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A “Differential” Attack on Polly Cracker
Dennis Hofheinz and Rainer Steinwandt

Abstract— We describe an attack on the public key cryp-
tosystem Polly Cracker for which it is not necessary to know
a superset of the monomials used during encryption. In par-
ticular, the attack can be used to reveal “hidden” monomi-
als and thereby increases the applicability of known linear
algebra attacks on this system. The approach is demon-
strated with Koblitz’s “graph perfect code instance” of Polly
Cracker.
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I. Introduction

In [1], [2] M. Fellows and N. Koblitz describe the public
key cryptosystem Polly Cracker. In this system the public
key consists of multivariate polynomials having a (secret)
common zero, and the public polynomials can be selected
in such a way that revealing the private key is equivalent to
finding a solution to an instance of an NP-complete prob-
lem.

The cryptosystems ENROOT [3] and ENROOT II [4]
can be seen as special instances of Polly Cracker where
sparse polynomials are used to dodge efficiency problems
in the general scheme. Unfortunately, both ENROOT and
ENROOT II have been cryptanalyzed successfully [5], [6]—
the attacks exploit the fact that the monomials involved
in the encryption can often be read off from the cipher-
text. To avoid this kind of attack, it is tempting to “hide”
some monomials as described by H. W. Lenstra (see [2,
Ch. 5, §6]). Subsequently, we demonstrate that the latter
approach does not necessarily guarantee acceptable cryp-
tographic security. Namely, we describe a method for re-
vealing “hidden” monomials, so that sometimes a linear
algebra attack becomes feasible again. To illustrate the
attack we use Koblitz’s “graph perfect code instance” of
Polly Cracker [2, Ch. 5, §7]; our experimental results give
strong evidence that this cryptosystem is insecure.

II. The public key system Polly Cracker

Let Fps [x] := Fps [x1, . . . , xn] be the ring of multivariate
polynomials over some finite field Fps . Then Polly Cracker
can be described as follows (for more details see [1], [2]):
• First, Alice selects q1, . . . , qr ∈ Fps [x] with a common
zero σ ∈ Fnps , i. e., q1(σ) = . . . = qr(σ) = 0. The polynomi-
als q1, . . . , qr are made public, while their common zero σ
forms Alice’s secret key.
• To encrypt a plaintext message α ∈ Fps , Bob first se-
lects some element from the ideal generated by q1, . . . , qr
in Fps [x], i. e., he selects polynomials h1, . . . , hr ∈ Fps [x]
and computes c̃ :=

∑r
i=1 hi · qi. Then he computes the

ciphertext as c := α+ c̃ ∈ Fps [x].
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• For decrypting the ciphertext c, Alice simply evaluates
it at her secret key σ:

c(σ) = (α+ c̃)(σ) = α+
r∑
i=1

hi(σ) · qi(σ) = α

Of course, the actual choice of the parameters is crucial for
the security of the resulting system. Fellows and Koblitz
suggest to construct the polynomials q1, . . . , qr ∈ F2[x] in
such a way that finding a common zero σ of them is equiv-
alent to solving an instance of an NP-complete problem.
However, they do not specify a concrete key generation
procedure; in the sequel we assume that finding a com-
mon zero of the public polynomials is not feasible for the
attacker. Moreover, we leave aside the question of side-
channel attacks against Polly Cracker (cf. [7]). Instead, we
focus on the security of the encryption procedure executed
by Bob.

III. Linear algebra attacks

As remarked in [7] already, for revealing the plaintext
α ∈ Fps , it is sufficient for an attacker to recover the con-
stant terms h1(0), . . . , hr(0) used by Bob, because we have

α = c(0)−
r∑
i=1

hi(0) · qi(0).

This simple observation is quite important: assume that
each qi contains a “characteristic monomial”, i. e., a mono-
mial1 mi := xν11 · . . . · xνnn with qi being the only public
polynomial where mi occurs with non-zero coefficient. If
Bob does not choose the hi carefully, then such character-
istic monomials can enable an attacker to read off hi(0)
from the ciphertext c (cf. [5], [7]). To avoid such an attack
one may think of choosing the public polynomials in such
a way, that several of them consist of the same monomi-
als, i. e., only the values of the non-zero coefficients of the
monomials vary. However, this approach still does not rule
out an “intelligent linear algebra attack” like the following
one (cf. [2, Ch. 5, §6]):

assume that for each monomial mh occurring in one of
Bob’s polynomials hi there is a monomial mc in the cipher-
text c and a monomial mq in some (public) qj such that
mc = mh · mq. Then an attacker can easily determine a
(comparatively small) superset M of the set of monomi-
als occuring in the polynomials hi. If such a set is known,
decrypting the ciphertext reduces to solving a system of
linear equations over Fps : for 1 ≤ i ≤ r, m ∈ M let
Aim be indeterminates. Then comparing coefficients in the

1We adopt the convention that a monomial is a monic term, i. e.,
each polynomial can be written as a sum of terms.
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equation

c = A0 +
r∑
i=1

( ∑
m∈M

Aim ·m
)
· qi

(with A0 an indeterminate for the unknown plaintext)
yields a linear system of equations in the indeterminates
Aim and A0. By construction this system of equations
is solvable, and each solution yields the correct plaintext
A0 = α.

For the practicability of such a linear algebra attack it is
crucial for the adversary to know a (small) set M with

M⊇
⋃

1≤i≤r

M(hi)

(where M(hi) is the set of monomials occuring in the poly-
nomial hi with non-zero coefficient). So how can Bob keep
the attacker from learning the monomials used during the
encryption? In [2, Ch. 5, §6] the following idea is given:
“. . ., Bob must artfully build at least one monomial d′ into
at least one hj such that d′ times any term in qj is canceled
in the entire sum (so that it doesn’t occur in C [(the set
of monomials occuring in the ciphertext c)]). Also, the
monomials d′ with that property should not be too few
and/or too easy to guess, . . .”

The attack in the next section aims at revealing mono-
mials “hidden” during the encryption. We demonstrate
it through an example, and thereafter apply it to the en-
cryption technique used in Koblitz’s “graph perfect code
instance” of Polly Cracker (see [2, Ch. 5, §7]).

IV. Exploiting the structure of the ciphertext

Our main tool is a function ∆ which to each polyno-
mial in Fps [x] associates a set of (“difference”) terms in
the ring Fps [x, x−1] := Fps [x1, x

−1
1 , . . . , xn, x

−1
n ] of Laurent

polynomials. To define ∆ we make use of the following lex-
icographic order � on Nn0 : µ � η iff µ = η or the left-most
non-zero entry of µ−η := (µ1−η1, . . . , µn−ηn) is positive.
Actually, we could use an arbitrary monomial ordering on
Nn0 (cf., e. g., [8, Ch. 2, §2]), but here we stick to �. Now
∆ is defined as follows:

∆ : Fps [x] −→ 2Fps [x,x−1]∑
ν∈Nn0

γν · xν 7−→
{
γµ
γη
· xµ−η |µ � η, γµ · γη 6= 0

}
The following properties of ∆ can be verified easily:

Remark 1: Let a, b ∈ Fps [x] be polynomials that have no
monomial in common, i. e., M(a)∩M(b) = ∅. Moreover, let
γν · xν ∈ Fps [x] be a non-zero term and ∆ as above. Then
(i) ∆(a) = ∅ iff a is a term or a = 0
(ii) |∆(a)| ≤ |M(a)|2−|M(a)|

2
(iii) ∆(a) = ∆(γνxν · a)
(iv) ∆(a+ b) ⊇ ∆(a) ∪∆(b)

Proof:
(i) “⇒”: Assume that a contains at least two non-zero
terms γµ ·xµ, γη ·xη. Say µ � η, then (γµ/γη)·xµ−η ∈ ∆(a).
“⇐”: trivial.

(ii) As � induces a total ordering on the terms occuring in
a, we have

|∆(a)| ≤
|M(a)|−1∑
i=1

i,

and the latter sum evaluates to (|M(a)|2 − |M(a)|)/2 as
required.
(iii) Immediate from the definition of ∆, as � is a mono-
mial ordering.
(iv) Immediate from the assumption M(a) ∩M(b) = ∅.
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Now let c = α+
∑r
i=1 hi · qi be some ciphertext computed

by Bob. Then from Remark 1 (iii)–(iv) we conclude that
with some luck there is an i ∈ {1, . . . , r} satisfying

∆(qi) ∩∆(c) 6= ∅.

Assume that for some i ∈ {1, . . . , r} there exist terms
γµix

µi , γνix
νi in qi such that

• there is a

δi := γµix
µi/γνix

νi ∈ ∆(qi) \

⋃
j 6=i

∆(qj)

 , and (1)

• there is a term γηix
ηi in hi such that xηi ·xµi and xηi ·xνi

do not occur among the monomials of c− γηixηi · qj .
The first condition means that the public polynomial

qi possesses a “characteristic term difference”. The idea
of the second condition is to exclude “collisions” in the
coefficients of the monomials xηi · xµi and xηi · xνi during
the computation of the ciphertext c = α+

∑r
i=1 hi · qi. In

particular, the second condition guarantees that

δi =
γηix

ηi · γµixµi
γηix

ηi · γνixνi
∈ ∆(c). (2)

Note that for this conclusion it is not relevant whether the
term xηi itself occurs somewhere in the ciphertext c.

Now, if for some 1 ≤ i ≤ r an attacker can find terms
t1, t2 in the ciphertext with xµi | t1 and the quotient t1/t2
being equal to a characteristic difference (1) of qi, then he
can make the assumption that both of the above conditions
hold, and with (2) he can identify a potential term th of hi
as

th :=
t1

γµix
µi

=
t2

γνix
νi
.

Although the attacker cannot be sure about the correctness
of his guess—i. e., whether th is indeed a term of hi—by
replacing c with c′ := c − th · qi, he obtains another valid
encryption of the plaintext represented by c, and if the
number of terms in c′ is smaller than in c, then this can
be taken as evidence of the correctness of the guess. In
particular, if c′ ∈ Fps , then the encrypted plaintext has
been recovered successfully.

The number of terms in a “simplified ciphertext” c−th ·qi
can also serve as guidance if there are several possible terms
t1, t2 in c for producing a “characteristic” δi. In this case
it seems sensible to choose the term th which yields the
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largest reduction in the number of terms when subtracting
th · hi from the ciphertext. After having simplified the
ciphertext in the above manner, the attacker can try to
iterate the procedure or check whether to c′ an intelligent
linear algebra attack can be applied.

The following toy example illustrates the technique just
described:

Example 1: Alice publishes the following polynomials
from F53[x1, x2]:

q1 := 25x30
1 + 10x1x2 + 11

q2 := −31x14
2 + 5x1x2 + 32

(with (secret) common zero (x1, x2) = (5, 7)). Next, Bob
chooses polynomials

h1 := 17x5
1x

21
2 − 13x6

1x
8
2

h2 := 18x5
1x

7
2 + 12x4

1x
6
2

for encrypting the plaintext message 18 ∈ F53, and obtains
the following ciphertext c = 18 + h1q1 + h2q2 :

18 +x35
1 x

21
2 − 7x36

1 x
8
2 + 11x6

1x
22
2 −x4

1x
20
2 − 24x7

1x
9
2 + 13x4

1x
6
2

Note that the monomial x5
1x

7
2 from h2 is not contained in

the set {mc/mq : mc ∈ M(c),mq ∈ M(q1) ∪M(q2)}. Con-
sequently, the intelligent linear algebra attack mentioned
in Section III does not apply. However, the term 4x14

2 =
−31x14

2 /32 ∈ ∆(q2) \∆(q1) is also contained in ∆(c):

4x14
2 = −x4

1x
20
2 /(13x4

1x
6
2)

Subtracting (13x4
1x

6
2/32)·q2 from c yields the (simplified)

ciphertext

c′ = 18 + x35
1 x

21
2 − 7x36

1 x
8
2 + 11x6

1x
22
2 − 24x7

1x
9
2 − 7x5

1x
7
2

to which the intelligent linear algebra attack from Sec-
tion III can be applied successfully.

To get an idea of the practical value of the above ap-
proach, in the next section we apply a variant of it to the
encryption procedure of Koblitz’s graph perfect code in-
stance of Polly Cracker (see [2, Ch. 5, §7]). To our knowl-
edge, the latter is the only suggested encryption procedure
for Polly Cracker that has not been broken yet.

V. Koblitz’s graph perfect code instance

To derive a private key-public key pair, Alice chooses a
3-regular (undirected) graph G = (V,E) such that there
is a subset V ′ ⊆ V of the vertices that forms a perfect
code. In other words, each vertex v ∈ V of G is in the
neighbourhood N(v′) of one and only one v′ ∈ V ′ (here
N(v′) is the set consisting of v′ and all vertices joined to v′

by an edge). From this graph the public polynomials can be
derived easily as described in [2, Ch. 5, §3]. For the sequel
it is sufficient to know that Alice’s public polynomials qi
are contained in F2[x] = F2[x1, . . . , xn] where n is equal to
the number of vertices of G. Koblitz suggests a value of
n ≈ 500 and to represent the ciphertext c as a polynomial
of degree d ≈ 2 log2 n ≈ 18. For a detailed description of

the encryption procedure we refer to [2, Ch. 5, §7]; here it
is sufficient to mention that in addition to d and n also a
third parameter d0 ≈ d/3 is used for controlling details of
the encryption procedure.

All the same, for the security of the resulting cryptosys-
tem it is crucial that the attacker cannot find the perfect
code V ′ from G. As described in [7], on the one hand
choosing the graphs G at random does not ensure accept-
able security, and on the other hand no specification of how
to construct secure keys has been given. Lacking such a
specification, in our experiments we used random graphs,
but ignored the possible feasibility of a direct attack on
the secret key V ′. Instead, we restricted ourselves to at-
tacking individual plaintexts through the approach from
Section IV.

Experimentally, Koblitz’s suggested parameter values
turn out to be rather cumbersome: already for n = 128
(d = 14, d0 = 5) for encoding a single plaintext bit α ∈ F2

the ciphertext consists of some 60,000 terms. If each term
is represented by 7 (= log2 128) bytes, this means that a
single bit of plaintext translates into about 410 KBytes
of ciphertext! For n = 160 (d = 15, d0 = 5) already
about 250,000 terms are used for encoding a single plain-
text bit, and with n = 200 (d = 15, d0 = 5) the encryp-
tion procedure yields a ciphertext with more than 500, 000
terms. With the suggested value n = 500 already perform-
ing one complete encryption of a plaintext bit is a tremen-
dous effort. With the huge ciphertexts required here, on a
“normal” PC practical experiments with our attack do not
really make sense: |∆(c)| is in the magnitude of |M(c)|2
(cf. Remark 1 (ii)), i. e., the computation of ∆(c) becomes
rather cumbersome then. We do not consider this as a se-
rious weakness of our approach, because for n = 500 the
message expansion occurring in the considered cryptosys-
tem makes it already rather hard to implement encryption
at all.

In the sequel we restrict to cases with 100 ≤ n ≤ 200
where a ciphertext (encrypting one plaintext bit) consists
of “only” several thousand terms.—Of course, this message
expansion is also far from being acceptable for a realistic
public key cryptosystem, but at least such ciphertexts can
be dealt with easily on a “normal” PC. For the experiments
we used a 1,333 Mhz Linux PC with a GNU C compiler.
For a given ciphertext c ∈ F2[x] the attack performs the
following steps:
1. Pick one of the (public) polynomials qi of the form 1−∑
u∈N[v] xu (cf. [2, Ch. 5, §3]) randomly.

2. For each term tc in c and each term tq in qi with tq|tc
check if subtracting R(qi · tctq ) reduces c in size (i.e., in the
number of terms; see [2, Ch. 5, §7] for a definition of the
reduction operator R).
3. If so, iterate the attack with the “simplified” ciphertext
from step 2 until we end up with a constant c.
4. Otherwise proceed with step 2, and eventually skip back
to step 1.
Note that for reasons of efficiency ∆(c) is not explicitly
computed. Rather we are “guessing” potential terms tc/tq
in hi in a quite canonical way. (Interestingly it turns out
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that the above algorithm does not reconstruct the polyno-
mials hi used during encryption completely. On the con-
trary, attacking a ciphertext which results from an encryp-
tion of the plaintext bit α = 0 yields a large combination of
public key-polynomials as a “simplified” ciphertext which
expands to the zero polynomial in most cases, as experi-
mental results suggest.) We did not combine our approach
with a linear algebra based attack either; but the experi-
mental results demonstrate that already the above simple
procedure is extraordinary successful when the encrypted
plaintext bit is 0:
• For n = 100 (d = 13, d0 = 4), in 1, 000 encryptions of the
plaintext α = 0 we could 951 times reveal α successfully.
• For n = 128 (d = 14, d0 = 5) in 100 encryptions of α = 0
we could 94 times reveal α successfully.
• For n = 160 (d = 15, d0 = 5) in 30 encryptions of α = 0
we could 28 times reveal α successfully.
• For n = 200 (d = 15, d0 = 5) from a ciphertext with
575, 182 terms the plaintext α = 0 could be recovered suc-
cessfully in ≈ 8.75 hours.

We did not check whether these results can be improved
through “post-processing” with an intelligent linear algebra
attack. Anyway, according to these experiments a failure
of our attack implies with high probability that the en-
crypted plaintext bit is 1. In other words, we have quite a
good chance to recover the plaintext bit successfully with-
out needing the secret key.

VI. Conclusion

A new attack on Polly Cracker for dealing with “hidden”
monomials has been described; in particular the attack can
be used to enhance the feasibility of a linear algebra based
attack. The experimental results with Koblitz’s graph per-
fect code instance give strong evidence that this cryptosys-
tem does not offer acceptable cryptographic security. It
remains unclear whether practical and secure instances of
Polly Cracker can be constructed.
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