.)

To exclude bad4+β, consider an adversary B∨,6R5 on PS∨that also simulates Game R5, and
uses its own Osim and Over oracles to generate and check proofs π∨,6. Let us denote with bad6
the event that A submits an Odec query with u1 6= 0 and u2 = u3. Similar to the above, B∨,6R5
perfectly simulates Game R5 until it extracts a forged PS∨-proof, or bad6 occurs.

Like in Game R2, the combination of these reductions excludes bad4+β and bad6. Specifi-

cally, B∨,4+βR5 excludes bad6 (unless bad4+β occurs first), and B∨,6R5 excludes bad4+β (unless bad6

occurs first). Furthermore, unless bad4+β occurs, B∨,4+βR5 shows that u2 = u3 in a critical query
(which is the condition enforced in Game R5). Hence, we obtain

εR4 ≤ εR5 + Advfact
G2,Bfact

R5

+ Advsnd
PS∨,B∨,4R5

(λ) + Advsnd
PS∨,B∨,5R5

(λ) + Advsnd
PS∨,B∨,6R5

(λ). (53)

Game R6 now exploits the fact that esk2 is no longer used. Specifically, instead of encrypt-
ing u = (1,F(τ..i),Fτi+1(τ..i), τi+1)

>, Game R6 encrypts u = (1,Fτi+1(τ..i),Fτi+1(τ..i), τi+1)
> in

challenge ciphertexts. Compared to Game R5, this means only u2 changes, and thus we can
once again rely on the IND-MCCPA security of (E,D) to justify our change. We obtain

εR5 ≤ εR6 + Advmccpa
G,Bmccpa

R6

(λ) (54)

for an adversary Bmccpa
R6 that simulates Game R6 or Game R5, depending on its challenge.

In Game R7, we reverse our change from Game R5. That is, we again use esk2 (and not
esk3) in checks on critical queries. We can justify this change in two alternative ways: first, an
argument completely analogous to that of Game R5 can justify this change with the soundness
of PS∨. Alternatively, observe that all challenge ciphertexts encrypted in Game R7 already
satisfy u2 = u3. Hence, the soundness of PSlin also guarantees that u2 = u3 in critical queries.

Indeed, for our analysis, we justify our change with the soundness of PSlin. Concretely, an
argument as in Game C3 yields

εR6 ≤ εR7 + Advsnd
PSlin,Blin

R7

(λ) (55)

for a suitable adversary Blin
R7 on PSlin.

In Game R8, we reverse the change from Game R3. Concretely, recall that Game R7 checks
a critical query for three conditions (where we use that Fβ = F by definition):
(a) u1 = 1,
(b) u2 = Fβ(τ

(j)
..i ) for some τ(j) from a previous Oenc query, and

(c) u4 = β.
Observe that A’s view in Game R7 does not depend on β. Hence, we can perform Game R7
with two independent random functions F0,F1, choosing β only when a critical query is sub-
mitted. Since this situation is completely symmetric with respect to β, we at least double the
probability of a 1-output if we only check
(b’) u2 = F0(τ

(j)
..i ) or u2 = F1(τ

(j)
..i ) for some τ(j) from a previous Oenc query.

Game R8 proceeds exactly like this: it initially starts with F0,F1, and finally only checks (a) and
(b’) (but not (c)) upon a critical query. We obtain:

2εR7 ≤ εR8. (56)

(Note that even 2εR7 < εR8 can occur if A sometimes submits critical queries with u4 /∈ {0, 1}.)
Game R9 again changes the critical query condition. Specifically, Game R9 checks critical

queries for u2 = F
τ
(j)
i+1

(τ
(j)
..i ) for some τ(j) (instead of condition (b’) from Game R8). Note that

Game R9 hence implements a more stringent condition than Game R8, since Game R9 only
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considers all F
τ
(j)
i+1

(τ
(j)
..i ), where Game R8 considered all F

τ
(j)
i+1

(τ
(j)
..i ) and all F

τ
(j)
i+1

(τ
(j)
..i ). However,

to provoke a different behavior of these games, Awould have to submit a critical query with

u2 6= F
τ
(j)
i+1

(τ
(j)
..i ) for all τ(j) from previous Oenc queries, but

u2 = Fτ∗i+1(τ
∗
..i) for a τ∗ from a previous Oenc query.

(57)

Such a critical query would lead to a 1-output in Game R8, but to a 0-output in Game R9. Of
course, a critical query that achieves (57) can only occur if no previous τ(j) satisfies τ(j)..i = τ∗..i
and τ(j)i+1 = τ

∗
i+1. In other words, Fτ∗i+1 has not been queried previously on τ∗..i, and A’s view is

thus independent of Fτ∗i+1(τ
∗
..i). Hence, A would have to correctly guess a uniformly random

value Fτ∗i+1(τ
∗
..i) ∈ Z23λ in order to provoke a difference between Game R8 and Game R9. Since

there are at most q previous τ(j) (and thus potential matches for A’s guess), we obtain

εR8 ≤ εR9 + q/2
3λ. (58)

Game R10 always encrypts u4 = 0 (instead of u4 = τi+1) in challenge ciphertexts. Since
esk4 is no longer used in Game R10, a straightforward reduction to the IND-MCCPA security
of (E,D) yields

εR9 ≤ εR10 + Advmccpa
G,Bmccpa

R10

(λ) (59)

for a suitable IND-MCCPA adversary Bmccpa
R10 .

Furthermore, if we simply set F(τ..i+1) := Fτi+1(τ..i), we see that Game R10 is simply a
reformulation of Game Hyb6.3i+1. Hence,

εR10 = εHyb6.3i+1
. (60)

Putting (48)-(60) together, and combining adversaries on the same scheme into one, we obtain

εHyb6.3i
≤ εHyb6.3i+1

+ 3Advfact
G2,Bfact(λ) + 6Advmccpa

G,Bmccpa(λ)

+ 8Advsnd
PS∨,B∨(λ) + 2Advsnd

PSlin,Blin(λ) + q/2
3λ.

If we let these adversaries guess i ∈ {0, . . . , 2λ− 1} uniformly, we obtain (46).

6.2.4 Derandomizing challenge ciphertexts and adding dependencies

Outline. In the next lemma, we will turn the random value F(τ(j)) encrypted in the u2 com-
ponent of challenge ciphertexts into a “less random” value X + τ(j), where X is a random
(but initially chosen and constant) value. Analogously, the decryption rule will require that
u2 = X + τ(j) (for a hash value τ(j) from a previous challenge ciphertext) in all decryption
queries with u1 6= 0. We note that establishing this decryption rule has been the goal from the
start. However, the intermediate randomization of u2 seems to be necessary to achieve this
goal, since it enables the bitwise introduction of τ(j) “behind a shielding random value F(τ(j))”.

The concrete steps of modifying u2 are very similar to those from the proof of Lemma 6.3.
A little more specifically, we will use a hybrid argument, where the i-th hybrid encrypts (and
checks) u2 = F(τ(j)i+1..)+τ

(j)
..i , where τ(j)..i and τ(j)i+1.. are the i-bit prefix, resp. the (2λ− i)-bit postfix

of τ(j). In other words, each hybrid step trades one bit of F-input for one bit outside of the
F-evaluation. As in the proof of Lemma 6.3, each step will use a double encryption technique
(that involves u2 and u3).
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# u M game knows winning condition remark

R0


1

F(τ..i)
F(τ..i)
0



1 0

0 1

0 1

0 0

 psk, xsk,
esk1, esk2

u1 = 1
u2 = F(τ(j)..i )

for some τ(j) from
a prev. Oenc query

same as Hyb6.3
i

R1


1

F(τ..i)
F(τ..i)
τi+1



1 0 0

0 1 0

0 1 0

0 0 1

 psk, xsk,
esk1, esk2

u1 = 1
u2 = F(τ(j)..i )

(E,D) IND-MCCPA

R2


1

F(τ..i)
F(τ..i)
τi+1



1 0 0

0 1 0

0 1 0

0 0 1

 psk, xsk,
esk1, esk2, esk4

u1 = 1
u2 = F(τ(j)..i )
u4 ∈ {0, 1}

G2-factoring,
PS∨-soundness

R3


1

F(τ..i)
F(τ..i)
τi+1



1 0 0

0 1 0

0 1 0

0 0 1

 psk, xsk,
esk1, esk2, esk4

u1 = 1
u2 = F(τ(j)..i )
u4 = β

halves ε
(β ∈ {0, 1} random)

R4


1

F(τ..i)
Fτi+1

(τ..i)

τi+1



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 psk, xsk,
esk1, esk2, esk4

u1 = 1
u2 = F(τ(j)..i )
u4 = β

(E,D) IND-MCCPA
(Fβ(τ..i) = F(τ..i),
Fβ(τ..i) = F̃(τ..i))

R5


1

F(τ..i)
Fτi+1

(τ..i)
τi+1



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 psk, xsk,
esk1, esk3, esk4

u1 = 1

u3 = F(τ(j)..i )
u4 = β

G2-factoring,
PS∨-soundness

R6


1

Fτi+1
(τ..i)

Fτi+1
(τ..i)

τi+1



1 0 0

0 1 0

0 1 0

0 0 1

 psk, xsk,
esk1, esk3, esk4

u1 = 1
u3 = F(τ(j)..i )
u4 = β

(E,D) IND-MCCPA

R7


1

Fτi+1
(τ..i)

Fτi+1
(τ..i)

τi+1



1 0 0

0 1 0

0 1 0

0 0 1

 psk, xsk,
esk1, esk2, esk4

u1 = 1

u2 = F(τ(j)..i )
u4 = β

PSlin-soundness

R8


1

Fτi+1
(τ..i)

Fτi+1
(τ..i)

τi+1



1 0 0

0 1 0

0 1 0

0 0 1

 psk, xsk,
esk1, esk2, esk4

u1 = 1

u2 = Fb(τ
(j)
..i )

for b = 0 or b = 1

at least doubles ε

R9


1

Fτi+1
(τ..i)

Fτi+1
(τ..i)

τi+1



1 0 0

0 1 0

0 1 0

0 0 1

 psk, xsk,
esk1, esk2, esk4

u1 = 1

u2 = F
τ
(j)
i+1

(τ
(j)
..i )

equivalent up to
guessing unknown

F0, F1-images

R10


1

Fτi+1
(τ..i)

Fτi+1
(τ..i)

0



1 0

0 1

0 1

0 0

 psk, xsk,
esk1, esk2

u1 = 1
u2 = F

τ
(j)
i+1

(τ
(j)
..i )

(E,D) IND-MCCPA,
same as Hyb6.3

i+1

Figure 4: Games in the proof of Lemma 6.3. The columns carry the same
meaning as in Fig. 3: “u” denotes the vector encrypted upon Oenc queries, the
columns of “M” span the vector space generated by all “u” values, “game
knows” denotes which information is necessary to perform the game, and
“winning condition” denotes the conditions on a critical query under which
the game finally outputs 1.

Lemma 6.4. In the proof of Lemma 6.2, (38) holds. Concretely, there are Bfact, Bmccpa, Blin, and B∨
(with roughly the same complexity as Game C4) such that

εC4 ≤ εC5 + 2λ ·
(
3Advfact

G2,Bfact(λ) + 6Advmccpa
G,Bmccpa(λ)

+ 8Advsnd
PS∨,B∨(λ) + 2Advsnd

PSlin,Blin(λ) + O(q/2λ)
)
.

(61)

Proof. We show (61) with a series of hybrids that is very similar to that from the proof of
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Lemma 6.3. Again, recall our notation τ..i (resp. τi..) for the i-bit prefix (τ1, . . . , τi) (resp. for the
(2λ− i+ 1)-bit postfix (τi, . . . , τ2λ)) of τ = (τ1, . . . , τ2λ). Furthermore, recall that we interpret τ
also as an integer τ =

∑2λ
i=1 2

i−1τi when convenient (i.e., in addition of exponents).
Now consider the following hybrid Game Hyb6.4i , which is defined like Game C4, with the

following exceptions:
• Oenc encrypts a vector u = (1,F(τi+1..) + τ..i,F(τi+1..) + τ..i, 0)> (and not (1,F(τ),F(τ), 0)>).
• A critical query is checked for u1 = 1 and u2 = F(τi+1..) + τ..i (instead of u2 = F(τ)).

By definition, these hybrids interpolate between Games C4 and C5, in the sense that

εHyb6.40
= εC4 and εHyb6.42λ

= εC5. (62)

Hence, it suffices to show that for any i ∈ {0, . . . , 2λ − 1}, the outputs of Games Hyb6.4i and
Hyb6.4i+1 are close. So fix an i, and consider the following sequence of games that interpolate
between Games Hyb6.4i and Hyb6.4i+1. The games are summarized in Fig. 5 (on p. 44).

Game H0 is defined exactly like Game Hyb6.4i . Hence, by definition,

εH0 = εHyb6.4i
. (63)

Our first modifications are completely analogous to those from the proof of Lemma 6.3.
Specifically, Game H1 changes the encrypted u4 from 0 to τi+1. This change can be justified
with the IND-MCCPA security of (E,D), and we get

εH0 ≤ εH1 + Advmccpa
G,Bmccpa

H1

(λ) (64)

for a straightforward adversary Bmccpa
H1 . Next, Game H2 aborts with output 0 if a critical query

does not satisfy u4 ∈ {0, 1}. Just like in the proof of Lemma 6.3, we obtain

εH1 ≤ εH2 + Advfact
G2,Bfact

H2

(λ) + Advsnd
PS∨,B∨,2H2

(λ) + Advsnd
PS∨,B∨,3H2

(λ) (65)

for suitable Bfact
H2 , B∨,2H2 , and B∨,3H2 . Game H3 initially chooses β ∈ {0, 1}, and aborts (with output

0) if a critical query does not satisfy u4 = β. This change exactly halves the probability to
output 1:

εH2 = 2εH3. (66)

In Game H4, we write the evaluation F(τi+1..) used in u2, u3 of encrypted values, and in the
final check on critical queries differently. Namely, instead of F(τi+1..), we use Fτi+1(τi+2..) for
two independently chosen random functions F0,F1. This change is purely conceptual, and we
obtain

εH3 = εH4. (67)

In the next four games, we modify the values encrypted in u2 and u3, with exactly the same
reasoning as in Games R4− R7. Concretely, Game H5 encrypts u3 = Fβ(τi+2..)−β2i+τ..i+1 (in-
stead of encrypting u3 = Fτi+1(τi+2..)+τ..i). Since Game H5 does not use esk3, a straightforward
reduction to the security of (E,D) yields

εH4 ≤ εH5 + Advmccpa
G,Bmccpa

H5

(λ) (68)

for a suitable adversary Bmccpa
H5 . Next, Game H6 uses esk3 (instead of esk2) in checking critical

queries. An argument completely analogous to that of Game R5 yields

εH5 ≤ εH6 + Advfact
G2,Bfact

H6

+ Advsnd
PS∨,B∨,4H6

(λ) + Advsnd
PS∨,B∨,5H6

(λ) + Advsnd
PS∨,B∨,6H6

(λ) (69)
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for suitable adversaries Bfact
H6 , B∨,4H6 , B∨,5H6 , and B∨,6H6 . Game H7 encrypts u2 = Fβ(τi+2..) − β2i +

τ..i+1 (not u2 = Fτi+1(τi+2..) + τ..i). Since Game H7 does not use esk2, we get

εH6 ≤ εH7 + Advmccpa
G,Bmccpa

H7

(λ) (70)

for a suitable adversary Bmccpa
H7 . Finally, Game H8 again uses esk2 (and not esk3) to check critical

queries. Again, an argument as in Game R7 shows of an adversary Blin
H8 with

εH7 ≤ εH8 + Advsnd
PSlin,Blin

H8

(λ). (71)

In Game H9, we slightly change the check on critical queries. Namely, recall that Game H8
outputs 1 upon a critical query if u1 = 1, u4 = β, and u2 = F

τ
(j)
i+1

(τ
(j)
i+2..) + τ

(j)
..i for some τ(j) from

a previous Oenc query. Instead, Game H9 outputs 1 if u1 = 1, u4 = β, and u2 = Fβ(τ
(j)
i+2..) + τ

(j)
..i

from a previous Oenc query with τ(j)i+1 = β. (Thus, compared to Game H8, Game H9 does not

consider τ(j) with τ(j)i+1 = β.) To justify this change, observe that Game H9 only uses Fβ (but

never Fβ) in its own encryptions. Hence, A’s view is independent of F
τ
(j)
i+1

(τ
(j)
i+2..) for τ(j)i+1 6= β.

Thus, any critical query that would be accepted by Game H8 but rejected by Game H9 would
imply that A has guessed one out of at most q independently random and hidden Fβ-images.
Hence,

εH8 ≤ εH9 + q/2
3λ. (72)

Next, in Game H10, we use a freshly chosen random function F : {0, 1}∗ → Z23λ in place of
Fβ(τ

(j)
i+2..) −β2

i. Specifically, Game H10 encrypts u2 = u3 = F(τ(j)i+2..) + τ
(j)
..i+1, and finally checks

a critical query for u2 = F(τ(j)i+2..) + β2
i + τ

(j)
..i (for some τ(j) with τ(j)i+1 = β). Note that this check

on critical queries then becomes equivalent to checking u2 = F(τ(j)i+2..) + τ
(j)
..i+1, since τ(j)i+1 = β

implies that

β2i + τ
(j)
..i = τ

(j)
i+12

i +

i∑
`=1

2`−1τ
(j)
` =

i+1∑
`=1

2`−1τ
(j)
` = τ

(j)
..i+1.

Furthermore, we claim that the respective output values of Game H9 and Game H10 are
statistically close. Indeed, for every input x, we have SD

(
Fβ(x) − β2i ; F(x)

)
≤ 1/2λ. Hence,

summing up this statistical distance over all possible q+ 1 evaluations of F, we obtain

εH9 ≤ εH10 + (q+ 1)/2λ. (73)

In Game H11, we do not initially guess β, and instead check a possible critical query for
u2 = F(τ(j)i+2..) + τ

(j)
..i+1 for any previous τ(j). Hence, Game H11 considers all previous Oenc

queries τ(j) (and not only those with τ(j)i+1 = β) in checking critical queries. Since A’s view is
completely independent of β already in Game H10, by symmetry we have

2εH10 ≤ εH11. (74)

Finally, Game H12 always encrypts u4 = 0 (instead of u4 = τi+1) in challenge ciphertexts.
Since esk4 is no longer used in Game H12, a straightforward reduction to the IND-MCCPA
security of (E,D) yields

εH11 ≤ εH12 + Advmccpa
G,Bmccpa

H12

(λ) (75)

for a suitable IND-MCCPA adversary Bmccpa
H12 . Furthermore, Game H12 is simply a reformula-

tion of Game Hyb6.4i+1. Hence,
εH12 = εHyb6.4i+1

. (76)
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Putting (63)-(76) together, and combining adversaries on the same scheme into one, we obtain

εHyb6.4i
≤ εHyb6.4i+1

+ 3Advfact
G2,Bfact(λ) + 6Advmccpa

G,Bmccpa(λ)

+ 8Advsnd
PS∨,B∨(λ) + 2Advsnd

PSlin,Blin(λ) + O(q/2λ).

If we let these adversaries guess i ∈ {0, . . . , 2λ− 1} uniformly, we obtain (61).

6.3 Security in the multi-user setting

Like in similar works (e.g., [25, 26, 12]), our main security analysis (Theorem 6.1) considers
the multi-challenge, but single-user setting. This choice was made in order to simplify the
presentation. However, the analysis also applies almost verbatim in the multi-user, multi-
challenge setting. We sketch the necessary modifications to the analysis in the following. (The
scheme KEM itself does not require any modifications.)
• The IND-MCCA security definition (Definition 2.2) needs to be adapted to many keypairs
(pkj, skj). The adversary A initially obtains all pkj, and can select an index j that selects the
scheme instance upon each Oenc and Odec query. However, we stress that the challenge bit
b chosen by the experiment applies to all instances. (That is, depending on b, either all keys
K returned by Oenc are real for all instances j, or all are random.)
• Similarly, the IND-MCCPA definition (Definition 3.3) needs to be adapted to many vectors

pkj and skj. However, each of these pki contains the same number n of component public
keys epk, and the “challenge index” i∗ that A initially selects applies to all instances.
• As a result, the generalized ElGamal encryption from Section 3.1.3 must be proved tightly

secure in a setting with multiple public vectors pkj of public keys. This requires a slight

change to the randomization in Lemma 3.4. Namely, instead of setting epki∗ = gω
∗>B

1 ,

we set epkj,i∗ = g
(ω∗+ω ′

j,i∗ )
>B

1 for the i∗-th component public key of the j-th scheme in-
stance, where ω ′j,i∗ ∈ Z`B

|G1|
is a freshly chosen blinding value. This allows to embed a

single GDDH challenge into all i∗-th component public keys, and to generalize the argu-
ment from Lemma 3.4 to many scheme instances. (The corresponding reduction to GDDH
is still completely tight.)
• The key extractor indistinguishability definition (Definition 4.4), and the corresponding

analysis of EXT (Lemma 4.5) need to be adapted to support many public key instances epki.

This can be done as with the IND-MCCPA security of (E,D), by setting up eskj = g
ω+ω ′j
1 ,

where ω is from the GDDH challenge, and ω ′j is an instance-dependent randomization
value. Ocha and Oext queries are then answered using the corresponding blinded key ω +
ω ′j .
• The one-time signature construction and its analysis support many instances in the first

place, and do not need to be adapted. Similarly, the security of all considered proof systems
is statistical, and hence their analysis also does not need to be adapted.
• In the security analysis of our KEM (Theorem 6.1), all changes in hybrid games are applied

to all scheme instances j simultaneously. Hence, the structure of the proofs does not change,
only hybrid modifications are now justified with the appropriate multi-instance security of
the underlying building blocks.

6.4 Performance and optimizations

The efficiency characteristics of our scheme of course highly depend on the used building
blocks, and thus also on the considered setting. In the following, we hence distinguish be-
tween the prime-order and the DCR setting. In both cases, however, we rely on the generic
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# u game knows winning condition remark

H0


1

F(τi+1..) + τ..i
F(τi+1..) + τ..i

0

 psk, xsk,
esk1, esk2

u1 = 1
u2 = F(τ(j)i+1..) + τ

(j)
..i

for some τ(j) from
a prev. Oenc query

same as Hyb6.4
i

H1


1

F(τi+1..) + τ..i
F(τi+1..) + τ..i

τi+1

 psk, xsk,
esk1, esk2

u1 = 1
u2 = F(τ(j)i+1..) + τ

(j)
..i

(E,D) IND-MCCPA

H2


1

F(τi+1..) + τ..i
F(τi+1..) + τ..i

τi+1

 psk, xsk,
esk1, esk2, esk4

u1 = 1
u2 = F(τ(j)i+1..) + τ

(j)
..i

u4 ∈ {0, 1}

G2-factoring,
PS∨-soundness

H3


1

F(τi+1..) + τ..i
F(τi+1..) + τ..i

τi+1

 psk, xsk,
esk1, esk2, esk4

u1 = 1
u2 = F(τ(j)i+1..) + τ

(j)
..i

u4 = β

halves ε
(β ∈ {0, 1} random)

H4


1

Fτi+1
(τi+2..) + τ..i

Fτi+1
(τi+2..) + τ..i

τi+1

 psk, xsk,
esk1, esk2, esk4

u1 = 1

u2 = F
τ
(j)
i+1

(τ
(j)
i+2..) + τ

(j)
..i

u4 = β

conceptual change
(F0, F1 independent)

H5


1

Fτi+1
(τi+2..) + τ..i

Fβ(τi+2..) − β2i + τ..i+1
τi+1

 psk, xsk,
esk1, esk2, esk4

u1 = 1
u2 = F

τ
(j)
i+1

(τ
(j)
i+2..) + τ

(j)
..i

u4 = β

(E,D) IND-MCCPA

H6


1

Fτi+1
(τi+2..) + τ..i

Fβ(τi+2..) − β2i + τ..i+1
τi+1

 psk, xsk,
esk1, esk3, esk4

u1 = 1

u3 = F
τ
(j)
i+1

(τ
(j)
i+2..) + τ

(j)
..i

u4 = β

G2-factoring,
PS∨-soundness

H7


1

Fβ(τi+2..) − β2i + τ..i+1
Fβ(τi+2..) − β2i + τ..i+1

τi+1

 psk, xsk,
esk1, esk3, esk4

u1 = 1
u3 = F

τ
(j)
i+1

(τ
(j)
i+2..) + τ

(j)
..i

u4 = β

(E,D) IND-MCCPA

H8


1

Fβ(τi+2..) − β2i + τ..i+1
Fβ(τi+2..) − β2i + τ..i+1

τi+1

 psk, xsk,
esk1, esk2, esk4

u1 = 1

u2 = F
τ
(j)
i+1

(τ
(j)
i+2..) + τ

(j)
..i

u4 = β

PSlin-soundness

H9


1

Fβ(τi+2..) − β2i + τ..i+1
Fβ(τi+2..) − β2i + τ..i+1

τi+1

 psk, xsk,
esk1, esk2, esk4

u1 = 1

u2 = Fβ(τ
(j)
i+2..) + τ

(j)
..i

for some τ(j) with τ(j)i+1 = β
u4 = β

Fβ hidden

H10


1

F(τi+2..) + τ..i+1
F(τi+2..) + τ..i+1

τi+1

 psk, xsk,
esk1, esk2, esk4

u1 = 1

u2 = F(τ(j)i+2..) + τ
(j)
..i+1

for some τ(j) with τ(j)i+1 = β
u4 = β

Fβ(τ
(j)
i+2..) and

Fβ(τ
(j)
i+2..) + β2

i

statistically close

H11


1

F(τi+2..) + τ..i+1
F(τi+2..) + τ..i+1

τi+1

 psk, xsk,
esk1, esk2, esk4

u1 = 1

u2 = F(τ(j)i+2..) + τ
(j)
..i+1

for some τ(j)
at least doubles ε

H12


1

F(τi+2..) + τ..i+1
F(τi+2..) + τ..i+1

0

 psk, xsk,
esk1, esk2

u1 = 1
u2 = F(τ(j)i+2..) + τ

(j)
..i+1

(E,D) IND-MCCPA,
same as Hyb6.4

i+1

Figure 5: Games in the proof of Lemma 6.4. The columns have the same mean-
ing as in Fig. 3.
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benign proof systems from Section 5.2.1 (for the generic linear language), Section 5.3.1 (for the
parameterized linear language), and on the generic key extractor from Section 4.2.1.

6.4.1 In the prime-order setting

Without any optimizations. If G = G1 = G2 for prime |G|, we can use the pairing-based
benign proof system PS∨

pair from Section 5.4.1, and the one-time signature scheme from Sec-
tion 4.1.1. This leads to public keys of 12`2B + 20`B group elements, and ciphertexts of `B + 14
group elements and 2 exponents. Hence, if we desire a DLIN-based (i.e., 2-LIN-based) scheme,
we obtain public keys of 88 group elements, and ciphertexts of 16 group elements and 2 ex-
ponents. Moreover, the corresponding matrix gB

1 ∈ G2×2 in the public parameters takes up 2
group elements (since in case of DLIN, only the diagonal of B is nontrivial [10]). However, by
optimizing our scheme (and using certain non-generic, setting-specific properties), we can do
much better. We give details on these optimizations in the following.
Dropping the proofs from the ciphertext. We first observe that in the prime-order setting,
all involved proof systems are actually hash proof systems (in the sense of [9]). Hence, proofs
π can be computed from the respective statements x deterministically, using either a witness
and the public key ppk, or the secret key psk. Furthermore, proofs for false statements look
uniformly random (and are not just unpredictable, as in Definition 5.2). Hence, we can use a
standard trick (from [8, 9, 24]), drop π from the ciphertext, and instead define the key K as

K = Extpub(xpk, (c0, c1), r) ⊕ h(π),

where h is the universal hash function from EXT. The resulting KEM will only be secure un-
der constrained chosen-ciphertext attacks [18], a notion which however is sufficient for (tightly
secure) efficient hybrid encryption.
Dropping unnecessary proofs. Dropping proofs from the ciphertext compresses ciphertexts,
but leaves the public key unchanged. However, we can also compress the public key by drop-
ping certain proof systems altogether. Concretely, the pairing-based universal hash proof sys-
tem PS∨

pair for disjunctions from [1] (cf. Section 5.4.1) actually proves more than membership
in L∨. In the notation from Section 5.4, this proof system is (L∨sim,pk,L

∨
ver,pk,L

∨
snd,pk)-benign for

L∨sim,pk = L∨ver,pk = L∨snd,pk =
{

Epk(u; r) | u1 = 0∨ u2 = 0
}
.

Hence, in this case, the “helper proofs” π∨,3 and π∨,6 (that help manage the weak original L∨ver
definition from Section 5.4) are not necessary, and can be dropped from the scheme. For similar
reasons, the proof π∨,1 can be omitted. As a result, the scheme really only requires 3 instances
of PS∨

pair (for π∨,2, π∨,4, and π∨,5).
Dropping the one-time signature scheme. Moreover, we can generate the tag τ used in KEM
not through a one-time signature scheme, but simply as τ = H(c0) for the collision-resistant
hash function H. This change is possible since, by now, the ciphertext only contains c, and in
regular ciphertexts (that encrypt 0 as in the scheme), c0 completely determines that c. Hence, in
a security analysis, we can initially establish a special decryption rule that rejects all decryption
queries with a reused c0 from a previous encryption query. (Initially, PSlin ensures that such
ciphertexts must be completely identical to that previous encryption query, and thus can be
rejected by the rules of the IND-MCCA security game.) A similar trick has been used in [12]
for a similar purpose.
Optimized efficiency. If we apply all of the above optimizations, we obtain a practical scheme.
Concretely, public keys consist of the following:
• a vector of 4 generalized ElGamal public keys (`B group elements each)
• a public key ppklin for PSlin (`B group elements),
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• a public key ppkhash for PShash (2`B group elements),
• public keys ppk∨,2, ppk∨,4, and ppk∨,5 for PS∨(2`B(`B + 1) group elements each), and
• an extractor public key xpk (`B group elements).

This amounts to 2`2B + 10`B group elements. Ciphertexts consist of `B + 4 group elements. The
public parameters consist of gB

1 , plus of course descriptions of H, h, and the groups G, G1, and
G2. (Depending on the considered assumption, gB

1 can be represented in a compact form [10].)
For instance, a DLIN-based scheme has ciphertexts, public keys, and public parameters of

6, 24, and 2 group elements. Thus, compared with the recent pairing-free tightly secure KEM of
[12], our scheme has a significantly smaller public key, and comparable ciphertexts (of 6 group
elements) in the DLIN setting. However, when instantiated as described in the prime-order
setting, our scheme relies on symmetric pairings, and thus is computationally less efficient,
and cannot be instantiated under the DDH assumption.

6.4.2 In the DCR setting

Efficiency calculation. In the DCR setting from Section 3.3, we can use the OR-proofs from
Section 5.4.2, and the one-time signature scheme from Section 4.1.2. Hence, public keys contain
the following:
• a vector of 4 generalized ElGamal public keys (1 group element each)
• a public key ppklin for PSlin (1 group element),
• a public key ppkhash for PShash (2 group elements),
• 6 public keys for PS∨(2 group elements each), and
• an extractor public key xpk (1 group element).

This amounts to 20 group elements. Ciphertexts contain the following:
• a vector c of 4 ElGamal encryptions with reused randomness (5 group elements in total),
• proofs πlin and πhash (1 group element each),
• 6 PS∨

DCR proofs (3 group elements each), and
• a verification key, and a signature of OTSDCR (2, resp. 3 group elements10).

This amounts to 30 group elements.
Hence, our DCR-based scheme is not very practical. However, it is the first DCR-based

tightly CCA-secure KEM, and can potentially be made much more efficient by using more
compact, or more expressive OR-proofs.
Optimizations. We remark that the proof systems PSlin and PShash are in fact hash proof
systems. Hence, with the same reasoning as in the prime-order setting, we can integrate πlin
and πhash into the session key K, at the price of obtaining only constrained chosen-ciphertext
security. This saves 2 group elements in the ciphertext (which however still contains 28 group
elements in that case).
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