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Abstract. We consider the cryptographic two-party protocol task of
extending a given coin toss. The goal is to generate n common random
coins from a single use of an ideal functionality which gives m < n
common random coins to the parties. In the framework of Universal
Composability we show the impossibility of securely extending a coin toss
for statistical and perfect security. On the other hand, for computational
security the existence of a protocol for coin toss extension depends on
the number m of random coins which can be obtained �for free�.
For the case of stand-alone security, i.e., a simulation based security def-
inition without an environment, we present a novel protocol for uncondi-
tionally secure coin toss extension. The new protocol works for superlog-
arithmic m, which is optimal as we show the impossibility of statistically
secure coin toss extension for smaller m.
Combining our results with already known results, we obtain a (nearly)
complete characterization under which circumstances coin toss extension
is possible.
Keywords: coin toss, universal composability, reactive simulatability,
cryptographic protocols.

1 Introduction

Manuel Blum showed in [5] how to �ip a coin over the telephone line. His pro-
tocol guaranteed that even if one party does not follow the protocol, the other
party still gets a uniformly distributed coin toss result. This general concept
of generating common randomness in a way such that no dishonest party can
dictate the result proved very useful in cryptography, e.g., in the construction of
protocols for general secure multi-party computation.

Here we are interested in the task of extending a given coin toss. That is,
suppose that two parties already have the possibility of making a single m-bit
coin-toss. Is it possible for them to get n > m bits of common randomness? The
answer we come up with is basically: �it depends.�

The �rst thing the extensibility of a given coin toss depends on is the required
security type. One type of security requirement (which we call �stand-alone sim-
ulatabiliy� here) can simply be that the protocol imitates an ideal coin toss
functionality in the sense of [13], where a simulator has to invent a realistic pro-
tocol run after learning the outcome of the ideal coin-toss. A stronger type of



requirement is to demand universal composability, which basically means that
the protocol imitates an ideal coin toss functionality even in arbitrary protocol
environments. Security in the latter sense can conveniently be captured in a sim-
ulatability framework like the Universal Composability framework [6,8] or the
Reactive Simulatability model [16,3].

Orthogonal to this, one can vary the level of ful�lment of each of these re-
quirements. For example, one can demand stand-alone simulatability of the pro-
tocol with respect to polynomial-time adversaries in the sense that real protocol
and ideal functionality are only computationally indistinguishable. This speci�c
requirement is already ful�lled by the protocol of Blum. Alternatively, one can
demand, e.g., universal composability of the protocol with respect to unbounded
adversaries. This would then yield statistical or even perfect security. We show
that whether such a protocol exists depends on the asymptotic behaviour of m.

Our results are summarized in the table below. A �yes� or �no� indicates
whether a protocol for coin toss extension exists in that setting. �Depends� means
that the answer depends on the size of the seed (the m-bit coin toss available by
assumption), and boldface indicates novel results.

Security type ↓ / level → Computational Statistical Perfect
stand-alone simulatability yes depends3 no
universal composability depends4 no no

Known results in the perfect and statistical case. A folklore theorem states, that
(perfectly non-trivial) statistically secure coin-toss is impossible from scratch
(even in very lenient security models). By Kitaev, this result was extended even
to protocols using quantum communication (cf. [1]). [4] �rst investigated the
problem of extending a coin-toss. They presented a statistically secure protocol
for extending a given coin-toss (pre-shared using a VSS), if less than 1

6 of the
parties are corrupted. Note that their main attention was on the e�ciency of the
protocol, since in that scenario arbitrary multi-party computations and therefore
in particular coin-toss from scratch are known to be possible. The result does
not apply to the two-party case.

Our results in the perfect and statistical case. Our results in the perfect case
are most easily explained. For the perfect case, we show impossibility of any
coin toss extension, no matter how (in-)e�cient. We show this for stand-alone
simulatability (Coro. 7) and for universal composability. Now for the statistical
case. When demanding only stand-alone simulatability, the situation depends on
the number of the already available common coins. Namely, we give an e�cient
protocol to extend m common coins to any polynomial number (in the security
parameter), if m is superlogarithmic (Th. 10). Otherwise, we show that there
can even be no protocol that derives m + 1 common random coins (Coro. 7).

3 Coin toss extension is possible if and only if the seed has superlogarithmic length.
4 Coin toss extension is impossible if the seed does not have superlogarithmic length.
The possibility result depends on the complexity assumption we use, cf. Section 3.1.



In the universal composability setting, the situation is more clear: we show that
there simply is no protocol that derives from m common coins m + 1 coins, no
matter how large m is (Th. 13). (However, here we restrict to protocols that run
in a polynomial number of rounds.)

Known results in the computational case. The possibility of coin tossing (in a
non-simulation based model) was �rst shown by [5] and this protocol can be
proven secure in a stand-alone security model. For the UC framework coin-toss
was proven to be impossible in [9], unless a helping functionality like a CRS is
given. In [12], the task of coin-toss is considered in a scenario slightly di�erent
from ours: in [12], protocol participants may not abort protocol execution with-
out generating output. In that setting, [12] show that coin-toss is generally not
possible even against computationally limited adversaries. However, to the best
of our knowledge, an extension of a given coin toss has not been considered so
far in the computational setting.

Our results in the computational case. We answer the question concerning the
minimal size necessary for a coin-toss to be extensible: If anm-bit coin-toss func-
tionality is given, andm is not superlogarithmic, then it is already impossible for
the parties to derive m+ 1 common random coins (in a universally composable
way) from it (Th. 5). However, we also show that under strengthened computa-
tional assumptions, there are protocols that extendm to any polynomial number
(in the security parameter) of common random coins, if m is superlogarithmic
(Th. 4). In that sense, we give the remaining parts for a complete characteriza-
tion of the computational case.

Notation

� A function f is negligible, if for any c > 0, f(k) ≤ k−c for su�ciently large
k (i.e., f ∈ k−ω(1)).

� f is polynomially bounded, if for some c > 0, f(k) ≤ kc for su�ciently large
k (i.e., f ∈ kO(1)).

� f is polynomially-large, if there is a c > 0 s.t. f(k)c ≥ k for su�ciently large
k (i.e., f ∈ kΩ(1)).

� f is superpolynomial, if for any c > 0, f(k) > kc for su�ciently large k (i.e.,
f ∈ kω(1)).

� f is superlogarithmic, if f/ log k → ∞ (i.e., f ∈ ω(log k)). It is easy to see
that f is superlogarithmic if and only if 2−f is negligible.

� f is superpolylogarithmic, if for any c > 0, f(k) > (log k)c for su�ciently
large k (i.e., f ∈ (log k)ω(1)).

� f is exponentially-small, if there exists a c > 1, s.t. f(k) ≤ c−k for su�ciently
large k (i.e., f ∈ Ω(1)−k = 2−Ω(k)).

� f is subexponential, if for any c > 1, f(k) < ck for su�ciently large k (i.e.,
f ∈ o(1)k = 2o(k)).



2 Security de�nitions

In this section we roughly sketch the security de�nitions used throughout this
paper. We distinguish between two notions: stand-alone simulatability as de�ned
in [13],5 and Universal Composability (UC) as de�ned in [6].

Stand-alone simulatability. In [13] a de�nition for the security of two-party
secure function evaluations is given (called security in the malicious model). We
will give a sketch, for more details we refer to [13].

A protocol consists of two parties that alternatingly send messages to each
other. The parties may also invoke an ideal functionality, which is given as an
oracle (in our cases, they invoke a smaller coin-toss to realise a larger one).

We say the protocol π stand-alone simulatably realises a probabilistic func-
tion f , if for any e�cient adversary A that may replace none or a single party,
there is an e�cient simulator S s.t. for all inputs the following random variables
are computationally indistinguishable:
� The real protocol execution. This consists of the view of the corrupted parties
upon inputs x1 and x2 for the parties and the auxiliary input z for the
adversary, together with the outputs I of the parties.

� The ideal protocol execution. Here the simulator �rst learn the auxiliary
input z and possibly the input for the corrupted party (the simulator must
corrupt the same party as the adversary). Then he can choose the input of
the corrupted party for the probabilistic function f , the other inputs are
chosen honestly (i.e., the �rst input is x1 if the �rst party is uncorrupted,
and the second input x2 if the second party is).
Then the simulator learns the output I of f (we assume the output to be
equal for all parties). It may now generate a fake view v of the corrupted
parties. The ideal protocol execution then consists of v and I.

Of course, in our case the probabilistic function f (the coin-toss) has no input,
so the above de�nition gets simpler.

What we have sketched above is what we call computational stand-alone sim-
ulatability. We further de�ne statistical stand-alone simulatability and perfect
stand-alone simulatability. In these cases we do not consider e�cient adversaries
and simulators, but unlimited ones. In the case of statistical stand-alone sim-
ulatability we require the real and ideal protocol execution to be statistically
indistinguishable (and not only computationally ), and in the perfect case we
even require these distributions to be identical.

Universal Composability. In contrast to stand-alone simulatability, Universal
Composability [6] is a much stricter security notion. The main di�erence is the
existence of an environment, that may interact with protocol and adversary (or
with ideal functionality and simulator)

5 In fact, [13] does not use the name stand-alone simulatability but simply speaks
about security in the malicous model. We adopt the name stand-alone simulatability
for this paper to be able to better distinguish the di�erent notions.



and try to distinguish between real and ideal protocol. This additional strict-
ness brings the advantage of a versatile composition theorem (the Universal
Composition Theorem [6]).

We only sketch the model here and refer to [6] for details.
A protocol consists of several machines that may (a) get input from the

environment, (b) give output to the environment (both also during the execution
of the protocol), and (c) send messages to each other.

The real protocol execution consists of a protocol π, an adversary A and an
environment Z. Here the environment may freely communicate with the adver-
sary, and the latter has full control over the network, i.e., it may deliver, delay or
drop messages sent between parties. We assume the authenticated model in this
paper, so the adversary learns the content of the messages but may not modify
it. When Z terminates, it gives a single bit of output. The adversary may choose
to corrupt parties at any point in time.6

The ideal protocol execution is de�ned analogously, but instead of a protocol
π there is an ideal functionality F and instead of the adversary there is a sim-
ulator S. The simulator can only learn and in�uence protocol data, if (a) the
functionality explicitly allows this, or (b) it corrupts a party (note that the simu-
lator may only corrupt the same parties as the adversary). In the latter case, the
simulator can choose inputs into the functionality in the name of that party and
gets the outputs appartaining to that party. In the case of uncorrupted parties,
the environment is in control of the corresponding in- and output of the ideal
functionality.

We say a protocol π universally composably (UC)-implements an ideal func-
tionality F (or short π is universally composable if F is clear from the context),
if for any e�cient adversary A, there is an e�cient simulator S, s.t. for all e�-
cient environments Z and all auxiliary inputs z for Z, the distributions of the
output-bit of Z in the real and the ideal protocol execution are indistinguishable.

What has been sketched above we call computational UC. We further de�ne
statistical and perfect UC. In these notions, we allow adversary, simulator and
environment to be unlimited machines. Further, in the case of perfect UC, we
require the distributions of the output-bit of Z to be identical in real and ideal
protocol execution.

The Ideal Functionality for Coin Toss. To describe the task of implementing
a universally composable coin-toss, we have to de�ne the ideal functionality of
n-bit coin-toss.

In the following, let n denote a positive integer-valued function.
Below is an informal description of our ideal functionality for a n-bit coin

toss. First, the functionality waits for initialization inputs from both parties P1

and P2. As soon as both parties have this way signalled their willingness to start,
the functionality selects n coins in form of an n-bit string κ uniformly and sends

6 It is then called an adaptive adversary. If the adversary can only corrupt parties
before the start of the protocol, we speak of static corruption. All results in this
paper hold for both variants of the security de�nition.



this κ to the adversary. (Note that a coin toss does not guarantee secrecy of any
kind.)

If the functionality now sent κ directly and without delay to the parties, this
behaviour would not be implementable by any protocol (this would basically
mean that the protocol output is immediately available, even without interac-
tion). So the functionality lets the adversary decide when to deliver κ to each
party. Note however, that the adversary may not in any way in�uence the κ that
is delivered.

A more detailed description follows:

Ideal functionality CTn (n-bit Coin Toss)

1. Wait until there have been �init� inputs from P1 and P2. Ignore messages
from the adversary, but immediately inform the adversary about the init.

2. Select κ ∈ {0, 1}n uniformly and send κ to the adversary. From now on:
� on the �rst (and only the �rst) �deliver to 1� message from the ad-
versary, send κ to P1,

� on the �rst (and only the �rst) �deliver to 2� message from the ad-
versary, send κ to P2.

Using CTn, we can also formally express what we mean by extending a coin
toss. Namely:

De�nition 1. Let n = n(k) and m = m(k) be positive, polynomially bounded
and computable functions such that m(k) < n(k) for all k. Then a protocol is a
universally composable (m → n)-coin toss extension protocol if it securely and
non-trivially implements CTn by having access only to CTm. This security can
be computational, statistical or perfect.

By a �non-trivial� implementation we mean a protocol that, with overwhelm-
ing probability, guarantees outputs if no party is corrupted and all messages are
delivered. (Alternatively, one may also consider protocols that provide output
with overwhelming probability.) This requirement is useful since without it, a
trivial protocol that does not generate any output formally implements every
functionality. (Cf. [10] and [2, Section 5.1] for more discussion and formal de�-
nitions of �non-triviality.�)

On unlimited simulators. Following [3], we have modelled statistical and per-
fect stand-alone and UC security using unlimited simulators. Another approach
is to require the simulators to be polynomial in the running-time of the adver-
sary. All our results apply also to that case: For the impossibility results, this is
straightforward, since the security notion gets stricter when the simulators be-
come more restricted. The only possibility result for statistical/perfect security
is given in Theorem 10. There, the simulator we construct is in fact polynomial
in the runtime of the adversary.

In the following sections, we investigate the existence of such coin toss ex-
tension protocols, depending on the desired security level (i.e., computational /
statistical / perfect security) and the parameters n and m.



3 The Computational Case

3.1 Universal Composability

In the following, we need the assumption of enhanced trapdoor permutations
with dense public descriptions (called ETD henceforth). Roughly, these are trap-
door permutations with the additional properties that (i) one can choose the
public key in an oblivious fashion, i.e., even given the coin tosses we used it
is infeasible to invert the function, and (ii) the public keys are computationally
indistinguishable from random strings. We also need the notion of exponentially-
hard ETD, which are secure even against subexponential-time adversaries. For
detailed de�nitions, cf. the full version [14].

Lemma 2. There is a constant d ∈ N s.t. the following holds:

Assume that ETD exist, s.t. the size of the circuits describing the ETD is
bounded by s(k) for security parameter k.7

Then there is a protocol π using a uniform common reference string (CRS)
of length s(k)d, s.t. π securely UC-realises a bit commitment that can be used
polynomially many times.

A protocol for realising bit commitment using a CRS has been given in [10].
To show this lemma, we only need to review their construction to see, that a
CRS of length sd is indeed su�cient. For details, see the full version [14].

Lemma 3. Let s(k) be a polynomially bounded function, that is computable in
time polynomial in k.

Assume one of the following holds:

� ETD exist and s is a polynomially-large function.
� Exponentially-hard ETD exist and s is a superlogarithmic function.

Then there also exist a constant e ∈ N independent of s and ETD, s.t. the size
of the circuits describing the ETD is bounded by s(k)e for security parameter k.

This is shown by scaling the security parameter of the original ETD. The
proof is given in the full version [14].

Theorem 4. Let n = n(k) and m = m(k) be polynomially bounded and e�-
ciently computable functions. Assume one of the following conditions holds:

� m is polynomially-large and ETD exist, or
� m is superpolylogarithmic and exponentially-hard ETD exist.

Then there is a polynomial-time computationally universally composable protocol
π for (m→ n)-coin toss extension.

7 By the size of the circuits we means the total size of the circuits describing both
the key generation and the domain sampling algorithm. Note that then trivially also
the size of the resulting keys and the amount of randomness used by the domain
sampling algorithm are bounded by s(k).



Proof. Let d be as in Lemma 2. Let further e be as in Lemma 3. If m is
polynomially-large or superpolylogarithmic, then s := m1/(de) is polynomially-
large or superlogarithmic, resp. So, by Lemma 3 there are ETD, s.t. the size of
the circuits describing the ETD is bounded by se = m1/e. Then, by Lemma 2
there is a UC-secure protocol for implementing n bit commitments using an
(m1/d)d = m-bit CRS.

It is straightforward to see that using n UC-bit-commitments one can UC-
securely implement an n-bit coin-toss using the protocol from [5]. Furthermore,
an m-bit CRS can be trivially implemented using an m-bit coin-toss. Using the
Composition Theorem we can put the above constructions together and get a
protocol that UC-realises an n-bit coin-toss using an m-bit coin-toss. ut

Note that given stronger, but possibly unrealistic assumptions, the lower
bound for m in Theorem 4 can be decreased. If we assume that for any super-
logarithmic m, there are ETD s.t. the size of their circuits is bounded by m1/d

(where d is the constant from Lemma 2), we get coin-toss extension even for
superlogarithmic m (using the same proof as for Theorem 4, except that instead
of Lemma 3 we use the stronger assumption).

However, we cannot expect an even better lower bound form, as the following
theorem shows:

Theorem 5. Let n = n(k) and m = m(k) be functions with n(k) > m(k) ≥ 0
for all k, and assume that m is not superlogarithmic (i.e., 2−m is non-negligible).
Then there is no non-trivial polynomial-time computationally universally com-
posable protocol for (m→ n)-coin toss extension.

Proof (sketch). Assume for contradiction that protocol π, with parties P1 and P2

using CTm, implements CTn (with m,n as in the theorem statement). Let A1 be
an adversary on π that, taking the role of a corrupted party P1, simply reroutes
all communication of P1 (with either P2 or CTm) to the protocol environment
Z1 and thus lets Z1 take part as P1 in the real protocol.

Imagine a protocol environment Z1, running with π and A1 as above, that
keeps and internal simulation P1 of P1 and lets this simulation take part in the
protocol (through A1). After a protocol run, Z1 inspects the output κ1 of P1

and compares it to the output κ2 of the uncorrupted P2.
In a real protocol run with π, A1, and Z1, we will have κ1 = κ2 with over-

whelming probability since π non-trivially implements CTn, and CTn guarantees
common outputs. So a simulator S1, running in the ideal model with CTn and
Z1, must be able to achieve that the ideal output κ2 (that is ideally chosen by
CTn and cannot be in�uenced by S1) is identical to what the simulation P1

of P1 inside Z1 outputs. In that sense, S1 must be able to �convince� P1 to
also output κ2. To this end, S1 may�and must�fake a complete real protocol
communication as A1 would deliver it to Z1 (and thus, to P1).

However, then we can construct another protocol environment Z2 that ex-
pects to take the role of party P2 in a real protocol run (just like Z1 expected
to take the role of P1). To this end, an adversary A2 on π with corrupted P2 is
employed that forwards all communication of P2 with either P1 or CTn to Z2.



Internally, Z2 now simulates S1 (and not P2!) from above and an instance CTn
of the trusted host CTn. Recall that S1, given a target string κ by CTn, mimics
an uncorrupted P2 along with an instance of CTm. In that situation, S1 can
convince an honest P1 with overwhelming probability to eventually output κ.

Chances are 2−m that the CTm-instance made up by S1 outputs the same
seed as the real CTm in a run of Z2 with π and A2. So with probability at
least 2−m − µ for negligible µ, in such a run, Z2 observes a P1-output κ that is
identical to the output of the internally simulated CTn. But then, by assumption
about the security of π, there is also a simulator S2 for A2 and Z2 that provides
Z2 with an indistinguishable view. In particular, in an ideal run with S2 and
CTn, Z2 observes equal outputs from CTn and CTn with probability at least
2−m−µ′ for negligible µ′. This is a contradiction, as both outputs are uniformly
and independently chosen n-bit strings, and n ≥ m+ 1. ut

4 Statistical and Perfect Cases

4.1 Stand-alone simulatability

We start o� with a negative result:

Theorem 6. Let m < n be functions in the security parameter k. If m is not
superlogarithmic, there is no two-party n-bit coin-toss protocol π (not even an
ine�cient one) that uses an m-bit coin-toss and has the following properties:

� Non-triviality. If no party is corrupted, the probability that the parties give
di�erent, invalid or no output is negligible (by invalid output we mean output
not in {0, 1}n).

� Security. For any (possibly unbounded) adversary corrupting one of the par-
ties there is a negligible function µ, s.t. for every security parameter k and
every c ∈ {0, 1}n, the probability for protocol output c is at most 2−n+µ(k).

If we require perfect non-triviality (the probability for di�erent or no outputs is
0) and perfect security (the probability for a given output c is at most 2−n), such
a protocol π does not exist, even if m is superlogarithmic.

Proof (sketch). It is su�cient to consider the case n = m+ 1.
Without loss of generality, we can assume that the available m-bit coin toss

is only used at the end of the protocol. Similarly, we can assume that in the
honest case, the parties never output distinct values. A detailed proof for these
statements can be found in the full proof.

To show the theorem, we �rst consider �complete transcripts� of the protocol.
By a complete transcript we mean all messages sent during the run of a protocol,
excluding the value of the m-bit coin-toss. We distinguish three sets of complete
transcripts: the set A of transcripts having non-zero probability for the protocol
output 0n, the set B of transcripts having zero probability of output 0n and
zero probability that the protocol gives no output, and the set C of transcripts
having non-zero probability of giving no output. Note that, since for a complete



transcript, the protocol output only depends on the m-bit coin-toss, any of the
above non-zero probabilities is at least 2−m.

For any partial transcript p (i.e., a situation during the run of the protocol),
we de�ne three values α, β, γ. The value α denotes the probability with which
a corrupted Alice can enforce a transcript in A starting from p, the value β
denotes the probability with which a corrupted Bob can enforce a transcript in
B, and the value γ denotes the probability that the complete protocol transcript
will lie in C if no-one is corrupted. We show inductively that for any partial
transcript p, (1 − α)(1 − β) ≤ γ. In particular, this holds for the beginning of
the protocol. For simplicity, we assume that 2−m is not only non-negligible, but
noticeable (in the full proof, the general case is considered). Since a transcript
in C gives no output with probability at least 2−m, the probability that the
protocol generates no output (in the uncorrupted case) is at least 2−mγ. By the
non-triviality condition, this probability is negligible, so γ must be negligible,
too. So (1 − α)(1 − β) is negligible, too. Therefore max {1− α, 1− β} must be
negligible. For now, we assume that 1−α is negligible or 1− β is negligible (for
the general case, see the full proof).

If 1 − α is negligible, the probability for output 0n is at least 2−mα. Since
α is overwhelming and 2−m noticeable, this is greater than 2−n = 1

22−m by a
noticeable amount which contradicts the security property.

If 1− β is negligible, we consider the maximum probability a corrupted Bob
can achieve that the protocol output is not 0n. By the security property, this
probability should be at most (2n−1)2−n plus a negligible amount, which is not
overwhelming. However, since every transcript in B gives such an output with
probability 1, the probability of such is β, which is overwhelming, in contradic-
tion of the security property.

The perfect case is proven similarly. ut

The full proof is given in the full version [14].

Corollary 7. By a non-trivial coin-toss protocol we mean a protocol s.t. (in the
uncorrupted case) the probability that the parties give no or di�erent output is
negligible. By a perfectly non-trivial coin-toss protocol where this probability is
zero.

Let m be not superlogarithmic and n > m. Then there is no non-trivial pro-
tocol realising n-bit coin-toss using an m-bit coin-toss in the sense of statistical
stand-alone simulatability.

Let m be any function (possibly superlogarithmic) and n > m. Then there is
no perfectly non-trivial protocol realising n-bit coin-toss using an m-bit coin-toss
in the sense of perfect stand-alone simulatability.

Proof. A statistically secure protocol would have the security property from
Theorem 6 and thus, if non-trivial, contradict Theorem 6. Analogously for perfect
security. ut

However, not all is lost:



Now we will prove that there exists a protocol for coin toss extension from m
to n bit which is statistically stand-alone simulatably secure. The basic idea is
to have the parties P1 and P2 contribute random strings to generate one string
with su�ciently large min-entropy (the min-entropy of a random variable X
is de�ned as minx− log Pr[X = x]). The randomness from this string is then
extracted using a randomness extractor. Interestingly the amount of perfect
randomness (i.e., the size of the m-bit coin-toss) one needs to invest is smaller
than the amount extracted. This makes coin toss extension possible.

To obtain the coin toss extension we need a result about randomness extrac-
tors able to extract one bit of randomness while leaving the seed reusable like a
catalyst.

Lemma 8. For every m there exists a function hm : {0, 1}m × {0, 1}m−1 →
{0, 1}, (s, x) 7→ r such that for a uniformly distributed s and for an x with a
min-entropy of at least t the statistical distance of s‖hm(s, x) and the uniform
distribution on {0, 1}m+1 is at most 2−t/2/

√
2.

Proof. Let hm(s, x) := 〈s1 . . . sm−1, x〉⊕sm. Here 〈·, ·〉 denotes the inner product
and ⊕ the addition over GF(2). It is easy to verify that hm(s, ·) constitutes
a family of universal hash functions [11], where s is the index selecting from
that family. Therefore the Leftover Hash Lemma [15,17] guarantees that the
statistical distance between s‖hm(s, x) and the uniform distribution on {0, 1}m+1

is bounded by 1
2

√
2 · 2−t = 2−t/2/

√
2. ut

With this function hm a simple protocol is possible which extends m(k) coin
tosses to m(k) + 1 if the function m(k) is superlogarithmic.

Theorem 9. Let m(k) be a superlogarithmic function, then there exists a con-
stant round statistically stand-alone simulatable protocol that realises an (m+1)-
bit coin-toss using an m-bit coin-toss.

Proof. Let hm be as in Lemma 8. Then the following protocol realises a coin
toss extension by one bit. Assume m := m(k) where k is the security parameter.

1. P1 uniformly chooses a ∈ {0, 1}bm−1
2 c and sends a to P2

2. P2 uniformly chooses b ∈ {0, 1}dm−1
2 e and sends b to P1

3. If one party fails to send a string of appropriate length or aborts then this
string is assumed by the other party to be an all-zero string of the appropriate
length

4. P1 and P2 invoke the m-bit coin toss functionality and obtain a uniformly
distributed s ∈ {0, 1}m. If one party Pi fails to invoke the coin toss function-
ality or aborts, then the other party chooses s at random

5. Both P1 and P2 compute s‖hm(s, a‖b) and output this string.
Similar to construction 7.4.7 in [13] the protocol is constructed in a way that

the adversary is not able to abort the protocol (not even by not terminating).
Hence we can safely assume that the adversary will send some message of the
correct length and will invoke the coin toss functionality. We assume the adver-
sary to corrupt P2, corruption of P1 is handled analogously. Further we assume



the random tape of A to be �xed in the following. Due to these assumptions
there exists a function fA : {0, 1}bm/2c → {0, 1}dm/2e for each real adversary A
such that the message b sent in step 2 of the protocol equals fA(a). There is no
loss in generality if we assume the view of the parties to consists of just a, b, s
and the protocol output to be s‖hm(s, a‖b).

Now for a speci�c adversaryA with �xed random tape the output distribution
of the real protocol (i.e., view and output) is completely described by the fol-

lowing experiment: choose a
R

∈ {0, 1}bm/2c, let b← fA(a), choose s
R

∈ {0, 1}m(k),
let r ← s‖hm(s, a‖b) and return ((a, b, s), r).

We now describe the simulator. To distinguish the the random variables
in the ideal model from their real counterparts, we decorate them with a ∼,
e.g., ã, b̃, s̃. The simulator in the ideal model obtains a string r̃

R

∈ {0, 1}m+1 from
the ideal n-bit coin-toss functionality and sets s̃ = r1 . . . rm. Then the simulator

chooses ã
R

∈ {0, 1}bm−1
2 c and computes b̃ = fA(ã) by giving ã to a simulated

copy of the real adversary. If hm(s̃, ã‖b̃) = r̃m+1 then the simulator gives s̃ to
the simulated real adversary expecting the coin toss. Then the simulator outputs
the view (ã, b̃, s̃). If however, hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds the

adversary, i.e., the simulator chooses a fresh ã
R

∈ {0, 1}bm−1
2 c and again computes

b̃ = fA(a). If now hm(s̃, ã‖b̃) = r̃m+1 the simulator outputs (ã, b̃, s̃). If again
hm(s̃, ã‖b̃) 6= r̃m+1 then the simulator rewinds the adversary again. If after k
invocations of the adversary no triple (ã, b̃, s̃) was output, the simulator aborts
and outputs fail .

To show that the simulator is correct, we have to show that the following to
distributions are statistically indistinguishable: ((a, b, s), r) as de�ned in the real
model, and ((ã, b̃, s̃), r̃).

By construction of the simulator, it is obvious that the two distributions
are identical under the condition that rm = 0, r̃m = 0 and that the simulator
does not fail. The same holds given rm = 1, r̃m = 1 and that the simulator
does not fail. Therefore it is su�cient to show two things: (i) the statistical
distance between r and the uniform distribution on n bits is negligible, and
(ii) the probability that that the simulator fails is negligible. Property (i) is
shown using the properties of the randomness extractor hm. Since a is chosen
at random, the min-entropy of a is at least bm−1

2 c ≥
m
2 − 1, so the min-entropy

of a‖b is also at least m
2 − 1. Since s is uniformly distributed, it follows by

Lemma 8 that the statistical distance between r = s‖hm(s, a‖b) is bounded by
2−m/4−1/2/

√
2 = (2−m)1/4/2. Since for superlogarithmic m it is 2−m negligible,

this statistical distance is negligible.

Property (ii) is then easily shown: From (i) we see, that after each invocation
of the adversary the distribution of hm(s̃, ã‖b̃) is negligibly far from uniform. So
the probability that hm(s̃, ã‖b̃) 6= r̃m is at most negligibly higher than 1

2 . Since

the hm(s̃, ã‖b̃) in the di�erent invokations of the adversary are independent, the
probability that hm(s̃, ã‖b̃) 6= r̃m after each activation is neglibigly far from 2−k.
So the simulator fails only with negligible probability.



It follows that the real and the ideal protocol execution are indistinguishable,
and the protocol stand-alone simulatably implements an (m+1)-bit coin-toss. �

The idea of the one bit extension protocol can be extended by using an
extractor which extracts a larger amount of randomness (while not necessarily
treating the seed like a catalyst). This yields constant round coin toss extension
protocols. However, the simulator needed for such a protocol does not seem
to be e�cient, even if the real adversary is. To get a protocol that also ful�ls
both the property of computational stand-alone simulatabiliy and of statistical
stand-alone simulatabiliy, we need a simulator that is e�cient if the adversary
is.

Below we give such a coin toss extension protocol for superlogarithmic m(k)
which is statistically secure and computationaly secure, i.e., the simulator for
polynomial adversaries is polynomially bounded, too. The basic idea here is to
extract one bit at a time in polynomially many rounds.

Theorem 10. Letm(k) be superlogarithmic, and p(k) be a positive polynomially-
bounded function, then there exists a statistically and computationally stand-
alone simulatable protocol that realises an (m + p)-bit coin-toss using an m-bit
coin-toss.

Proof. Let hm be as in Lemma 8. Then the following protocol realises a coin
toss extension by p(k) bits.
1. for i = 1 to p(k) do

(a) P1 uniformly chooses ai ∈ {0, 1}b
m−1

2 c and sends ai to P2

(b) P2 uniformly chooses bi ∈ {0, 1}d
m−1

2 e and sends bi to P1

(c) If one party fails to send a string of appropriate length or aborts then
this string is assumed by the other party to be an all-zero string of the
appropriate length

2. P1 and P2 invoke the m-bit coin toss functionality and obtain a uniformly
distributed s ∈ {0, 1}m. If one party Pi fails to invoke the coin toss function-
ality or aborts, then the other party chooses s at random

3. P1 and P2 compute s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k)) and output this
string.

We only roughly sketch the di�erences to the proof of Theorem 9. For each proto-
col round the simulator follows the strategy described in the proof of Theorem 9
(i.e., the simulator rewinds the adversary by one round, if the coin-toss produced
is not the correct one.) Then using standard hybrid techniques it can be shown
that this simulator indeed gives an indistinguishable ideal protocol run. Here it is
only noteworthy that we use the fact that s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k))
is statistically indistinguishable from the uniform distribution on m + p bits.
However, this follows directly from Lemma 8 and the fact that each ai‖bi has
min-entropy at least bm−1

2 c even given the values of all aµ‖bµ for µ < i. ut

4.2 Universal Composability (statistical/perfect case)

In the case of statistical security, adversary and protocol environment are allowed
to be computationally unbounded. In that case, we show that there is no simu-



latably secure coin toss extension protocol that runs in a polynomial number of
rounds. This is forced by requiring the parties to halt after a polynomial num-
ber of activations. However, note that we do not impose any restrictions on the
amount of computational work these parties perform in one of those activations.

The proof of this statement is done by contradiction. Furthermore, the proof
is split up into an auxiliary lemma and the actual proof. In the auxiliary lemma,
we show that without loss of generality, a protocol for statistically universally
composable coin toss extension has a certain outer form. Then we show that any
such protocol (of this particular outer form) is insecure.

For the following statements, we always assume that m = m(k), n = n(k)
are arbitrary functions, only satisfying 0 ≤ m(k) < n(k) for all k. We also
restrict to protocols that proceed in a polynomial number of rounds. That is,
by a �protocol� we mean in the following one in which each party halts after at
most p(k) activations, where p(k) is a polynomial which depends only on the
protocol. (As stated above, the parties are still unbounded in each activation.)
We start with a helping lemma whose proof is available in the full version [14].

Lemma 11. If there is a statistically universally composable protocol for (m→
n)-coin toss extension, then there is also one in which each party

� has only one connection to the other party and one connection to CTm,
� in each activation sends either an �init� message to CTm or some message

to the other party,
� sends in each protocol run at most one message to CTm, and this is always

an �init� message,
� the internal state of each of the two parties consists only of the view that this

party has experienced so far, and
� after Pi sends �init� to CTm, it does not further communicate with P3−i

(for i = 1, 2 and in case of no corruptions).

We proceed with

Lemma 12. There is no statistically universally composable protocol for (m→
n)-coin toss extension which meets the requirements from Lemma 11.

Proof. Assume for contradiction that π, using CTm, is a statistically universally
composable implementation of CTn, and also satis�es the requirements from
Lemma 11.

Assume a �xed environment Z0 that gives both parties �init� input and
then waits for both parties to output a coin toss result. Consider an adversary
A0 that delivers all messages between the parties immediately. The resulting
setting D0 is depicted in Figure 1.

Denote the protocol communication in a run of D0, i.e., the ordered list of
messages sent between P1 and P2, by com. Denote by κ1 and κ2 the �nal outputs
of the parties. For M ⊆ {0, 1}n and a possible protocol communication pre�x c,
let E(M, c) be the probability that the protocol outputs are identical and in M ,
provided that the protocol communication starts with c, i.e.,

E(M, c) := Pr[κ1 = κ2 ∈M | c ≤ com] ,
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Fig. 1. Left: The initial setting D0 for the statistical case. (Some connections
which are not important for our proof have been omitted.) Right: Setting D1

with a corrupted P1. Setting D2 (with P2 corrupted instead of P1) is de�ned
analogously.

where x ≤ y means that x is a pre�x of y.

Note that the parties have, apart from their communication com, only the
seed ω ∈ {0, 1}m provided by CTm for computing their �nal output κ. So we may
assume that there is a deterministic function f for which κ1 = κ2 = f(com, ω)
with overwhelming probability.

For a �xed protocol communication com = c, consider the set

Mc := {0, 1}n \ { f(c, s) | s ∈ {0, 1}m }

of �improbable outputs� after communication c. Then obviously |Mc| ≥ 2n −
2m ≥ 2n−1. By de�nition of the ideal output (i.e., the output of CTn in the
ideal model), this implies that for su�ciently large security parameters k, the
probability that κ1 = κ2 ∈Mc is at least 2/5. (Here, any number strictly between
0 and 1/2 would have done as well.) Otherwise, an environment could distinguish
real and ideal model by testing for κ1 = κ2 ∈Mc. Since E(Mc, ε) is exactly that
probability, we have E(Mc, ε) ≥ 2/5 for su�ciently large k. Also, E(Mc, c) is
negligible by de�nition, so Mc satis�es

E(Mc, ε)− E(Mc, c) ≥
1
3

(1)

for su�ciently large k.

Since the protocol consists by assumption only of polynomially many rounds,
c is a list of size at most p(k) for a �xed polynomial p. This means that there is
a pre�x c of c and a single message m (either sent from P1 to P2 or vice versa)
such that cm ≤ c and

E(Mc, c)− E(Mc, cm) ≥ 1
3p(k)

(2)



for su�ciently large k. Intuitively, this means that at a certain point during the
protocol run, a single message m had a signi�cant impact on the probability that
the protocol output is in Mc.

Note that such an m must be either sent by P1 or P2. So there is a j ∈ {1, 2},
such that for in�nitely many k, party Pj sends such an m with probability at
least 1/2. We describe a modi�cation Dj of setting D0. In setting Dj , party Pj is
corrupted and simulated (honestly) inside Zj . Furthermore, adversary Aj simply
relays all communication between this simulation inside Zj and the uncorrupted
party P3−j . For supplying inputs to the simulation of Pj and to the uncorrupted
P3−j , a simulation of Z0 is employed inside Zj . The situation (for j = 1) is
depicted in Figure 1.

Since Dj is basically only a re-grouping of D0, the random variables com, ω,
and κi are distributed exactly as in D0, so we simply identify them. In particular,
in Dj , for in�nitely many k, there is with probability at least 1/2 a pre�x c and
a message m sent by Pj of com that satisfy (2).

Now we slightly change the environment Zj into an environment Z ′j . Each
time the simulated Pj sends a message m to P3−j , Z ′j checks for all subsets M
of {0, 1}n whether

∃M ⊆ {0, 1}n : E(M, c)− E(M, cm) ≥ 1
3p(k)

, (3)

where c denotes the communication between Pj and P3−j so far.
If (3) holds at some point for the �rst time, then Z ′j tosses a coin b uniformly

at random, and proceeds as follows: if b = 0, then Z ′j keeps going just as Zj
would have. In particular, Z ′j then lets Pj send m to P3−j . However, if b = 1,
then Z ′j rewinds the simulation of Pj to the point before that activation, and
activates Pj again with fresh randomness, thereby letting Pj send a possibly
di�erent message m′. In the further proof, c, m, and M refer to these values for
which (3) holds.

In any case, after having tossed the coin b once, Z ′j remembers the set M
from (3), and does not check (3) again. After the protocol �nishes, Zj outputs
either (⊥,⊥) (if (3) was never ful�lled), or (b, β) for the evaluation β of the
predicate [κ1 = κ2 ∈ M ] (i.e., β = 1 i� the protocol gives output, the protocol
outputs match and lie in M).

Now by our choice of j, Pr[b 6= ⊥] ≥ 1/2 for in�nitely many k.
Also, Lemma 11 guarantees that the internal state of the parties at the time

of tossing b consists only of c. So, when Z ′j has chosen b = 1, and rewound the
simulated Pj , the probability that at the end of the protocol κ1 = κ2 ∈M is the
same as the probability of that event in the setting Dj under the condition that
the communication com begins with c̄. This probability again is exactly E(M, c̄)
by de�nition.

Similarly, when Z ′j has chosen b = 0, the probability that at the end of
the protocol κ1 = κ2 ∈ M is the same as the probability of that event in the
setting Dj under the condition that the communication com begins with c̄m,
i.e. E(M, c̄m).



Therefore just before Z ′j chooses b (i.e., when c̄ and M are already deter-

mined), the probability that at the end we will have β = 1 ∧ b = 1 is 1
2E(M, c̄)

and the probability of β = 1 ∧ b = 0 is 1
2E(M, c̄m). Therefore the di�erence

between these probabilities is at least 1
2

(
E(M, c̄)− E(M, c̄m)

)
≥ 1

3p(k) .

Since this bound on the di�erence of the probabilities always holds when
b 6= ⊥, by averaging we get

Pr[β = 1 ∧ b = 1 | b 6= ⊥]− Pr[β = 1 ∧ b = 0 | b 6= ⊥] ≥ 1
3p(k)

and using the fact that Pr[b 6= ⊥] ≥ 1
2 for in�nitely many k we then have that

Pr[β = 1 ∧ b = 1]− Pr[β = 1 ∧ b = 0] ≥ 1
6p(k)

(4)

for in�nitely many k when Z ′j runs with the real protocol as described above.
We show that no simulator Sj can achieve property (4) in the ideal model,

where Z ′j runs with CTn and Sj . To distinguish random variables during a run
of Z ′j in the ideal model from those in the real model, we add a tilde to a random

variable in a run of Z ′j in the ideal model, e.g., b̃, β̃.
For any Sj achieving indistinguishability of real and ideal model, this can

happen only with negligible probability, so we can assume without losing gener-
ality that Sj always delivers outputs.

By construction of b̃ and κ, the variable b̃ and the tuple (M̃, κ) are indepen-
dent given b̃ 6= ⊥. Hence, since β̃ is a function of M̃ and κ,

Pr
[
(b̃, β̃) = (0, 1)

]
= Pr

[
(b̃, β̃) = (1, 1)

]
. (5)

So comparing (4) and and (5), Z ′j 's output distribution di�ers non-negligibly in
real and ideal model. So no simulator Sj can simulate attacks carried out by Z ′j
and Aj , which gives the desired contradication. ut

Combining the above Lemmas 11 and 12 we therefore get:

Theorem 13. There is no non-trivial statistically universally composable pro-
tocol for (m→ n)-coin toss extension that proceeds in a polynomial of rounds.

The case of perfect security is shown analogously.
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