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Abstract. We put forward the concept of a reconfigurable cryptosystem. Intu-
itively, a reconfigurable cryptosystem allows to increase the security of the sys-
tem at runtime, by changing a single central parameter we call common reference
string (CRS). In particular, e.g., a cryptanalytic advance does not necessarily en-
tail a full update of a large public-key infrastructure; only the CRS needs to be
updated. In this paper we focus on the reconfigurability of encryption and signa-
ture schemes, but we believe that this concept and the developed techniques can
also be applied to other kind of cryptosystems.
Besides a security definition, we offer two reconfigurable encryption schemes,
and one reconfigurable signature scheme. Our first reconfigurable encryption
scheme uses indistinguishability obfuscation (however only in the CRS) to adap-
tively derive short-term keys from long-term keys. The security of long-term keys
can be based on a one-way function, and the security of both the indistinguisha-
bility obfuscation and the actual encryption scheme can be increased on-the-fly,
by changing the CRS. We stress that our scheme remains secure even if previous
short-term secret keys are leaked.
Our second reconfigurable encryption scheme has a similar structure (and similar
security properties), but relies on a pairing-friendly group instead of obfuscation.
Its security is based on the recently introduced hierarchy of k-SCasc assumptions.
Similar to the k-Linear assumption, it is known that k-SCasc implies (k + 1)-
SCasc, and that this implication is proper in the generic group model. Our system
allows to increase k on-the-fly, just by changing the CRS. In that sense, security
can be increased without changing any long-term keys.
We also offer a reconfigurable signature scheme based on the same hierarchy of
assumptions.
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1 Introduction

Motivation. Public-key cryptography plays an essential role in security and privacy
in wide networks such as the internet. Secure channels are usually established using
hybrid encryption, where the exchange of session keys for fast symmetric encryption
algorithms relies on a public key infrastructure (PKI). These PKIs incorporate public
keys from large groups of users. For instance, the PKI used by OpenPGP for encrypting



and signing emails consists of roughly four million public keys. This PKI is continu-
ously growing, especially so since the Snowden leaks multiplied the amount of newly
registered public keys.

One drawback of large PKIs is that they are slow to react to security incidents. For
instance, consider a PKI that predominantly stores 2048-bit RSA keys, and imagine
a sudden cryptanalytic advance that renders 2048-bit RSA keys insecure. In order to
change all keys to, say, 4096-bit keys, every user would have to generate new keypairs
and register the new public key. Similarly, expensive key refresh processes are nec-
essary in case, e.g., a widely deployed piece of encryption software turns out to leak
secret keys, the assumed adversarial resources the system should protect from suddenly
increase (e.g., from the computing resources of a small group of hackers to that of an
intelligence agency), etc.

In this paper, we consider a scenario where key updates are triggered by a central
authority for all users/devices participating in a PKI (and not by the individuals them-
selves), e.g., such as a large company maintaining a PKI for its employees who wants
the employees to update their keys every year or when new recommendations on min-
imal key lengths are released. Other conceivable examples include operators of a PKI
for wireless-sensor networks or for other IoT devices. We do not consider the problem
of making individually initiated key updates more efficient.

Reconfigurable Cryptography. This paper introduces the concept of reconfigurable
cryptography. In a nutshell, in a reconfigurable cryptographic scheme, there are long-
term and short-term public and secret keys. Long-term public and secret keys are gen-
erated once for each user, and the long-term public key is publicized, e.g., in a PKI.
Using a central and public piece of information (the common reference string or CRS),
long-term keys allow to derive short-term keys, which are then used to perform the ac-
tual operation. If the short-term keys become insecure (or leak), only the central CRS
(but not the long-term keys) needs to be updated (and certified). Note that the long-term
secret keys are only needed for the process of deriving new short-term secret keys and
not for the actual decryption process. Thus, they can be kept “offline” at a secure place.

We call the process of updating the CRS reconfiguration. An attack model for a re-
configurable cryptography scheme is given by an adversary who can ask for short-term
secret keys derived from the PKI and any deprecated CRSs. After that, the adversary is
challenged on a fresh short-term key pair. This models the fact that short-term key pairs
should not reveal any information about the long-term secret keys of the PKI and thus,
after their leakage, the whole system can be rescued by updating only the central CRS.
Note that for most such schemes (except some trivial ones described below), the entity
setting up the CRS needs to be trusted not to keep a trapdoor allowing to derive short-
term secret keys for all users and security levels. In order to mitigate this risk however,
a CRS could also be computed in a distributed fashion using MPC techniques.

Related concepts and first examples. An objection to our approach that might come
to mind when first thinking about long-term secure encryption is the following: why
do we not follow a much simpler approach like letting users exchange sufficiently long
symmetric encryption keys once (which allow for fast encryption/decryption), using
a (slow) public key scheme with comparable security? Unfortunately, it quickly turns
out that there are multiple drawbacks with this approach: advanced encryption features
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known only for public-key encryption (e.g., homomorphic encryption) are excluded;
each user needs to maintain a secure database containing the shared symmetric keys
with his communication partners; the long-term secret key of the PKE scheme needs to
be kept “online” in order to be able to decrypt symmetric keys from new communication
partners, etc. Hence, we do not consider this a satisfying approach to long-term security.

A first attempt to create a scheme which better complies with our concept of re-
configurable encryption could be the following: simply define the long-term keys as a
sequence of short-term keys. For instance, a long-term public key could consist of RSA
keys of different lengths, say, of 2048, 4096, and 8192 bits. The CRS could be an index
that selects which key (or, keylength) to use as a short-term key. If a keylength must
be considered broken, simply take the next. This approach is perfectly viable, but does
not scale well: only an a-priori fixed number (and type) of keys can be stored in a long-
term key, and the size of such a long-term key grows (at least) linearly in the number of
possible short-term keys.

A second attempt might be to use identity-based techniques: for instance, the long-
term public and secret key of a user of a reconfigurable encryption scheme could be the
master public and secret key of an identity-based encryption (IBE [21, 17, 6]) scheme.
The CRS selects an IBE identity (used by all users), and the short-term secret key is
the IBE user secret key for the identity specified by the CRS. Encryptions are always
performed to the current identity (as specified by the CRS), such that the short-term
secret key can be used to decrypt. In case (some of) the current short-term secret keys
are revealed, simply change the identity specified in the CRS. This scheme scales much
better to large numbers of reconfigurations than the trivial scheme above. Yet, security
does not increase after a reconfiguration. (For instance, unlike in the trivial example
above, there is no obvious way to increase keylengths through reconfiguration.)

Finally, we note that our security requirements are somewhat orthogonal to the ones
found in forward security [10, 4, 9]. Namely, in a forward-secure scheme, we would
achieve that revealing a current (short-term) secret key does not harm the security of
previous instances of the scheme. In contrast, we would like to achieve that revealing
the current (and previous) short-term secret keys does not harm the security of future
instances of the scheme. Furthermore, we are interested in increasing the security of
the scheme gradually, through reconfigurations (perhaps at the cost of decreased effi-
ciency).

Our contribution. We introduce the concept of reconfigurable cryptography. For this
purpose, it is necessary to give a security definition for a cryptographic scheme de-
fined in two security parameters, a long-term and a short-term security parameter. This
definition needs to capture the property that security can be increased by varying the
short-term security parameter. As it turns out, finding a reasonable definition which
captures our notion and is satisfiable at the same time is highly non-trivial. Ultimately,
here we present a non-uniform security definition based on an asymptotic version of
concrete security introduced by Bellare et al. in [3, 2]. The given definition is intuitive
and leads to relatively simple proofs. Consequently, also our building blocks need to be
secure against non-uniform adversaries (what can be assumed when building on non-
uniform complexity assumptions). Alternatively, also a uniform security definition is
conceivable which, however, would lead to more intricate proofs.
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Besides a security definition, we offer three constructions: two reconfigurable public-
key encryption schemes (one based on indistinguishability obfuscation [1, 12, 20], the
other based on the family of SCasc assumptions [11] in pairing-friendly groups), and
a reconfigurable signature scheme based on arbitrary families of matrix assumptions
(also in pairing-friendly groups).

To get a taste of our solutions, we now sketch our schemes.

Some notation. We call λ ∈ N the long-term security parameter, and k ∈ N the short-
term security parameter. λ has to be fixed at setup time, and intuitively determines how
hard it should be to retrieve the long-term secret key from the long-term public key.
(As such, λ gives an an upper bound of the security of the whole system. In particular,
we should be interested in systems in which breaking the long-term public key should
be qualitatively harder than breaking short-term keys.) In contrast, k can (and should)
increase with each reconfiguration. Intuitively, a larger value of k should make it harder
to retrieve short-term keys.

Our obfuscation-based reconfigurable encryption scheme. Our first scheme uses
indistinguishability obfuscation [1, 12, 20], a pseudorandom generator PRG, and an
arbitrary public-key encryption scheme PKE. As a long-term secret key, we use a value
x ∈ {0, 1}λ; the long-term public key is PRG(x). A CRS consists of the obfuscation
of an algorithm Gen, that inputs either a long-term public key PRG(x) or a long-term
secret key x, and proceeds as follows:

– Gen(PRG(x)) generates a PKE public key, using random coins derived from
PRG(x) for PKE key generation,

– Gen(x) generates a PKE secret key, using random coins derived from PRG(x).
Note that Gen(x) outputs the matching PKE secret key to the public key output by
Gen(PRG(x)). Furthermore, we use λ + k as a security parameter for the indistin-
guishability obfuscation, and k for the PKE key generation. (Hence, with larger k, the
keys produced by Gen become more secure.)

We note that the long-term security of our scheme relies only on the security of PRG.
Moreover, the short-term security (which relies on the obfuscator and PKE) can be in-
creased (by increasing k and replacing the CRS) without changing the PKI. Further-
more, we show that releasing short-term secret keys for previous CRSs does not harm
the security of the current instance of the scheme. (We remark that a similar setup and
technique has been used by [7] for a different purpose, in the context of non-interactive
key exchange.)

Reconfigurable encryption in pairing-friendly groups. We also present a reconfig-
urable encryption scheme in a cyclic group G = 〈g〉 that admits a symmetric pairing
e : G × G → GT into some target group GT = 〈gT 〉. Both groups are of prime order
p > 2λ. The long-term assumption is the hardness of computing discrete logarithms in
G, while the short-term assumption is the k-SCasc assumption from [11] over G (with
a pairing).1 To explain our scheme in a bit more detail, we adopt the notation of [11]

1 The k-SCasc assumption states that it is hard to distinguish vectors of group elements from
a certain linear subspace from vectors of independently uniform group elements. Here, the
parameter k determines the size of vectors, and – similar to the k-Linear assumption –, it is
known that the k-SCasc assumption implies the (k + 1)-SCasc assumption. In the generic

4



and write [x] ∈ G (resp. [x]T ∈ GT ) for the group element gx (resp. gxT ), and similarly
for vectors [~u] and matrices [A] of group elements.

A long-term secret key is an exponent x, and the corresponding long-term public
key is [x]. A CRS for a certain value k ∈ N is a uniform vector [~y] ∈ Gk of group
elements. The induced short-term public key is a matrix [Ax] ∈ G(k+1)×k derived
from [x], and the short-term secret key is a vector [~r] ∈ Gk+1 satisfying ~r> ·Ax = ~y.
An encryption of a message m ∈ GT is of the form

c = ( [Ax · ~s], [~y> · ~s]T ·m )

for a uniformly chosen [~s] ∈ Gk. Intuitively, the k-SCasc assumption states that [Ax ·
~s] is computationally indistinguishable from a random vector of group elements. This
enables a security proof very similar to that for (dual) Regev encryption [18, 13] (see
also [8]).

Hence, the long-term security of the above scheme is based on the discrete loga-
rithm problem. Its short-term security relies on the k-SCasc assumption, where k can
be adapted at runtime, without changing keys in the underlying PKI. Furthermore, we
show that revealing previous short-term keys [~r] does not harm the security of the cur-
rent instance.2

We remark that [11] also present a less complex generalization of ElGamal to the k-
SCasc assumption. Although they do not emphasize this property, their scheme allows
to dynamically choose k at encryption time. However, their scheme does not in any
obvious way allow to derive a short-term secret key that would be restricted to a given
value of k. In other words, after, e.g., a key leakage, their scheme becomes insecure for
all k, without the possibility of a reconfiguration.

Our reconfigurable signature scheme. We also construct a reconfigurable signature
scheme in pairing-friendly groups. Its long-term security is based on the Computational
Diffie-Hellman (CDH) assumption, and its short-term security can be based on any ma-
trix assumption (e.g., on k-SCasc). Of course, efficient (non-reconfigurable) signature
schemes from the CDH assumption already exist (e.g., Waters’ signature scheme [23]).
Compared to such schemes, our scheme still offers reconfigurability in case, e.g., short-
term secret keys are leaked.

Roadmap. We start with some preliminaries in Section 2, followed by the definition
of a reconfigurable encryption scheme and the security experiment in Section 3. In
Section 4, we give the details of our two constructions for reconfigurable encryption.
Finally, we treat reconfigurable signature schemes in Section 5.

group model, the (k + 1)-SCasc assumption is also strictly weaker than the k-SCasc assump-
tion [11]. Hence, increasing k leads to (at least generically) weaker assumptions.

2 Currently, the best way to solve most problems in cyclic groups (such as k-SCasc or k-Linear
instances) appears to be to compute discrete logarithms. In that sense, it would seem that
the long-term and short-term security of our scheme are in a practical sense equivalent. Still,
we believe that it is useful to offer solutions that give progressively stronger provable security
guarantees (such as in our case with the k-SCasc assumption), if only to have fallback solutions
in case of algorithmic advances, say, concerning the Decisional Diffie-Hellman problem.
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2 Preliminaries

Notation. Throughout the paper, λ, k, ` ∈ N denote security parameters. For a finite
set S, we denote by s ← S the process of sampling s uniformly from S. For a proba-
bilistic algorithm A, we denote with RA the space of A’s random coins. y ← A(x; r)
denotes the process of running A on input x and with uniform randomness r ∈ RA,
and assigning y the result. We write y ← A(x) for y ← A(x; r) with uniform r. If
A’s running time, denoted by T(A), is polynomial in λ, then A is called probabilistic
polynomial-time (PPT). We call a function η negligible if for every polynomial p there
exists λ0 such that for all λ ≥ λ0 holds |η(λ)| ≤ 1

p(λ) .

Concrete security. To formalize security of reconfigurable encryption schemes, we
make use of the concept of concrete security as introduced in [3, 2]. Here one considers
an explicit function for the adversarial advantage in breaking an assumption, a primitive,
a protocol, etc. which is parameterized in the adversarial resources. More precisely, as
usual let AdvxP,A(λ) denote the advantage function of an adversary A in winning some
security experiment ExpxP,A(λ) defined for some cryptographic object P (e.g., a PKE
scheme, the DDH problem, etc.) in the security parameter λ. For an integer t ∈ N, we
define the concrete advantage CAdvxP(t, λ) of breaking P with runtime t by

CAdvxP(t, λ) := max
A
{AdvxP,A(λ)}, (1)

where the maximum is over allA with time complexity t. It is straightforward to extend
this definition to cryptographic objects defined in two security parameters which we in-
troduce in this paper. In the following, if we are given an advantage function AdvxP,A(λ)
for a cryptographic primitive P that we consider, the definition of the concrete advan-
tage can then be derived as in (1). Asymptotic security (against non-uniform adversaries
and when only one security parameter is considered) then means that CAdvxP(t(λ), λ)
is negligible for all polynomials t in λ. Hence, if we only give the usual security def-
inition for a cryptographic building block in the following its concrete security is also
defined implicitly as described above.
Implicit representation. Let G be a cyclic group of order p generated by g. Then by
[a] := ga we denote the implicit representation of a ∈ Zp in G. To distinguish between
implicit representations in two groups G and GT , we use [·] and [·]T , respectively. The
notation naturally extends to vectors and matrices of group elements.
Matrix-vector products. Sometimes, we will need to perform simple operations from
linear algebra “in the exponent”, aided by a pairing operation as necessary. Concretely,
we will use the following operations: If a matrix [A] = [(ai,j)i,j ] ∈ Gm×n is known
“in the exponent”, and a vector ~u = (ui)i ∈ Znp is known “in plain”, then the product
[A·~u] ∈ Gm can be efficiently computed as [(vi)i] for [vi] =

∑n
j=1 uj ·[ai,j ]. Similarly,

inner products [~u> · ~v] can be computed from [~u] and ~v (or from ~u and [~v]). Finally, if
only [A] and [~u] are known (i.e., only “in the exponent”), still [A ·~u]T can be computed
in the target group, as [(vi)i]T for [vi]T =

∑n
j=1 e([ai,j ], [uj ]).

Symmetric pairing-friendly group generator. A symmetric pairing-friendly group
generator is a probabilistic polynomial time algorithm G that takes as input a security
parameter 1λ and outputs a tuple G := (p,G, g,GT , e) where
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– G and GT are cyclic groups of prime order p, dlog2(p)e = λ and 〈g〉 = G

– e : G×G −→ GT is an efficiently computable non-degenerate bilinear map

The Matrix Diffie-Hellman assumption ([11]). Let k, q ∈ N and Dk be an effi-
ciently samplable matrix distribution over Z(k+1)×k

q . The Dk-Diffie-Hellman assump-
tion (Dk-MDDH) relative to a pairing-friendly group generator G states that for all PPT
adversaries A it holds that

AdvDk-MDDH
G,A (λ) := |Pr[A(G, [A,A~w]) = 1]− Pr[A(G, [A, ~u]) = 1]|

is negligible in λ, where the probability is over the random choices A← Dk, ~w ← Zkq
and ~u ← Zk+1

q , G := (p,G, g,GT , e) ← G and the random coins of A. Examples
of Dk-MDDH assumptions are the k-Lin assumption and the compact symmetric k-
cascade assumption (k-SCasc or SCk-MDDH). For the latter the matrix distribution
SCk samples matrices of the form

Ax :=


x 0 ... 0 0
1 x ... 0 0
0 1 0 0
.
.
.

. . .
. . .

0 0 ... 1 x
0 0 ... 0 1

 ∈ Z(k+1)×k
n (2)

for uniformly random x← Zn. In Section 4.2, we will consider a version of the SCasc
assumption defined in two security parameters.
PKE schemes. A public-key encryption (PKE) scheme PKE with message spaceM
consists of three PPT algorithms Gen,Enc,Dec. Key generation Gen(1`) outputs a pub-
lic key pk and a secret key sk . Encryption Enc(pk ,m) takes pk and a messagem ∈M,
and outputs a ciphertext c. Decryption Dec(sk , c) takes sk and a ciphertext c, and out-
puts a message m. For correctness, we want Dec(sk , c) = m for all m ∈ M, all
(pk , sk)← Gen(1`), and all c← Enc(pk ,m).
IND-CPA and IND-CCA security. Let PKE be a PKE scheme as above. For an ad-
versaryA, consider the following experiment: first, the experiment samples (pk , sk)←
Gen(1k) and runs A on input pk . Once A outputs two messages m0,m1, the exper-
iment flips a coin b ← {0, 1} and runs A on input c∗ ← Enc(pk ,mb). We say
that A wins the experiment iff b′ = b for A’s final output b′. We denote A’s advan-
tage with Advind-cpa

PKE,A(k) := |Pr [A wins]− 1/2| and say that PKE is IND-CPA se-
cure iff Advind-cpa

PKE,A(k) is negligible for all PPT A. Similarly, write Advind-cca
PKE,A(k) :=

|Pr [A wins]− 1/2| for A’s winning probability when A additionally gets access to a
decryption oracle Dec(sk , ·) at all times. (To avoid trivialities,Amay not query Dec on
c∗, though.)
PRGs. Informally, a pseudorandom generator (PRG) is a deterministic algorithm that
maps a short random bit string (called seed) to a longer pseudo-random bitstring. More
formally, let p(·) be a polynomial such that p(λ) > λ for all λ ∈ N and let PRG
be a deterministic polynomial-time algorithm which on input of a bit string in {0, 1}λ
returns a bit string in {0, 1}p(λ) (also denoted by PRG : {0, 1}λ → {0, 1}p(λ)). The
security of PRG is defined through

AdvprgPRG,D(λ) := |Pr[1← D(PRG(x))]− Pr[1← D(r)]| ,
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where D is a distinguisher, x← {0, 1}λ and r ← {0, 1}p(λ).
Indistinguishability Obfuscation (iO). For our construction in Section 4.1, we make
use of indistinguishability obfuscators for polynomial-size circuits. Intuitively, such an
algorithm is able to obfuscate two equivalent circuits in a way such that a PPT adversary
who receives the two obfuscated circuits as input is not able to distinguish them. The
following definition is taken from [12].

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine iO is called
an indistinguishability obfuscator for a circuit class {C`} if the following conditions are
satisfied:

– For all security parameters ` ∈ N, for all C ∈ C`, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(`, C)] = 1

– For any (not necessarily uniform) PPT distinguisher D, there exists a negligible
function α such that the following holds: For all security parameters ` ∈ N, for all
pairs of circuits C0, C1 ∈ C`, we have that if C0(x) = C1(x) for all inputs x, then

AdvioiO,D(`) := |Pr[1← D(iO(`, C0))]− Pr[1← D(iO(`, C1))]| ≤ α(`)

Note that an iO candidate for circuit classes {C`}, where the input size as well as
the maximum circuit size are polynomials in ` has been proposed in [12].
Puncturable PRF. Informally speaking, a puncturable (or constrained) PRF FK :
{0, 1}n(`) → {0, 1}p(`) is a PRF for which it is possible to constrain the key K (i.e.,
derive a new key KS) in order to exclude a certain subset S ⊂ {0, 1}n(`) of the domain
of the PRF. (Note that this means that FKS (x) is not defined for x ∈ S and equal
to FK(x) for x 6∈ S.) Given the punctured key KS , an adversary may not be able to
distinguish FK(x) from a random y ∈ {0, 1}p(`) for x ∈ S. The following definition
adapted from [19] formalizes this notion.

Definition 2. A puncturable family of PRFs F is given by three PPT algorithms GenF ,
PunctureF , and EvalF , and a pair of computable functions (n(·), p(·)), satisfying the
following conditions:

– For every S ⊂ {0, 1}n(`), for all x ∈ {0, 1}n(`) where x 6∈ S, we have that:

Pr[EvalF (K,x) = EvalF (KS , x) : K ← GenF (1
`),KS ← PunctureF (K,S)] = 1

– For every PPT adversaryA such thatA(1`) outputs a set S ⊂ {0, 1}n(`) and a state
state, consider an experiment whereK ← GenF (1

`) andKS = PunctureF (K,S).
Then the advantage AdvpprfF,A(`) of A defined by∣∣Pr[1← A(state,KS ,EvalF (K,S))]− Pr[1← A(state,KS , Up(`)·|S|)]

∣∣
is negligible, where EvalF (K,S) denotes the concatenation of EvalF (K,xi), i =
1, ...,m, where S = {x1, . . . , xm} is the enumeration of the elements in S in lexi-
cographic order, and Ut denotes the uniform distribution over t bits.

To simplify notation, we write FK(x) instead of EvalF (K,x). Note that if one-way
functions exist, then there also exist a puncturable PRF family for any efficiently com-
putable functions n(`) and p(`).
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3 Definitions

The idea behind our concept of a reconfigurable public key cryptosystem is very simple:
instead of directly feeding a PKI into the algorithms of the cryptosystem, we add some
precomputation routines to derive a temporary short-term PKI. This PKI is then used
by the cryptosystem. Instructions on how to derive and when to update the short-term
PKI are given by a trusted entity. Our concept is quite modular and, thus, is applicable
to other cryptosystems as well. In this section, we consider the case of reconfigurable
encryption.

In Definition 3, we give a formal description of a reconfigurable public key encryp-
tion (RPKE) scheme. An RPKE scheme is a multi-user system which is setup (once)
by some trusted entity generating public system parameters given a long-term security
parameter 1λ. Based on these public parameters, each user generates his long-term key
pair. Moreover, the entity uses the public parameters to generate a common reference
string defining a certain (short-term) security level k. Note that only this CRS is being
updated when a new short-term security level for the system should be established. The
current CRS is distributed to all users, who derive their short-term secret and public
keys for the corresponding security level from their long-term secret and public keys
and the CRS. Encryption and decryption of messages works as in a standard PKE using
the short-term key pair of a user.

Definition 3. A reconfigurable public-key encryption (RPKE) scheme RPKE consists
of the following PPT algorithms:

– Setup(1λ) receives a long-term security parameter 1λ as input, and returns (global)
long-term public parameters PP .

– MKGen(PP) takes the long-term public parameters PP as input and returns the
long-term public and private key (mpk ,msk) of a user.

– CRSGen(PP, 1k) is given the long-term public parameters PP , a short-term se-
curity parameter 1k, and returns a (global) short-term common reference string
CRS . We assume that the message spaceM is defined as part of CRS .

– PKGen(CRS ,mpk) takes the CRS CRS as well as the long-term public key mpk
of a user as input and returns a short-term public key pk for this user.

– SKGen(CRS ,msk) takes the CRS CRS as well as the long-term secret key msk of
a user as input and returns a short-term secret key sk for this user.

– Enc(pk ,m) receives a user’s short-term public key pk and a message m ∈ M as
input and returns a ciphertext c.

– Dec(sk , c) receives a user’s short-term secret key sk and a ciphertext c as input
and returns m ∈M∪ {⊥}.

We call RPKE correct if for all values of λ, k ∈ N, PP ← Setup(1λ), (mpk ,msk)←
MKGen(PP), CRS ← CRSGen(PP, 1k), m ∈M, pk ← PKGen(CRS ,mpk), sk ←
SKGen(CRS ,msk), and all c← Enc(pk ,m), it holds that Dec(sk , c) = m.

Security. Our security experiment for RPKE systems given in Figure 1 is inspired by
the notion of IND-CCA (IND-CPA) security, extended to the more involved key gener-
ation phase of a reconfigurable encryption scheme. Note that we provide the adversary
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with a secret key oracle for deprecated short-term keys. The intuition behind our secu-
rity definition is that we can split the advantage of an adversary into three parts. One
part (called f1 in Definition 4) reflects its advantage in attacking the subsystem of an
RPKE that is only responsible for long-term security (λ). Another part (f2) represents
its advantage in attacking the subsystem that is only responsible for short-term security
(k). The remaining part (f3) stands for its advantage in attacking the subsystem that
links the long-term with the short-term security subsystem (e.g., short-term key deriva-
tion). We demand that all these advantages are negligible in the corresponding security
parameter, i.e., part one in λ, part two in k, and part three in both λ (where k is fixed)
and in k (where λ is fixed).

Note that it is not reasonable to demand that the overall advantage is negligible
in λ and in k. For instance, consider the advantage function CAdv(t(λ, k), λ, k) ≤
2−λ+2−k+2−(λ+k). Intuitively, we would like to call an RPKE exhibiting this bound
secure. Unfortunately, it is neither negligible in λ nor in k.

Definition 4. Let RPKE be an RPKE scheme according to Definition 3. Then we define
the advantage of an adversary A as

Advr-ind-cca
RPKE,A(λ, k) :=

∣∣∣∣Pr[Expr-ind-cca
RPKE,A(λ, k) = 1]− 1

2

∣∣∣∣
where Expr-ind-cca

RPKE,A is the experiment given in Figure 1. The concrete advantage
CAdvr-ind-cca

RPKE (t, λ, k) of adversaries against RPKE with time complexity t follows canon-
ically (cf. Section 2).

An RPKE scheme RPKE is then called R-IND-CCA secure if for all polynomials
t(λ, k), there exist positive functions f1 : N2 → R+

0 , f2 : N2 → R+
0 , and f3 : N3 →

R+
0 as well as polynomials t1(λ, k), t2(λ, k), and t3(λ, k) such that

CAdvr-ind-cca
RPKE (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

for all λ, k, and the following conditions are satisfied for f1, f2, f3:
– For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ
– For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k
– For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ
– For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k

We define R-IND-CPA security analogously with respect to the modified experiment
Expr-ind-cpa

RPKE,A(λ, k), which is identical to Expr-ind-cca
RPKE,A(λ, k) except that A has no access to

an Dec-Oracle.

In Section 1 we already sketched an IBE-based RPKE scheme that would be secure
in the sense of Definition 4. However, for this RPKE f2 and f3 can be set to be the zero
function, meaning that the adversarial advantage cannot be decreased by increasing k.
In this paper we are not interested in such schemes.

Of course, one can think of several reasonable modifications to the security defini-
tion given above. For instance, one may want to omit the “learn” stage in the experi-
ment and instead give the algorithm access to the Break-Oracle during the “select” and
“guess” stages. Fortunately, it turned out that most of these reasonable, slight modifica-
tions lead to a definition which is equivalent to the simple version we chose.
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Experiment Expr-ind-cca
RPKE,A(λ, k)

PP ← Setup(1λ)

(mpk ,msk)← MKGen(PP)
state ← ABreak(PP,msk,·)(1λ, 1k,PP,mpk , “learn”)

CRS∗ ← CRSGen(PP, 1k)
sk∗ ← SKGen(CRS∗,msk)

pk∗ ← PKGen(CRS∗,mpk)

(m0,m1, state
′)← ADec(sk∗,·)(CRS∗, state, “select”)

b← {0, 1}
c∗ ← Enc(pk∗,mb)

outA ← ADec(sk∗,·)(c∗, state ′, “guess”)

Let k1, . . . , k` be the inputs sent to the Break-Oracle by A. On input ki, the Oracle returns
CRSki ← CRSGen(PP, 1ki) as well as skki ← SKGen(CRSki ,msk) to A.

Return 1 if ki < k for all i, |m0| = |m1|, outA = b, and c∗ has never been sent as input to the
Dec-Oracle. Otherwise, return 0.

Fig. 1: R-IND-CCA experiment for reconfigurable PKE.

4 Constructions

4.1 Reconfigurable Encryption from Indistinguishability Obfuscation

We can build a R-IND-CCA (R-IND-CPA) secure reconfigurable encryption scheme
from any IND-CCA (IND-CPA) secure PKE using indistinguishable obfuscation and
puncturable PRFs. The basic idea is simple: We obfuscate a circuit which on input of
the long-term public or secret key, where the public key is simply the output of a PRG
on input of the secret key, calls the key generator of the PKE scheme using random
coins derived by means of the PRF. It outputs the public key of the PKE scheme if the
input to the circuit was the long-term public key and the secret key if the input was the
long-term secret key.
Ingredients. Let PKECCA = (GenCCA,EncCCA,DecCCA) be an IND-CCA secure en-
cryption scheme. Assuming the first component of the key pair that GenCCA(1`) outputs
is the public key, we define the PPT algorithms PKGenCCA(1

`) := #1(GenCCA(1
`))

and SKGenCCA(1
k) := #2(GenCCA(1

k)) which run GenCCA(1
`) and output only the

public key or the secret key, respectively. By writing GenCCA(1
k; r), PKGenCCA(1k; r),

SKGenCCA(1
k; r) we will denote the act of fixing the randomness used by GenCCA for

key generation to be r, a random bit string of sufficient length. For instance, r could be
of polynomial length p(k), where p equals the runtime complexity of GenCCA. We allow
r to be longer than needed and assume that any additional bits are simply ignored by
GenCCA.3 Furthermore, let PRG : {0, 1}λ → {0, 1}2λ be a pseudo-random generator
and F be a family of puncturable PRFs mapping n(`) := 2` bits to p(`) bits. For i ∈ N

3 Equivalently, we could always apply a truncate function truncp(k) : {0, 1}∗ → {0, 1}p(k)
which outputs the p(k) most significant bits of a given input.
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Setup(1λ)

return PP := (1λ)

MKGen(PP)

x← {0, 1}λ

set mpk := PRG(x), msk := x

return (mpk ,msk)

CRSGen(PP, 1k)

K ← GenF(1
λ+k)

Gen(a, b) :=


PKGenCCA(1

k;FK(pad2k(a))), b = 0 ∧ a ∈ {0, 1}2λ

SKGenCCA(1
k;FK(pad2k(PRG(a)))), b = 1 ∧ a ∈ {0, 1}λ

⊥, else

iOGen← iO(λ+ k,Gen(a, b))

return CRS := (iOGen)

PKGen(CRS ,mpk)

parse iOGen := CRS

return iOGen(mpk , 0)

SKGen(CRS ,msk)

parse iOGen := CRS

return iOGen(msk , 1)

Enc(pk ,m)

return EncCCA(pk ,m)

Dec(sk , c)

return DecCCA(sk , c)

Fig. 2: Our iO-based RPKE scheme RPKEiO

we define padi : {0, 1}∗ → {0, 1}∗ as the function which appends i zeroes to a given
bit string. As a last ingredient, we need an indistinguishability obfuscator iO(`, C) for
a class of circuits of size at most q(`), where q is a suitable polynomial in ` = λ + k
which upper bounds the size of the circuit Gen(a, b) to be defined as part of CRSGen.4

Our scheme. With the ingredients described above our RPKE RPKEiO can be defined
as in Figure 2. Note that the security parameter ` used in the components for deriving
short-term keys from long-term keys, i.e., F and iO, is set to λ + k. That means, it
increases (and the adversarial advantage becomes negligible) with both, the long-term
and the short-term security parameter. (Alternative choices with the same effect like
` = λ

2 + k are also possible.) Since the components which generate and use the short-
term secrets depend on k, the security of the scheme can be increased by raising k. As
a somewhat disturbing side-effect of our choice of `, the domain of F, which is used to
map the long-term public key mpk ∈ {0, 1}2λ to a pseudo-random string to be used by
GenCCA, is actually too large. Hence, we have to embed 2λ-bit strings into 2(λ+ k)-bit
strings by applying pad2k.

Security. R-IND-CCA security of RPKEiO follows from the following Lemma.

4 Note that actually q must be chosen as an upper bound of both Gen and Gen′, where the latter
is defined in the security proof.
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Lemma 1. Let a t ∈ N be given and let t′ denote the maximal runtime of the experiment
Expr-ind-cca

RPKEiO,·(λ, k) involving arbitrary adversaries with runtime t. Then it holds that

CAdvr-ind-cca
RPKEiO

(t, λ, k) ≤ 1
2λ

+ CAdvprgPRG(s1, λ) + CAdvind-cca
PKECCA

(s2, k)

+ CAdvpprfF (s3, λ+ k) + CAdvioiO(s4, λ+ k)
(3)

where t′ ≈ s1 ≈ s2 ≈ s3 ≈ s4.

Proof. The following reduction will be in the non-uniform adversary setting. Consider
an adversary A against RPKEiO for fixed security parameters λ and k who has an
advantage denoted by Advr-ind-cca

RPKEiO,A(λ, k). We will first show that A can be turned into
adversaries

– B against PRG for fixed security parameter λ with advantage AdvprgPRG,Bk(λ),

– C against iO for fixed security parameter λ+ k with advantage AdvioiO,C(λ+ k),

– D against F for fixed security parameter λ+ k with advantage AdvpprfF,D(λ+ k),

– E against PKECCA for fixed security parameter k with advantage Advind-cca
PKECCA,E(k)

such that the advantage Advr-ind-cca
RPKEiO,A(λ, k) is upper bounded by

1

2λ
+ AdvprgPRG,B(λ) + Advind-cca

PKECCA,E(k) + AdvioiO,C(λ+ k) + AdvpprfF,D(λ+ k). (4)

After that, we will argue that from Equation 4 the upper bound on the concrete
advantage stated in Equation 3 from our Lemma follows.

Throughout the reduction proof, let AdvGamei
RPKEiO,A(λ, k) denote the advantage of A

in winning Game i for fixed λ, k.
Game 1 is the real experiment Expr-ind-cca

RPKEiO,A. So we have

Advr-ind-cca
RPKEiO,A(λ, k) = AdvGame1

RPKEiO,A(λ, k). (5)

Game 2 is identical to Game 1 except that a short-term secret key returned by the
Break-Oracle on input k′ < k is computed by executing

SKGenCCA(1
k′ ;FK(pad2k′(mpk)))

instead of calling SKGen(CRSk′ ,msk), where CRSk′ ← CRSGen(PP, 1k′) andK ←
GenF(1

λ+k′) is the corresponding PRF key generated in the scope of CRSGen(PP, 1k′).
Similarly, the challenge secret key sk∗ is computed by the challenger by executing

SKGenCCA(1
k;FK∗(pad2k(mpk))),

and not by calling SKGen(CRS∗,msk), where CRS∗ denotes the challenge CRS and
K∗ the PRF key used in the process of generating CRS∗ by applying CRSGen(PP, 1k).
In this way, msk is not used in the game anymore after mpk = PRG(msk) has been
generated. Obviously, this change cannot be noticed by A and so we have

AdvGame2
RPKEiO,A(λ, k) = AdvGame1

RPKEiO,A(λ, k). (6)
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Game 3 is identical to Game 2 except that the challenge long-term public key is no
longer computed as mpk = PRG(msk) but set to be a random bit string r ← {0, 1}2λ.
Note with the change introduced in Game 2, we achieved that this game only depended
on PRG(msk) but not on msk itself. Hence, we can immediately build an adversary
B against PRG for (fixed) security parameter λ from a distinguisher between Games 1
and 2 with advantage

AdvprgPRG,Bk(λ) =
∣∣∣AdvGame2

RPKEiO,A(λ, k)− AdvGame3
RPKEiO,A(λ, k)

∣∣∣ . (7)

As a consequence, in Game 3 nothing at all is leaked about msk .
The PRG adversary B receives a bit string y ∈ {0, 1}2λ from the PRG challenger

which is either random (as in Game 3) or the output of PRG(x) for x ← {0, 1}λ (as
in Game 2). It computes PP ← Setup(1λ), CRS∗ ← CRSGen(PP, 1k), and sets
mpk := y. Note that due to the changes in Game 2 the key msk (which would be the
unknown x) is not needed to execute the experiment. Then it runs A on input PP and
mpk . A Break-Query is handled as described in Game 2, i.e., sk is computed byB based
on mpk . The challenge short-term key sk∗ is computed in the same way from mpk . In
this way, B can perfectly simulate the Dec-Oracle when it runsA on input CRS∗. When
receiving two messages m0 and m1 from the adversary, B returns c∗ ← Enc(pk∗,mb)
for random b where pk∗ has been generated as usual from mpk . Then B forwards the
final output of A. Clearly, if y was random B perfectly simulated Game 3, otherwise it
simulated Game 2.

To introduce the changes in Game 4, let

K∗{pad2k(mpk)} := PunctureF(K
∗, {pad2k(mpk)})

denote the key K∗ (used in the construction of CRS∗) where we punctured out mpk
(represented as an element of {0, 1}2(λ+k)). This implies that FK∗{pad2k(mpk)}

(a) is no
longer defined for a = pad2k(mpk). Now, we set r := FK∗(pad2k(mpk)) and the
challenge short-term keys pk∗ := PKGenCCA(1

k; r) and sk∗ := SKGenCCA(1
k; r).

Those keys are computed in the experiment immediately after the generation of the
long-term key pair (mpk ,msk). This is equivalent to the way these keys have been
computed in Game 3. Additionally, we replace Gen(a, b) in CRSGen for the challenge
security level k by

Gen′(a, b) :=


pk∗, b = 0 ∧ a = mpk

PKGenCCA(1
k;FK∗{pad2k(mpk)}

(pad2k(a))), b = 0 ∧ a ∈ {0, 1}2λ \ {mpk}
SKGenCCA(1

k;FK∗{pad2k(mpk)}
(pad2k(PRG(a)))), b = 1 ∧ a ∈ {0, 1}λ

⊥, else

CRS∗ will now include the obfuscated circuit iOGen′ ← iO(λ+ k,Gen′(a, b)).
We now verify that the circuits Gen and Gen′ are indeed equivalent (most of the

time). Obviously, it holds that Gen(a, 0) = Gen′(a, 0) for all a ∈ {0, 1}2λ: the precom-
puted value pk∗ results from running PKGenCCA(1

λ+k; FK∗(pad2k(mpk))) which is
exactly what Gen(mpk , 0) would run too. Moreover, we have

FK∗(pad2k(a)) = FK∗{pad2k(mpk)}
(pad2k(a))
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for all a ∈ {0, 1}2λ \ {mpk}. Let us now consider Gen′(a, 1) for a ∈ {0, 1}λ. Remem-
ber that starting with Game 3, mpk is a random element from {0, 1}2λ. That means,
with probability at least 1− 1

2λ
we have that mpk is not in the image of PRG and, thus,

FK∗(pad2k(PRG(a))) = FK∗{pad2k(mpk)}
(pad2k(PRG(a)))

for all a ∈ {0, 1}λ. Hence, with probability 1 − 1
2λ

the circuits Gen and Gen′ are
equivalent for all inputs. So a distinguisher between Game 4 and Game 3 can be turned
into an adversary C against iO for security parameter λ+ k with advantage

AdvioiO,C(λ+ k) ≥
∣∣∣AdvGame3

RPKEiO,A(λ, k)− AdvGame4
RPKEiO,A(λ, k)

∣∣∣− 1

2λ
. (8)

C computes PP ← Setup(1λ) and mpk ← {0, 1}2λ. Then it chooses a PPRF
F : {0, 1}2(λ+k) → {0, 1}p(λ+k) and a corresponding key K∗ ← GenF(1

λ+k). Using
these ingredients it sets up circuits C0 := Gen according to the definition from Game
3 and C1 := Gen′ according to the definition from Game 4. As explained above, with
probability 1 − 1

2λ
these circuits are equivalent for all inputs. CRS∗ is then set as the

output of the iO challenger for security parameter λ + k on input of the circuits C0

and C1.5 sk∗ and pk∗ can either be computed as defined in Game 3 or as in Game 4.
As both ways are equivalent, it does not matter for the reduction. The remaining parts
of Game 3 and Game 4 are identical. In particular, Break-Queries of A can be handled
without knowing msk . The output bit of the third and final execution of A is simply
forwarded by C to the iO challenger.

Game 5 is identical to Game 4 except that the value r is chosen as a truly random
string from {0, 1}p(λ+k) and not set to FK∗(pad2k(mpk)). As besides r, Game 4 did
not depend on K∗ anymore but only on K∗{pad2k(mpk)}, a distinguisher between Game
4 and Game 5 can directly be turned into an adversaryD against the pseudorandomness
of the puncturable PRF family for security parameter λ+ k. Thus, we have

AdvpprfF,D(λ+ k) =
∣∣∣AdvGame4

RPKEiO,A(λ, k)− AdvGame5
RPKEiO,A(λ, k)

∣∣∣ . (9)

D computes PP ← Setup(1λ), mpk ← {0, 1}2λ, and chooses a PPRF
F : {0, 1}2(λ+k) → {0, 1}p(λ+k). Then it sends pad2k(mpk) to its challenger who
chooses a key K∗ ← GenF(1

λ+k) and computes the punctured key K∗{pad2k(mpk)}.
Furthermore, the challenger sets r0 := FK∗(pad2k(mpk)) and r1 ← {0, 1}p(λ+k).
It chooses b ← {0, 1} and sends rb along with K∗{pad2k(mpk)} to D. D sets r := tb,
pk∗ := PKGenCCA(1

k; r) and sk∗ := SKGenCCA(1
k; r). Using the given punctured

key K∗{pad2k(mpk)}, D can also generate CRS∗ as described in Game 4. The rest of
the reduction is straightforward. The output bit of the final execution of A is simply
forwarded by C to its challenger. If b = 0, D perfectly simulates Game 4, otherwise it
simulates Game 5.

Now, observe that in Game 5, the keys pk∗ and sk∗ are generated using GenCCA
with a uniformly chosen random string r on its random tape. In particular, pk∗ and

5 C0 andC1 are assumed to be of the same size, otherwise the smaller one is padded accordingly.
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sk∗ are completely independent of the choice of mpk and msk . After the generation of
these short-term keys, the adversary has access to the Break-Oracle, which, of course,
will also not yield any additional information about them since the output of this oracle
only depends on independent random choices like mpk and the PRF keys K. The re-
maining steps of Game 5 correspond to the regular IND-CCA game for PKECCA except
that the adversary is given the additional input CRS∗, which however only depends
on pk∗, and the independent choices mpk and K∗. So except for pk∗ (which is the
output of PKGen(CRS∗,mpk)), the adversary does not get any additional useful infor-
mation from CRS∗ (which he could not have computed by himself). Hence, it is easy
to construct an IND-CCA adversary E against PKECCA for security parameter k from
A which has the same advantage as A in winning Game 5, i.e.,

Advind-cca
PKECCA,E(k) = AdvGame5

RPKEiO,A(λ, k). (10)

E computes PP ← Setup(1λ) and mpk ← {0, 1}2λ. Break-Queries fromA can be
answered by E only based on mpk (as described in Game 2). Then E receives pk∗ gen-
erated using GenCCA(1

k) from the IND-CCA challenger. To compute CRS∗, E chooses
a PPRF F : {0, 1}2(λ+k) → {0, 1}p(λ+k), the corresponding key K∗ ← GenF(1

λ+k)
and sets the punctured key K∗{pad2k(mpk)}. Using these ingredients, Gen′ can be speci-
fied as in Game 4 and its obfuscation equals CRS∗. When E runs A on input CRS∗,
A’s queries to the Dec-Oracle are forwarded to the IND-CCA challenger. Similarly, the
messagesm0 andm1 thatA outputs are sent to E’s challenger. When E receives c∗ from
its challenger, it runs A on this input, where Dec-Oracle calls are again forwarded, and
outputs the output bit of A.

Putting Equations 5-10 together, we obtain Equation 4.

From Eq. 4 to Eq. 3. Let t denote the runtime of A and t′ the maximal runtime
of the experiment Expr-ind-cca

RPKEiO,·(λ, k) involving an arbitrary adversary with runtime t.
Furthermore, note that the reduction algorithms B, C, D, E are uniform in the sense
that they perform the same operations for any given adversary A of runtime t. Let
s1, s2, s3, and s4 denote the maximal runtime of our PRG, IND-CCA, PPRF, and iO
reduction algorithm, respectively, for an RPKE adversary with runtime t. As all these
reduction algorithms basically execute the R-IND-CCA experiment (including minor
modifications) with the RPKE adversary, we have that t′ ≈ s1 ≈ s2 ≈ s3 ≈ s4. Clearly,
the runtime of our reduction algorithms are upper bounded by the corresponding values
ti and thus it follows

Advr-ind-cca
RPKEiO,A(λ, k) ≤

1
2λ

+ CAdvprgPRG(s1, λ) + CAdvind-cca
PKECCA

(s2(λ, k), k)

+CAdvpprfF (s3(λ, k), λ, k) + CAdvioiO(s4, λ+ k).
(11)

Finally, since the same upper bound (on the right-hand side of Eq. 11) on the ad-
vantage holds for any adversary A with runtime t, this is also an upper bound for
CAdvr-ind-cca

RPKEiO
(t, λ, k).

Theorem 1. Let us assume that for any polynomial s(`), the concrete advantages
CAdvprgPRG(s(`), `), CAdv

io
iO(s(`), `), CAdv

pprf
F (s(`), `) and CAdvind-cca

PKECCA
(s(`), `) are neg-

ligible. Then RPKEiO is R-IND-CCA secure.
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Proof. Let t(λ, k) be a polynomial and let us consider the upper bound on
CAdvr-ind-cca

RPKEiO
(t(λ, k), λ, k) given by Lemma 1. First, note that since RPKE is efficient

there is also a polynomial bound t′(λ, k) on the runtime complexity of the experiment
and thus s1(λ, k), s2(λ, k), s3(λ, k), and s4(λ, k) will be polynomial as t′(λ, k) ≈
s1(λ, k) ≈ s2(λ, k) ≈ s3(λ, k) ≈ s4(λ, k) for all λ, k ∈ N. Furthermore, let
t1(λ, k) := s1(λ, k), t2(λ, k) := s2(λ, k), and t3(λ, k) be a polynomial upper bound on
s3(λ, k) and s4(λ, k). Now, consider the following partition of CAdvr-ind-cca

RPKEiO
(t(λ, k), λ, k)

as demanded in Definition 4: f1(t1(λ, k), λ) := 1
2λ

+ CAdvprgPRG(t1(λ, k), λ),
f2(t2(λ, k), k) := CAdvind-cca

PKECCA
(t2(λ, k), k), and

f3(t3(λ, k), λ, k) := CAdvioiO(t3(λ, k), λ+ k) + CAdvpprfF (t3(λ, k), λ+ k)

Obviously, for all fixed k ∈ N, t1(λ, k) is a polynomial in a single variable, namely
λ, and thus f1(t1(λ, k), λ) is negligible in λ by assumption. Similarly, for all fixed
λ ∈ N, f2(t2(λ, k), k) is negligible in k by assumption. Moreover, for all fixed k ∈ N
and for all fixed λ ∈ N, t3(λ, k) becomes a polynomial in λ and in k, respectively, and
the advantages CAdvioiO(t3(λ, k), λ + k) and CAdvpprfF (t3(λ, k), λ + k) are negligible
in λ and in k by assumption.

Versatility of our iO-based construction. As one can easily see, the iO-based con-
struction of an RPKE we presented above is very modular and generic: there was no
need to modify the standard cryptosystem (the IND-CCA secure PKE) itself to make
it reconfigurable but we just added a component “in front” which fed its key genera-
tor with independently-looking randomness. Thus, the same component may be used
to make other types of cryptosystems reconfigurable in this sense. Immediate appli-
cations would be the construction of an iO-based R-IND-CPA secure RPKE from an
IND-CPA secure PKE or of an R-EUF-CMA secure reconfigurable signature scheme
(cf. Definition 6) from an EUF-CMA secure signature scheme. The construction is also
very flexible in the sense that it allows to switch to a completely different IND-CCA se-
cure PKE (or at least to a more secure algebraic structure for the PKE) on-the-fly when
the short-term security level k gets increased. One may even use the same long-term
keys to generate short-term PKIs for multiple different cryptosystems (e.g., a signa-
ture and an encryption scheme) used in parallel. We leave the security analysis of such
extended approaches as an open problem.

4.2 Reconfigurable Encryption from SCasc

Our second construction of a R-IND-CPA secure reconfigurable encryption scheme
makes less strong assumptions than our construction using iO. Namely, it uses a pairing-
friendly group generator G as introduced in Section 2 and the only assumption is (a
suitable variant of) the SCk-MDDH assumption with respect to G. Our construction is
heavily inspired by Regev’s lattice-based encryption scheme [18] (in its “dual variant”
[13]). However, instead of computing with noisy integers, we perform similar computa-
tions “in the exponent”. (A similar adaptation of lattice-based constructions to a group
setting was already undertaken in [8], although with different constructions and for a
different purpose.)
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A two-parameter variant of the SCk-MDDH assumption. For our purposes, it will
be useful to consider the SCk-MDDH assumption as an assumption in two security
parameters, λ and k. Namely, let

AdvSCG,B(λ, k) := AdvDk-MDDH
G,A (λ)

where Dk = SCk as defined by Equation 2 in Section 2. Note that this also defines the
concrete advantage CAdvSCG (t, λ, k) (generically defined in Section 2).

It is not immediately clear how to define asymptotic security with this two-parameter
advantage function. To do so, we follow the path taken for our reconfigurable security
definition, with λ as a long-term, and k as a short term security parameter: We say that
the SCasc assumption holds relative to G iff CAdvSCG (t, λ, k) can be split up into three
components, as follows. We require that for every polynomial t = t(λ, k), there exist
nonnegatively-valued functions f1 : N2 → R+

0 , f2 : N2 → R+
0 , f3 : N3 → R+

0 and
polynomials t1(λ, k), t2(λ, k), t3(λ, k) such that

CAdvSCG (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

and the following conditions are satisfied for f1, f2, f3:
– For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ
– For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k
– For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ
– For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k.

The interpretation is quite similar to reconfigurable security: we view λ (which deter-
mines, e.g., the group order) as a long-term security parameter. On the other hand, k
determines the concrete computational problem considered in this group, and we thus
view k as a short-term security parameter. (For instance, it is conceivable that an ad-
versary may successfully break one computational problem in a given group, but not
a potentially harder problem. Hence, increasing k may be viewed as increasing the se-
curity of the system.) It is not hard to show that CAdvSCG (t, λ, k) holds in the generic
group model, although, the usual proof technique only allows for a trivial splitting of
the adversarial advantage into the f1, f2 and f3.
Choosing subspace elements. We will face the problem of sampling a vector [~r] ∈
Gk+1 satisfying ~r> · Ax = ~y> for given Ax ∈ Z(k+1)×k

p (of the form of Eq. 2) and
[~y] ∈ Gk. One efficient way to choose a uniform solution [~r] = [(ri)i] is as follows:
choose r1 uniformly, and set [ri+1] = [yi]− x · [ri] for 2 ≤ i ≤ k + 1.
Our scheme RPKESC . Now our encryption scheme has message space GT and is
given by the following algorithms:
Setup(1λ): sample (p,G, g,GT , e)← G(1λ) and return PP := (p,G, g,GT , e).
MKGen(PP): sample x← Zp and return mpk := [x] ∈ G and msk := x.
CRSGen(PP, 1k): sample ~y ← Zkp and return CRS := (1k,PP, [~y>] ∈ Gk).
PKGen(CRS ,mpk): compute [Ax] from mpk = [x], return pk := (CRS , [Ax]).
SKGen(CRS ,msk): compute Ax from msk = x and sample a uniform solution [~r] ∈

Gk+1 of ~r> ·Ax = ~y>, and return sk := (CRS , [~r]).
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Enc(pk ,m): sample ~s ← Zkp , return c = ([~R], [S]T ) = ([Ax · ~s], [~y> · ~s]T · m) ∈
Gk+1 ×GT

Dec(sk , c): return m = [S]T − [~r> · ~R]T ∈ GT .

Correctness and security. Correctness follows from

Dec(sk , c) = [S]T − [~r> · ~R]T =
(
[~y> · ~s]T − [~r> ·Ax · ~s]T

)
·m,

since ~y> = ~r> ·Ax by definition. For security, consider

Lemma 2. Let t ∈ N be given and let t′ denote the maximal runtime of the experiment
Expr-ind-cca

RPKESC ,·(λ, k) involving arbitrary adversaries with runtime t. Then it holds that

CAdvr-ind-cpa
RPKESC

(t, λ, k) ≤ 1

2λ
+ CAdvSCG (s, λ, k) (12)

where t′ ≈ s.

Proof. Similar to the proof of lemma 1, the following reduction will be in the non-
uniform setting, where we consider an adversary A against RPKESC for fixed security
parameters λ and k. We show that A can be turned into an algorithm B solving SCasc
for fixed λ and k with advantage AdvSCG,B(λ, k) such that

Advr-ind-cpa
RPKESC ,A(λ, k) ≤

1

2λ
+ AdvSCG,B(λ, k). (13)

We proceed in games, with Game 1 being the Expr-ind-cpa
RPKESC ,A experiment. Let

AdvGamei
RPKESC ,A(λ, k) denote the advantage of A in Game i. Thus, by definition,

Advr-ind-cca
RPKESC ,A(λ, k) = AdvGame1

RPKESC ,A(λ, k). (14)

In Game 2, we implement the Break(PP,msk , ·) oracle differently forA. Namely,
recall that in Game 1, upon input k′ < k, the Break-Oracle chooses a CRS
CRSk′ = (1k

′
,PP, [~y>] ← Gk

′
), then computes a secret key skk′ = [~r] ∈ Gk

′+1

with ~r>Ax = ~y>, and finally returns CRSk′ and skk′ to A.
Instead, we will now let Break first choose ~r ∈ Zk′+1

p uniformly, and then compute
[~y>] = [~r>Ax] from ~r and set CRSk′ = (1k

′
,PP, [~y>]). This yields exactly the same

distribution for skk′ and CRSk′ , but only requires knowledge about [Ax] (and not Ax).
Hence, we have

AdvGame1
RPKESC ,A(λ, k) = AdvGame2

RPKESC ,A(λ, k). (15)

In Game 3, we prepare the challenge ciphertext c∗ differently for A. As a prereq-
uisite, we let the game also choose CRS∗ like the Break oracle from Game 2 chooses
the CRSk′ . In other words, we set up CRS∗ = [~y>] = [~r∗

>
Ax] for uniformly chosen

~r∗. This way, we can assume that sk∗ = (CRS∗, [~r∗]) is known to the game, even for
an externally given [Ax].

Next, recall that in Game 2, we have first chosen ~s ← Zkp and then computed
c∗ = ([~R], [S]T ) = ([Ax · ~s], [~y> · ~s]T · mb). In Game 3, we still first choose ~s and
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compute [~R] = [Ax · ~s]. However, we then compute [S]T = [~r∗
> · R]T · mb in a

black-box way from [~R], without using ~s again.
These changes are again purely conceptual, and we get

AdvGame2
RPKESC ,A(λ, k) = AdvGame3

RPKESC ,A(λ, k). (16)

Now, in Game 4, we are finally ready to use the SCasc assumption. Specifically,
instead of computing the value [~R] of c∗ as [~R] = [Ax · ~s] for a uniformly chosen
~s ∈ Zkp , we sample [~R] ∈ Gk+1 independently and uniformly. (By our change from
Game 3, then [S]T is computed from [~R] using sk∗.)

Our change hence consists in replacing an element of the form [Ax ·~s] by a random
vector of group elements. Besides, at this point, our game only requires knowledge
of [Ax] (but not of Ax). Hence, a straightforward reduction to the SCasc assumption
yields an adversary B with

AdvSCG,B(λ, k) =
∣∣∣AdvGame4

RPKESC ,A(λ, k)− AdvGame3
RPKESC ,A(λ, k)

∣∣∣ . (17)

Finally, it is left to observe that in Game 4, the challenge ciphertext is (statistically
close to) independently random. Indeed, recall that the challenge ciphertext is chosen
as c∗ = ([~R], [S]T ) for uniform ~R ∈ Zk+1

p , and [S]T = [~r∗
> · R]T · mb. Suppose

now that ~R does not lie in the image of Ax. (That is, ~R cannot be explained as a
combination of columns of Ax.) Then, for random ~r, the values ~r∗

>
Ax and ~r∗

> ·R are
independently random. In particular, even given [Ax] and CRS∗, the value [~r∗

> · R]T
looks independently random to A.

Hence, A’s view is independent of the encrypted message mb (at least when con-
ditioned on ~R not being in the image of Ax). On the other hand, since ~R is uniformly
random in Game 4, it lies in the image of Ax only with probability 1/p. Thus, we get

AdvGame4
RPKESC ,A(λ, k) ≤

1

p
. (18)

Putting Eq. 14-18 together (and using that p ≥ 2λ), we obtain Equation 13.
From Eq. 13 to Eq. 12. Let t denote the runtime of A and t′ the maximal runtime
of the experiment Expr-ind-cca

RPKESC ,·(λ, k) involving an arbitrary adversary with runtime t.
Note that the reduction algorithm B is uniform in the sense that it performs the same
operations for any given adversary A of runtime t. Let s denote the maximal runtime
of our SCasc algorithm for an RPKE adversary with runtime t. As the SCasc algorithm
basically executes the R-IND-CCA experiment (including minor modifications) with
the RPKE adversary, we have that t′ ≈ s. Clearly, the runtime of B is upper bounded
by s and thus it follows

Advr-ind-cca
RPKESC ,A(λ, k) ≤

1

2λ
+ CAdvSCG (s, λ, k). (19)

Finally, since the same upper bound (on the right-hand side of Eq. 19) on the ad-
vantage holds for any adversary A with runtime t, this is also an upper bound for
CAdvr-ind-cca

RPKESC
(t, λ, k).
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Theorem 2. If the two-parameter variant of the SCasc assumption holds, then RPKESC
is R-IND-CPA secure.

Proof. Let t(λ, k) be a polynomial. Since RPKESC is efficient, t′(λ, k) will be polyno-
mial and so s(λ, k). As s(λ, k) is polynomial, according to the SCasc assumption there
exist functions g1, g2, and g3 as well as polynomials s1(λ, k), s2(λ, k), and s3(λ, k)
such that

CAdvSCG (s(λ, k), λ, k) ≤ g1(s1(λ, k), λ) + g2(s2(λ, k), k) + g3(s3(λ, k), λ, k).

Now consider the following partition of CAdvr-ind-cca
RPKESC

(t(λ, k), λ, k): f1(s1(λ, k), λ) :=
1
2λ

+ g1(s1(λ, k), λ, k), f2(s2(λ, k), k) := g2(s2(λ, k), λ, k), and f3(s3(λ, k), λ, k) =
g3(s3(λ, k), λ, k). The properties demanded for f1, f2, f3 by Def. 4 immediately follow
from the SCasc assumption.

5 Reconfigurable Signatures

The concept of reconfiguration is not restricted to encryption schemes. In this section,
we consider the case of reconfigurable signatures. We start with some preliminaries,
define reconfigurable signatures and a security experiment (both in line with the en-
cryption case) and finally give a construction.

5.1 Preliminaries

Signature schemes. A signature scheme SIG with message spaceM consists of three
PPT algorithms Setup,Gen,Sig,Ver. Setup(1λ) outputs public parameters PP for the
scheme. Key generation Gen(PP) outputs a verification key vk and a signing key sk .
The signing algorithm Sig(sk ,m) takes the signing key and a message m ∈ M, and
outputs a signature σ. Verification Ver(vk , σ,m) takes the verification key, a signature
and a message m and outputs 1 or ⊥. For correctness, we require that for all m ∈ M
and all (vk , sk)← Gen(1k) we have Ver(sk ,Sig(sk ,m),m) = 1.
EUF-CMA security. The EUF-CMA-advantage of an adversary A on SIG is defined
by Adveuf-cma

SIG,A (λ) := Pr[Expeuf-cma
SIG,A (λ) = 1] for the experiment Expeuf-cma

SIG,A described
below. In Expeuf-cma

SIG,A , first,PP ← Setup(1λ) and (pk , sk)← Gen(PP) is sampled. The
we run A on input pk , where A also has access to a signature oracle. The experiment
returns 1 if for A’s output (σ∗,m∗) it holds that Ver(pk, σ∗,m∗) = 1 and m∗ was not
sent to the signature oracle. A signature scheme SIG is called EUF-CMA-secure if for
all PPT algorithms A the advantage Adveuf-cma

SIG,A (λ) is negligible.
Non-interactive proof systems. A non-interactive proof system for a language L con-
sists of three PPT algorithms (CRSGen,Prove,Ver). CRSGen(L) gets as input informa-
tion about the language and outputs a common reference string (CRS). Prove(CRS , x, w)
with statement x and witness w outputs a proof π, and Ver(CRS , π, x) outputs 1 if π is
a valid proof for x ∈ L, and ⊥ otherwise. The proof system is complete if Ver always
accepts proofs if x is contained in L, and it is perfectly sound if Ver always rejects
proofs if x is not in L.
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Witness indistinguishability (WI). Suppose a statement x ∈ L has more than one
witness. A proof of membership can be generated using any of the witnesses. If a proof
π ← Prove(CRS , x, w) information theoretically hides the choice of the witness, it is
called perfectly witness indistinguishable.

Groth-Sahai (GS) proofs. In [15], Groth and Sahai introduced efficient non-interactive
proof systems in pairing-friendly groups. We will only give a high level overview of the
properties that are needed for our reconfigurable signature scheme and refer to the full
version [15] for the details of their construction.

In GS proof systems, the algorithm CRSGen takes as input a pairing-friendly group
G := (p,G, g,GT , e) and outputs a CRS suitable for proving satisfiability of various
types of equations in these groups. Furthermore, CRSGen has two different modes of
operation, producing a CRS that leads to either perfectly witness indistinguishable or
perfectly sound proofs. The two types of CRS can be shown to be computationally in-
distinguishable under different security assumptions such as subgroup decision, SXDH
and 2-Linear.

In both modes, CRSGen additionally outputs a trapdoor. In the WI mode, this trap-
door can be used to produce proofs of false statements6. In the sound mode, the trapdoor
can be used to extract the witness from the proof. To easily distinguish the two operating
modes, we equip CRSGen with an additional parameter mode ∈ {wi,sound}.

Statements provable with GS proofs have to be formulated in terms of satisfiability
of equations in pairing-friendly groups. For example, it is possible to prove the state-
ment X := ”∃s ∈ Zn : [s]1 = S” for an element S ∈ G1. A witness for this statement
is a value s satisfying the equation [s] = S, i.e., the DL of S to the basis g1. Fur-
thermore, GS proofs are nestable and thus admit proving statements about proofs, e.g.,
Y := ”∃π : Ver(CRS , π,X ) = 1”.

5.2 Definitions

Similar to the case of RPKE, we can define reconfigurable signatures.

Definition 5. A reconfigurable signature (RSIG) scheme RSIG consists of algorithms
Setup, MKGen, CRSGen, PKGen, SKGen, Sig and Ver. The first five algorithms are
defined as in Definition 3. Sig and Ver are the signature generation and verification
algorithms and are defined as in a regular signature scheme. RSIG is called correct
if for all λ, k ∈ N, PP ← Setup(1λ), (mpk ,msk) ← MKGen(PP), CRS ←
CRSGen(PP, 1k), messages m ∈ M, sk ← SKGen(CRS ,msk) and
pk ← PKGen(CRS ,mpk) we have that Ver(pk ,Sig(sk ,m),m) = 1.

We define R-EUF-CMA security for an RSIG scheme RSIG analogously to R-IND-
CCA security for RPKE, where the security experiment Expr-euf-cma

RSIG,A (λ,k) is defined in
Figure 3.

6 Actually, the original paper only describes a method for generating proofs for specific false
statements. Arbitrary statements can be proven at the cost of slightly larger proofs and CRSs,
using known methods that apply to WI proofs [14].
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Experiment Expr-euf-cma
RSIG,A (λ,k)

PP ← Setup(1λ)

(mpk ,msk)← MKGen(PP)
state ← ABreak(PP,msk,·)(1λ, 1k,PP,mpk , “learn”)

CRS∗ ← CRSGen(PP, 1k)
sk∗ ← SKGen(CRS∗,msk)

pk∗ ← PKGen(CRS∗,mpk)

(m∗, σ∗)← ASig(sk∗,·)(CRS∗, state)

Let k1, . . . , k` be the inputs sent to the Break-Oracle by A. On input ki, the Break-Oracle
returns CRSki ← CRSGen(PP, 1ki) as well as skki ← SKGen(CRSki ,msk) to A. Return
1 if ki < k for all i, Ver(pk∗, σ∗,m∗) = 1, and m∗ was not an input to the Sig-Oracle.
Otherwise, return 0.

Fig. 3: R-EUF-CMA experiment for a reconfigurable signature scheme RSIG.

Definition 6. Let RSIG be an RSIG scheme according to Definition 5. Then we define
the advantage of an adversary A as

Advr-euf-cma
RSIG,A (λ, k) := Pr[Expr-euf-cma

RSIG,A (λ, k) = 1]

where Expr-euf-cma
RSIG,A (λ, k) is the experiment given in Figure 3. The concrete advantage

CAdvr-euf-cma
RSIG (t, λ, k) of adversaries against RSIG with time complexity t follows canon-

ically (cf. Section 2).
An RSIG scheme RSIG is then called R-EUF-CMA secure if for all polynomials

t(λ, k), there exist positive functions f1 : N2 → R+
0 , f2 : N2 → R+

0 , and f3 : N3 →
R+

0 as well as polynomials t1(λ, k), t2(λ, k), and t3(λ, k) such that

CAdvr-euf-cma
RSIG (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

for all λ, k, and the following conditions are satisfied for f1, f2, f3:
– For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ
– For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k
– For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ
– For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k

5.3 Reconfigurable Signatures from Groth-Sahai Proofs

The intuition behind our scheme is as follows. Each user of the system has a long-term
key pair, consisting of a public instance of a hard problem and a private solution of this
instance. A valid signature is a proof of knowledge of either knowledge of the long-
term secret key or a valid signature of the message under another signature scheme.
The proof system and signature scheme for generating the proofs of knowledge are
published, e.g. using a CRS. We are now able to reconfigure the scheme by updating
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the CRS with a new proof system and a new signature scheme. This way, old short-
term secret keys of a user (i.e., valid proofs of knowledge of the user’s long-term secret
key under deprecated proof systems) become useless and can thus be leaked to the
adversary.

Our reconfigurable signature scheme RSIG has message space M = {0, 1}m. It
makes use of a symmetric pairing-friendly group generator G, a family of GS proof
systems PS := {PSk := (CRSGenPSk ,ProvePSk ,VerPSk)}k∈N for proving equations
in the groups generated by G(1λ) and a family of EUF-CMA-secure signature schemes
SIG := {SIGk := (SetupSIGk ,GenSIGk ,SigSIGk ,VerSIGk)}k∈N with message spaceM,
where SetupSIGk(1

λ) outputs G with G ← G(1λ) for all k ∈ N (i.e., each SIGk can be
instantiated using the same symmetric pairing-friendly groups G).
Two-parameter families of GS proofs and EUF-CMA-secure signatures. Let us
view PS as a family of GS proof systems and SIG a family of EUF-CMA-secure sig-
nature schemes defined in two security parameters λ and k. Such families may be con-
structed based on the (two parameters variant) of the SCasc assumption or other matrix
assumptions. Consequently, we consider a security experiment where the adversary re-
ceives two security parameters and has advantage Advind-crs

PS,A (λ, k) and Adveuf-cma
SIG,B (λ, k),

respectively. Note that this also defines the concrete advantages CAdvind-crs
PS (t, λ, k)

and CAdveuf-cma
SIG (t, λ, k) (as generically defined in Section 2). We define asymptotic

security for these families following the approach taken for our reconfigurable secu-
rity definition. That means, we call PS (SIG) secure if for every polynomial t(λ, k)
the advantage CAdvind-crs

PS (t(λ, k), λ, k) (CAdveuf-cma
SIG (t(λ, k), λ, k)) can be split up into

nonnegatively-valued functions f1 : N2 → R+
0 , f2 : N2 → R+

0 , f3 : N3 → R+
0

such that for some polynomials t1(λ, k), t2(λ, k), t3(λ, k) the sum f1(t1(λ, k), λ) +
f2(t2(λ, k), k) + f3(t3(λ, k), λ, k) is an upper bound on the advantage. Furthermore,
the following conditions need to be satisfied for f1, f2, f3:

– For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ
– For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k
– For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ
– For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k.

Correctness of RSIG, in terms of Definition 5, directly follows from the complete-
ness of the underlying proof system.

Lemma 3. Let a t ∈ N be given and let t′ denote the maximal runtime of the experiment
Expr-euf-cma

RSIG,· (λ, k) involving arbitrary adversaries with runtime t. Then it holds that

CAdvr-euf-cma
RSIG (t, λ, k) ≤ 2·CAdvind-crs

PS (s1, λ, k)+CAdvcdh
G (s2, λ)+CAdveuf-cma

SIG (s3, λ, k)
(20)

where t′ ≈ s1 ≈ s2 ≈ s3.

Theorem 3. Let us assume that PS is a secure two-parameter family of Groth-Sahai
proof systems, SIG a secure two-parameter family of EUF-CMA secure signature schemes
and the CDH assumption holds with respect to G. Then RSIG is R-EUF-CMA secure.

We omit the proof of Theorem 3 as it is analogous to the proof of Lemma 2. In the
remainder of this section, we sketch a proof for Lemma 3.
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Setup(1λ)

(p,G, g,GT , e)← G(1λ)
return PP := (p,G, g,GT , e)

MKGen(PP)
parse PP := (p,G, g,GT , e)

x, y ← Zn
return mpk := ([x], [y]), msk := [xy]

CRSGen(PP, 1k)
(CRSPSk , tdk)← CRSGenPSk (wi,PP)

(s̃kk, ṽkk)← GenSIGk (PP)

return CRSk := (CRSPSk , ṽkk,PP, k)

SKGen(CRSk,msk)

parse CRSk as (CRSPSk , ṽkk,PP, k)
set X := ”∃z : e(mpk1,mpk2) = e(z, [1])”

πk ← ProvePSk (CRSPSk ,X ,msk)

return skk := (CRSk, πk)

PKGen(CRSk,mpk)

return pkk := (CRSk,mpk)

Sig(m, skk)

parse skk as (CRSk, πk) and CRSk as
(CRSPSk , ṽkk,PP, k)
set Yk := ”∃(πk, Σk) :
VerPSk (CRSPSk , πk,X ) = 1 ∨
VerSIGk (ṽkk, Σk,m) = 1”

πm ← ProvePSk (CRSPSk ,Yk, skk)
return σ := (πm,Yk)

Ver(pkk, σ,m)

parse pkk as (CRSk,mpk) and CRSk as
(CRSPSk , ṽkk,PP, k)
parse σ := (πm,Yk)
verify that Yk contains m and X and X con-
tains mpk

return VerPSk (CRSPSk , πm,Yk)

Fig. 4: Our reconfigurable signature scheme

Proof sketch: We use a hybrid argument to prove our theorem. Starting with the R-EUF-
CMA security game, we end up with a game in which the adversary has no chance of
winning. It follows that Advr-euf-cma

RSIG,A (λ, k) is smaller than the sum of advantages of
adversaries distinguishing between all subsequent intermediate games. Throughout the
proof, AdvGiA (λ, k) denotes the winning probability of A when running in game i.

Game 0: This is the original security game Expr-euf-cma
RSIG,A . Note that the signature oracle

of A is implemented using skk and thus, implicitly, msk as a witness. We have that
Advr-euf-cma

RSIG,A (λ, k) = AdvG0
A (λ, k)

Game 1: Here we modify the implementation of the signature oracle by letting the ex-
periment use the formerly unused signing key of the signature scheme SIGk. More for-
mally, let state denote the output of ABreak(PP,mpk , “learn”). While running
(CRS∗, ṽk

∗
,PP, k) ← CRSGen(PP, 1k), the experiment learns s̃k

∗
, the signing key

corresponding to ṽk
∗
. We now let the experiment answerA’s oracle queries Sigk(sk

∗,m)

for m ∈ M with signatures ProvePSk(CRS
∗,Y∗, τ), where τ ← SigSIGk(s̃k

∗
,m) and

Y∗ := ”∃(π∗, Σ∗) : VerPSk(CRS
∗, π∗,X ) = 1 ∨ VerSIGk(ṽk

∗
, Σ∗,m) = 1”.
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Since the proofs generated by PSk are perfectly WI, the A’s view in game 0 and
game 1 is exactly the same and thus we have AdvG1

A (λ, k) = AdvG0
A (λ, k)

Game 2: In this game, we want to switch the CRS for which A forges a message from
witness indistinguishable to sound mode. For this, the experiment runs (CRSPSk , tdk)←
CRSGenPSk(sound,PP) and (s̃k

∗
, ṽk
∗
) ← GenSIGk(PP) and sets

CRS∗ := (CRSPSk , ṽk
∗
,PP, k).

Claim. For every λ,k and A, there is an adversary B with T(A) ≈ T(B) and
Advind-crs

PS,B (λ, k) :=
∣∣ 1
2 − Pr [B(CRSPSk)→ mode]

∣∣ = ∣∣∣AdvG1
A (λ,k)−AdvG2

A (λ,k)
2

∣∣∣, where
(CRSPSk , tdk)← CRSGenPSk(mode,PP) and mode ∈ {wi,sound}.

Proof. Note that A’s view in game 1 and 2 is exactly the same until he sees CRS∗. We
construct B as follows. B gets CRSPSk and then plays game 1 with A until A outputs
state . Now B sets CRS∗ := (CRSPSk , ṽk

∗
,PP, k) and proceeds the game. Note that

this is possible since B does not make use of a trapdoor for CRSPSk . B finally outputs
wi if A wins the game. If A loses, B outputs sound.

We now analyze the advantage of B in guessing the CRS mode. For this, note that if
mode = wi, thenA’s view is as in game 1, and if mode = sound, thenA’s view is as
in game 2. LetXi denote the event thatAwins game i, and thus AdvGiA (λ, k) = Pr [Xi].
We have that

Pr [Bwins] = Pr [B wins |mode = wi] + Pr [B wins |mode = sound]

=
1

2

2∑
i=1

(Pr [B wins |Xi] + Pr [B wins |¬Xi])

=
1

2
(1 · AdvG1

A (λ, k) + 0 · (1− AdvG1
A (λ, k)) + 0 · AdvG2

A (λ, k) + 1− AdvG2
A (λ, k)

=
1

2
(AdvG1

A (λ, k) + 1− AdvG2
A (λ, k)) =

1

2
+

AdvG1
A (λ, k)− AdvG2

A (λ, k)

2

⇒
∣∣∣∣Pr [Bwins]− 1

2

∣∣∣∣ =
∣∣∣∣∣AdvG1

A (λ, k)− AdvG2
A (λ, k)

2

∣∣∣∣∣
Game 3: Now, the experiment no longer uses knowledge of msk to produce an-
swers skk ← SKGen(CRSPSk ,msk) to Break-queries. Instead, we let the experi-
ment use the trapdoor of the CRS to generate the proofs. This can be done since
the experiment always answers Break-oracle queries by running (CRSPSk , tdk) ←
CRSGenPSk(wi,PP) and, since in wi mode, tdk can be used to simulate a proof skk
without actually using msk . Moreover, the proofs are perfectly indistinguishable from
the proofs in Game 2 and thus A’s view in Games 2 and 3 are identical and we have
AdvG3

A (λ, k) = AdvG2
A (λ, k)

Game 4: We modify the winning conditions of the experiment: A loses if sk∗, i.e., a
solution to a CDH instance, can be extracted from the forgery.
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Claim. For every λ and k, and every adversary A, there exists an adversary C with
T(A) ≈ T(C) and

Advcdh
G,C(λ) := Pr [C(G, [x], [y]) = [xy]] ≥

∣∣∣AdvG3
A (λ, k)− AdvG4

A (λ, k)
∣∣∣ (21)

where G← G(1λ) and the probability is over the random coins of G and C.

Proof. First note that A’s view is identical in both games, since we only modified the
winning condition. Let E denote the event that sk∗ can be extracted from the forgery
produced by A. Let X3, X4 denote the random variables describing the output of the
experiment in Game 3 and Game 4, respectively. From the definition of the winning
conditions of both games it follows that

Pr [X3 = 1|¬E] = Pr [X4 = 1|¬E] =⇒ |Pr [X3 = 1]− Pr [X4 = 1]| ≤ Pr [E]

≤ Pr [C(G,mpk) = msk ]

where the first inequality follows from the difference lemma [22] and the latter holds
because, since msk is not needed to run the experiment, C can run A and, since E
happened, extract the CDH solution from the forgery.

Game 5: We again modify the winning conditions ofA by:A loses the game if a valid
signature under SIGk can be extracted from the forgery.

Claim. For every λ and k, and every adversaryA, there exists aD with T(A) ≈ T(D)
and

Adveuf-cma
SIGk,D (λ) := Pr

[
Expeuf-cma

SIGk,D (λ) = 1
]
≥ AdvG4

A (λ, k)− AdvG5
A (λ, k) (22)

Proof. The proof proceeds similar to the proof of the last claim. Note that the signature
oracle provided by the EUF-CMA experiment can be used to answer A’s queries to the
oracle Sigk(sk

∗, ·).

Now let us determine the chances of A in winning game 5. If A does not know any
of the two witnesses, it follows from the perfect soundness of CRS∗ that A can not
output a valid proof and therefore never wins game 5. Collecting advantages over all
games concludes our proof sketch of Theorem 3.

Instantiation based on SCasc Towards an instantiation of our scheme, we need to
choose a concrete family PSk of NIWI proof systems and a family SIGk of EUF-CMA
signature schemes. We seek an interesting instantiation where reconfiguration of the
PKI using a higher value of k (i.e., publishing a new CRS) leads to a system with
increased security.

For this purpose, PSk and SIGk should be based on a family of assumptions that
(presumably) become weaker as k grows such as the Dk-MDDH assumption families
from [11]. The k-SCasc assumption family seen in Section 2 is one interesting member
of this class.

27



In the uniform adversary setting, [11, 16] shows that any Dk-MDDH assumption
family is enough to obtain a family of GS proof system PSk := (CRSGenPSk ,ProvePSk ,
VerPSk) with computationally indistinguishable CRS modes. More formally, one can
show for any k that if Dk-MDDH holds w.r.t. G, then for all PPT adversaries A, the
advantage Advind-crs

PSk,A(λ) := |Pr [A(CRSPSk) = mode] − 1
2 | is negligible in λ, where

CRSPSk ← CRSGenPSk(G) and G ← G(1λ). If we base the construction in [11,
16] on the two-parameter variant of SCasc as defined in Section 4.2 (or of any other
Dk-MDDH assumption, which can be defined in a straightforward manner), we obtain
a family of GS proof systems as required by our RSIG scheme.

Very recently, the concept of affine MACs was introduced in [5]. Basing their con-
struction on the Naor-Reingold PRF, whose security follows from any Dk-MDDH as-
sumption, we can now construct a family of signature schemes SIGk, where for each k
we have that SIGk is is EUF-CMA secure under Dk-MDDH using the well-known fact
that every PR-ID-CPA-secure IBE system implies an EUF-CMA-secure signature sys-
tem.7 Furthermore, we claim that using the same construction we can obtain a family of
signature schemes as required by using the two-parameter variant of SCasc (or of any
other Dk-MDDH assumption) as the underlying assumption.
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