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Abstract. We construct a graded encoding scheme (GES), an approx-
imate form of graded multilinear maps. Our construction relies on in-
distinguishability obfuscation, and a pairing-friendly group in which (a
suitable variant of) the strong Diffie–Hellman assumption holds. As a
result of this abstract approach, our GES has a number of advantages
over previous constructions. Most importantly:
– We can prove that the multilinear decisional Diffie–Hellman (MDDH)

assumption holds in our setting, assuming the used ingredients are
secure (in a well-defined and standard sense). In particular, and in
contrast to previous constructions, our GES does not succumb to so-
called “zeroizing” attacks. Indeed, our scheme is currently the only
GES for which no known cryptanalysis applies.

– Encodings in our GES do not carry any noise. Thus, unlike previ-
ous GES constructions, there is no upper bound on the number of
operations one can perform with our encodings. Hence, our GES
essentially realizes what Garg et al. (EUROCRYPT 2013) call the
“dream version” of a GES.

Technically, our scheme extends a previous, non-graded approximate
multilinear map scheme due to Albrecht et al. (TCC 2016-A). To intro-
duce a graded structure, we develop a new view of encodings at different
levels as polynomials of different degrees.

Keywords. Multilinear maps, graded encoding schemes, indistinguisha-
bility obfuscation.

1 Introduction

The GGH candidate multilinear map. In 2013, Garg, Gentry, and Halevi
(GGH) [GGH13a] proposed the first plausible construction of an (approximate)
multilinear map (MLM). In a nutshell, an MLM is a map e : Gκ −→ GT (for
groups G and GT ) that is linear in each input. Of course, we are most interested
in the case of “cryptographically interesting” groups G (in which, e.g., computing
discrete logarithms is infeasible), non-trivial maps e (with non-trivial kernel),
and preferably large values of κ. The surprising cryptographic consequences of
such “cryptographically interesting” MLMs were already investigated in 2003 by



Boneh and Silverberg [BS03], but an actual construction of an MLM remained
elusive until the candidate construction of GGH.

Unfortunately, GGH only presented an “approximate” MLM in the following
sense:

– Instead of group elements, their e inputs (and outputs) are encodings. An
encoding is a non-unique representation of a group element, and there is
no guarantee about which particular encoding the group operation (or e)
outputs. However, every encoding allows to derive a “canonical form” that
uniquely determines the encoded group element. (This canonical form allows
no further operations, though.)

– Each encoding carries a “noise level” that increases with each operation. If
the noise level grows beyond a certain threshold, no further operations are
possible.

However, the GGH MLM also has an important graded property that allows
to evaluate e partially, in a sense we will detail later. In particular this graded
structure has made the GGH MLM tremendously useful: notable applications of
graded MLMs include indistinguishability obfuscation [GGH+13b], witness en-
cryption [GGSW13], attribute-based encryption for general circuits [GGH+13c],
and constrained pseudorandom functions for general circuits [BW13]. Further-
more, graded MLMs enable a very powerful class of programmable hash func-
tions [HK08], which in turn allows to implement random oracles in certain “al-
gebraic” applications [HSW13,FHPS13].

After GGH’s MLM construction, several other (graded and approximate)
MLM constructions have been proposed [CLT13,LSS14,GGH15,CLT15]. How-
ever, all of these constructions (including the original GGH scheme) succumb
to cryptanalytic attacks [CHL+15,CGH+15,CLLT16,MSZ16]. In particular, cur-
rently there is no obvious way to instantiate schemes relying on multilinear maps,
e.g., the schemes from [GGSW13,GGH+13c,BW13,HSW13,FHPS13].6

Graded MLMs. There is one (approximate) MLM construction of Albrecht,
Farshim, Hofheinz, Larraia, and Paterson (AFHLP) [AFH+16] that does not fall
victim to any of the mentioned cryptanalytic attacks on MLMs. However, this
construction does not offer a graded MLM, and thus cannot be used to boot-
strap, e.g., witness encryption. Graded MLMs are algebraic tools that can enable
other algebraic tools such as multilinear Groth-Sahai proofs, or multilinear pro-
grammable hash functions. It is thus still an interesting open problem whether
graded MLMs exist, and whether the results of [GGH+13b] can be augmented
to even show equivalence to indistinguishability obfuscation.

Our contribution. In this work, we construct graded, approximate MLMs
that do not succumb to any of the known attacks. Technically, we extend the non-
graded MLM construction from AFHLP [AFH+16] to a graded MLM. We prove

6 We note, however, that the cryptographic tasks that the constructions from
[GGSW13,BW13] aim to achieve can be directly achieved with indistinguishabil-
ity obfuscation [GGH+13b,SW14,AFP16].
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that the multilinear decisional Diffie–Hellman (MDDH) assumption [GGH13a]
holds relative to our MLM, provided that the used ingredients are secure.

Interestingly, our MLM has two technical features that previous graded ap-
proximate MLMs do not have:

1. Our encodings do not carry any noise (although they are not unique). In
particular, there is no limit on the number of operations that one can perform
with our encodings.

2. The canonical forms derived from encodings allow further group operations
(but no further pairings).

Our new MLM (when implemented with the indistinguishability obfuscator
from [GGH+13b,GMS16]) currently forms the only plausible graded MLM, and
thus the only plausible way to implement a number of MLM-based construc-
tions [GGSW13,GGH+13c,BW13,HSW13,FHPS13].

Furthermore, our construction is generic and modular. In particular, we re-
duce the quest to develop a secure (graded) MLM to the quest for a secure
indistinguishability obfuscator. This seems natural (and is standard in most ar-
eas of cryptography), but given the history of previous MLM candidates (which
were based on complex algebraic or combinatorial assumptions), this is not an
“understood feature” at all for MLMs.

In fact, taken together with recent constructions of indistinguishability ob-
fuscation (iO) from multilinear maps (e.g., [GGH+13b,Lin16,AS17,LT17]), our
result shows a (somewhat loose) equivalence of indistinguishability obfusca-
tion (iO) and (graded and approximate) MLMs, in the presence of a pairing-
friendly group. This equivalence is loose in the following sense. First, the as-
sumptions on both ends of the equivalence do not match: some of these works
(e.g., [GGH+13b]) construct iO from MLMs which support very strong compu-
tational assumptions (much stronger than MDDH) or require asymmetric mul-
tilinear maps. On the other hand, we use iO to construct symmetric MLMs in
which we can (at this point) only prove comparatively mild (though still use-
ful) computational assumptions (such as MDDH). Still, there seems no inherent
barrier to proving stronger computational assumptions for our construction, or
to adapt our construction to asymmetric pairings, and we leave open to tighten
this equivalence. Second, going through our equivalence suffers subexponential
security loss. Namely, we require probabilistic indistinguishability obfuscation,
which can be constructed from iO [CLTV15], but currently only through a sub-
exponential reduction.

However, we note that such an equivalence would not be highly surprising
given recent results on constructing iO from MLMs [Lin16,AS17]. These works
only require “one-shot” (but asymmetric) MLMs, and not even graded encodings
as we construct them.

Related Work. Our work is closely related to [AFH+16], since the non-graded
MLM there serves as a starting point for our graded MLM. We will summarize
their construction in Section 4 and give an informal overview below.

Recently, Paneth and Sahai [PS15] have shown a near-equivalence of a suit-
able abstraction of MLMs with iO. Their result requires no computational as-
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sumptions at all, but also does not consider MLMs in our sense. In particular,
they construct an abstraction of a MLM that only admits restricted access to
encodings similar to the one in [GGH+13b]. Beyond the group operation and the
multilinear map, efficient procedures for, e.g., uniform sampling, comparison or
rerandomization of encodings, are not part of this abstraction. Conversely, our
notion of a MLM, like the ones from [AFH+16,GGH13a], contains descriptions
of efficient procedures for these tasks.

It would be interesting to see how the restricted MLMs of [PS15] can be
used to instantiate the constructions from [FHPS13,HSW13,BWZ14,BLR+15]
directly, i.e., without making the detour via iO. However, since iO alone is not
even known to imply one-way functions (see [GR07] for a discussion), this will
require additional assumptions.

Pass et al. [PST14] give a security definition of graded MLMs that requires
that whenever encodings are generically equivalent (that is, cannot be distin-
guished with generic operations alone), they should be computationally indis-
tinguishable as encodings. They show that this MLMs which satisfy this strong
assumption imply indistinguishability obfuscation. It is not clear, however, how
to construct such strongly secure MLMs (without resorting to idealized models
such as the generic group model).

1.1 The (non-graded) approximate multilinear map of AFHLP

Encodings. Since our own construction is an extension of the (non-graded)
approximate MLM of [AFH+16], we first recall their work. Simplifying slightly,
AFHLP encode a group element gz (from a cyclic group G of order p) as

h = (gz, c = Enc((α, β), pk), π) ,

where
– c is a homomorphic encryption (under some public key pk) of exponents
α, β ∈ Zp,

– π is a non-interactive zero-knowledge proof that these exponents represent z
in the sense that gz = gαuβ for a publicly known group element u. (Hence,
if we write u = gω, we have z = α+ β · ω.)

Hence, AFHLP simply enhance the group element gz ∈ G by an encrypted
representation of its discrete logarithm z (and a suitable consistency proof).
This added information will be instrumental in computing a multilinear map on
many encodings. Note that since c and π will not be uniquely determined, there
are many possible encodings of a G-element gz.

Addition. Encodings in the AFHLP construction can be added with an (ob-
fuscated) public circuit Add. This circuit takes as input two encodings h1 =
(gz1 , c1, π1) and h2 = (gz2 , c2, π2), and computes the new encoding h1 + h2 =
(gz, c, π) as follows:
1. gz = gz1+z2 is computed using the group operation in G;
2. c is computed homomorphically from c1 and c2 (adding the encrypted ex-

ponent vectors (αi, βi));
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3. the consistency proof π is computed using the decryption key sk as a witness
to show that the resulting c indeed contains a valid representation of z =
z1 + z2.

Here, only the computation of π requires secret information (namely, the decryp-
tion key sk). This secret information allows to derive a valid representation (α, β)
of gz. The most delicate part of the security proof from [AFH+16] is to argue
that the obfuscated circuit knowing sk does not help in solving (a multilinear
variant of) the decisional Diffie–Hellman problem.

The multilinear map. The AFHLP encodings can also be multiplied with an
(obfuscated) public circuit Mult; this takes as input κ encodings h1, . . . , hκ with
hi = (gzi , ci, πi), and outputs a single group element g

∏κ
i=1 zi . (Hence, elements

from the target group GT are trivially and uniquely encoded as G-elements.) To
compute g

∏
zi from the hi, Mult first checks the validity of all proofs πi, and

then uses the decryption key sk to retrieve representations (αi, βi). If all πi are
verifying proofs, we may assume that zi = αi + βi · ω (for u = gω), so we can
write

g
∏κ
i=1 zi =

κ∏
i=0

(gω
i

)γi for (γ0, . . . , γκ) = (α1, β1) ∗ · · · ∗ (ακ, βκ) , (1)

where “∗” denotes the convolution product of vectors.7 The values gω
i

(for i ≤ κ)
are hardwired into Mult, so Mult can compute g

∏
zi through (1). Note that this

way, Mult can compute a κ-linear map on encodings, but not a (κ + 1)-linear
map. This observation is the key to showing that the MDDH assumption holds
in this setting. (Indeed, the MDDH assumption states that given κ+1 encodings

h1, . . . , hκ+1 as above, it is hard to distinguish g
∏κ+1
i=1 zi from random.)

1.2 Our new graded encoding scheme

Before proceeding any further, we briefly recall the notions of a graded multilin-
ear map and a graded encoding scheme.

Graded maps. In a graded multilinear map setting, we have groups G1, . . . ,Gκ,
and (efficiently computable) bilinear maps ei,j : Gi ×Gj −→ Gi+j for i+ j ≤ κ.
Hence, the ei,j also allow the evaluation of a multilinear map e : Gκ1 −→ Gκ
iteratively, e.g., through

e(g1, . . . , gκ) := e1,κ−1(g1, e1,κ−2(g2, · · · , e1,1(gκ−1, gκ) · · · )) .

However, the ei,j also allow “partial” evaluation of e, which is the key to entirely
new applications such as those in [GGH+13b,GGSW13,GGH+13c,BW13].

Unfortunately, we do not currently know how to implement such a “clean”
graded multilinear map. Instead, all known graded MLM constructions work

7 Recall that the multiplication of polynomials can be implemented through the
convolution product on the respective coefficient vectors. In particular, we have∑κ
i=0 γiX

i =
∏κ
i=1(αi + βiX).
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on encodings (i.e., non-unique representations of group elements). Such a con-
struction is usually called a graded encoding scheme (GES). Following the GES
notation, we will henceforth also call an encoding of a G`-element a level-` en-
coding.

In the following, we will describe the main ideas for our GES.

Encodings in our scheme. In our GES, we generalize the linear representation
of exponents in AFHLP to polynomials of higher degree. Additionally, we divide
encodings into levels by restricting the maximum degree of the representing
polynomial in each level. More formally, level-` encodings take the form

h = (gz, c = Enc(P, pk), π, `) ,

where
– gz ∈ G for a cyclic group G (that does not depend on `) of prime order p,
– P ∈ Zp[X] is a polynomial of degree up to `, represented by its coefficient

vector from Z`+1
p ,

– c is the encryption (under a fully homomorphic encryption scheme) of P ,
– π is a non-interactive zero-knowledge proof of the equality gz = gP (ω), where
ω is defined through public values u0, . . . , uκ ∈ G with ui = gω

i

. (Hence,
gz = gP (ω) is equivalent to gz =

∏
i u

γi
i for P (X) =

∑
i γiX

i.)
The encodings of AFHLP can be viewed as level-1 encodings in our scheme (with
linear polynomials P ).

Adding encodings. Encodings can be added using a public (obfuscated) circuit
Add that proceeds similarly to the AFHLP scheme. In particular, Add adds the
gz and c parts of the input encodings homomorphically, and derives a consistency
proof π with the decryption key sk as witness.

Multiplying encodings. The pairings ei,j : Gi×Gj −→ Gi+j are implemented
over our encodings by (obfuscated) circuits Multi,j . Circuit Multi,j takes as
input two encodings h1 = (gz1 , c1, π1, i) and h2 = (gz2 , c2, π2, j) at levels i and j,
respectively. The output of Multi,j is a level-(i+j) encoding h = (gz, c, π, i+j),
computed as follows:8

– gz is computed as gz = g(P1·P2)(ω), where the polynomials P1 and P2 are
extracted from c1 and c2 with sk , then multiplied to form P := P1 · P2 ∈
Zp[X], and finally used to compute

g(P1·P2)(ω) = gP (ω) =

i+j∏
`=0

uγ`` for P (X) =

i+j∑
`=0

γ`X
` .

(Note that since u0, . . . , uκ are public, this value can be computed as long
as i+ j ≤ κ.)

– c is computed homomorphically from c1 and c2, as an encryption of the
polynomial P1 · P2.

8 Since Multi,j can be used to multiply two encodings at level i as long as 2i ≤ κ, our
GES can be viewed as symmetric. We note that we do not deal with the construction
of generalized GES (see [GGH13a, Appendix A] for a definition).
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– The consistency proof π (showing that indeed gz = gP (ω) for the polynomial
P encrypted in c) is computed with the decryption key sk as witness.

The key insight needed to show that the MDDH assumption holds for our
GES is the same as in AFHLP’s non-graded, approximate MLM. Namely, observe
that any Multi,j can only multiply encodings if i+ j ≤ κ. To compute the first

component gz of any “higher-level” encoding, knowledge of gω
`

for ` > i + j

seems to be required. Under the SDDH assumption in G, such gω
`

look random,
even when given u0, . . . , uκ. Of course, to turn this observation into a full proof,
more work is required.

Neglected details. For a useful GES, it should be possible to generate en-
codings with “known discrete logarithm”; that is, we would like to be able to
generate encodings for an externally given (or at least known) z ∈ Zp. For this
reason, the standard way to generate encodings (at any level) is to set up P as
a constant polynomial of the form P (X) = z ∈ Zp. (That is, we “reserve space”
in c for polynomials P of degree ` in level-` encodings, but, by default, use only
constant polynomials.) For this type of encoding with “low-degree P ,” however,
our security argument above does not apply. Rather, it requires that the degree
of P increases at higher levels.

Hence, the central technical piece in our MDDH security proof will be a
“switching theorem” that allows to replace a low-degree P in an encoding with
an equivalent high-degree P ′ (that satisfies P ′(ω) = P (ω)). The proof of this
switching theorem is delicate, since it must work in a setting with (obfuscated)
algorithms that use the decryption key sk . (Note that free access to sk would
allow the retrieval of the used polynomial P from an encoding, and hence would
prevent such a switching of polynomials.)

To this end, we will use double encryptions c (instead of the single encryption
c = Enc(P, pk) described above), along with a Naor–Yung-style consistency
proof in π. However, this consistency proof does not show equality of encryptions,
but equivalence of encrypted representations P, P ′ in the sense of P (ω) = P ′(ω).
This allows to switch representations without invalidating the consistency of
the double encryption. As a result, the full consistency language used for π
is considerably more complicated than the one sketched before. Additionally,
the proof of our switching theorem requires a special and explicit “simulation
trapdoor” and Groth–Sahai-style dual-mode proof systems.

We note that similar complications arose already in AFHLP’s proof, and
required similar measures. The main technical difference in our setting is that our
multiplication circuits Multi,j output encodings (and not just group elements
as in the multilinear map of AFHLP). Hence, our Multi,j circuits also need to
construct consistency proofs π, which requires additional secrets (as witnesses)
in the description of Multi,j and which entails additional steps in our switching
theorem. (We give more details on the technical differences with AFHLP in the
main body. However, we note that, in addition to providing a graded encoding
scheme, we also provide simplified and tighter proofs.
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Fortunately, the indistinguishability obfuscator from [GGH+13b] requires
only a relatively weak MLM variant and hence is not affected by the above-
mentioned cryptanalyses.9

Assumptions. In summary, our construction uses a cyclic group in which the
SDDH assumption holds, a probabilistic indistinguishability obfuscation scheme
[CLTV15], a perfectly correct fully homomorphic encryption (FHE), a dual-
mode non-interactive zero-knowledge proof systems, and a language with hard
membership. With the exception of perfectly correct FHE schemes, all of these
assumptions are implied by pairing-friendly SDDH groups (equipped with an
asymmetric pairing) and sub-exponentially secure indistinguishability obfusca-
tion (see [GS12]). We stress that plausible candidates for both ingredients exist
(e.g., by combining [GGH13a] and [GGH+13b] to an indistinguishability ob-
fuscator candidate). The assumption of perfectly correct FHE schemes is not
new [GGI+15], but we note that neither current lattice-based FHE schemes
(e.g., [BGV12]) nor the semi-generic construction from [CLTV15] enjoy perfect
correctness “out of the box”.

Road map. We first recall some preliminaries in Section 2 and the GES definition
in Section 3. Section 4 recalls the AFHLP construction. We are then ready to
present our GES construction in Section 5, and establish our central technical
tool (the “switching theorem”) in Section 6. We prove the hardness of MDDH
in Section 7. In the appendices, we give a technical overview of AFHLP and the
full proofs of the theorems from the main body of the paper.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume that it is
implicitly given to all algorithms in the unary representation 1λ. By an algo-
rithm we mean a stateless Turing machine. Algorithms are randomized unless
stated otherwise, and ppt as usual stands for “probabilistic polynomial-time.”
In this paper, by a ppt algorithm we mean an algorithm that runs in polyno-
mial time in the security parameter (rather than the total length of its inputs).
Given a randomized algorithm A we denote the action of running A on input(s)
(1λ, x1, . . .) with uniform random coins r and assigning the output(s) to (y1, . . .)
by (y1, . . .)←$ A(1λ, x1, . . . ; r). For a finite set X, we denote its cardinality by
|X| and the action of sampling a uniformly random element x from X by x←$ X.
We write [k] := {1, . . . , k}. Vectors are written in boldface x, and slightly abusing
notation, running algorithms on vectors of elements indicates component-wise
operation. Throughout the paper ⊥ denotes a special error symbol, and poly(·)
stands for a fixed (but unspecified) polynomial. A real-valued function negl(λ)

9 A recent attack on MLMs (see [MSZ16]) tackles even the weak MLM security re-
quirements the indistinguishability obfuscator from [GGH+13b] has. However, the
construction of [GGH+13b] (resp., its MLM building block) can be suitably enhanced
to thwart this attack [GMS16].
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is negligible if negl(λ) ∈ O(λ−ω(1)). We denote the set of all negligible functions
by Negl. We use bracket notation for elements in G, i.e., writing [z] and [z′] for
two elements gz and gz

′
in G and [z] + [z′] for their product gzgz

′
.

Circuits. A polynomial-sized deterministic circuit family C := {Cλ}λ∈N is a
sequence of sets Cλ of poly(λ)-sized deterministic circuits (for a fixed polynomial
poly(λ)). We assume that for all λ ∈ N all circuits C ∈ Cλ share a common
input domain ({0, 1}λ)a(λ), where a(λ) is the arity of the circuit family, and
an output co-domain {0, 1}λ. A randomized circuit family is defined similarly
except that the circuits also take random coins r ∈ {0, 1}rl(λ), for a polynomial
rl(λ) specifying the length of necessary random coins. To make the coins used
by a circuit explicit (e.g., to view a randomized circuit as a deterministic one)
we write C(x; r).

2.1 Homomorphic public-key encryption

Syntax. A homomorphic public-key encryption (PKE) scheme for a determin-
istic circuit family C = {Cλ}λ∈N of arity at most a(λ) is a tuple of ppt algo-
rithms Π := (Gen,Enc,Dec,Eval) such that (Gen,Enc,Dec) is a conven-
tional public-key encryption scheme with message space {0, 1}λ and Eval is a
deterministic algorithm that on input a public key pk a circuit C ∈ Cλ and
ciphertexts c1, . . . , cn with n ≤ a(λ) outputs a ciphertext c. Without loss of
generality, we assume that secret keys of a homomorphic PKE scheme are the
random coins used in key generation. This will allow us to check key pairs for
validity.

Correctness and compactness. For the scheme Π := (Gen,Enc,Dec),
we require perfect correctness as a PKE scheme; that is, for any λ ∈ N, any
m ∈ {0, 1}λ, any (sk , pk)←$ Gen(1λ), and any c←$ Enc(m, pk) we have that
Dec(c, sk) = m. We also require the FHE scheme to be fully compact in the
following sense. For any λ ∈ N, any m1, . . . ,mn ∈ {0, 1}λ with n ≤ a(λ),
any C ∈ Cλ, any (sk , pk)←$ Gen(1λ) and any ci←$ Enc(mi, pk) we have that
Eval(pk ,C, c1, . . . , cn) is in the range of Enc(C(m1, . . . ,mn), pk).

A fully homomorphic encryption (FHE) scheme is a homomorphic PKE that
correctly and compactly supports any circuit family containing polynomial-sized
circuits of polynomial arity (for any a priori fixed polynomial bounds on the
size and arity). In our constructions, full correctness and compactness are used
to ensure that the outputs of the addition and multiplications circuits can be
iteratively operated on. This in particular means that our GES is “noise-free”
in the sense that its correctness is not affected by the number of operations
operated on encodings.

We note that although most homomorphic PKE proposals in the litera-
ture are not perfectly correct, this property is usually assumed in the literature
(cf. [GGI+14]). Indeed, it is plausible that perfectly correct homomorphic PKE
can be achieved from standard homomorphic PKE constructions by adapting
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the probability distribution of the noise to a bounded distribution and applying
worst-case bounds in all steps.

Security. The IND-CPA security of a homomorphic PKE scheme is defined
identically to a standard PKE scheme without reference to the Dec and Eval
algorithms. Formally, we require that for any legitimate ppt adversary A :=
(A1,A2),

Advind-cpa
Π,A (λ) := 2 · Pr

[
IND-CPAAΠ(λ)

]
− 1 ∈ Negl ,

where game IND-CPAAΠ(λ) is shown in Figure 1 (left). Adversary A is legitimate
if it outputs two messages of equal lengths.

2.2 Obfuscators

Syntax and correctness. A ppt algorithm Obf is called an obfuscator for
a (deterministic or randomized) circuit class C = {Cλ}λ∈N if Obf on input
the security parameter 1λ and the description of a (deterministic or random-
ized) circuit C ∈ Cλ of arity a(λ) outputs a deterministic circuit C. For de-
terministic circuits, we require Obf to be perfectly correct in the sense the
circuits C and C are functionally equivalent; that is, that for all λ ∈ N, all
C ∈ Cλ, all C←$ Obf(1λ,C), and all mi ∈ {0, 1}λ for i ∈ [a(λ)] we have
that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ)). For randomized circuits, the authors
of [CLTV15] define correctness via computational indistinguishability of the out-
puts of C and C. For our constructions we do not rely on this property and in-
stead require that C and C are functionally equivalent up to a change in random-
ness; that is, for all λ ∈ N, all C ∈ Cλ, all C←$ Obf(1λ,C) and all mi ∈ {0, 1}λ
for i ∈ [a(λ)] there is an r such that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ); r).We
note that the construction from [CLTV15] is correct in this sense as it relies on
a correct indistinguishability obfuscator and a PRF to internally generate the
required random coins.

Security. The security of an obfuscator Obf requires that for any legitimate
ppt adversary A := (A1,A2)

Advind
Obf ,A(λ) := 2 · Pr

[
INDAObf (λ)

]
− 1 ∈ Negl ,

where game IND is shown in Figure 1 (middle). Depending on the adopted notion
of legitimacy, different security notions for the obfuscator emerge; we consider
the following one.

X-IND samplers [CLTV15]. Roughly speaking, the first phase ofA := (A1,A2)
is an X-IND sampler if there is a set X of size at most X such that the circuits
output by A are functionally equivalent outside X , and furthermore within X
the outputs of the circuits are computationally indistinguishable. Formally, let
X(·) be a function such that X(λ) ≤ 2λ for all λ ∈ N. We call A := (A1,A2) an
X-IND sampler if there are sets Xλ of size at most X(λ) such that the following
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IND-CPAAΠ(λ):

(sk , pk)←$ Gen(1λ)
(m1,m1, st)←$ A1(pk)
b←$ {0, 1}
c←$ Enc(m, pk)
b′←$ A2(c, st)
Return (b = b′)

INDAObf (λ):

(C0,C1, st)←$ A1(1λ)
b←$ {0, 1}
C←$ Obf(1λ,Cb)

b′←$ A2(C, st)
Return (b = b′)

Sel-INDDA(λ):

(x, z)←$ D1(1λ)

(C0,C1, st)←$ A1(1λ)

b←$ {0, 1}; r←$ {0, 1}rl(λ)

y ← Cb(x; r)
b′←$ D2(y,C0,C1, st, z)
Return (b = b′)

Fig. 1. Left: IND-CPA security of a (homomorphic) PKE scheme. Middle: Indistin-
guishability security of an obfuscator. We require A1 to output two circuits of equal
sizes. Right: Static-input (a.k.a. selective) X-IND property of A := (A1,A2).

two conditions holds: (1) For all (even unbounded) D the advantage function
below is negligible.

Adveq
A,D(λ) := Pr

[
(C0,C1, st)←$ A1(1λ); (x, r)←$ D(C0,C1, st) : C0(x; r) 6= C1(x; r)∧x /∈ Xλ

]
(2) For all non-uniform ppt distinguishers D := (D1,D2) it holds that

X(λ) ·Advsel-ind
A,D (λ) := X(λ) ·

(
2 Pr

[
Sel-INDDA(λ)

]
− 1
)
∈ Negl ,

where game Sel-INDDA(λ) is shown in Figure 1 (right).This game is named
“static-input-IND” in [CLTV15]. and has a selective (or static) flavor since D1

chooses a differing-input x before it gets to see the challenge circuits. We call
an obfuscator meeting this level of security a probabilistic indistinguishability
obfuscator [CLTV15] and use PIO instead of Obf to emphasize this.

Remark. We note that samplers that output two (possibly randomized) circuits
(C0,C1) for which the output distributions of C0(x) and C1(x) are identical on
any input x, are Sel-IND-secure for any function X(λ). The circuits samplers
that we will use in our security proofs enjoy this property.

2.3 Dual-mode NIZK proof systems

In our constructions we will be relying on special types of “dual-mode” non-
interactive zero-knowledge (NIZK) proof systems. These systems have two com-
mon reference string (CRS) generation algorithms that produce indistinguishable
CRSs in the “binding” and “hiding” modes. They are also perfectly complete
in both modes, perfectly sound and extractable in the binding mode, and per-
fectly witness indistinguishable (WI) and perfectly zero knowledge (ZK) in the
hiding mode. The standard prototype for such schemes are the pairing-based
Groth–Sahai proofs [GS08], and using a generic NP reduction to the satisfia-
bility of quadratic equations we can obtain a suitable proof system for any NP
language.10 We formalize the syntax and security of such proof systems next.

10 We note that extraction in Groth–Sahai proofs does not recover a witness for all
types of statements. (Instead, for some types of statements, only gwi for a witness
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Syntax. A (group) setup algorithm G is a ppt Turing machine that on input
1λ outputs gpk . A ternary relation R(gpk , x, w) is a deterministic algorithm
that outputs 1 for true or 0 for false. A dual-mode extractable non-interactive
zero-knowledge (NIZK) proof system Σ for setup G and relation R consists of
six algorithms as follows. (1) BCRS(gpk) on input gpk in the support of G
outputs a (binding) CRS crs and an extraction trapdoor tde; (2) HCRS(gpk)
on input gpk in the support of G outputs a (hiding) CRS crs and a simulation
trapdoor tdzk; (3) Prove(gpk , crs, x, w) on input gpk a first coordinate in the
support of G, a CRS crs, an instance x, and a witness w, outputs a proof π;
(4) Verify(gpk , crs, x, π) on input gpk , crs, an instance x, and a proof π, outputs
1 for accept or 0 for reject; (5) WExt(tde, x, π) on input an extraction trapdoor
tde, an instance x, and a proof π, outputs a witness w; and (6) Sim(tdzk, x) on
input the simulation trapdoor tdzk and an instance x, outputs a simulated proof
π.

We require the extractable dual-mode NIZK Σ for (G,R) to meet the fol-
lowing requirements.

CRS indistinguishability. For gpk←$ G(1λ), the two CRSs generated with
BCRS(gpk) and HCRS(gpk) are computationally indistinguishable. Formally,
we require the advantage of any ppt adversary A defined below to be negligible.

Advcrs
Σ,A(λ) :=2·Pr

[
b←${0, 1}; gpk←$ G(1λ); (crs0, tde)←$BCRS(gpk);

(crs1, tdzk)←$ HCRS(gpk); b′←$ A(gpk , crsb) : b = b′
]
− 1

Perfect completeness. For any λ ∈ N, any gpk←$ G(1λ), any (crs, tde)
←$ BCRS(gpk), any (x,w) where it holds that R(gpk , x, w) = 1, and any
π←$ Prove(gpk , crs, x, w), it holds that Verify(gpk , crs, x, π) = 1. We require
this property to also hold for any choice of hiding CRS.

Perfect soundness under BCRS. For any λ ∈ N, any gpk←$ G(1λ), any
CRS (crs, tde)←$ BCRS(gpk), any x where it holds that R(gpk , x, w) = 0 for
all w ∈ {0, 1}∗, and any π ∈ {0, 1}∗ we have that Verify(gpk , crs, x, π) = 0.

Perfect extraction under BCRS. For any λ ∈ N, any gpk←$ G(1λ), any
CRS (crs, tde)←$ BCRS(gpk), any (x, π) with Verify(gpk , crs, x, π) = 1, and
any w←$ WExt(tde, x, π) we have that R(gpk , x, w) = 1.

Perfect Witness Indistinguishability under HCRS. For any λ ∈ N,
any gpk←$ G(1λ), any (crs, tdzk)←$ HCRS(gpk), and any (x,wb) such that
R(gpk , x, wb) = 1 for b ∈ {0, 1}, the two distributions πb←$ Prove(gpk , crs, x, wb)
are identical.

Perfect Zero Knowledge under HCRS. For any λ ∈ N, any gpk←$ G(1λ),
any (crs, tdzk)←$ HCRS(gpk), and any (x,w) such that R(gpk , x, w) = 1, the

variable wi ∈ Zp can be recovered.) Here, however, we will only be interested in
witnesses w = (w1, . . . , wn) ∈ {0, 1}n that are bit strings, in which case extraction
always recovers w. (Extraction will recover gwi for all i, and thus all wi too.)
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two distributions π0←$ Prove(gpk , crs, x, w) and π1←$ Sim(tdzk, x) are iden-
tical.

2.4 Languages with hard membership

In our proofs of security we also rely on languages for which the membership
problem is hard and whose yes-instances have unique witnesses. Formally, such a
language family is defined as a tuple of four algorithms Λ := (GenL,YesSamL,
NoSamL,RL) as follows. (1) GenL(1λ) is randomized and on input the se-
curity parameter outputs a language key lk ; (2) YesSamL(lk) is randomized
and on input the language key lk outputs a yes-instance y; (3) NoSamL(lk)
is randomized and on input the language key lk outputs a no-instance y; and
(4) RL(lk , y, w) is deterministic and on input lk , an instance y and a witness w
outputs 1 for true or 0 for false.

We require RL to satisfy the following correctness requirements. For all λ ∈
N, all lk←$ GenL(1λ) and all y←$ YesSamL(lk) there is a w ∈ {0, 1}∗ such
that RL(lk , y, w) = 1. For a given lk , we denote the set of yes-instance by Llk . For
all λ ∈ N, all lk←$ GenL(1λ) and all y←$ NoSamL(lk) there is no w ∈ {0, 1}∗
such that RL(lk , y, w) = 1. We also require RL to have unique witnesses: for
all λ ∈ N, all lk←$ GenL(1λ), all y←$ YesSamL(lk) and all w,w′ ∈ {0, 1}∗ if
RL(lk , y, w) = RL(lk , y, w′) = 1 then w = w′.

Finally, the language is required to have a hard membership problem in the
sense that for any ppt adversary A

Advmem
Λ,A (λ) := 2·Pr

[
b←$ {0, 1}; lk←$ GenL(1λ); y0←$ NoSamL(lk);

y1←$ YesSamL(lk); b′←$ A(lk , yb) : b = b′
]
− 1 ∈ Negl .

Such languages can be instantiated using the DDH problem as follows. Al-
gorithm GenL(1λ) outputs the description of a prime-order group (G, g, p, 1)
as lk . Algorithm YesSamL(lk) samples a Diffie–Hellman tuple (ga, gb, gab), and
NoSamL(lk) outputs a non-Diffie–Hellman tuple (ga, gb, gc) for a random c 6= ab
(mod p) when b = 0. Relation RL on instance (g1, g2, g3) and witness w = a
checks if g1 = ga and g3 = ga2 . The hardness of membership for this language
family follows from the DDH assumption.

3 Graded Encoding Schemes

We start by recalling (a slight variant of) the definition of graded encoding
systems from Garg, Gentry and Halevi (GGH) [GGH13a].

κ-graded encoding system. Let R be a (non-trivial) commutative ring and

S := {S(a)
i ⊂ {0, 1}∗ : a ∈ R, 0 ≤ i ≤ κ} a system of sets. Then (R,S) is called

a κ-graded encoding system if the following conditions are met.

1. For each level i ∈ {0, . . . , κ} and for any a1, a2 ∈ R with a1 6= a2 we have

that S
(a1)
i ∩ S(a2)

i = ∅.
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2. For each level i ∈ {0, . . . , κ}, the set {S(a)
i : a ∈ R} is equipped with a binary

operation “+” and a unary operation “−” such that for all a1, a2 ∈ R and

every u1 ∈ S(a1)
i , u2 ∈ S(a2)

i it holds that

u1 + u2 ∈ S(a1+a2)
i and − u1 ∈ S(−a1)

i .

Here a1 + a2 and −a1 denote addition and negation is R.
3. For each two levels i, j ∈ {0, . . . , κ} with i+j ≤ κ, there is a binary operation

“×” such that for all a1, a2 ∈ R and every u1 ∈ S(a1)
i , u2 ∈ S(a2)

j it holds
that

u1 × u2 ∈ S(a1·a2)
i+j .

Here a1 · a2 denotes multiplication in R.

The difference to the GGH definition is that we do not require the opera-
tions “+” and “×” to be associative or commutative. (Indeed, our upcoming
construction does not satisfy these properties.) We are not aware of any applica-
tions that require the associativity or commutativity of encodings. However, we
stress that the operations “+” and “×” must respect the ring operations from
R. For instance, while we may have (u1 + u2) + u3 6= u1 + (u2 + u3) for some

ui ∈ S(ai)
j , both the left-hand and the right-hand sides lie in S

(a1+a2+a3)
j .

Throughout the paper, we refer to an element a ∈ R as an exponent and a

bit string u ∈ S(a)
i as an encoding of a. Further, we write Si :=

⋃
a∈R S

(a)
i for

the set of all level-i encodings.
We now define graded encoding schemes by introducing explicit algorithms

for manipulating encodings of a graded encoding system.

κ-graded encoding scheme. Let (R,S) be a κ-graded encoding system. A
graded encoding scheme (GES)

Γ = (Setup,Eq,Add,Mult,Sam,Ext)

associated to (R,S) consists of the following ppt algorithms.

Setup(1λ, 1κ): On input the security parameter 1λ and the (multi)linearity 1κ,
it outputs parameters of Γ (which are assumed to be provided to all other
algorithms). We note that this algorithm runs in time poly(λ) as long as κ
is polynomial in λ.

Eqi(h1, h2): For i ∈ {0, . . . , κ} and two encodings h1 ∈ S(a)
i and h2 ∈ S(b)

i , this
deterministic algorithm outputs 1 if and only if a = b in R.

Addi(h1, h2): This deterministic algorithm performs the “+” operation of (R,S)

in level i. For i ∈ {0, . . . , κ} and encodings h1 ∈ S(a1)
i and h2 ∈ S(a2)

i this

algorithm outputs an encoding in h ∈ S(a1+a2)
i .

Multi,j(h1, h2): This deterministic algorithm performs the “×” operation of

(R,S). For i, j ∈ {0, . . . , κ} with i + j ≤ κ and encodings h1 ∈ S(a1)
i and

h2 ∈ S(a2)
j this algorithm outputs an encoding in S

(a1·a2)
i+j .

14



Sami(a): For i ∈ {0, . . . , κ} and a ∈ R, this probabilistic algorithm samples an

encoding from S
(a)
i .

Exti(h): For i ∈ {0, . . . , κ} and input h ∈ Si, this deterministic algorithm
outputs a bit string. Algorithm Exti is required to respect membership in

S
(a)
i , i.e., it outputs identical strings for any two encodings h1, h2 ∈ S(a)

i

Our definition of a GES essentially implements the “dream version” of GESs
[GGH13a], but differs in two aspects:
– GGH do not permit sampling for specific values a ∈ R. (Instead, GGH

provide an algorithm to sample a random a along with its encoding.)
– GGH’s zero-testing algorithm is substituted with an equality test (through

Eqi) above. Our equality test must only work for consistent encodings from

some S
(a)
i and S

(b)
i . In contrast, the dream version of GGH requires that the

set S
(0)
i is efficiently recognizable.

4 Approximate Multilinear Maps

We recall the approximate multilinear maps due to AFHLP [AFH+16]. The au-
thors construct both symmetric and asymmetric multilinear maps. Their sym-
metric construction can be seen as a starting point for our GES.

4.1 Syntax

We start with the syntax of multilinear group (MLG) schemes [AFH+16]. In-
formally, a κ-MLG scheme is a restricted form of a graded encoding scheme
where encodings belong to levels 0, 1 and κ only and the Mult algorithm takes
κ encodings at level 1 and outputs an encoding at level κ. We formalize MLG
schemes in terms of a GES.

Symmetric MLG schemes. A symmetric κ-linear group scheme is a κ-graded
encoding scheme associated to (R,S), where (R,S) is defined similarly to a κ-

graded encoding system except that S := {S(a)
i ⊂ {0, 1}∗ : a ∈ R, i ∈ {0, 1, κ}}

and the “×” operation is redefined as a κ-ary map that for any a1, . . . , aκ ∈ R
and any u1 ∈ S(a1)

1 , . . . , uκ ∈ S(aκ)
1 satisfies

u1 × · · · × uκ ∈ S(a1···aκ)
κ .

The associated Mult algorithm on inputs hi ∈ S(ai)
1 for i ∈ [κ] outputs an en-

coding in S
(a1···aκ)
κ . Algorithms Eq, Add, Sam and Ext are defined analogously

and restricted to i ∈ {0, 1, κ} only.

4.2 Overview of AFHLP

In a nutshell, [AFH+16] works with redundant encodings of elements h of the
base group G of the form h = gx0(gω)

x1 where gω comes from an SDDH instance.
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Vector x = (x0, x1) represents element h. The set S1 consists of all strings of
the form (h, c1, c2, π) where h ∈ G, ciphertext c1 is a homomorphic encryption
under public key pk1 of a vector x representing h, ciphertext c2 is a homomorphic
encryption under a second public key pk2 of another vector y also representing
h, and π is a NIZK proof showing consistency of the two vectors x and y. Here
consistency means that the plaintexts vectors x and y underlying c1 and c2

encode the same group element h. Note that each element of the base group G
is multiply represented in S1, but that equality of elements in S1 is easy to test
(via checking the equality of first components).

Addition of two elements in S1 is carried out by an obfuscation of a circuit
CAdd[sk1, sk2], which has the two secret keys hardwired in. The circuit checks
the respective proofs, adds the group elements in G and uses the additive ho-
momorphic property of the encryption scheme to combine ciphertexts. It then
uses witness (sk1, sk2) to generate a NIZK proof showing equality of encodings.
Note that the new encoding is as compact as the two input encodings.

The multilinear map on inputs (hi, ci,1, ci,2, πi) for 1 ≤ i ≤ κ is computed
using an obfuscation of a circuit CMap[sk1, ω], which has sk1 and ω hardwired
in. The circuit recovers the exponents of hi in the form (xi,1 + ω · xi,2) from
ci,1 via the decryption algorithm Dec(·, sk1). It then uses these to compute the
group element g

∏
i(xi,1+ω·xi,2), which is defined to be the output of Mult. (The

target set Sκ is therefore G, the base group.) The κ-linearity of Mult follows
immediately from the form of the exponent. See Appendix A for technical details.

In the original paper, this construction is generalized to the asymmetric set-
ting via representations of the form g〈x,ω〉 with x,ω ∈ Z`N for ` ∈ {2, 3} (where
〈x,ω〉 denotes inner products modulo the base-group order). The special case
ω := (1, ω) then gives an MLG scheme where MDDH is shown to be hard. We
refer the reader to the original work [AFH+16] for the details.

5 The GES Construction

We now present our construction of a graded encoding scheme Γ according to
the syntax introduced in Section 3. We will use the following ingredients in our
construction. A similar set of building blocks were used in [AFH+16].
1. A group setup algorithm SetupG(1λ) that samples (the description of) a

group G, along with a random generator g of G and the group order p and the
identity element 1.11 We implicitly assume efficient algorithms for checking
group membership, performing the group operation, inversion, and randomly
sampling group elements. We further assume a unique binary representation
for every group element and a randomness extractor for this group.

2. A general-purpose probabilistic indistinguishability obfuscator PIO that we
assume is secure against X-IND samplers.

3. A perfectly correct and IND-CPA-secure fully homomorphic PKE scheme Π
with plaintext space Zκ+1

p .

11 It is conceivable that our security proofs also hold for non-prime p up to statistical
defect terms related to randomization of elements modulo a composite number.
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4. An extractable dual-mode NIZK proof system Σ.
5. A language family Λ with hard membership problem and unique witnesses.

Given the above components, with formal syntax and security as defined in
Section 2, our graded encoding scheme Γ consists of the algorithms detailed in
the sections that follow. (See the introduction for an intuition.)

5.1 Setup

The Setup algorithm of Γ gets as input 1λ and 1κ. It samples parameters
ppG←$ SetupG(1λ) with ppG := (G, g , p, 1), generates two encryption key pairs
(pk j , sk j)←$ Gen(1λ) for j = 1, 2, and an element ω←$ ∈ Zp. We will refer to
G as the base group. It sets

[ω] := ([ω], . . . , [ωsκ]) ,

a vector of sκ elements in the base group G, with κ the number of desired levels
and s ∈ N a system parameter. (Depending on s, the arising construction will
have different properties. For s ≥ 1, we get a construction in which the MDDH
assumption holds.) It then samples lk←$ GenL(1λ), and sets

gpk := (ppG, pk1, pk2, [ω], lk) .

We define G(1λ) to be the randomized algorithm that runs the above steps and
outputs gpk . This algorithm will be used to define the NIZK proof system.

The Setup algorithm continues by generating a binding CRS (crs ′, tde)
←$ BCRS(gpk), and also a no-instance of Llk via y←$ NoSamL(lk). It sets
crs := (crs ′, y). (The relation R that the NIZK should support will be defined
shortly in Section 5.2.)

Finally, it constructs two obfuscated circuits CMult and CAdd of circuits CMult

and CAdd, which will be described in Sections 5.3 and 5.4, respectively. Setup
also selects a seed hk for a randomness extractor and outputs the scheme pa-
rameters

pp := (gpk , crs, hk ,CAdd,CMult) .

5.2 Encodings and equality

Level-0 encodings. We treat algorithms for level-0 encodings separately in
our construction as they behave somewhat differently to those from the other
levels. For instance, when multiplied by other encodings, they do not result
in an increase in encoding levels. The canonical choice for level-0 encodings is
the ring Zp, which we adopt in this paper. These encodings, therefore, come
with natural algorithms for generation, manipulation and testing of elements.
Algorithm Mult when applied to inputs one of which is at level 0 corresponds
to multiplication with the element in the zeroth level. The latter can in turn be
implemented with a shift-and-add algorithm that employs the encoding addition
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Add of Section 5.3. We omit explicit mention of operations for level-0 encodings
to ease notation and focus on the more interesting cases at levels 1 and above.12

Level-κ encodings. We set Sκ := G in our scheme and use the algorithms
associated with G for generation, equality testing, and addition of encodings
at level κ. Once again, we omit these operations from the addition circuit for
clarity. The multiplication circuit can only be called on a level-κ together with
a level-0 encoding, which we have already excluded. However, we still have to
deal with outputs at level κ in Mult.

Other levels. For 0 < ` < κ and z ∈ Zp, the encodings in S
(z)
` consist of all

tuples of the form

h := ([z], c1, c2, π, `) ,

where c1, c2 are two ciphertexts in the range of Enc(·, pk1) and Enc(·, pk2),
respectively,13 and π is a verifying NIZK proof under crs ′ that:

(1) either c1 and c2 contain polynomials P1 and P2 of degree at most s`, such
that P1(ω) = P2(ω) = z,

(2) or y ∈ Llk (or both).

More formally, π must be a verifying proof that (gpk , ([z], c1, c2, `)) satisfies one
relation R1 or R2 as follows.

Relation R1 on input gpk , an encoding ([z], c1, c2, `), and a witness (P1, P2,
r1, r2, sk1, sk2) accepts iff all of the following hold:

– [z] ∈ G;
– both P1 and P2 are polynomials over Zp of degree ≤ s` (given by their

coefficient vectors);
– both P1 and P2 represent z in the sense that [z] = [P1(ω)] and [z] = [P2(ω)];
– both ci are encryptions of (or decrypt to) Pi in the following sense:

for both i ∈ {1, 2} : ci = Enc(Pi, pk i; ri)

∨
for both i ∈ {1, 2} : (pk i, sk i) = Gen(sk i) ∧ Pi = Dec(ci, sk i) .

Note that there are two types of witnesses that can be used in proof generation
for R1, namely (P1, P2, r1, r2) and (sk1, sk2).

Let RL be the relation for the trapdoor language Λ. Relation R2, given gpk ,
an encoding, and a witness wy, accepts iff RL(lk , y, wy) accepts. (Note that the
output of R2 is independent of input encodings.) Hence, intuitively, R2 provides
an explicit trapdoor to simulate consistency proofs (in case y ∈ Llk ).

12 We mention that previous GESs used more complex level-0 encodings, and since
their encodings were noisy, they allowed only a limited number of operations on
each encoding. Hence, implementing Mult on level-0 inputs via shift-and-add could
be too costly in their settings.

13 This “honest-ciphertext-generation” condition is necessary for the (bi)linearity of
our addition and multiplication algorithms. Unfortunately, this also prevents the
sets S

(z)
` from being efficiently recognizable.
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We define R := R1 ∨R2 and assume that Σ is a proof system with respect
to (G,R) with G as defined in Section 5.1.

Valid and consistent encodings. The following convention will be useful in
the context of valid of encodings and the correctness of out scheme. We call an
encoding h valid if the proof π verifies correctly under crs ′. We write Val`(h)
iff h is valid and the level implicit in h matches `. We call h consistent (with
respect to gpk) if h is in the language defined by the first three conditions of
relation R1 as well as the first clause of the disjunction above. (In particular, the
corresponding ciphertexts ci are possible outputs of Enc(Pi, pk i); this implies
that these ciphertexts behave as expected under the homomorphic evaluation
algorithm Eval.) Note that consistency implies validity but the converse is not
necessarily the case and hence a valid encoding may not lie in any S`. For
example this would be the case if an “anomalous” ciphertext decrypts correctly
to a valid representation, but does not lie in the range of Enc. Furthermore,
validity can be publicly and efficiently checked, while this is not necessarily the
case for consistency. We note, however, that if the encryption scheme does not
allow for anomalous ciphertexts, our GES would also have efficiently recognizable
encodings. We leave the construction of such FHE schemes as an open problem.

Algorithm Eq. The equality algorithm Eq` returns 1 iff the first components
of the inputs match. The correctness of this algorithm follows from the fact that
the base group G has unique representations. (Recall from GES syntax that Eq`
is only required to work with respect to consistent encodings.)

Polynomial representations. A significant conceptual difference with the
work of AFHLP is that we represent exponents in Zp with polynomials instead
of vectors. This generalization enables natural notion of levels corresponding to
the degrees of the representing polynomials. We observe that a level-` encoding
h is not a valid level-`′ encoding if `′ 6= ` as the perfectly sound proof π included
in h depends on the instance and in particular on the level.

5.3 Addition

We now provide a procedure for adding two level-` encodings h = ([z], c1, c2, π, `)
and h′ = ([z′], c′1, c

′
2, π
′, `) in S`. Conceptually, our addition circuit operates sim-

ilarly to that of AFHLP. The main difference is that encodings contain polyno-
mials and the levels. We exploit the structure of the base group as well as the
homomorphic properties of the encryption scheme to “add together” the first
and second components of the inputs. We then use (sk1, sk2) as a witness to
generate a proof π′′ that the new tuple is well formed. For technical reasons we
check both the validity of h and h′ (by checking π and π′) and their consistency
(using (sk1, sk2)).

Figure 2 details the operation of the addition circuit CAdd. A PIO of this
circuit will be made public via the parameters pp. We emphasize that step 5,
that is, the explicit consistency check, is never reached under a binding crs ′ (due
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Circuit CAdd[gpk , crs, sk1, sk2, tde](`, h, h
′): // for 1 ≤ ` ≤ κ− 1

1. if ¬(Val`(h) ∧Val`(h
′)) then return ⊥

2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c
′
2, π
′, `)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. P1 ← Dec(c1, sk1); P2 ← Dec(c2, sk2)
P ′1 ← Dec(c′1, sk1); P ′2 ← Dec(c′2, sk2)

5. if [z] 6= [P1(ω)] ∨ [z] 6= [P2(ω)] ∨ [z′] 6= [P ′1(ω)] ∨ [z′] 6= [P ′2(ω)] then
5.1. w′y←$ WExt(tde, ([z], c1, c2), π)
5.2. if ¬R2(gpk , ([z], c1, c2, `), w

′
y) then return ⊥

5.3. π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 ), w′y)

6. else π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 ), (sk1, sk2))

7. return ([z′′], c′′1 , c
′′
2 , π

′′, `)

Fig. 2. The probabilistic circuit used to add encodings for levels 1 ≤ ` ≤ κ − 1. The
checks at 5 are never passed in an honest execution of the protocol. We emphasize that
the test in step 5 is implemented using the values [ωi]. The random coins needed for
randomized operations are internally generated after obfuscating with PIO.

to the perfect soundness of the proof system), but they may be reached with a
hiding crs ′ later in the security analysis. Let us expand on this.

In the analysis, we need to specify how CAdd behaves if it encounters valid
inputs (in the sense the proofs pass NIZK verification), but nevertheless are
inconsistent in the sense that at least one of encodings does not decrypt to a
valid representation. Let us call such inputs bad.

With the knowledge of secret keys, such bad inputs can be recognized, and
the natural choice would be to define CAdd to abort when this is the case. With
this choice, however, we run into the following problem. During the security proof
we will set the addition circuit to answer all valid inputs (including bad ones)
with simulated proofs. On the other hand, the original addition circuit rejects
such inputs. (Furthermore, it cannot even simulate proofs for wrong statements,
and hence cannot answer bad inputs with valid-looking proofs.)

On a high level, we would like to modify how CAdd reacts on bad inputs
so that it uses a NIZK simulation trapdoor on bad inputs. The difficulty with
this strategy is that no such simulation trapdoor exists when the NIZK CRS
is binding. Hence, we create our own NIZK trapdoor through an extra “OR
branch” in the proved statement (akin to the Feige–Lapidot–Shamir transform).
This gives us a little more flexibility in defining and using that trapdoor.

More specifically, recall that our CRS is of the form crs = (crs ′, y) where
crs ′ is a binding CRS for the dual-mode NIZK proof system, and y is a no-
instance of Llk . However our actual means to fake proofs will be to switch y to a
yes-instance and use a witness wy to produce proofs. Specifically, in the security
proof, we will eventually let CAdd use a simulation trapdoor wy (instead of a
simulation trapdoor for the NIZK). The benefit of this is that CAdd will know
an extraction trapdoor td ′e (that of course only exists if the CRS crs ′ is in the
binding mode) which it can use to extract a witness from a given proof π. Thus,
whenever CAdd encounters a bad input, it can extract a witness w′y, which must
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at that point be a simulation trapdoor wy. This simulation trapdoor wy can then
immediately be used to produce a fake proof π′′ even upon bad inputs. In other
words, CAdd knows no simulation trapdoor a priori, but it can extract one from
any simulated proof for a false statement.

The Add` algorithm simply runs the obfuscated circuit on the input en-
codings and `. The correctness of this algorithm follows from that of Π, the
completeness of Σ and the correctness, in our sense, of the (probabilistic) obfus-
cator PIO. Note that FHE correctness is only guaranteed to hold with respect to
ciphertexts that are in the range of encryption or evaluation (and not necessarily
for anomalous ones that decrypt correctly). This, in particular, means that we
cannot enlarge the set of encodings to contain all valid ones (as opposed to just
consistent ones) to get efficient decidability of encoding sets as correctness can
no longer be established. (See also remark on validity on page 19.) Note that
full compactness ensures that the ciphertexts output by Add` are in the range
of encryption, and hence they can be further operated on with Eval.

5.4 Multiplication

Given two encodings h = ([z], c1, c2, π, `) and h′ = ([z′], c′1, c
′
2, π
′, `′) at levels `

and `′ respectively, the multiplication algorithms operates analogously to addi-
tion as follows. The corresponding circuit CMult has both decryption keys and
now also ω ∈ Zp hardwired in. After validity checks and decrypting the input
ciphertexts, it performs the multiplication of the polynomials encrypted under
ci and c′i homomorphically using a convolution operation on the coefficient vec-
tors. However, it cannot obviously compute the element [zz′] in the base group
G. Suppose c1 and c′1 encrypt polynomials P and P ′ of degrees at most s` and
s`′ respectively and such that [z] = [P (ω)] and [z′] = [P ′(ω)]. The multiplication
circuit uses the explicit knowledge of ω and polynomials P and P ′ to compute
[zz′] = [(P ∗ P ′)(ω)].14 Circuit CMult is shown in Figure 3. Note that similarly
to addition, step 6 performs explicit checks of consistency of encodings that will
only be used in the analysis under a hiding crs ′.

The correctness of these maps follows from the correctness of Π and PIO,
and the completeness of Σ.

Enabling graded multiplication. The main difference between our circuit
CMult and that of [AFH+16] is that here we need to output auxiliary information
(c1, c2, π) for multiplied encodings at output levels below κ. This information
allows the multiplication algorithm to operate in a graded fashion as any output
encoding by CMult can be fed back into CMult as long as it lies at a level ` <
κ.15 In order to enable CMult to generate this auxiliary information, we use an
encryption scheme that is also homomorphic with respect to multiplication in

14 Observe that with the explicit knowledge of P ∗ P ′ and the powers ([ωi])1≤i≤sκ it
is also possible to compute [zz′] as long as P ∗ P ′ is of degree ≤ sκ; this will be
exploited in the security analysis in Section 7.

15 Recall that encodings at level κ can only be multiplied with level-0 encodings, i.e.,
with elements in Zp.
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Circuit CMult[gpk , crs, ω, sk1, sk2, tde](`, `
′, h, h′): // for 1 ≤ `, `′ ≤ κ− 1

1. if ¬(Val`(h) ∧Val`′(h
′)) ∨ `+ `′ > κ then return ⊥

2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c
′
2, π
′, `′)← h′

3. c′′1 ← c1 ∗ c′1; c′′2 ← c2 ∗ c′2
4. P1 ← Dec(c1, sk1); P2 ← Dec(c2, sk2)
P ′1 ← Dec(c′1, sk1); P ′2 ← Dec(c′2, sk2)

5. z′′ ← (P1 ∗ P ′1)(ω)
6. if [z] 6= [P1(ω)] ∨ [z] 6= [P2(ω)] ∨ [z′] 6= [P ′1(ω)] ∨ [z′] 6= [P ′2(ω)] then

6.1. w′y←$ WExt(tde, ([z], c1, c2), π)
6.2. if ¬R2(gpk , ([z], c1, c2), w′y) then return ⊥
6.3. π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c

′′
2 ), w′y)

7. else π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 ), (sk1, sk2))

8. If (`+ `′ = κ) then return [z′′] else return ([z′′], c′′1 , c
′′
2 , π

′′, `+ `′)

Fig. 3. Circuit used for multiplying encodings for levels 1 ≤ `, `′ ≤ κ − 1. Step 6 is
never reached in an honest execution of the protocol with a binding crs. The random
coins needed for randomized operations are internally generated after obfuscating with
PIO.

the plaintext ring. In contrast, AFHLP only rely on an additively homomorphic
encryption scheme.

5.5 Sampling

Given polynomials P1 and P2 of degree at most s` and satisfying P1(ω) =

P2(ω) = z we can generate an encoding from S
(z)
` by computing

h←
(
[z], c1 = Enc(P1, pk1; r1), c2 = Enc(P2, pk2; r2),

π = Prove(gpk , crs, ([z]i, c1, c2, `), (P1, P2, r1, r2); r), `
)
.

(2)

Hence, our sampling algorithm Sam`(z) sets P1(X) = P2(X) = z ∈ Zp and
computes an encoding through (2). We call these the canonical encodings of z,
independently of `. We note that this procedure is that in [AFH+16] adapted to
the generalized notion of polynomial representations.

5.6 Extraction

Since at each level ` the first component [z] is unique for each set S
(z)
` , we may

extract a uniform string from h = ([z], c1, c2, π, `) for a uniform z by applying a
randomness extractor seeded with hk to [z].

6 Indistinguishability of Encodings

We show that a key property used by AFHLP in the analysis of their multilinear
map [AFH+16, Theorem 5.3] is also exhibited by our graded scheme. Roughly
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κ-SwitchAΓ (λ):

(pp;ω)←$ Setup(1λ, 1κ) // ω generated within Setup
((P0,1, P0,2), (P1,1, P1,2), `, st)←$ A1(pp, ω)

b←$ {0, 1}; r1, r2←$ {0, 1}rl(λ)

c1 ← Enc(Pb,1, pk1; r1); c2 ← Enc(Pb,2, pk2; r2)
π←$ Prove(gpk , crs, ([Pb,1(ω)], c1, c2, `), (Pb,1, Pb,2, r1, r2))
hb ← ([Pb,1(ω)], c1, c2, π, `)
b′←$ A2(hb, st)
Return (b = b′)

Fig. 4. Game formalizing the indistinguishability of encodings. (This game is specific to
our construction Γ from Section 5.) An adversary is legitimate if it outputs polynomials
such that P0,1(ω) = P0,2(ω) = P1,1(ω) = P1,2(ω) of degree at most s`. We note that A
gets explicit access to secret exponent ω generated at setup. Here rl(λ) is a polynomial
indicating the length of the random coins used by the encryption algorithm.

speaking, this property states that for any given level `, any two valid encod-
ings of the same Zp-element are computationally indistinguishable. This claim
is formalized via the κ-Switch game shown in Figure 4. Note that in this game,
we allow the adversary to not only choose the representation polynomials, but
also let him see part of the private information not available through the public
parameters, namely the exponent ω.

Theorem 1 (Encoding switch). Let Γ be the GES constructed in Section 5
with respect to an X-IND-secure probabilistic obfuscator PIO, an IND-CPA-
secure encryption scheme Π, a dual-mode NIZK proof system Σ, and a language
family Λ. Then, encodings of the same ring element z ∈ Zp are indistinguishable
at all levels. More precisely, for any legitimate ppt adversary A there are ppt
adversaries B1, B2, B3 and B4 of essentially the same complexity as A such that
for all λ ∈ N

Advκ-switch
Γ,A (λ)≤3·

(
Advmem

Λ,B1
(λ)+6·Advind

PIO,B2
(λ)+Advcrs

Σ,B3
(λ)
)
+2·Advind-cpa

Π,B4
(λ).

The proof of this result follows largely that in [AFH+16] and we include it
for completeness in Appendix B. The main difference is that we have to deal
with obfuscations of the new multiplication circuit.

Proof (Outline). We proceed via a sequence of 5 games, starting with κ-Switch
and ending in a game where the challenge encoding is independent of the bit
b. Figure 5 shows the steps used in the proof of the theorem. We use helper
Lemma 1 for changing the addition and multiplication circuits to “forget” (one
or both) the secret keys and the extraction trapdoor. We now justify each of
these steps in more detail below. See Appendix B for the full proof.

Game0: This is the κ-Switch game with a binding crs ′ and y 6∈ Llk . The addition
and multiplication circuits are defined in Figures 2 and 3, respectively.
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CAdd CMult c1 c2

Gm. crs ′ y knows knows enc. enc. Remark

0 bind. 6∈ Llk sk1,sk2,tde sk1,sk2,tde Pb,1 Pb,2

1 hid. ∈ Llk wy sk1, wy Pb,1 Pb,2 Lemma 1 (i = 1)

2 hid. ∈ Llk wy sk1, wy Pb,1 P1,2 IND-CPA wrt. pk2

3 bind. 6∈ Llk sk1,sk2,tde sk1,sk2,tde Pb,1 P1,2 Lemma 1 (reverse, i = 1)

4 hid. ∈ Llk wy sk2, wy Pb,1 P1,2 Lemma 1 (i = 2)

5 hid. ∈ Llk wy sk2, wy P1,1 P1,2 IND-CPA wrt. pk1

Encoding indep. of b

Fig. 5. Outline of the proof steps of Theorem 1. The underlined secret key in the
“CMult knows” column indicates the key that is used in decryption to construct [z′′].
For instance, in Game0, key sk1 is used to obtain P1 and P ′1, which are then used to
compute [z′′] = [(P1 ∗ P ′1)(ω)] within CMult.

Game1: We change the public parameters so that they include a hiding crs ′,
a yes instance y via YesSamL(lk) and obfuscations of circuits ĈAdd and

Ĉ
(1)
Mult (see Figure 6). Thus, the second circuit uses sk1 to decrypt the first

ciphertexts given as inputs. Observe that these circuits use the witness wy
to y ∈ Llk to produce the output proofs π′′, and therefore the simultaneous
knowledge of decryption keys sk1, sk2 is no longer needed. The difference
with the previous game can be bounded by our helper Lemma 1 with i = 1,
where we rely on PIO security, CRS indistinguishability, and the membership
problem.

Game2: This game generates the second challenge ciphertext c2 by encrypting
polynomial P1,2 even when b = 0. We bound this transition via the IND-CPA
security of Π with respect to pk2. The reduction will choose a first decryp-

tion key sk1 and a witness wy so as to be able to construct Ĉ
(1)
Mult. It will also

generate a NIZK simulation trapdoor tdzk (recall the CRS is in the hiding
mode) to construct simulated proofs π for the (inconsistent) challenge en-
coding hb. Note that the perfect ZK property guarantees that these proofs
are identically distributed to the real ones in Game1.

Game3: The public parameters are changed back to include a binding crs ′, a no-
instance y /∈ Llk and a (PIO) obfuscation of the original circuits CAdd, CMult

with both decryption keys hardwired. The difference with the previous game
is bounded again via Lemma 1 (in the reverse direction and with i = 1).

Game4: This transitions is defined analogously to that introduced in Game1

except that this time we invoke Lemma 1 with i = 2 and switch to circuits

ĈAdd and Ĉ
(2)
Mult. Observe that knowledge of sk1 is no longer needed.

Game5: This transitions is defined analogously to that introduced in Game2.
The only difference is that this game generates the first challenge ciphertext
c1 by encrypting P1,1 even when b = 0.

Finally, note that the challenge encoding in Game5 is independent of the
random bit b and the advantage of any (even unbounded) adversary A is 0.

24



Circuit ĈAdd[gpk , crs, wy](`, h, h′):

1. if ¬(Val`(h) ∧Val`(h
′)) then return ⊥

2. parse ([z], c1, c2, π, `)← h, and ([z′], c′1, c
′
2, π
′, `)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. // omitted: depends on sk1 and sk2

5. π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 , `), wy)

6. // omitted: depends on sk1 and sk2

7. return ([z′′], c′′1 , c
′′
2 , π

′′, `)

Circuit Ĉ
(i)
Mult[gpk , crs, ω, sk i, wy](`, `′, h, h′):

1. if ¬(Val`(h) ∧Val`′(h
′)) ∨ `+ `′ > κ then return ⊥

2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c
′
2, π
′, `′)← h′

3. c′′1 ← c1 · c′1; c′′2 ← c2 · c′2
4. Pi ← Dec(ci, sk i); P

′
i ← Dec(c′i, sk i) // depends on sk i only

5. z′′ ← (Pi ∗ P ′i )(ω)
6. π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c

′′
2 , `+ `′), wy)

7. // omitted: depends on sk1 and sk2

8. If (`+ `′ = κ) then return [z′′] else return ([z′′], c′′1 , c
′′
2 , π

′′, `+ `′)

Fig. 6. Top: Circuit ĈAdd where witness wy to y ∈ Llk is used to produce π′′. Note
that the secret keys (sk1, sk2) or the extraction trapdoor tde are no longer used by

this circuit. Bottom: Circuits Ĉ
(i)
Mult were only one key sk i is used to decrypt Pi and

P ′i and witness wy to y ∈ Llk is used to produce π′′. The secret key sk3−i and the
extraction trapdoor tde are not used by this circuit.

In the proof of Theorem 1, we need the next Lemma for changing the addition
and multiplication circuits to “forget” (one or both) the secret keys and the
extraction trapdoor. The proof can be found in Appendix C.

Lemma 1 (Forgetting secret keys). Let Γ be the GES from Section 5 with
respect to an X-IND-secure probabilistic obfuscator PIO, an IND-CPA-secure
encryption scheme Π, a dual-mode NIZK proof system Σ, and a language family
Λ. For i = 1, 2, consider the modified parameter generation algorithm Setup(i)

that samples a yes-instance y ∈ Llk and outputs obfuscations of the circuits ĈAdd

and Ĉ
(i)
Mult shown in Figure 6. Let

Advκ-forget
Γ,i,A (λ) := 2 · Pr

[
pp0←$ Setup(1λ, 1κ); pp1←$ Setup(i)(1λ, 1κ);

b←$ {0, 1}; b′←$ A(ppb) : b = b′
]
− 1 .

Then, for any i ∈ {1, 2} and any ppt adversary A there are ppt adversaries
B1,B2 and B3 of essentially the same complexity as A such that for all λ ∈ N

Advκ-forget
Γ,i,A (λ) ≤ Advmem

Λ,B1
(λ) + 6 ·Advind

PIO,B2
(λ) + Advcrs

Σ,B3
(λ) .
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7 Hardness of MDDH

We are now ready to show that MDDH is hard for our GES. We improve [AFH+16]
by providing a simpler and tighter proof of security. One corollary of our result is
that there are no “zeroizing” attacks on our scheme as such attacks immediately
lead to the break of MDDH [CHL+15,CGH+15,GGH13a]. We start by providing
formal definition of MDDH as well as the strong DDH problem whose hardness
we assume in our analyses.

The q-SDDH problem [BB04,ZSS04]. For q ∈ N we say that the q-SDDH
problem is hard for a group G if

Advq-sddh
G,A (λ) := 2 · Pr

[
q-SDDHAG (λ)

]
− 1 ∈ Negl ,

where game q-SDDHAG (λ) is shown in Figure 7 (left). We note that this assump-
tion can only hold in asymmetric pairing-friendly groups. (With such asymmet-
ric pairings, we could then implement, e.g., the dual-mode NIZK proof system
from [GS08].) It is not too difficult to show via re-randomization of the group
generator that hardness of q-SDDH implies that of (q − 1)-SDDH. We use this
fact to simplify our theorem statement below.

The κ-MDDH problem [BS03,GGH13a]. For κ ∈ N we say that the κ-MDDH
problem is hard for a GES Γ if

Advκ-mddh
Γ,A (λ) := 2 · Pr

[
κ-MDDHAΓ (λ)

]
− 1 ∈ Negl ,

where game κ-MDDHAΓ (λ) is shown in Figure 7 (middle).

The (κ,m, n, r0, r1, l)-RANK problem [EHK+13]. For κ,m, n, r0, r1 ∈ N and
a level function l : [m] × [n] −→ [κ], we say that the (κ,m, n, r0, r1, l)-RANK
problem is hard for a GES Γ if

Adv
(κ,m,n,r0,r1,l)-rank
Γ,A (λ) := 2 · Pr

[
(κ,m, n, r0, r1, l)-RANKAΓ (λ)

]
− 1 ∈ Negl ,

where game (κ,m, n, r0, r1, l)-RANKAΓ (λ) is shown in Figure 7 (right).

7.1 Hardness of MDDH

Recall that the GES of Section 5 represents an element z ∈ Zp at level ` with
polynomials P1 and P2 of degree at most s` such that Pj(ω) = z, where s is a
system parameter. To show that MDDH holds it is sufficient to set s := 1, but
we prove the following more general result.

Theorem 1 ((sκ+s−1)-SDDH =⇒ κ-MDDH). Let Γ be the GES constructed
in Section 5 with an s ≥ 1 and with respect to a base group G and an X-IND-
secure probabilistic obfuscator PIO.

Then, assuming the (sκ+ s− 1)-SDDH assumption (see Fig. 7) holds in G,
and using our switching lemma, the κ-MDDH assumption holds in Γ.
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q-SDDHAG (λ)

ppG←$ SetupG(1λ)
b←$ {0, 1}
ω, τ0←$ Zp
τ1 ← ωq+1 (mod p)
b′←$A(ppG, {[ωi]}

q
i=1, [τb])

Return (b = b′)

κ-MDDHAΓ (λ)

pp←$ Setup(1λ, 1κ)
b←$ {0, 1}
a1, . . . , aκ+1, z←$ Zp
hi←$ Sam1(ai)
h∗0←$ Samκ(z)
h∗1←Mult(h1, . . . , hκ)aκ+1

b′←$ A(pp, {hi}κ+1
i=1 , h

∗
b)

Return (b = b′)

Fig. 7. Left: The SDDH problem. Here p = p(λ) denotes the group order implicit in
pp. Right: The MDDH problem. The sampler algorithms output canonical encodings.
The κ-ary algorithm Mult is defined by applying the 2-ary algorithm Mult of the
scheme iteratively to inputs.

More specifically, for any κ ∈ N and any ppt adversary A there are ppt
adversaries B1, B2 and B3 of essentially the same complexity as A such that for
all λ ∈ N

Advκ-mddh
Γ,A (λ) ≤ (κ+1)·Advκ-switch

Γ,B1
(λ)+Advind

PIO,B2
(λ)+Adv

(sκ+s−1)-sddh
G,B3

(λ) .

Proof (Outline). We provide a simpler proof compared to that of [AFH+16,
Theorem 6.2] at the expense of relying on the slightly stronger κ-SDDH (instead
of the (κ− 1)-SDDH) problem for s = 1. At a high level, our reduction has two
steps: 1) Switch all encodings from polynomials of degree 0 to those of degree 1;
and 2) Randomize the κ-MDDH challenge using the κ-SDDH instance. The key
difference with the proof of [AFH+16, Theorem 6.2] is that we no longer need to
carry out a two-step process to randomize the exponent of the MDDH challenge.
In particular, we do not change the implementation of the multiplication circuit
according to a κ-SDDH challenge. We outline the proof along a sequence of κ+5
games here and leave the full details to Appendix D.

Game0: This is the κ-MDDH problem (Figure 7, middle). We use Pi,1 and Pi,2
to denote the canonical degree-zero representation polynomials of ai as gen-
erated by the sampler Sam1(ai).

Game1–Gameκ+1: In these games we gradually switch the polynomials repre-
sentations for level-1 encodings hi for 1 ≤ i ≤ κ + 1 so that they take the
form

Pi,1(X) = Pi,2(X) = Xs + ai − ωs .

These polynomials are still valid and their degrees are exactly s. Hence when
multiplied together, the resulting polynomial will be of degree s(κ+1). Each
of these hops can be bounded via the κ-Switch game via Theorem 1.

Gameκ+2: This game only introduces a conceptual change: ai for 1 ≤ i ≤ κ+ 1
are generated as ai + ωs. The distributions of these values are still uniform
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and the exponent of the MDDH challenge when b = 1 is now

z1 =

κ+1∏
i=1

(ai + ωs) ,

which is a polynomial in ω of degree sκ+ s.
Gameκ+3: In this game we replace CMult with C∗Mult, a circuit that uses the

implicit values [ωi] for 0 ≤ i ≤ sκ in steps 5 and 6. (Note that [P (ω)] can
be computed using [ωi] when the coefficients of P are explicitly known.)
This change does not affect the functionality of the multiplication circuit
and hence we can bound this hope via PIO security. As a result, the explicit
knowledge ω is no longer needed to generate the multiplication circuit.

Gameκ+4: In this game, we replace [ωsκ+s] with a random value [σ] in challenge
preparation. (Note that level-κ encodings correspond to the base group.) We
can bound this hop via the (sκ+ s− 1)-SDDH game.

In the final game the challenge exponent (when b = 1) is fully randomized.
This means that the challenge is independent of b in Gameκ+4, which concludes
the proof.

7.2 Downgrading attacks

It might appear that our GES could be subject to a “downgrading” attack
as follow. Start with any consistent encoding h at level ` whose representation
polynomial is of degree 0. Then “maul” h into an encoding at a lower level `′ < `
by simply changing ` to `′ in h. Then use this malleability to attack, say, MDDH
where challenge encodings are canonical and of degree 0 (see Section 5.5).

What is crucial and prevents this downgrade attack is the proof system. The
consistency proof π proves that the encrypted values correspond to a polynomial
P of degree up to ` such that P (ω) = z. Note that this statement depends on `.
Hence, a proof for a level-2 encoding cannot be “reused” for a level-1 encoding,
as in the attack: a single proof will not necessarily pass against two different
statements even if they both have the same witness. In order to downgrade, the
proof would have to be changed.

Indeed, suppose that one had a method for changing a proof π2 of a level-2
encoding to a proof π1 of the level-1 encoding (that is derived by simply omitting
encrypted coefficients, as in a downgrading attack). Consider what happens if
one start with equivalent level-2 encoding (in the sense of our switching lemma)
with degree-2 polynomials P . Then, the statement that π1 proves becomes false,
so any such attack would contradict the soundness of the proof system.
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A Details of the AFHLP Symmetric Multilinear Map

AFHLP [AFH+16] construct a symmetric κ-linear group scheme Γ relying on
the following building blocks:
1. An algorithm SetupG that samples (a description of) a group G, along with

a generator g of G and the group order p.
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2. A probabilistic indistinguishability obfuscator Obf .
3. An additively homomorphic public-key encryption scheme Π with plaintext

space Zp (or alternatively, a perfectly correct FHE scheme).
4. An extractable dual-mode NIZK proof system Σ.
5. A language family Λ with hard membership problem and unique witnesses.

We recall their construction in the section that follow.

A.1 Setup

The algorithm Setup for Γ gets as input 1λ and 1κ. It samples parameters
ppG←$ SetupG(1λ) with ppG := (G, g , p, 1), generates two encryption key pairs
(pk j , sk j)←$ Gen(1λ) (for j = 1, 2), and a vector ω ∈ Z`p where ` ∈ {2, 3}. G is

called the base group. It then samples lk←$ GenL(1λ), and sets

gpk := (ppG, pk1, pk2, [ω], lk) .

Let G(1λ) denote the randomized algorithm corresponding to the above steps
that outputs gpk .

The setup algorithm continues by generating a common reference string
crs ′←$ BCRS(gpk) using the dual-mode NIZK procedure BCRS, and also a
no-instance of Llk via y←$ NoSamL(lk). Setup then sets crs := (crs ′, y).

Finally, Setup constructs two obfuscated circuits CMap and CAdd of circuits
CMap and CAdd which will be described in Sections A.4 and A.5, respectively.
Setup then outputs the scheme parameters

pp := (gpk , crs,CAdd,CMap) .

A.2 Encodings

Level-0 encodings. The set of all level-0 encodings, S0, is defined to be Zp.
Since efficient algorithms for equality checking, sampling, extraction and addi-
tion are well known, we omit including these in the following sections. Note that
addition of encodings (see Section A.4) can be used to implement a multiplica-
tion of level-0 encodings with encodings at higher levels, which is required by
many applications.

Level-κ encodings. Set Sκ := G and use algorithms associated with G for
equality checking, sampling, extraction and addition.

Level-1 encodings. Encodings in S1 are tuples of the form h = ([z], c1, c2, π)
where c1, c2 are two ciphertext in the range of Enc(·, pk1) and Enc(·, pk2),
respectively, and π is a NIZK proof under crs for a proof system corresponding
to (G,R := R1∨R2) as follows. Algorithm G(1λ) outputs gpk as defined above.
Relation R1 on input gpk , tuple ([z], c1, c2), and witness (x,y, r1, r2, sk1, sk2)
accepts iff [z] ∈ G, the representations of [z] as x,y ∈ Z`p are valid with respect
to [ω] in the sense that

[z] = [〈x,ω〉] ∧ [z] = [〈y,ω〉] ,
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(where 〈·, ·〉 denotes inner product) and the following ciphertext validity condi-
tion (with respect to the inputs to the relation) is met:

c1 = Enc(x, pk1; r1) ∧ c2 = Enc(x, pk2; r2)

∨
(pk1,sk1)=Gen(sk1) ∧ (pk2,sk2)=Gen(sk2) ∧ x=Dec(c1,sk1) ∧ y=Dec(c2,sk2)

Relation R2 depends on Λ and on input gpk , an encoding ([z], c1, c2), and
witness wy accepts iff R(lk , y, wy) accepts. We note that AFHLP does not come
with a validity check for encodings for the same reason our construction fails to
provide such an algorithm. (See Section 5.2 for more details.)

A.3 Equality

The equality algorithm Eq1 returns true iff their first components match in G.
The correctness follows from the fact that G has unique encodings.

A.4 Addition

This section gives a description of Add1 for adding level-1 encodings. The public
parameters of the scheme contain an obfuscation of the circuit CAdd shown in
Figure 8 (top). Note that steps 5a or 5b are never reached with a binding crs ′

(but they may be reached with a hiding crs ′ later in the analysis). Add1 runs
the obfuscated circuit on the input encodings. The correctness of this algorithm
follows from the correctness of Π, the completeness of Σ and the correctness, in
our sense of (the possibly probabilistic) obfuscator Obf ; see Section 2 for the
definitions.

A.5 The multilinear map

The multilinear map for Γ, on input κ encodings hi = ([zi], ci,1, ci,2, πi), uses sk1

to recover the representation vectors xi. It then uses the explicit knowledge of
ω to compute the output of the map as

e(h1, . . . , hκ) :=

[
κ∏
i=1

〈xi,ω〉

]
.

The product in the exponent can be efficiently computed over Zp for any poly-
nomial level of linearity κ and any ` as it uses xi and ω explicitly. The κ-linearity
of the map follows from the linearity of each of the multiplicands in the above
product (and the completeness of Σ, the correctness of Π, and the correctness
of the obfuscator Obf). An obfuscation CMap of the circuit implementing this
operation (see Figure 8, bottom) will be made available through the public pa-
rameters and e is defined to run this circuit on its inputs.
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Circuit CAdd[gpk , crs, sk1, sk2, tde; r](h, h
′):

1. if ¬Val1(h) ∨ ¬Val1(h′) return ⊥
2. parse ([z], c1, c2, π)← h and ([z′], c′1, c

′
2, π
′)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. // explicitly check relation R1 for h, h′ with witness sk1, sk2

4.1 x← Dec(c1, sk1);y← Dec(c2, sk2)
x′ ← Dec(c′1, sk1);y′ ← Dec(c′2, sk2)

4.2a if ([z] 6= [〈x,ω〉]) ∨ ([z] 6= [〈y,ω〉]) goto 5a
4.2b else if ([z′] 6= [〈x′,ω〉]) ∨ ([z′] 6= [〈y′,ω〉])

goto 5b
4.2c else goto 5c // R1 accepts h, h′ with witness sk1, sk2

5a. // R1 does not accept h
5a.1 w′y ←WExt(tde, ([z], c1, c2), π; r)
5a.2 if ¬R2(gpk , (([z], c1, c2)), w′y) return ⊥
5a.3 π′′ ← Prove(gpk , crs, ([z′′], c′′1 , c

′′
2 ), w′y; r)

5b. repeat 5a with h′ // R1 does not accept h′

5c. π′′ ← Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 ), (sk1, sk2); r)

6. return ([z′′], c′′1 , c
′′
2 , π

′′)

Circuit CMap[gpk , crs,ω, sk1](h1, . . . , hκ):

1. for i = 1 . . . κ
1.1 if ¬Val1(hi) return ⊥
1.2 ([zi], ci,1, ci,2, πi)← hi
1.3 xi ← Dec(ci,1, sk1)

2. z ←
∏κ
i=1〈xi,ω〉 (mod p)

3. return [z]

Fig. 8. Top: Circuit for addition of encodings. Bottom: Circuit implementing the
multilinear map.

A.6 Sampling

For sampling level-1 encodings, let x and y be vectors in Z`p satisfying 〈x,ω〉 =
〈y,ω〉, set [z] := [〈y,ω〉] (which can be computed using [ω] and explicit knowl-
edge of x) and define the output of Sam1 to be

h←
(
[z], c1 = Enc(x, pk1; r1), c2 = Enc(y, pk2; r2),

π = Prove(gpk , crs, ([z], c1, c2), (x,y, r1, r2); r
)
.

More concretely, AFHLP set x = y = (z, 0) when ` = 2 and x = y = (z, 0, 0)
when ` = 3. (These representations are called canonical.)

A.7 Extraction

The extraction algorithm, on input ([z], c1, c2, π) ∈ S(z)
1 , applies a universal hash

function to [z].
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B Proof of Theorem 1: Indistinguishability of Encodings

Proof. We adapt the hybrids of [AFH+16, Theorem 5.3] to the graded setting.
In the last hybrid, the challenge encoding is drawn independently of the bit b,
and therefore the advantage of any (even unbounded) adversary is zero. Below
we let Wi denote the event that Gamei outputs 1.

We proceed via a sequence of 5 games, starting with κ-Switch and ending in
a game where the challenge encoding is independent of the bit b.

Figure 5 shows the steps used in the proof of the theorem.

Game0: This is the original κ-Switch game (see Figure 4).
Game1: The public parameters are changed so that they include a hiding crs ′, a

yes-instance y←$ YesSamL(lk) and (probabilistic) obfuscations of the cir-

cuits Ĉ
(1)
Mult, and ĈAdd (see Figure 6). Recall that these circuits use the wit-

ness wy to y to produce the output proofs π′′. Therefore the simultaneous
knowledge of decryption keys (sk1, sk2) is not needed. By Lemma 1 we have
that

|Pr[W0(λ)]− Pr[W1(λ)]| ≤ Advmem
Λ,B1

(λ) + 6 ·Advind
PIO,B2

(λ) + Advcrs
Σ,B3

(λ) .

Game2: As Game1, but now polynomial P1,2 is encrypted under pk2 regardless of
the value of the bit b. Thus, on A1’s response ((P0,1, P0,2), (P1,1, P1,2), `, st),
the game sets c1 ← Enc(Pb,1, pk1) for a random bit b, and c2 ← Enc(P1,2, pk2).
We claim that

|Pr[W1(λ)]− Pr[W2(λ)]| ≤ Advind-cpa
Π,B4

(λ) .

Consider a ppt distinguisher B4 against the IND-CPA security of scheme Π
(with respect to key pair (sk2, pk2)) as follows. The distinguisher runs Game1

and uses A as a subroutine. When it receives A1’s outputs ((P0,1, P0,2),
(P1,1, P1,2), `, st), B4 generates c1←$ Enc(Pb,1, pk1) for a random bit b. It
then submits (Pb,2, P1,2) to its IND-CPA challenger and gets back a challenge
c∗. It sets c2 := c∗. The proof π on the instance x := ([z], c1, c2, `) is gen-
erated using the simulation trapdoor of the proof system guaranteed by the
zero-knowledge property. (Note that in contrast to the Naor–Yung paradigm
we do not prove an invalid statement and do not need to rely on simulation
soundness.) Namely, π←$ Sim(tdzk, x). Finally, B4 sets h := ([z], c1, c2, π, `)
and runs A2(h, st) to get a bit b′. It returns (b = b′). Game1 and Game2

differ only in how c2 and π for the challenge encoding are generated. First
note that real and simulated proofs are identically distributed under the hid-
ing crs ′. Second, letting d denote the IND-CPA challenge bit, when d = 0
ciphertext c2 encrypts Pb,2 and B4 perfectly simulates Game1 for A, and
when d = 1 ciphertext c2 encrypts P1,2 and B4 perfectly simulates Game2.

Game3: The public parameters are changed back so that they include a binding
crs ′, a no-instance y←$ NoSamL(lk) and obfuscations of circuits CAdd and
CMult of Figures 2 and 3. Once again by Lemma 1 we have that

|Pr[W2(λ)]− Pr[W3(λ)]| ≤ Advmem
Λ,B1

(λ) + 6 ·Advind
PIO,B2

(λ) + Advcrs
Σ,B3

(λ) .
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Game4: The public parameters are changed so that they include a hiding crs ′, a

yes-instance y←$ YesSamL(lk) and obfuscations of circuits Ĉ
(2)
Mult and ĈAdd

(see Figure 6). By Lemma 1

|Pr[W3(λ)]− Pr[W4(λ)]| ≤ Advmem
Λ,B1

(λ) + 6 ·Advind
PIO,B2

(λ) + Advcrs
Σ,B3

(λ) .

Game5: The polynomial encrypted under public key pk1 is P1,1 regardless of
the bit b. Thus, after receiving ((P0,1, P0,2), (P1,1, P1,2), `, st) from A1, the
game sets c1 ← Enc(P1,1, pk1), and c2 ← Enc(P1,2, pk2). Using a similar
argument to that for Game2 we get that

|Pr[W4(λ)]− Pr[W5(λ)]| ≤ Advind-cpa
Π,B4

(λ) .

Finally, note that Pr[W5(λ)] = 1/2 because the challenge encoding is generated
using the same pair of polynomial representations (P1,1, P1,2) regardless of the
value of the bit b. The proof of the theorem follows by collecting the terms above.

C Proof of Lemma 1

Proof. We provide an outline of the game hops in Figure 9 and give the details
next.

CAdd CMult

Gm. crs ′ y knows knows π′′-witness Remark

0 binding /∈ Llk sk1, sk2, tde sk1, sk2, tde (sk1, sk2) or w′y

1 binding /∈ Llk sk1, sk1, tde sk i, sk3−i, tde (sk1, sk2) or w′y PIO/soundness

2 binding ∈ Llk sk1, sk1, tde sk i, sk3−i, tde (sk1, sk2) or w′y Llk hard

3 binding ∈ Llk sk1, sk2, wy sk i, sk3−i, wy (sk1, sk2) or wy PIO/unique wy

4 hiding ∈ Llk sk1, sk2, wy sk i, sk3−i, wy (sk1, sk2) or wy CRS indist.

5 hiding ∈ Llk wy sk i, wy wy (always) PIO/WI

Fig. 9. Outline of the proof of Lemma 1. The underlined element in the “CMult knows”
column indicates which secret key is used to decrypt information used to construct
[z′′]. For instance, in Game0, sk1 is used to obtain P1 and P ′1, which are used to
compute [z′′] = [(P1 ∗ P ′1)(ω)] by CMult. The “or” expressions in the “π′′-witness”
column specify which π′′-witness is used in steps 5.3 and 6 of CAdd (resp. steps 6.3
and 7 of CMult). Hence, in Game0 the CAdd circuit uses (sk1, sk2) to construct π′′ in
case P1(ω) = P2(ω) = z and P ′1(ω) = P ′2(ω) = z′. Otherwise, CAdd uses the extracted
wy as witness in π′′.

Game0: We start with a game that runs A on pp0; that is with an obfuscation
of CAdd and CMult (see Figures 2 and 3), and a no-instance y 6∈ Llk .
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Game1: Our first change consists in modifying the obfuscated CMult so that in
step 5 it uses Pi and P ′i (instead of P1 and P ′1) to construct [z′′]. (Both keys
are still needed in step 4.) Note there is no change when i = 1, but when
i = 2 we show this modification leads to a functionally equivalent circuit.
Indeed, since the NIZK proof system is perfectly sound (the crs ′ is binding)
and y /∈ Llk , any valid encoding must satisfy P1(ω) = Pi(ω). Hence, using
(Pi, P

′
i ) instead of (P1, P

′
1) leads to the same circuit outputs. The security of

the obfuscator can be used to bound the difference in the outputs of Game0

and Game1.

Game2: We sample y ∈ Llk instead of y /∈ Llk . By the hardness of deciding
membership for Llk , this only negligibly changes the game’s output.

Game3: We hardwire the witness wy to y ∈ Llk in CAdd and CMult, and remove
tde from both circuits. We claim that this change does not change the func-
tionality of CAdd and CMult at all. To see this, recall that Llk has unique
witnesses. Hence, any witness w′y extracted by CAdd or CMult in Game2 must
be equal to the hardwired witness wy in Game3. Since crs ′ is binding, ex-
traction will always succeed in Game2 (if it comes to step 5.1 in CAdd or
step 6.1 in CMult). Thus this transition can be justified by the security of
the obfuscator (for two circuits).

Game4: The string crs ′ included in the public parameters is changed to the
hiding mode. Hence proofs generated under crs ′ will be perfectly witness
indistinguishable in this game. This hop can be justified by the CRS indis-
tinguishability of the dual-mode NIZK proof system.

Game5: Here, once again change the way CAdd and CMult prepare proofs π′′.
Specifically, we let CAdd and CMult to always use the hardwired wy as wit-
ness to construct π′′, independently of whether or not the encodings h, h′

are consistent. Hence, CAdd and CMult do not need to perform the explicit
consistency check anymore. This means that CAdd no longer needs sk1 or
sk2, and CMult only needs sk i (to retrieve Pi and P ′i from ci and c′i). These
modifications do not change the output distributions of CAdd and CMult.
Indeed, we have only changed the witness used for π′′-proofs. By the perfect
witness indistinguishability of the proof system (under a hiding CRS), the
distributions of the resulting proofs remain identical. Hence, we can use the
obfuscator’s indistinguishability security against X-IND samplers twice to
justify our transition from Game4 to Game5.

Observe that in Game5 the modified public parameters are identically dis-
tributed to pp1. Indeed, we have y ∈ Llk by the change introduced in Game2,
the CRS crs ′ is hiding by the change in Game4, and circuits CAdd and CMult

always use a hardwired wy as a witness to construct π′′-proofs. Furthermore,
CMult uses sk i to retrieve Pi and P ′i , in order to compute [z′′] = [(Pi ∗ P ′i )(ω)].

These changes render CAdd identical to ĈAdd and CMult identical to Ĉ
(i)
Mult.
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D Proof of Theorem 1: The MDDH Problem

Proof. We give a sequence of κ+ 4 games, where in the last game, for case b = 1
the challenge exponent z is also uniformly distributed. Below we let Wi denote
the event that Gamei outputs 1.

Game0: This is the κ-MDDH game as shown in the middle of Figure 7.
Game1–Gameκ+1: In this sequence of games, Gamei proceeds similarly to Gamei−1

with the difference that the representations Pi,1, Pi,2 of the i-th challenge
encoding hi (which are at level 1) are no longer of the form

Pi,1(X) = Pi,2(X) := ai

but set to
Pi,1(X) = Pi,2(X) := Xs + ai − ωs .

These representation polynomials are valid and of degree exactly s, the max-
imum allowed degree at level 1 with GES parameter s. We claim that

|Pr[Wi−1(λ)]− Pr[Wi(λ)]| ≤ Advκ-switch
Γ,B1

(λ) for 1 ≤ i ≤ κ+ 1 .

Given an attacker A distinguishing Gamei−1 and Gamei, we build a ppt
adversary B1 against game κ-Switch of Figure 4. Algorithm B1 outputs
((Pi−1,1, Pi−1,2), (Pi,1, Pi,2), ` = 1, st) representing a uniform value ai in Zp,
where (Pi−1,1, Pi−1,2) is as in Gamei−1 and (Pi,1, Pi,2) as in Gamei as above.
Observe B1 can indeed construct these polynomials because it knows ω and
ai explicitly (and furthermore they are admissible because at level 1 poly-
nomials can have degree up to s). Algorithm B1 receives an encoding hi of
ai that has (Pi+b−1,1, Pi+b−1,1) for a random bit b embedded in it. It uses hi
to simulate Gamei+b−1 for A, and outputs what A outputs.

Gameκ+2: The i-th source exponent is changed to a′i = ai + ωs for randomly
chosen ai ∈ Zp and 1 ≤ i ≤ κ + 1. Also, the polynomial representations of
a′i is set to Pκ+2,1(X) ≡ Pκ+2,2(X) = Xs + ai, which has the same degree
as the polynomials in Gameκ+1. This means that the exponent of the target
encoding h∗b when b = 1 is

z∗1 = Q(ω) := (ωs + a1) · · · (ωs + aκ+1) . (3)

Note that Q has degree sκ + s and its (sκ + s)-th coefficient is 1. The
distribution from which the κ + 1 exponents a′i are drawn has not changed
and is uniform. Therefore

Pr[Wκ+1(λ)] = Pr[Wκ+2(λ)] .

Gameκ+3: The differences with the previous game are two-fold. First, when
b = 1, the challenge encoding h∗1 = [Q(ω)] is generated evaluating polynomial
Q(X) at X = ω in the exponent using

(
[1], [ω], . . . , [ωsκ+s]

)
, and the explicit

knowledge of the coefficients (q0, . . . , qsκ+s) of polynomial Q(X) obtained by
expanding Equation 3. This change is purely conceptual.
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The second difference is that we obfuscate circuit C∗Mult which has the powers(
[1], [ω], . . . , [ωsκ]

)
hardwired in and computes the map implicitly in the

exponent. In more detail, this circuit extracts the representation polynomials
P1, P ′1 from the input encodings (at levels ` and `′ respectively) and evaluates
P ′′ := P1 ∗ P ′1 at ω in the exponent using

(
[1], [ω], . . . , [ωsκ]

)
. The latter

is possible because by the perfect soundness of the proof system under a
binding CRS, P1 (respectively, P ′1) is of degree at most s` (respectively, s`′),
and therefore P ′′ is of degree at most s(` + `′) ≤ sκ. This modification
therefore results in a functionally equivalent circuit (both compute [P ′′(ω)]).
Since C∗Mult is of polynomial size, we conclude that obfuscations of these two
circuits are indistinguishable:

|Pr[Wκ+1(λ)]− Pr[Wκ+2(λ)]| ≤ Advind
PIO,B2

(λ) .

Gameκ+4: We regard the degree (sκ + s) polynomial Q(X) of Equation (3)
as a multivariate Zp-polynomial Q′(Y1, . . . , Ysκ+s) in sκ + s unknowns by
renaming variables Xi to Yi. In this game when b = 1 the challenger samples
random ω, τ ∈ Zp and sets

h∗1 = [z∗1 ] := [Q′(ω, ω2, . . . ωsκ+s−1, τ)] ,

where Q′ is evaluated in the exponent using ([ωi])0≤i≤sκ+s−1 and [τ ]. We
emphasize that circuit C∗Mult still has

(
[1], [ω], . . . , [ωsκ]

)
hardwired as in the

previous game. We claim that

|Pr[Wκ+3(λ)]− Pr[Wκ+4(λ)]| ≤ Adv
(sκ+s−1)-sddh
G,B3

(λ) .

This immediately follows because an adversary B3 against (sκ + s − 1)-
SDDH on receiving challenge (([ωi])0≤i≤sκ+s−1, [τ ]

)
can simulate Gameκ+3

if τ = ωsκ+s, or Gameκ+4 if τ is random.

To see that Pr[Wκ+4] = 1/2 it suffices to show that in Gameκ+4 exponent z∗1
is randomly distributed over Zp. This follows because the leading coefficient of
Q′ is 1, and therefore the map f(X) := Q(ω, . . . , ωsκ+s−1, X) defines a bijection
over Zp mapping a uniform τ into a uniform z∗1 = f(τ).
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