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Abstract

Waters signatures (Eurocrypt 2005) can be shown existentially unforgeable under chosen-message
attacks under the assumption that the computational Diffie-Hellman problem in the underlying (pairing-
friendly) group is hard. The corresponding security proof has a reduction loss of O(` · q), where ` is
the bitlength of messages, and q is the number of adversarial signature queries. The original reduction
could meanwhile be improved to O(

√
` · q) (Hofheinz and Kiltz, Crypto 2008); however, it is currently

unknown whether a better reduction exists. We answer this question as follows:

(a) We give a simple modification of Waters signatures, where messages are encoded such that each
two encoded messages have a suitably large Hamming distance. Somewhat surprisingly, this simple
modification suffices to prove security under the CDH assumption with a reduction loss of O(q).

(b) We also show that any black-box security proof for a signature scheme with re-randomizable sig-
natures must have a reduction loss of at least Ω(q), or the underlying hardness assumption is false.
Since both Waters signatures and our variant from (a) are re-randomizable, this proves our reduction
from (a) optimal up to a constant factor.

Understanding and optimizing the security loss of a cryptosystem is important to derive concrete param-
eters, such as the size of the underlying group. We provide a complete picture for Waters-like signatures:
there is an inherent lower bound for the security loss, and we show how to achieve it.

Keywords: Digital signatures, Waters signatures, provable security, black-box reductions.

1 Introduction

Waters signatures. Waters signatures [22] form a simple and efficient digital signature scheme in pairing-
friendly groups. The existential unforgeability of the scheme can be proved under the computational Diffie-
Hellman (CDH) assumption. Unfortunately, the corresponding security reduction from [22] suffers from a
multiplicative loss ofO(` ·q), where ` is the bitlength of signed messages, and q is the number of adversarial
signing queries. In other words, every signature forger with success probability ε can only be mapped to a
CDH-solver with success probability Ω(ε/(` · q)).

From the proof of [22], it is not immediately clear whether this comparatively large security gap is
inherent or an artifact of the used proof technique. In fact, [13, 14] used a rather different simulation setup
to show the security of Waters signatures with a reduction loss of O(

√
` · q). However, it is not at all
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clear whether their reduction is optimal. There is no known lower bound on the reduction loss of Waters
signatures.

Our contributions. Our contributions revolve around the possibility of achieving a better security reduction
for Waters (and similar) signatures. Concretely:

(a) We first give a simple modification of Waters signatures. Essentially, we simply encode each message
before signing. This guarantees that any two (encoded) messages have a suitably large Hamming dis-
tance. Perhaps somewhat surprisingly, this trivial modification can be shown secure under the CDH
assumption with a reduction loss of O(q). The price to pay for this improved reduction is a constant-
factor blowup (caused by the encoding) of the public key size and signature/verification times.

(b) Building on work of Coron [7], we proceed to show that any security proof for a signature scheme with
re-randomizable signatures must have a reduction loss of at least Ω(q), or the underlying complexity
assumption is false. Coron showed that statement for deterministic signature schemes. We extend
the statement to schemes in which any signature can be publicly re-randomized. Since both Waters
signatures and our variant from (a) are re-randomizable, this proves our reduction from (a) optimal up
to a constant factor.

Of course, the practical impact of our results is somewhat limited. In fact, it is a bit disappointing that
one can only save a reduction factor of

√
` (compared to the proof of [13, 14]), where ` itself is typically

significantly smaller than the remaining reduction loss of O(q). However, we stress that from a conceptual
point of view, our results essentially give a complete picture: there is an inherent lower bound for the security
loss of Waters-like signature schemes, and we show how to achieve this bound.

Other related work. There exist a number of tightly secure signature schemes, both with (e.g., [1, 18])
and without random oracles (e.g., [3, 5, 9, 16, 20]). However, to the best of our knowledge, there is no
standard-model signature scheme whose security could be tightly reduced to the CDH problem. In particular,
the only known results about the reduction tightness of Waters (or similar) signatures are the discussed
works [13, 14, 22]. We do mention that Guo et al. [11] give a variant of Waters signatures and claim that
this variant suffers from a reduction loss of only O(`). However, their security proof is subtly flawed [12],
as we sketch briefly in Section 1.1. It is not clear if and how their argument can be fixed.

1.1 Technical overview

Partitioning. In order to present our techniques, we briefly recall the “partitioning” proof strategy used
in the context of signature schemes, e.g., by Coron [6] and Waters [22]. A “partitioning” proof simulation
partitions the message space into two sets: those messages that can be signed during the simulation, and
those that cannot. Let us call those messages “signable,” resp. “unsignable.” Any forged signature for
an unsignable message can then be used to solve a computational problem (e.g., a CDH challenge). The
simulation thus succeeds if (a) all adversarial signature queries correspond to signable messages, and (b) the
forger finally forges a signature for an unsignable message. For simplicity, assume that each message is
set up as signable with a certain probability p. Assume further that these probabilities are independent for
different messages. Then, it is not hard to see that the probability that the simulation succeeds is P :=
pq · (1 − p), where q is the number of signature queries. This probability is maximized if we set p suitably
in the order of 1− 1/q, in which case P = O(1/q).

Coron’s results. Specifically, using a partitioning technique, the best we can hope for is a reduction with
a loss of O(q). In fact, Coron [6] shows how to achieve such a reduction for the RSA-FDH scheme in
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the (programmable) random oracle model. Furthermore, he shows that any reduction of a deterministic
signature scheme must essentially be partitioning, and thus the loss of O(q) is inherent. See also [17].

Waters signatures. Waters [22] conducts a similar partitioning simulation in the standard model, for a
particular CDH-based signature scheme. For this outline, we will only give a very abstract and idealized
breakdown of his strategy. In his scheme, a messagem = (m1, . . . ,m`) to be signed selects group elements
hi (for i with mi = 1) that determine an intermediate hash value

H(m) = h0
∏
mi=1

hi.

Depending on H(m), the simulation in the security proof will be able to either generate a signature for
m, or use any forged signature for m to solve a given CDH-challenge. Concretely, each hi is associated
with an (information-theoretically hidden) integer ai. A message m in turn leads to an integer a(m) :=
a0 +

∑
mi=1 ai. If a(m) 6= 0, then the simulation can sign m; if a(m) = 0, then the simulation can use any

forged signature for m to solve a CDH-challenge.

The programming of the hash function. Unfortunately, neither the messages that need to be signed, nor
the message on which the adversary forges are known in advance. Hence, the crux in the security analysis
is to set up the values ai such that with significant probability (say, P ) over the ai,
(a) all q adversarial signature queries m(1), . . . ,m(q) can be answered (i.e., a(m(i)) 6= 0 for all i), and
(b) the message m∗ on which the adversary forges can be used to embed a challenge (i.e., a(m∗) = 0).
The probabilistic argument from [22] chooses the ai uniformly over a suitable domain that depends on
q. This results in a simulation success probability of P = Θ(1/(` · q)). Hofheinz and Kiltz [13, 14]
show that by setting up the ai as suitably long random walks, the success probability can be improved to
P = Θ(1/(

√
` · q)).

The problem. The reason for the somewhat annoying `, resp.
√
` terms in these analyses is a bit subtle, and

we will only try to give a brief idea here. Concretely, consider what happens when the forgery message m∗

is “close” to a signed messagem in the sense thatm∗ andm(i) differ in only one bit. Then, a(m∗) and a(m)
differ by only one ai. Now the analysis requires that the conditioned probability Pr [a(m) = 0 | a(m∗) = 0]
is O(1/q). (Otherwise, it becomes difficult to prove that the probability is significant that, say, q random
messagesm can all be signed, given thatm∗ cannot.) But since a(m∗) and a(m) differ by only one (a-priori
unknown) ai, each ai must have a distribution with min-entropy at least log2 q. (That is, the probability that
ai takes a particular value must always beO(1/q).) Hence, e.g., for the all-one messagem = (1, . . . , 1), we
get that a(m) = a0 +

∑`
i=1 ai, and we would expect that a(m) has a much larger min-entropy than log2 q.

(In particular, if m∗ is the all-one message, then Pr [a(m∗) = 0] will be much smaller than Θ(1/q).)

Our solution. Intuitively, our solution is simply to encode all messages using a code with large minimum
distance prior to signing. This avoids that two messages m∗,m that are “close” even exist. Concretely, we
will ensure that any two different (a(m∗), a(m) will always differ by at least a constant fraction of all ai.
This allows to set up the ai with lower min-entropy than in previous analyses, and allows us to set up a
simulation with success probability P = Θ(1/q).

For completeness, we note that Guo et al. describe another way to set-up the ai in the proof of [11,
Theorem 2], and claim that this set-up can used to give a tighter security reduction for Waters signatures.
However, it turns out that this is not true [12]. The reason is that in the proof of [11, Theorem 2] the
simulation is set up in a way that depends on the messages to be signed. (Specifically, the variables that
correspond to our ai are not statistically hidden in [11].) Thus, the view of the adversary is not independent
of the event that the simulation succeeds. Concretely, the setup in [11] potentially allows adversaries who
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forge only signatures for messages m∗ with a(m∗) 6= 0, in which case no solution to the CDH problem can
be extracted.

Optimality of our solution. Naturally, one may ask whether it is possible to improve the reduction fur-
ther. We answer this question in the negative. Concretely, we show that it is impossible to prove any
re-randomizable signature scheme secure, using a black-box reduction to any of a large class of hardness
assumptions, such that the security loss in the reduction is significantly better than 1/q. Since both Waters
signatures and our new variant are efficiently re-randomizable, this shows our reduction optimal. We stress
that our impossibility result does not cover interactive assumptions (such as the LRSW assumption [19]). In
particular, our result does not contradict re-randomizable signature schemes with tight security proofs based
on interactive assumptions (such as [4]).

The proof technique is based on the meta-reduction technique of Coron [7], which simulates a forger
for R such that the simulation fails with probability at most 1/q. For Coron’s proof it is essential that
the considered signature scheme is deterministic, and that for all public keys it is publicly verifiable that
there exists only a single valid signature per message (as it is the case for instance for certified trapdoor
permutations, cf. [17]). Since we want to consider probabilistic schemes, we lose this leverage and Coron’s
result does not apply.

Instead, we will show that it suffices that signatures are re-randomizable. Moreover, since deterministic
signature scehemes are re-randomizable, our result can be seen as a generalization of previous work [7, 17].

Let us intuitively sketch the reason why re-randomizability suffices. Basically, if signatures are ef-
ficiently re-randomizable, then the only way left to prove security is to partition the message space into
messages which can be signed by the reduction, and messages from which a solution to the given problem
instance can be extracted. To see this, suppose that for a random message m∗ it holds with high probability
that the reduction can simulate one signature for m∗, but extract a solution to a hard problem from a dif-
ferent signature for m∗. Then the reduction could solve the hard problem even without interacting with the
forger, by generating a simulated signature σ∗ for m∗, re-randomizing it to obtain some random signature
σ′, and finally extracting the solution to the hard problem from σ′. Since the reduction would solve the
problem without any additional assumption (i.e. the existence of a signature forger), this would contradict
the assumption that the underlying problem is hard.

Further applications. We note that the analysis from Section 4 can also be applied to show that a security
reduction from any hard problem to breaking Waters’ identity-based encryption (IBE) scheme from [22]
must lose a factor of Ω(q), if the adversary may issue q adaptive chosen-identity key queries are allowed.

However, this bound is only achievable using our techniques if one wants to prove that Waters’ IBE
scheme is one-way under adaptive chosen-identity attacks. The commonly accepted security notion for IBE
is indistinguishability under adaptive chosen-identity attacks, and it seems that in this setting our techniques
do not substantially improve on the results of [2, 22]. Therefore we do not elaborate this further.

1.2 Outline

We recall some notation, some standard definitions, and Waters’ signature scheme in Section 2. In Section 3,
we present our modified signature scheme and prove it secure with a reduction loss of O(q). Finally, in
Section 4, we show a lower bound of Ω(q) on the reduction loss of schemes with re-randomizable signatures.

Acknowledgements. We are grateful to Eike Kiltz for insightful discussions, and to Brent Waters for
helpful remarks on our paper. Furthermore, the PKC 2012 referees have provided useful comments.
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2 Preliminaries

For k ∈ N, we write 1k for the string of k ones, and [k] for {1, . . . , k}. Moreover, |x| denotes the length
of a bitstring x, while |S| denotes the size of a set S. Further, s $← S denotes the sampling a uniformly
random element s of S. For an algorithmA, we write z $← A(x, y, . . .) to indicate thatA is a (probabilistic)
algorithm that outputs z on input (x, y, . . .).

Digital signatures. A digital signature scheme Sig = (Gen,Sign,Vfy) consists of three algorithms. Key
generation Gen generates a keypair (pk, sk)

$← Gen(1k) for a secret signing key sk and a public verification
key pk. The signing algorithm Sign inputs a message and the secret signing key, and returns a signature
σ

$← Sign(sk,m) of the message. The verification algorithm Vfy takes a verification key and a message
with corresponding signature as input, and returns b ← Vfy(pk,m, σ), where b ∈ {0, 1}. We say that a
signature is valid, if Vfy(pk,m, σ) = 1. We require the usual correctness properties.

Let us recall the existential unforgeability against chosen message attacks (EUF-CMA) security experi-
ment [10], played between a challenger and a forger F .

1. The challenger runs Gen to generate a keypair (pk, sk). The forger receives pk as input.

2. The forger may ask the challenger to sign a number of messages. To query the i-th signature, F
submits a message m(i) to the challenger. The challenger returns a signature σi under sk for this
message.

3. The forger outputs a message m∗ and signature σ∗.

F wins the game, if 1← Vfy(pk,m∗, σ∗), that is, σ∗ is a valid signature for m∗, and m∗ 6= m(i) for all i.

Definition 2.1. We say that F (t, q, ε)-breaks the EUF-CMA security of Sig, if F runs in time t, makes at
most q signing queries, and has success probability ε. Furthermore, we say that Sig is EUF-CMA secure
if there is no PPT forger F that t, q, ε-breaks the EUF-CMA security of Sig for polynomials t, q and a
non-negligible ε.

The Computational Diffie-Hellman Problem. Let G be a group of order p. The computational Diffie-
Hellman problem is to compute the group element gαβ , given random group elements (g, gα, gβ) ∈ G3.

Definition 2.2. We say that algorithm A (ε, t)-solves the computational Diffie-Hellman problem in G, if

Pr
[
A(g, gα, gβ) = gαβ

]
≥ ε,

and A runs in time t.

Waters Signatures. Let us recall Waters’ signature scheme SigWat = (GenWat,SignWat,VfyWat) from [22].

GenWat(1
k): The key generation algorithm selects a group G of prime order p ≈ 22k with generator g and

bilinear map e : G×G→ GT . Then it samples h0, h1, . . . , h`
$← G and α, β $← Zp. The public key

is defined as
pk := (G, g, gα, gβ, h0, h1, . . . , h`),

and the secret key is sk := (pk, gαβ).

In the sequel we will denote with H : {0, 1}` → G the function mapping m 7→ h0
∏`
i=1 h

mi
i , where

for i ∈ [`], we denote by mi ∈ {0, 1} the ith bit of m.
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SignWat(sk,m): The signing algorithm takes as input a message m ∈ {0, 1}`. The algorithm samples
r

$← Zp and computes
σ1 = gr and σ2 = gαβH(m)r.

Then it returns the signature σ = (σ1, σ2).

VfyWat(pk,m, σ): The verification algorithm returns 1 if the equation

e(gα, gβ) · e(σ1, H(m)) = e(g, σ2)

holds. Otherwise 0 is returned.

Waters [22] proved that the above signature scheme is EUF-CMA secure under the computational Diffie-
Hellman assumption in G. The original reduction from [22] is not very tight. Concretely, it loses a factor of
(16(`+ 1)q), where ` is the bit-length of the message and q is (an upper bound on) the number of signature
queries issued by the forger. The original analysis was slightly improved in [13], which gives the following
theorem.

Theorem 2.3 ([22, 13]). Suppose there exists a forger F that (t, q, ε)-breaks the EUF-CMA security of
SigWat. Then there exists an algorithm A (ε′, t′)-solving the computational Diffie-Hellman problem in G in
time t′ ≈ t with success probability ε′ ≥ ε ·O( 1√

`q
).

3 A Variant of Waters’ Signature Scheme

3.1 Our variant of Waters signatures

As mentioned in Section 1, our only modification of Waters’ scheme will be to encode messages prior to
signing. For each security parameter k, we will therefore assume a code C = Ck of dimension k, length `,
and minimum distance d ≥ α · ` for a fixed α > 0. (For instance, one can use a family of expander codes
with suitable parameters [21, 23].) We will apply C to k-bit messages, and we assume that each encoded
message has Hamming weight at least d. (For instance, one could simply forbid any message that leads to
an all-zero output.)

Our scheme Sigtight = (Gentight,Signtight,Vfytight) is almost identical to the one by Waters (see Theo-
rem 2):
Keys. Gentight(1

k) outputs pk := (G, g, gα, gβ, h1, . . . , h`) and sk := (pk, gαβ) just like GenWat, but
without h0. Now pk defines a hash function H(M) :=

∏
i h

Mi
i for M = (M1, . . . ,M`) ∈ {0, 1}`.

Signing. Signtight(sk ,m) (for m ∈ {0, 1}k) first computes M := Ck(m) ∈ {0, 1}` and then outputs
σ := (σ1, σ2) := (gr, gαβH(M)r).

Verification. Vfytight(pk ,m, σ) sets M := Ck(m) and then checks e(gα, gβ) · e(σ1, H(M))
?
= e(g, σ2).

Obviously, this defines a signature scheme. We also claim:

Theorem 3.1. Suppose there exists a forger F that (t, q, ε)-breaks the EUF-CMA security of Sigtight. Then
there exists an algorithm A (ε′, t′)-solving the computational Diffie-Hellman problem in G in time t′ ≈ t
with success probability ε′ ≥ ε ·Θ(1q ).

The rest of this section will be devoted to proving Theorem 3.1.
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3.2 A better bound on the success probability of the simulation

We start with our abstract setup and the analysis of the crucial variables ai for our simulation. In the next
subsection, we then proceed to outline how this setup is embedded in a simulation of the signature scheme.

In the following let `, w ∈ N. In the simulation, ` will be the bitlength of (encoded) messages, and
w will be an integer that determines how long each random walk ai will be. For i ∈ [`], j ∈ [w], let
ai,j be independently and uniformly distributed random variables over {−1, 0, 1}. Let ai :=

∑w
j=1 ai,j .

Furthermore, for S ⊆ [`], let a(S) :=
∑

i∈S ai. Note that a(S) is a random walk (with {−1, 0, 1}-steps) of
length |S| · w. Hence, the following standard result about random walks applies:

Theorem 3.2. There exist λ,Λ ∈ R that do not depend on `, w, such that for any S ⊆ [`] of size s := |S|,
we have

λ√
s · w

≤ Pr [a(S) = 0] ≤ Λ√
s · w

.

Furthermore, for any `, w, S, the probability Pr [a(S) = i] is maximized for i = 0.

Proof. Although this is a standard fact about random walks (see [8, 15] for a thorough introduction), [14,
Theorems 17 and 18] provide a direct proof of the theorem adjusted to our setting.

We can now use Theorem 3.2 to derive the main technical lemma for the analysis of our variant of
Waters’ signature scheme. This result uses and extends techniques of [13, 14] to a setting in which there
is a guaranteed “minimum distance” between two random walks. (Later, this “minimum distance” will
correspond to the Hamming distance between two encoded messages to be signed.)

Lemma 3.3. Let X,Y ⊆ [`] such that |X|, |Y | ≥ d, and |(X \Y )∪ (Y \X)| ≥ d for d ≥ 1. Then, we have

Pr [a(Y ) = 0 | a(X) = 0] ≤ C ·
√
`

d ·
√
w

(1)

for a fixed constant C that does not depend on `, w, d,X, Y .

See Appendix A for the proof.
Next, we can plug Lemma 3.3 into the existing analysis of Waters’ signature scheme [22]. First,

this means proving the following technical claim, which essentially bounds the probability that all sign-
ing queries can be answered, while the adversary’s forgery solves a computational challenge. This claim
roughly corresponds to [22, Claim 2] and is proven in Appendix B

Lemma 3.4. Let X,Y1, . . . , Yq ⊆ [`] such that |X|, |Yi| ≥ d and |(X \ Yi) ∪ (Yi \X)| ≥ d for some d ≥ 1
and all i. Then, we have

Pr [a(X) = 0 ∧ ∀i ∈ [q] : a(Yi) 6= 0] ≥

(
1− C · q ·

√
`

d ·
√
w

)
· D√

d · w
(2)

for fixed constants C,D that do not depend on `, w, d, q,X , and the Yi.

Note that if we set d = γ · ` and w = (2Cq/γ)2/` (for some γ > 0) in (2), a quick calculation gives

Pr [a(X) = 0 ∧ ∀i ∈ [q] : a(Yi) 6= 0] ≥
D
√
γ

4C
· 1

q
. (3)

Hence, if γ is a constant, then this probability lies in the order of 1/q.
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3.3 The full simulation

We now briefly sketch how to use Lemma 3.4 to prove Theorem 3.1. We are very brief because except for
Lemma 3.4 and a few syntactic differences, the proof is identical to the one from [22].

Our goal is to build a CDH adversary A from an EUF-CMA forger F on Sigtight that makes at most
q = q(k) signature queries. Our CDH adversary A gets as input a CDH challenge (g, gα, gβ) for a group G
of order p with pairing e : G×G→ GT , and is supposed to output gαβ .

Public key. The first task of A is to prepare a Sigtight public key for F . In order to do so, A sets w :=
(2Cq/γ)2/` for the parameter γ of the code C, and the constant C from Section 3.2. Then, A prepares
random variables a1, . . . , a` as random walks (over {−1, 0, 1}) of length w, just as in Section 3.2. Finally,
A chooses uniformly blinding exponents b1, . . . , b` ← [p] and sets

hi := (gα)ai gbi (for i = 1, . . . , `)

pk := (G, g, gα, gβ, h1, . . . , h`).

This results in a public key that is distributed exactly as in Sigtight.

Signing queries. Next, A runs F on pk , and answers F’s signing queries as follows. Suppose F asks
for the signature of a message m ∈ {0, 1}k that induces an encoded message M = C(m) ∈ {0, 1}`. Let
us view M as a subset of [n], such that i ∈ M iff the i-th bit of M is set. Write a(M) :=

∑
i∈M ai and

b(M) :=
∑

i∈M bi. Note that we can always write H(M) = (gα)a(M)gb(M). Hence, valid signatures have
the form

(gr, gαβ ·H(M)r) = (gr, gαβ+r·(α·a(M)+b(M)))

In particular, if we set gr =
(
gβ
)x
gy, then valid signatures are of the form

(gxβ+y, gαβ+(xβ+y)·(α·a(M)+b(M))) =

((
gβ
)x
gy,
(
gαβ
)1+x·a(M)

(gα)y·a(M)
(
gβ
)x·b(M)

gy·b(M)

)
. (4)

Thus, depending on a(M), we now distinguish two cases:
• if a(M) 6= 0, then the simulation can generate properly distributed valid signatures via (4) by setting
x = −a(M)−1 mod p and choosing y uniformly (notice that the gαβ term in (4) then vanishes);
• if a(M) = 0, then the simulation cannot generate a signature for m, and the simulation fails.

Extraction. Suppose that eventually, F generates a valid forged signature σ∗ for a fresh message m∗ with
associated encoding M∗ := C(m∗). Again, we can distinguish two cases:
• if a(M∗) = 0, then the simulation can extract gαβ by using

σ∗ = (gr
∗
, gαβ ·H(M∗)r

∗
) =

(
gr

∗
, gαβ ·

(
gb(M

∗)
)r∗)

=

(
gr

∗
, gαβ ·

(
gr

∗
)b(M∗)

)
for some unknown r∗ but known b(M∗);
• if a(M∗) 6= 0, then the extraction fails.

Simulation success. Let fail denote the event that the simulation fails (either because a(Mi) = 0 for a
signature query, or because a(M∗) 6= 0). Then Lemma 3.4 immediately gives an upper bound of 1−Θ(1/q)
on Pr [fail]. Indeed, if we setX := M∗ and Yi := Mi, then any two different encoded messages differ in at
least d = γ ·` bits. In particular, |(X \Yi)∪(Yi\X)| ≥ d. Substituting d = γ ·` and w = (2Cq/γ)2/` in (2)
yields (3), and thus a lower bound of Θ(1/q) on ¬fail. Furthermore, the ai are information-theoretically
hidden from F , so conditioning on ¬fail does not change F’s success in the EUF-CMA experiment.
Theorem 3.1 follows.
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4 Lower Tightness Bounds for Re-Randomizable Signatures

In this section we show that it is impossible to prove security of a signature scheme with significantly smaller
security loss than Ω(q), if the signature scheme is efficiently re-randomizable. To this end, we first define
re-randomizable signatures. Then we give abstract definitions of computational problems, and reductions
that reduce solving a given computational problem to breaking the security of a given signature scheme. All
these results are generic, in the sense that they apply to any re-randomizable signature scheme. Finally, we
show that both Waters’ signature scheme from [22] and our modified scheme from Section 3 are efficiently
re-randomizable, which implies that the reduction from Section 3 is optimal.

4.1 Re-Randomizable Signatures

The intuition behind re-randomizable signatures is the property that, given only the public key pk and a
valid signature σ for some message m, one can efficiently generate a new signature σ′ that is distributed
uniformly over the set of all possible signatures for m.

Let Sig = (Gen,Sign,Vfy) be a signature scheme. For any string pk (which may either be a honestly
generated public key, or a fake public key generated by a simulator in a security proof) let us denote with

Σ(pk,m) = {σ : Vfy(pk,m, σ) = 1}

the set of signatures σ for message m that verify correctly under public key pk.

Definition 4.1. We say that Sig is t-re-randomizable, if there exists an algorithm ReRand running in time at
most t, such that for all (pk,m, σ) with Vfy(pk,m, σ) = 1 holds that the output distribution of

ReRand(pk,m, σ)

is identical to the uniform distribution over Σ(pk,m).

4.2 Computational Problems and Reductions

The definitions in this section follow [7].

Definition 4.2. A computational problem Π = (C,S) consists of a set C and a family of sets S = (Sc)c∈C .
We say that C is the set of challenges of Π, and for each c ∈ C set Sc is the set of solutions for c. We say
that an algorithm A (εA, tA)-solves Π, if A runs in time tA and

Pr[A(c) ∈ Sc : c
$← C] ≥ εA.

As an example consider a group G of prime order p. Then the computational Diffie-Hellman problem
in G is the problem Π = (C,S) with C = G × G × G and where for each c = (g, ga, gb) ∈ C we have
Sc = {gab}.

Definition 4.3. We say that an algorithm R is a (tF , εF , q, εR, tR)-reduction from problem Π to breaking
the security of signature scheme Sig, if for any forger F that (tF , εF , q)-breaks the EUF-CMA security of
Sig in the sense of Definition 2.1, algorithmR (εR, tR)-solves Π.

Note that we require that theR works for any forger F , in particular if F is given as a black-box.
For instance, in Section 3 we gave an example for an algorithm R that (tF , εF , q, εF · Θ(1/q), tR)-

reduces solving the computational Diffie-Hellman problem to breaking the security of Waters’ signature
scheme with tR ≈ tF .
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4.3 Lower Tightness Bound for Re-Randomizable Signature Schemes

In this section we consider reductions that run Forger F only once, and show that any such reduction loses a
factor of at least q. A generalization to reductions that run F repeatedly is straightforward, see Appendix C.

Theorem 4.4. Let Sig be a tReRand-re-randomizable signature scheme and let Π be a computational problem
in the sense of Definition 4.2. If there exists an (tF , εF , q, εR, tR)-reductionR that runsF once and reduces
Π to breaking Sig, then there exists an algorithm A that (εA, tA)-solves Π with tA ≈ 2tR + tReRand and

εA ≥ εR −
exp(−1)

q
.

We will use the following lemma, which is due to Coron [7].

Lemma 4.5. LetM be a set and let Q be a set of sequences of at most q elements ofM, such that for any
sequence (m1, . . . ,mj) ∈ Q we have (m1, . . . ,mj−1) ∈ Q. Let i $← [q] and (m1, . . . ,mq,m

∗)
$←Mq+1

be uniformly random. Then

Pr [(m1, . . . ,mq) ∈ Q ∧ (m1, . . . ,mi−1,m
∗) 6∈ Q] ≤ exp(−1)

q
.

See [7, Appendix D] for the proof.

Proof of Theorem 4.4. Consider an (imaginary) forger F that (tF , εF , q)-breaks the EUF-CMA security of
a given signature scheme Sig with some success probability εF in some time tF . Forger F works as follows.

1. F receives as input a public key pk from the challenger.

2. It selects q + 1 random pairwise different messages (m(1), . . . ,m(q),m∗) from the message space of
Sig.

3. Then F queries the challenger for signatures of messages (m(1), . . . ,m(q)).

4. F computes a valid signature σ∗ for messagem∗, such that σ∗ is distributed uniformly over Σ(pk,m∗).
(Forger F may be inefficient, since it needs to forge a signature. However, we will later show how to
simulate F efficiently.)

5. Finally F tosses a (biased) coin b $← {0, 1} with Pr[b = 1] = εF .

(a) If b = 1 then it outputs σ∗.
(b) Otherwise it outputs error symbol ⊥.

Note that any (tF , εF , q, εR, tR)-reduction from some computational problem Π to breaking the security
of Sig can use Forger F to (εR, tR)-solve Π. In the sequel we will apply the rewinding technique of
Coron [7] to show how to simulate F , if Sig is re-randomizable.

Consider an algorithm A that usesR as follows.

1. A receives as input an instance c of Π, and startsR on input c.

2. R outputs a public key pk.

3. A selects a random integer i ∈ [q] and q+1 random pairwise different messages (m(1), . . . ,m(q),m∗).

10



4. It queries R for signatures for the sequence of messages M0 = (m(1), . . . ,m(i−1),m∗). If R aborts,
then so does A.

5. Then A rewindsR to the state after it has output the public key (i.e. the state after Step 2).

6. Now A queries for signatures for the sequence of messages M1 = (m(1), . . . ,m(q)). Again, if R
aborts, then A aborts too.

7. Then A computes σ′ = ReRand(pk,m∗, σ∗) and tosses a coin b $← {0, 1} with Pr[b = 1] = εF .

(a) If b = 1 then it submits σ′ toR.
(b) Otherwise it submits error symbol ⊥.

Finally A returns outputs whateverR returns

Fix the internal coins of R, and let Q be the set of (ordered) message sequences M of size at most q,
such thatR aborts when asked to sign the messages inM . Let E denote the event thatM0 6∈ Q andM1 ∈ Q.
(In other words, E occurs when R does not abort before the rewinding, but does abort after the rewinding
by A.) Note that, due to the re-randomizability of Sig, A outputs a uniformly random signature σ′ from the
set Σ(pk,m∗) of all valid signatures for m∗ and public key pk. Therefore A simulates F perfectly (after
the rewind), and thus can use R to solve Π, unless E occurs. By applying Lemma 4.5, we obtain that the
success probability of A is at least

εA ≥ εR − Pr[E ]

= εR − Pr[M0 6∈ Q ∧M1 ∈ Q]

≥ εR −
exp(−1)

q
.

A essentially runs R twice and performs one re-randomization, therefore the running time of A is tA ≈
2tR + tReRand.

The above theorem directly gives rise to the following corollary.

Corollary 4.6. Let Π be a (ε, 2t + tReRand)-hard computational problem. Then the success probability εR
of any security reduction from Π to breaking a re-randomizable signature scheme that runs in time t is at
most

εR ≤
exp(−1)

q
+ ε.

In particular, if ε is close to zero and signatures are efficiently re-randomizable, then this gives an upper
bound on the success probability of the reduction of εR / exp(−1)/q for all reductions running in time t.

Note also that in principle any (probabilistic) signature scheme is re-randomizable, though not neces-
sarily efficiently. However, the running time of the simulated forger depends on the running time of the
re-randomization algorithm. Thus, in order to get a meaningful result, we need to require that signatures are
efficiently re-randomizable.
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4.4 Waters Signatures are Re-Randomizable

To show that any reduction from a computationally hard problem to the (t, q, ε)-EUF-CMA security of
Waters signatures loses at least a factor 1/q, it remains to show that Waters signatures are efficiently re-
randomizable.

Note that the original Waters scheme from [22] and the variant from Section 3 differ only in the way
the hash value H(m) ∈ G is computed. The following considerations do not depend on a specific function
H . Therefore we consider a Waters signature scheme that uses some abstract hash function H in the sequel,
which makes the analysis applicable to both schemes (and other similar constructions) simultaneously.

Lemma 4.7. Waters signatures are t-re-randomizable, where t amounts to two exponentiations in G plus
some minor additional operations.

Proof. Let pk = (G, g, gα, gβ, H) be a given public key, and let m and σ = (σ1, σ2) be a given message
with valid Waters signature, i.e., σ satisfies

e(gα, gβ) · e(σ1, H(m)) = e(g, σ2). (5)

Since σ1 is a group element, we can write σ1 = gr for some integer r ∈ Zp, where p = |G| is the order
of G. Then Equation 5 implies that we can write σ2 as σ2 = gαβH(m)r. The set of all (σ1, σ2) satisfying
Equation 5 is therefore identical to the set

Σ(pk,m) = {(gr, gαβH(m)r) : r ∈ Zp}.

It remains to show that there exists an efficient algorithm ReRand that produces uniformly random ele-
ments of Σ(pk,m) given only the public key pk, message m, and a valid signature σ = (σ1, σ2). Consider
algorithm ReRand taking as input pk, signature (σ1, σ2) = (gr, gαβH(m)r) for some r, and message m.
The algorithm samples s $← Zp and computes and returns (σ′1, σ

′
2) where

σ′1 := σ1 · gs = gr+s and σ′2 := σ2 ·H(m)s = gαβH(m)r+s.

Since s is uniformly distributed over Zp, the resulting signature (σ′1, σ
′
2) is distributed uniformly over

Σ(sk,m), as required.

Combining the above lemma with Theorem 4.4 yields the following result.

Theorem 4.8. Let Π be a computational problem according to Definition 4.2. If there exists a (tF , εF , q, εR, tR)-
reduction R that reduces solving Π to breaking Waters signatures, then there exists an algorithm A that
(εA, tA)-solves Π with tA ≈ 2tR and

εA ≥ εR −
exp(−1)

q
.

Thus, a reduction from any computational problem Π to breaking Waters signatures that runs in time t
with success probability significantly better than 1/q implies that there exists an algorithm solving Π in time
≈ 2t with significant success probability.
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A Proof of Lemma 3.3

We distinguish the two cases |X \ Y | ≥ d/2 and |Y \X| ≥ d/2:
Case |Y \X| ≥ d/2:

Pr [a(Y ) = 0 | a(X) = 0]
(a)

≤ max
i

Pr [a(Y ) = 0 | a(Y ∩X) = i]

(b)

≤ max
i

Pr [a(Y \X) = −i | a(Y ∩X) = i]

(c)
= max

i
Pr [a(Y \X) = −i]

(d)
= Pr [a(Y \X) = 0]

(e)

≤
√

2 · Λ√
d · w

(f)

≤
√

2 · Λ ·
√
`

d ·
√
w

Here, (a) holds because a(Y ) only depends on a(Y ∩ X) but not on a(X \ Y ); (b) uses a(Y ) =
a(Y \ X) + a(Y ∩ X); (c) uses that a(Y \ X) and a(Y ∩ X) are independent; (d) and (e) apply
Theorem 3.2, using that a(Y \X) is a random walk of length at least (d/2) ·w; finally, (f) uses d ≤ `.

Case |X \ Y | ≥ d/2:

Pr [a(Y ) = 0 | a(X) = 0]
(a)
= Pr [a(X) = 0 | a(Y ) = 0] · Pr [a(Y ) = 0]

Pr [a(X) = 0]

(b)

≤
√

2 · Λ√
d · w

· Pr [a(Y ) = 0]

Pr [a(X) = 0]

(c)

≤
√

2 · Λ√
d · w

·
√

2 · Λ√
d · w

·
√
` · w√
2 · λ

=

√
2 · Λ2

λ
·
√
`

d ·
√
w

Here, (a) uses Bayes’ theorem; (b) uses what we have proved for the case |Y \ X| ≥ d/2 (with
swapped X,Y ); (c) apply Theorem 3.2, using that a(X) and a(Y ) are random walks of length at
least d · w and at most ` · w.

Since we have Λ ≥ λ, setting C :=
√

2 · (Λ2/λ) proves (1).
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B Proof of Lemma 3.4

We have

Pr [a(X) = 0 ∧ ∀i : a(Yi) 6= 0] = Pr [∀i : a(Yi) 6= 0 | a(X) = 0] · Pr [a(X) = 0]

(a)

≥ Pr [∀i : a(Yi) 6= 0 | a(X) = 0] · λ√
d · w

= (1− Pr [∃i : a(Yi) = 0 | a(X) = 0]) · λ√
d · w

(b)

≥

(
1−

q∑
i=1

Pr [a(Yi) = 0 | a(X) = 0]

)
· λ√

d · w
(c)

≥

(
1− q · C ·

√
`

d ·
√
w

)
· λ√

d · w

Here, (a) applies Theorem 3.2, using that a(X) is a random walk of length at least d · w; (b) uses a union
bound; (c) denotes a q-wise application of Lemma 3.3. Setting D := λ yields (2).

C Reductions that run F more than once

So far we have only considered reductions that run the forger once. While the reduction from [22] is of this
type, it may be possible that there exist a tighter reduction that runs F several times with different public
keys. Fortunately, following [7, 17] it is very simple to generalize the result of Section 4.3 to reductions that
run F repeatedly.

Theorem C.1. Let Sig be a tReRand-re-randomizable signature scheme and let Π be a computational prob-
lem in the sense of Definition 4.2. If there exists a (tF , εF , q, εR, tR)-reduction R that runs F at most
r times and reduces Π to breaking Sig, then there exists an algorithm A that (εA, tA)-solves Π with
tA ≈ 2 · tR + r · tReRand and

εA ≥ εR −
r · exp(−1)

q
.

The proof is very similar to the proof of Theorem 4.4, the only difference is that nowA needs to simulate
r executions of F . Consider an adversary A which proceeds exactly like in the proof of Theorem 4.4, and
let Ei denote the event that the simulation of F fails in the i-th execution. Then we have

εA ≥ εR −
r∑
i=1

Pr[Ei]

= εR −
r∑
i=1

Pr[Mi,0 6∈ Q ∧Mi,1 ∈ Q]

≥ εR −
r · exp(−1)

q
,

where Mi,0 and Mi,1 are the sequences of chosen-message queries issued by the simulated forger in the i-th
execution of F .
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