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Abstract

In a selective opening attack (SOA) on an encryption scheme, the adversary is given a collection of
ciphertexts and she selectively chooses to see some subset of them “opened”, meaning that the messages
and the encryption randomness are revealed to her. A scheme is SOA secure if the data contained in
the unopened ciphertexts remains hidden. A fundamental question is whether every CPA secure scheme
is necessarily also SOA secure. The work of Bellare et al. (EUROCRYPT ’12) gives a partial negative
answer by showing that some CPA secure schemes do not satisfy a simulation-based definition of SOA
security called SIM-SOA. However, until now, it remained possible that every CPA-secure scheme satisfies
an indistinguishability-based definition of SOA security called IND-SOA.

In this work, we resolve the above question in the negative and construct a highly contrived encryption
scheme which is CPA (and even CCA) secure but is not IND-SOA secure. In fact, it is broken in a very
obvious sense by a selective opening attack as follows. A random value is secret-shared via Shamir’s
scheme so that any t out of n shares reveal no information about the shared value. The n shares are
individually encrypted under a common public key and the n resulting ciphertexts are given to the
adversary who selectively chooses to see t of the ciphertexts opened. Counter-intuitively, by the specific
properties of our encryption scheme, this suffices for the adversary to completely recover the shared value.
Our contrived scheme relies on strong assumptions: public-coin differing inputs obfuscation and a certain
type of correlation intractable hash functions.

We also extend our negative result to the setting of SOA attacks with key opening (IND-SOA-K) where
the adversary is given a collection of ciphertexts under different public keys and selectively chooses to see
some subset of the secret keys.
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1 Introduction

When it comes to defining the security of encryption schemes, the standard definitions of chosen-plaintext
attack (CPA) and chosen-ciphertext attack (CCA) security are generally thought of as the gold standard.
Nevertheless, there are scenarios in which these notions do not appear to provide sufficient guarantees. One
such scenario is that of selective opening attacks (SOA) [11, 4].

Selective Opening Attacks. In a selective opening attack, the adversary gets a collection of n ciphertexts
(ci = Encpk (mi; ri))i∈[n] encrypting messages mi with randomness ri under a common public key pk . The
adversary can adaptively choose to see some subset I ⊆ [n] of the ciphertexts “opened”, meaning that she
gets (mi, ri)i∈I . For example, this could model a scenario where these ciphertexts are created by different
senders and the adversary adaptively corrupts some subset of them. Intuitively, a scheme is SOA secure if
the data contained in the unopened ciphertexts remains hidden. Formalizing this notion requires great care,
and several definitions have been proposed.

Simulation-Based SOA Security. Perhaps the strongest notion of SOA security is a simulation-based
definition, which we denote SIM-SOA. It was originally proposed for commitments by Dwork et al. [11] and
later adapted to encryption by Bellare et al. [4]. This definition requires that for any n-tuple of messages
m = (m1, . . . ,mn) the view of the adversary in the above SOA scenario is indistinguishable from a simulated
view created as follows: the simulator selects a message subset I, obtains (mi)i∈I , and is then supposed to
output a view of a selective opening attack with ciphertexts, random coins, and an adversary as above. At
when constructing the simulator in a black-box fashion out of a given adversary, this means that the simulator
must initially creates a collection of simulated ciphertexts c = (c1, . . . , cn) without knowing anything about
the messages. The adversary then gets c and specifies a subset I ⊆ [n] of the ciphertexts to be opened. At
this point, the simulator learns the messages (mi)i∈I and has to produce simulated openings (mi, ri)i∈I to
give to the adversary.

On the positive side, this definition is easy to use in applications and clearly captures the intuitive goal
of SOA security, since the adversary’s view can be simulated without using any knowledge of the unopened
messages. Moreover, we have constructions that achieve SIM-SOA security from a wide variety of number
theoretic assumptions [4, 12, 18, 19, 21, 14].

On the negative side, this definition might be overkill in many applications and therefore also unneces-
sarily hard to achieve. The work of Bellare et al. [3] shows that many natural encryption schemes are not
SIM-SOA secure, in the sense that there is no efficient simulator that would satisfy the given definition. The
lack of a simulator already constitutes an attack on SIM-SOA security in the formal sense. However, these
schemes are also not “obviously broken” by a selective opening attack in the intuitive sense. In particular,
it is not clear how to, e.g., extract an unopened plaintext in a selective opening attack. At the very least,
it remains unclear what exactly can go wrong when using such schemes in the context of the SOA scenario
described above.

Indistinguishability-Based SOA Security. The work of Bellare et al. [4] also proposes an indistin-
guishability-based security definition, which we denote IND-SOA. The definition requires that we have an
“efficiently re-samplable” distribution on n-tuples of messages m = (m1, . . . ,mn) such that for any set
I ⊆ [n] we can efficiently sample from the correct conditional distribution with a fixed choice of (mi)i∈I .
For any such distribution we consider the SOA scenario where the adversary initially gets encryptions of
the messages m = (m1, . . . ,mn) chosen from the distribution, and selectively gets to see an opening of a
subset I of the ciphertext. At the end of the game the adversary either gets the initially encrypted message
vector m or a freshly re-sampled message vector m′ = (m′1, . . . ,m

′
n) conditioned on m′i = mi matching in

the opened positions i ∈ I. The adversary should not be able to distinguish these two cases.
On the negative side, the definition of IND-SOA security is more complex and its implications are harder

to interpret. However, it can already provide sufficient security guarantees in many interesting applications
and might be significantly easier to achieve than SIM-SOA security. Prior to this work, we did not know
whether it is the case that every CPA secure encryption scheme is also IND-SOA secure. The work of
Hofheinz and Rupp [20] shows that, if one considers a definition that combines IND-SOA security with CCA
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security, denoted by IND-SO-CCA, then there are schemes that are CCA secure but are not IND-SO-CCA
secure. However, this result crucially relies on the embedding of an attack in the decryption oracle, and does
not appear to extend to the standard IND-SOA. In fact, the same work of [20] gave a partial positive result
showing that CPA security implies IND-SOA security for a large class of encryption schemes in a generic
group model, but it was unclear what the situation is in the standard model.

More related work. The relations between different definitions of SOA security have also been investi-
gated by Böhl et al. [6]. It turns out that the notion of IND-SOA security we consider is the weakest known
notion of SOA security among the ones studied (and that the “efficient resamplability” condition is essential
for this property). Hazay et al. [17] recently studied SOA for keys (where the adversary receives secret
keys of corresponding chosen subset of ciphertexts) and showed that the indistinguishability-based security
is strictly weaker than the simulation-based counterpart. Furthermore, there exist several efficient construc-
tions of IND-SOA secure encryption schemes that are not known to be SIM-SOA secure. Most prominently,
every lossy encryption scheme is IND-SOA secure [4], which opens the door for efficient IND-SOA secure
schemes from various computational assumptions [28, 27, 26]. In that sense, the notion of IND-SOA we
consider is very attractive from a practical point of view. In an orthogonal direction, Fuchsbauer et al. [13],
recently showed that standard security implies IND-SOA for certain specific graph-induced distributions; it
is interesting to note that, while we used dependencies of messages to show our negative result, [13] used
the lack of dependencies to show a positive result.

Secret Sharing: A Concrete SOA Scenario. At this point, an intuitive definition of SOA security
might appear elusive, with strong definitions like SIM-SOA that could be overkill and weaker definitions like
IND-SOA that are hard to interpret. Instead of trying to pin down a general notion of SOA security, we will
focus on defining a concrete and easy to understand security goal, which any reasonable definition of SOA
security should satisfy. We call this goal secret-sharing selective-opening attack (SecShare-SOA) security,
and define it via the following game.

The challenger chooses a random polynomial F of degree ≤ t and sets mi = F (i) for i ∈ [n]. We can
think of this as a Shamir secret sharing of a random value F (0) where any t of the n shares preserve privacy.
The adversary is given encryptions of the shares (ci = Encpk (mi; ri))i∈[n] and can selectively choose to get
openings (mi, ri)i∈I for a subset I of the ciphertexts where |I| = t. The adversary should not be able to
predict F (0).

It is easy to show that SecShare-SOA security is implied by IND-SOA (and therefore also SIM-SOA)
security. At first thought, it may seem that SecShare-SOA security should also follow from standard CPA
security. However, upon some reflection, it becomes clear that natural reductions fail. In particular, there is
no easy way to embed the challenge ciphertext c∗ into a correctly distributed vector (ci)i∈[n] while maintaining
the ability to provide openings for a large subset of the ciphertexts.

Our Results. In this work, we construct a contrived encryption scheme which is CPA (and even CCA)
secure, but is not SecShare-SOA secure (and therefore also not IND-SOA secure). In particular, we have
an attack against the SecShare-SOA security of the scheme where the attacker always recovers the shared
secret with probability 1. This is the first example of a CPA secure scheme which is obviously broken in the
SOA setting. As a corollary, this shows that not every CPA secure scheme is IND-SOA secure.

We also extend our results to selective opening attacks on receiver keys (IND-SOA-K), also known as
selective opening under receiver corruption. In this setting, the adversary is given a collection of ciphertexts
under different public keys and he can selectively chose to see some subset of the secret keys. We give an
analogous example of a scheme which is CCA secure but is not IND-SOA-K secure.

Our results rely on strong assumptions: public-coin differing inputs obfuscation [23] and a certain type
of correlation-intractable hash functions [8].

1.1 Our Techniques

We construct a scheme which is CCA secure but for which there is an attack on the SecShare-SOA security.
For concreteness, we will show an attack on the SecShare-SOA game using a secret sharing scheme with
parameters t = k (degree of polynomial) and n = 3k (number of shares) where k is the security parameter.
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An SOA Helper Oracle. As our starting point, we consider the construction of Hofheinz and Rupp [20]
which gives a CCA secure scheme that is not IND-SO-CCA secure. Their construction starts with any CCA
secure scheme and, as an implicit first step, defines a (stateful and interactive) “SOA helper oracle” that has
knowledge of the secret key sk of the scheme. The way that the oracle is defined ensures that the scheme
remains CCA secure but is not SecShare-SOA secure relative to this oracle. They then show how to embed
this oracle into the decryption procedure of the scheme to get a scheme which is not IND-SO-CCA secure.

The SOA helper oracle gets as input ciphertexts (ci)i∈[3k] and it randomly chooses a subset I ⊂ [3k] of
size |I| = k of them to open. It then receives the openings (mi, ri)i∈I and decrypts the remaining ciphertexts
using knowledge of sk . It checks that there is a (unique) degree ≤ k polynomial F such that F (i) = mi for
> 2k of the indices i ∈ [3k] and that this polynomial also satisfies F (i) = mi for all of the indices i ∈ I. If
so, it outputs F (0) and else ⊥.

It is easy to see that this oracle breaks SecShare-SOA security. The harder part is showing that the
scheme remains CPA/CCA secure relative to the oracle. In particular, we want to show that this oracle
will not help the adversary decrypt some challenge ciphertext c∗. We do so by defining an “innocuous SOA
helper oracle” that functions the same way as the real SOA helper oracle but it never decrypts c∗. Instead,
it just pretends that the decryption of c∗ is ⊥. The only time that innocuous SOA helper and the real
SOA helper give a different answer is when the ciphertexts (ci)i∈[3k] encrypt messages (mi) such that there
is a unique degree ≤ k polynomial F with F (i) = mi for exactly 2k + 1 of the indices i ∈ [3k], and this
polynomial satisfies F (i) = mi for all i ∈ I. Only in this case, there is a possibility that the SOA helper
correctly outputs F while the innocuous SOA helper outputs ⊥ when the decryption of c∗ is replaced by ⊥.
However, since the set I ⊆ [3k] of size |I| = k is chosen randomly and independently of (ci), the probability
that it is fully contained in the set of 2k + 1 indices for which F (i) = mi is negligible. Therefore, the SOA
helper and the innocuous SOA helper give the same answer with all but negligible probability, meaning that
the former cannot break CCA security.

Obfuscating the SOA Helper. Our main idea is that, instead of embedding the SOA helper in the
secret-key decryption procedure, we obfuscate the SOA helper and include the obfuscated code in the public
key of the scheme. (We note that a similar technique of “obfuscating a helper oracle that aids an attacker”
has been used in the key-dependent message setting [24, 25].) There are two main difficulties that we must
take care of.

The first difficulty is that the SOA helper is stateful/interactive whereas we can only obfuscate a stateless
program. We squash the interactive helper into a non-interactive one by choosing the set of indices I ⊆
[3k], |I| = k via a hash function h applied to the ciphertexts (ci)i∈[3k]. One can think of this as an analogue
of the Fiat-Shamir heuristic which is used to squash a 3 move Σ-protocol into a non-interactive argument.
(We stress, however, that we do not rely on random oracles, as in the Fiat-Shamir heuristic. Instead, we
use a suitable standard-model hash function.) The squashed SOA helper now expects to get the ciphertexts
(ci)i∈[3k] and the opening (mi, ri)i∈I where I = h((ci)i∈[3k]) in one shot. Previously, we used the fact that
the set I is random to argue that the SOA helper and the innocuous SOA helper are indistinguishable. We
now instead rely on correlation intractability [8] of the hash function h to argue that it is hard to find an
input on which the two oracles would give a different answer (even given the entire code and secrets of the
oracles).

The second difficulty is how to use reasonable notions of obfuscation to argue that the obfuscated SOA
helper, which contains the decryption key inside it, does not break CPA/CCA security. We rely on public-
coin differing inputs obfuscation (PdiO) [23]. This security notion says that, given two programs represented
as circuits C,C ′, together with all the random coins used to sample them, if it is hard to find an input x
such that C(x) 6= C ′(x) then the obfuscations of C and C ′ are indistinguishable. We can rely on public-coin
differing-inputs obfuscation and the correlation intractability of h to replace the obfuscated SOA oracle with
an obfuscated “innocuous SOA oracle” that never decrypts the challenge ciphertext c∗. However, even the
latter oracle still has the secret key sk hard-coded and therefore it is not clear if an obfuscated version of the
innocuous oracle remains innocuous. To solve this problem, we will need the underlying CCA encryption
scheme to be “puncturable” meaning that we can create a punctured secret key sk [c∗] which correctly
decrypts all ciphertexts other than c∗ but preserves the semantic security of c∗. Such encryption schemes
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were constructed in the work of [9] from indistinguishability obfuscation. With this approach we can argue
that security of the challenge ciphertext c∗ is preserved.

Discussion on our Assumptions. We recall that two of the main assumptions behind our results are
public-coin differing inputs obfuscation and correlation-intractable hash functions.

The notion of public-coin differing inputs obfuscation (PdiO) is stronger than indistinguishability ob-
fuscation (iO) but weaker than differing-inputs obfuscation (diO )[1]. There is some evidence that diO is
unachievable in its full generality [16, 5], but no such evidence exists for PdiO. Indeed, at present we do
not have much more evidence for the existence of iO than we do for PdiO. We note that if PdiO exists,
then by the “best-possible” nature of iO, any iO obfuscator (with sufficient padding) is already also a PdiO
obfuscator as well. All that said, we view it as an intriguing open problem to base our results on iO rather
than PdiO.

The correlation intractability assumption that we need is in a parameter regime with no known counter-
examples and has been conjectured to be achievable. As evidence, a recent work [7] constructs such
correlation-intractable hash functions under obfuscation-based assumptions. However, the description of
the hash functions is not public-coin samplable, whereas we need a hash function that is. We simply con-
jecture that standard hash function constructions such as SHA-3 achieve this property. We note that the
notion of correlation intractability that we need is also a special case of entropy-preserving hashing [2, 10]
which is sufficient to guarantee the soundness of the Fiat-Shamir heuristic for all proof (but not argument)
systems and has been conjectured to exist.

On this note, an interesting direction for future work is to re-establish the results based on weaker
assumptions.

2 Preliminaries

General Notation. For n ∈ N we define [n] := {1, . . . , n}. Throughout the paper, k ∈ N denotes the
security parameter. For any function g(·), we let g(k) = negl(k) denote that g(·) is a negligible function.
For any two distributions D0,D1 parameterized by k, we denote that they are computationally (resp.,
statistically) indistinguishable by D0 ≈c D1 (resp., D0 ≈s D1); we denote that they are identical by D0 ≡ D1.

Interpolation, Error Decoding. Let F be the finite field. For pairwise different Xi ∈ F we let
ipol((Xi, Yi)i∈[k+1]) denote the unique degree ≤ k polynomial F ∈ F[X] with F (Xi) = Yi for all i ∈ [k + 1].
We note that ipol can be efficiently computed, e.g., via Lagrange interpolation. Also, let decck((Xi, Yi)i∈[n])
denote the the unique degree ≤ k polynomial F ∈ F[X] such that F (Xi) = Yi for > n − (n − k)/2 of the
indices i ∈ [n], or ⊥ if no such polynomial exists. Evaluating decc amounts to performing error correction for
the Reed-Solomon code with distance d = (n−k) when there are < d/2 errors, which can be done efficiently.
Let SS` denote the set of all `-sized subsets of S.

PKE schemes. A public-key encryption (PKE) scheme PKE with message space M (parameterized by
the security parameter k) consists of three PPT algorithms Gen,Enc,Dec. Key generation Gen(1k) outputs
a public key pk and a secret key sk . Encryption Enc(pk ,m) takes pk and a message m ∈M, and outputs a
ciphertext c. Decryption Dec(sk , c) takes sk and a ciphertext c, and outputs a message m. For correctness,
we want Dec(sk , c) = m for all m ∈M, all (pk , sk)← Gen(1k), and all c← Enc(pk ,m).

CCA Security. We recall the standard definition of IND-CCA security from the literature.

Definition 2.1 (IND-CCA security.). We say that a scheme PKE is IND-CCA secure if for all PPT attackers
A the advantage

Advind-ccaPKE,A(k) :=

∣∣∣∣Pr
[
Expind-ccaPKE,A(k) = 1

]
− 1

2

∣∣∣∣
is negligible in the security parameter k, where the experiment Expind-ccaPKE,A is defined in Figure 1, and Decc∗(sk , ·)
is an oracle that outputs Dec(sk , c) for every input c 6= c∗ and ⊥ for input c∗.
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Experiment Expind-ccaPKE,A

b← {0, 1}
(pk , sk)← Gen(1k)

(m0,m1)← ADec(sk ,·)(pk)

c∗ ← Enc(pk ,mb)

outA ← ADecc∗ (sk ,·)(c∗)

return 1 if outA = b, and 0 otherwise

Experiment Expind-soaPKE,A

b← {0, 1}
(pk , sk)← Gen(1k)

msampD(·)← A(pk)

m0 := (mi)i∈[n] ← msampD()

R := (Ri)i∈[n] ← (REnc)
n

c := (ci)i∈[n] := (Enc(pk ,mi;Ri))i∈[n]

I ← A(pk , c)

m1 ← msampD(mI)

outA ← A((Ri)i∈I ,mb)

return 1 if outA = b, and 0 otherwise

Figure 1: IND-CCA and IND-SOA experiments.

IND-SOA Security. We now recall the definition of indistinguishability-based SOA security from [4].
By default, we will consider the weakest variant where the adversary specifies an efficiently re-samplable
distribution.

Definition 2.2 (Efficiently re-samplable). Let n = n(k) > 0, and let D be a joint distribution over Mn.
We say that D is efficiently re-samplable if there is a PPT algorithm msampD such that for any I ⊆ [n] and
any partial vector m′I := (m′i)i∈I ∈ M|I|, msampD(m′I) samples from D | m′I , i.e., from the distribution
m← D, conditioned on mi = m′i for all i ∈ I. Note that in particular, msampD() samples from D.

Definition 2.3 (IND-SOA Security). For a PKE scheme PKE = (Gen,Enc,Dec), a polynomially bounded
function n = n(k) > 0, and a stateful PPT adversary A, consider the experiment in Figure 1. We only allow
A that always output re-sampling algorithms as in Definition 2.2. We call PKE IND-SOA secure if for all
polynomials n and all PPT A, we have

Advind-soaPKE,A(k) :=

∣∣∣∣Pr
[
Expind-soaPKE,A(k) = 1

]
− 1

2

∣∣∣∣ = negl(k).

Public-Coin Differing-Inputs Obfuscation. In this paper, we require a strengthening [22, 23] of the
notion of indistinguishability obfuscation [1, 15].

We shall first define the notion of a public-coin differing-inputs sampler.

Definition 2.4 (Public-Coin Differing-Inputs Sampler). A (circuit) sampling algorithm csamp is an algo-
rithm that takes as input random coins r ∈ {0, 1}`(k) for a suitable polynomial ` = `(k), and outputs the
description of two circuits C0 and C1. We call csamp a public-coin differing-inputs sampler for the parame-
terized collection of circuits C = {Ck} if the output of csamp is distributed over Ck × Ck, and for every PPT
adversary A, we have

Pr
r

[C0(x) 6= C1(x) : (C0, C1)← csamp(1k; r), x← A(1k, r)] = negl(k).

Observe that the sampler and the attacker both receive the same random coins as input. Therefore, csamp
cannot keep any “secret” from A. We now define the notion of a public-coin differing-inputs obfuscator.

Definition 2.5 (Public-Coin Differing-Inputs Obfuscator). A uniform PPT algorithm PdiO is a public-coin
differing-inputs obfuscator for the parameterized collection of circuits C = {Ck} if the following requirements
hold:

Correctness: ∀k, ∀C ∈ Ck, ∀x, it is Pr[C ′(x) = C(x) : C ′ ← PdiO(1k, C)] = 1.
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Security: for every public-coin differing-inputs sampler csamp for the collection C, every PPT (distinguish-
ing) algorithm D, we have

AdvpdioPdiO,D := ∣∣Pr[D(1k, r, C ′) = 1 : (C0, C1)← csamp(1k; r), C ′ ← PdiO(1k, C0)]−
Pr[D(1k, r, C ′) = 1 : (C0, C1)← csamp(1k; r), C ′ ← PdiO(1k, C1)]

∣∣
= negl(k)

Correlation-intractable hash functions. We begin by reviewing the definition of correlation-intractable
hash function from [8].

Definition 2.6 (Hash Function Ensembles). A family of functions H = {hs : Dk → Rk}k∈N,s∈{0,1}`(k) with
domain Dk, range Rk, and seed length `(k) is said to be an efficient hash function ensemble, if there exists
a PPT algorithm that given x ∈ Dk and s, outputs hs(x).

In the sequel, we shall simply denote this computation by hs(x). Furthermore, we shall often call s the
description or the seed of the function hs.

Definition 2.7 (Binary Relations). A class of efficient binary relations consists of REL = {Relr ⊆
(Dk, Rk)}k∈N,r∈{0,1}`′(k), where membership in Relr is testable in polynomial time given r.

The relation REL is said to be evasive if for any r ∈ {0, 1}`′(k), x ∈ Dk we have:

Pr
y←Rk

[(x, y) ∈ Relr] = negl(k).

Definition 2.8 (Correlation Intractability). Assume an efficient hash function ensemble H = {hs : Dk →
Rk}k∈N,s∈{0,1}`(k). Furthermore, let REL = {Relr ⊆ (Dk, Rk)}k∈N,r∈{0,1}`′(k) be a class of efficient binary
relations. We say that H is correlation intractable with respect to REL if for every PPT A,

Pr
s←{0,1}`(k),r←{0,1}`′(k)

[(x, hs(x)) ∈ Relr : x← A(s, r)] = negl(k)

The work of [8] showed that no hash function ensemble is correlation-intracta- ble with respect to all
evasive binary relations REL. However, for any fixed domains/ranges Dk, Rk it is plausible that there is a
correlation-intractable hash function H for all evasive relations over Dk, Rk as long as the seed length `(k)
of the hash function is made sufficiently large relative to Dk, Rk. This would be sufficient for our needs. For
concreteness, we define a specific class of relations REL for which we need correlation intractability.

Definition 2.9 (Special Class of Evasive Binary Relations). Let PKE = (Gen,Enc,Dec) be a PKE scheme
with plaintext space F (a field), ciphertext space C (parametrized by the security parameter k), and which
uses `′(k) bits of randomness in key-generation. We define a special class of binary relations RELPKE =

{Relr ⊆ (C3k,S [3k]k )}k∈N,r∈{0,1}`′(k), as follows.

• To determine if ((ci)i∈[3k], I) ∈ Relr: Let (pk, sk) = Gen(1k; r), mi = Dec(sk , ci), F = decck((i,mi)i∈[3k])
and Q = {i ∈ [3k] : F (i) = mi}. The tuple is in the relation if F 6= ⊥, |Q| = 2k + 1 and I ⊆ Q.

Intuitively, the above says that a tuple ((ci)i∈[3k], I) ∈ Relr if the decrypted messages (mi)i∈[3k] agree
with the evaluations of a degree ≤ k polynomial F in exactly 2k + 1 positions and the set I only contains
these positions. It is easy to see that this is an evasive relation as shown below (following [20, Lemma 3.3]).

Lemma 2.10. The relation RELPKE is evasive. In particular, for any r ∈ {0, 1}`′(k) any (ci)i∈[3k] ∈ C3k we
have PrI←S[3k]k

[
((ci)i∈[3k], I) ∈ Relr

]
= negl(k).
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Proof. Let (pk, sk) = Gen(1k; r), mi = Dec(sk , ci), F = decck((i,mi)i∈[3k]) and Q = {i ∈ [3k] : F (i) = mi}.
If F = ⊥ or |Q| 6= 2k + 1 then the probability in the lemma is 0. Otherwise

Pr
I←S[3k]k

[
((ci)i∈[3k], I) ∈ Relr

]
= Pr
I←S[3k]k

[I ⊆ Q] =

(
2k+1
k

)(
3k
k

) ≤ (5

6

)k

for all k ≥ 2, which proves the lemma.

Special Correlation-intractable Hash Functions. Let RELPKE be a special class of binary relations
for PKE scheme PKE, like in Definition 2.9. We define special correlation-intractable hash functions H =

{hs : C3k → S [3k]k }k∈N,s∈{0,1}`(k) as a function ensemble that is correlation intractable with respect to the

relation RELPKE. We reiterate that this is a special case of correlation intractability with respect to all
evasive relations, which is conjectured to be possible as long as the seed length `(k) of the hash function is
made sufficiently large relative to the domain/range. In our case, we allow `(k) to be an arbitrarily large
polynomial.

2.1 Puncturable encryption schemes

We will rely on the notion of puncturable encryption from [9]. Let PKE = (Gen,Enc,Dec,Puncture) be a
tuple of PPT algorithms. PKE is said to be a puncturable encryption scheme, if the following holds.

Syntax. (Gen,Enc,Dec) is a PKE scheme with message spaceM = {Mk}k∈N and ciphertext space C = {Ck}
which are efficiently sampleable.

Correctness For all m ∈M it holds that Pr[Dec(sk , c) = m : (pk , sk)← Gen(1k), c← Enc(pk ,m)] = 1.

Puncturability. ∀ (pk , sk) in the support of Gen(1k), ∀ c0, c1 ∈ C, ∀ sk [{c0, c1}] in the support of Puncture(sk ,
{c0, c1}), and ∀ c /∈ {c0, c1}, it holds that: Dec(sk [{c0, c1}], c) = Dec(sk , c).

Security. For every PPT adversary A,

Advpunc-ind-ccaPKE,A (k) :=

∣∣∣∣Pr
[
Exppunc-ind-ccaPKE,A (k) = 1

]
− 1

2

∣∣∣∣ = negl(k)

where the experiment Exppunc-ind-ccaPKE,A (k) is defined in Figure 2.

Ciphertext sparseness. ∀ (pk , sk) we have

Pr [Dec(sk , c) 6= ⊥] = negl(k),

where the probability is over c← Cpk .

Note that the puncturing algorithm Puncture takes as input a set of two ciphertexts, so that the distri-
bution of Puncture(sk , {c0, c1}) is identical to that of Puncture(sk , {c1, c0}).

3 Secret-sharing Selective Opening Attack (SecShare-SOA)

We now define a special case of IND-SOA security that we call SecShare-SOA. It corresponds to the case
where the encrypted values are shares in a t-out-of-n secret sharing scheme.

Secret-sharing Message Distribution. Let F be a field of cardinality p. We consider a distribution D
which chooses a polynomial in F ∈ F[X] of degree at most t and sets the messages to be mi = F (i) for
i ∈ [n]. We let t and n be two polynomials in the security parameter, such that t < n ≤ p. More formally,

DF,t,n =
{

(F (1), . . . , F (n))
∣∣F ∈ F[X] uniformly chosen degree-≤ t polynomial

}
7



Experiment Expsecsh-soaPKE,A

(pk , sk)← Gen(1k)

m := (mi)i∈[n] ← DF,t,n
R := (Ri)i∈[n] ← (REnc)

n

c := (ci)i∈[n] := (Enc(pk ,mi;Ri))i∈[n]

I ← A(pk , c), where, I ∈ [n] and |I| = t

outA ← A((mi, Ri)i∈I)

return 1 if outA = F (0), and 0 otherwise

Experiment Exppunc-ind-ccaPKE,A

b← {0, 1}
m∗ ← A(1k)

(pk , sk)← Gen(1k)

c0 ← Enc(pk ,m∗)

c1 ← Cpk
sk [{c0, c1}]← Puncture(sk , {c0, c1})
outA ← A(pk , cb, c1−b, sk [{c0, c1}])
return 1 if outA = b, and 0 otherwise

Figure 2: SecShare-SOA and Punc-IND-CCA experiments.

Note that there exists an efficient re-sampling algorithm msamp for the above distribution. In particular,
for any I, msamp can randomly extend its input (F (i))i∈I to t+ 1 evaluation points as necessary and then
use polynomial interpolation to retrieve F and thus all F (i).

Note that, conditioned on any choice of F (i) for i ∈ I where |I| ≤ t, the value F (0) is uniformly random.

Definition 3.1 (SecShare-SOA Security). Let F be a field of size determined by the security parameter and
let PKE = (Gen,Enc,Dec) be a PKE scheme, with message space M = F. For any polynomials parameters
t = t(k), n = n(k) such that t < n ≤ |F|, consider the experiment in Figure 2 with a stateful PPT adversary
A. We say that PKE secret-sharing selective opening attack secure if

Advsecsh-soaPKE,A (k) :=

∣∣∣∣Pr
[
Expsecsh-soaPKE,A (k) = 1

]
− 1

|F|

∣∣∣∣
is negligible for all PPT A.

3.1 IND-SOA implies SecShare-SOA

Theorem 3.2. If a PKE scheme PKE is IND-SOA secure, then it is SecShare-SOA secure.

Proof. Let PKE be a PKE scheme with message space M = F which is a field. Suppose there exists an
adversary A that breaks the SecShare-SOA security of PKE with probability ε = Advsecsh-soaPKE,A (k). Then we
construct an adversary B that, given access to A, breaks the IND-SOA security of PKE. We describe the
adversary below.
Adversary B. By using A, B interacts with its challenger in the IND-SOA game as follows. Upon receiving
a public key pk , B presents the secret-sharing message distribution D to its challenger. To recall,

DF,t,n =
{

(F (1), . . . , F (n))
∣∣F ∈ F[X] uniformly chosen degree-≤ t polynomial

}
for some t < n. Upon receiving a tuple of ciphertexts c := (ci)i∈[n], B forwards (pk , c) to A. Upon receiving
I from A, B forwards it to the challenger. Recall that I ∈ [n] and |I| = t. Upon receiving a message vector
m and the openings (Ri)i∈I of (ci)i∈I to (mi)i∈I , B proceeds as follows. It computes F = ipol((i,mi)i∈[n]).
Thereafter, it forwards the messages and openings just for i ∈ I; namely, (mi, Ri)i∈I . Let outA be the value
output by A. B compares whether outA = F (0). If so, then it outputs 0, else it outputs 1.
Analysis. We shall now analyze the success probability of B in the IND-SOA game. Intuitively, B succeeds
in the IND-SOA game whenever the A succeeds in the SSSOA game except when the resampling results in
the same message vector as the original plaintext message. More formally, we have:
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Pr
[
Expind-soaPKE,B(k) = 1|b = 0

]
= Pr

[
Expsecsh-soaPKE,A (k) = 1

]
Pr
[
Expind-soaPKE,B(k) = 1|b = 1

]
=

(
1− 1

|F|

)
Thus, ∣∣∣∣Pr

[
Expind-soaPKE,B(k) = 1

]
− 1

2

∣∣∣∣ =

∣∣∣∣12
(

Pr
[
Expsecsh-soaPKE,A (k) = 1

]
+

(
1− 1

|F|

))
− 1

2

∣∣∣∣
=

1

2

∣∣∣∣Pr
[
Expsecsh-soaPKE,A (k) = 1

]
− 1

|F|

∣∣∣∣ =
ε

2

which is non-negligible by assumption.

4 CCA Secure, SOA Insecure Encryption

In this section, we describe a PKE scheme that is IND-CCA secure, but not IND-SOA secure.

4.1 The scheme

Let PKE′ = (Gen′,Enc′,Dec′,Puncture′) be a puncturable encryption scheme with message space F for some

field of size |F| ≥ 3k and |F| = O(k) and with ciphertext space C. Let H = {hs : C3k → S [3k]k }k∈N,s∈{0,1}`(k)

be a special correlation-intractable hash function ensemble with respect to RELPKE′ and with seed length
`(k). Let PdiO be a public-coin differing-inputs obfuscator.

We construct a scheme PKE = (Gen,Enc,Dec) as follows.

- Gen(1k) : Run (pk ′, sk ′) ← Gen′(1k). Sample s ← {0, 1}`(k) as a seed of the hash function hs ∈ H.
Then construct the program SOA-Helper in Figure 3. Set secret key sk = sk ′ and public key pk =
(pk ′, s,PdiO(SOA-Helper)).

- Enc(pk ,m) : Parse pk = (pk ′, s,PdiO(SOA-Helper)). Output Enc′(pk ′,m).

- Dec(sk , c) : Output Dec′(sk ′, c).

SOA-Helper

Constants: sk ′, seed s.
Input: Z = ((c′i)i∈[3k], (mi, Ri)i∈I).

1. If there are indices i 6= j with c′i = c′j , then return ⊥.

2. Set I := hs((c
′
i)i∈[3k]). If there is an i ∈ I with Enc′(pk ′,mi;Ri) 6= c′i, then return ⊥.

3. Decrypt mi = Dec′(sk ′, c′i) for i ∈ [3k] \ I.

4. Let F = decck((i,mi)i∈[3k]). If F = ⊥ or F (i) 6= mi for some i ∈ I then return ⊥ else return F .

Figure 3: Program SOA-Helper
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4.2 PKE is not SecShare-SOA secure

We now formally show that PKE allows for a simple SecShare-SOA attack.

Theorem 4.1. The PKE scheme PKE from Section 4.1 is not SecShare-SOA secure.

Proof. We construct a PPT algorithm A that breaks the SecShare-SOA security of PKE with non-negligible
probability.
Adversary A: Upon receiving a public key pk = (pk ′, s,PdiO(SOA-Helper)) and a tuple of ciphertexts
c := (ci)i∈[3k], A computes I = hs((ci)i∈[3k]). This I is the subset that A submits to its SecShare-SOA
experiment. By the security of PKE′, we may assume that c′i 6= c′j for all i 6= j, except with some negligible
probability ν(k) (otherwise, an adversary on PKE′ could simply encrypt a challenge message and hope for a
collision).

Upon receiving openings (mi, Ri)i∈I , A runs the program PdiO(SOA-Helper) on input ((ci)i∈[3k], (mi, Ri)i∈I).
By construction of the program, the output is a polynomial F with mi = F (i) for all i ∈ [3k]. Thus, the
adversary can finally compute F (0) and give it to the challenger.
Analysis: The analysis is pretty straight-forward, as, by design, the output of the program is exactly what
the adversary needs to break the SecShare-SOA security. Thus, we have that,

Advsecsh-soaPKE,A (k) = 1− 1

|F|
− ν(k),

which is non-negligible by assumption about ν(k).

4.3 PKE is still IND-CCA secure

We show that PKE inherits PKE′’s IND-CCA security.

Theorem 4.2. Suppose that PKE′ is puncturably IND-CCA secure, H is a special correlation-intractable
hash function ensemble with respect to RELPKE′, and PdiO be a secure public-coin differing-inputs obfuscator.
Then, the PKE scheme PKE from Section 4.1 is IND-CCA secure.

Proof. Recall that our scheme has polynomial-size message space. We consider a variation to the IND-CCA
game where the challenger himself chooses the pair of challenge messages. We call this modified game the
$-IND-CCA game (defined formally in Definition A.1). The IND-CCA game and the $-IND-CCA game are
polynomially equivalent (as proved in Theorem A.2) for polynomially-sized message spaces. Thus, it suffices
to show here that our PKE scheme is $-IND-CCA secure.

Assume for contradiction that there exists an adversary A that breaks the $-IND-CCA security of PKE
with some non-negligible advantage ε. We shall arrive at a contradiction through a sequence of hybrid
arguments defined below. Let us denote the event that a hybrid Hybi outputs 1 by Hybi → 1. The first
hybrid corresponds to the original $-IND-CCA security game.

• Hyb0 : In the first hybrid the following game is played.

– Sample b← {0, 1}.
– Sample m0,m1 ←M
– Sample s← {0, 1}`(k).
– Run (pk ′, sk ′)← Gen′(1k). Let sk = sk ′.

– c∗ ← Enc(pk ,mb)

– Construct the program SOA-Helper in Figure 3 and obfuscate it to get PdiO(SOA-Helper).

– Let pk = (pk ′, s,PdiO(SOA-Helper)).

– Give pk ,m0,m1, c
∗ to the adversary, and offer the adversary access to a decryption oracle Decc∗(sk , ·).
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– Finally, let b′ be the output of A. Output 1 if b′ = b and 0 otherwise.

We note here that Exp$-ind-ccaPKE,A (k) ≡ Hyb0.

• Hyb1 : This hybrid is the same as Hyb0 with the exception of the following modifications. Just before
generating the program SOA-Helper, sample cr ← C. Compute sk [{c∗, cr}] ← Puncture(sk , {c∗, cr}).
We then make the following modifications in Step 3 of the program obfuscated, and denote the resulting
program by SOA-Helper2:

3. Decrypt mi = Dec′(sk [{c∗, cr}, c′i) for i ∈ [3k] \ I and for c′i 6∈ {c∗, cr}.
Use mb and ⊥ as the plaintext values when c′i = c∗ and c′i = cr, resp.

Furthermore, we now use the punctured key sk [{c∗, cr}] to answer A’s decryption queries, and we
output ⊥ on inputs c∗, cr.

Claim 4.3. Hyb1 ≈c Hyb0.

Proof. We observe that the input/output functionality of the program has not changed with overwhelming
probability (over the choice of cr), thanks to the puncturability and ciphertext sparseness properties of PKE′.
Furthermore, there is also no change in the functionality of the decryption oracle. Thus, by relying on the
indistinguishability obfuscation security (which follows from public-coin differing inputs security) of PdiO ,
we have Hyb1 ≈c Hyb0.

• Hyb2 : This hybrid is the same as Hyb1 with the exception of the following modifications in Step 3 of
the program obfuscated. Denote the resulting program by Program SOA-Helper2.

3. Decrypt mi = Dec′(sk [{c∗, cr}, c′i) for i ∈ [3k] \ I and for c′i 6∈ {c∗, cr}.
Use ⊥ and ⊥ as the plaintext values when c′i = c∗ and c′i = cr, respectively.

Claim 4.4. Hyb2 ≈c Hyb1.

Proof. We employ the public-coins differing-inputs obfuscation security of PdiO and the special correlation
intractability of H to prove this claim. More specifically, consider an algorithm csamp(1k) that generates
two circuits SOA-Helper1 and SOA-Helper2.

We first show that csamp is a public-coin differing-inputs sampler, by employing the special correla-
tion intractability of H. Recall the special class of binary relations RELPKE′ = {Relr}k∈N,r∈{0,1}`′(k) from
Definition 2.9.

Let Z = ((c′i)i∈[3k], (mi, RI)i∈I) be an input to the two programs. We will now argue that the only
time that SOA-Helper1(Z) 6= SOA-Helper2(Z) is if ((c′i)i∈[3k], I) ∈ Relr where r is the randomness of the
key-generation procedure used to create (pk ′, sk ′) and I = hs((c

′
i)i∈[3k]).

In order to do so, let m′i = Decsk ′(c
′
i) for i ∈ [3k] \ I. Now if m′i 6= mi for some i ∈ I then both programs

output ⊥ since the check in line 2 will fail (by correctness of decryption). Let F1 = decck((i,m′i)i∈[3k]) and
let F2 = decck((i,m′′i )i∈[3k]) where m′′i = m′i unless c′i = c∗ and i 6∈ I in which case m′′i = ⊥. These are the
two polynomials that are used in line 3 of the execution of SOA-Helper1(Z), SOA-Helper2(Z) respectively.
Let Q = {i : F1(i) = m′i}. If F1 = F2 then both programs have the same output. The only case where this
does not happen is if F1 6= ⊥, |Q| = 2k + 1 and F2 = ⊥. Moreover, even in this case both programs output
⊥ unless it is the case that I ⊆ Q. Therefore, the only case where the two programs might produce differing
outputs is if F1 6= ⊥, |Q| = 2k+ 1 and I ⊆ Q. This means that ((ci)i∈[3k], I) ∈ Relr where I = hs((ci)i∈[3k]).

By the special correlation intractability property of H such inputs Z such that SOA-Helper1(Z) 6=
SOA-Helper2(Z) are computationally hard to find, even given all of the random coins used to generate
the two programs, including the hash-seed s and the randomness r used to generate (pk ′, sk ′). In other
words this shows that algorithm csamp that generates two circuits SOA-Helper1 and SOA-Helper2 defines a
public-coin differing-inputs family. We can therefore rely on the public-coin differing-input security of PdiO
to see that Hyb2 and Hyb1 are indistinguishable.
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• Hyb3 : This hybrid is the same as Hyb2 with the following exception. Instead of giving c∗ to the
adversary, give cr to the adversary as a challenge.

Claim 4.5. Hyb3 ≈c Hyb2.

Proof. Assume that for an adversary A, Pr[Hyb2 → 1] and Pr[Hyb3 → 1] differ by a non-negligible amount
ε. Then we shall construct an adversary B that breaks the puncturability of PKE′ with probability ε. B
behaves the same as the challenger in Hyb2 and interacts with A except for the following modifications. It
first samples b,m0,m1, and gives mb to its challenger. Upon receiving two ciphertexts cb̂, c1−b̂, proceed by
giving cb̂ to A as the challenge ciphertext. Finally, output the output of the experiment.

Observe that if b̂ = 0, then we are in Hyb2. Else, we are in Hyb3. Thus,

Advpunc-ind-cca
PKE′,B

(k) ≥ ε

• Hyb4 : This hybrid is the same as Hyb3 with the exception of the following modifications in Step 3 of
the program obfuscated. Denote the resulting program by Program SOA-Helper4.

3. Decrypt mi = Dec′(sk [{c∗, cr}, c′i) for i ∈ [3k] \ I and for c′i 6∈ {c∗, cr}.
Use mb and ⊥ as the plaintext values when c′i = c∗ and c′i = cr, respectively.

Claim 4.6. Hyb4 ≈c Hyb3.

Proof. The modification introduced in Hyb4 is similar to the modification introduced in Hyb2 earlier. Hence,
the proof here follows on the same lines as the proof of Claim 4.4.

• Hyb5 : This hybrid is the same as Hyb4 with the following exception. In the obfuscated program,
instead of hardcoding the punctured secret key, we shall hardcode again the original secret key.

Claim 4.7. Hyb5 ≈c Hyb4.

Proof. Note that the input/output functionalities of the programs have not changed as we moved from Hyb4
to Hyb5. By applying the indistinguishability obfuscation security of PdiO, we have that Hyb5 ≈c Hyb4.

Finally, note that in Hyb5, the adversary’s view does not depend on the challenge bit b anymore: neither
the obfuscated circuit SOA-Helper nor the challenge ciphertext cr depend on b. We get that Hyb5 outputs 1
with probability exactly 1/2. The theorem follows.

5 Extension to Selective Opening of Keys (SOA-K)

We now show how to extend our main result to selective opening of keys (SOA-K), where the adversary
gets ciphertexts under many different public keys and can selectively request to see some of the secret keys.
This corresponds to a setting where there are multiple receivers and the adversary can corrupt some subset
of them and get their keys (rather than the previous setting where there were multiple senders and the
adversary could corrupt some subset of them and get their encryption randomness).

For this notion, we will consider PKE schemes where the public/secret key pairs are generated dependent
on some common public parameters. More specifically, in addition to the triple of algorithms (Gen,Enc,Dec),
we introduce an algorithm PGen that takes the security parameter and outputs some public parameters
params← PGen(1k). All the other algorithms take params as an additional input. We show how to construct
such PKE schemes which are CCA secure but are IND-SOA-K insecure. We leave it as an open problem to
construct such examples in the setting without public parameters.
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SOA-K has been considered before [3, 17]; while [3] only treated the the simulation-based definition, [17]
treated the indistinguishability-based definition that we will also consider in this work.

Definition 5.1 (IND-SOA-K Security). For a PKE scheme PKE = (PGen,Gen,Enc,Dec), a polynomially
bounded function n = n(k) > 0, and a stateful PPT adversary A, consider the experiment in Figure 4. We
only allow A that always output re-sampling algorithms as in Definition 2.2. We call PKE IND-SOA-K (for
“indistinguishable under selective-opening key attacks”) secure if for all PPT A, we have

Advind-soa-kPKE,A (k) :=

∣∣∣∣Pr
[
Expind-soa-kPKE,A (k) = 1

]
− 1

2

∣∣∣∣ = negl(k).

Secret Sharing SOA-K Security. We now define the dual of SecShare-SOA-K security for key corruption.
The only difference from the SecShare-SOA-K security security is that each secret share is encrypted with an
independently sampled public key (instead of one public key being used to encrypt all shares), and corruption
would reveal the corresponding secret keys (instead of the random coins used to generate the ciphertexts).
Details follow.

Definition 5.2 (SecShare-SOA-K Security). Let F be a field of size determined by the security parameter and
let PKE = (PGen,Gen,Enc,Dec) be a PKE scheme, with message space M = ([n]×F). For any parameters
t, n that are polynomial in the security parameter, consider the experiment in Figure 4 with a stateful PPT
adversary A. We say that PKE receiver-corruption secret-sharing selective opening attack secure if

Advsecsh-soa-kPKE,A (k) :=

∣∣∣∣Pr
[
Expsecsh-soa-kPKE,A (k) = 1

]
− 1

|F|

∣∣∣∣
is negligible for all PPT A.

Theorem 5.3. If a PKE scheme PKE is IND-SOA-K secure, then it is SecShare-SOA-K secure.

The proof of Theorem 5.3 follows with the same argument as Theorem 3.2.
In this section, we describe a PKE scheme PKE∗ that is IND-CCA secure, but not IND-SOA-K secure.

5.1 A CCA Secure, SecShare-SOA-K Insecure Encryption

Let PKE′ = (Gen′,Enc′,Dec′) be any encryption scheme that is IND-CPA secure but is not SecShare-SOA
secure (with sender-randomness corruption), and whose message space is a field F and randomness space is
REnc′ . In particular, this can be the scheme that we constructed in Section 4. Let PKE = (Gen,Enc,Dec)
be an IND-CCA secure encryption scheme with message space F × REnc′ . We construct a PKE scheme
PKE∗ = (PGen∗,Gen∗,Enc∗,Dec∗) as follows.

- PGen∗(1k) : Sample (pk ′, sk ′)← Gen′(1k) and set public parameters params = pk ′.

- Gen∗(1k, params) : Run (pk , sk)← Gen(1k). Output (pk , sk) as the public-key secret-key pair.

- Enc∗(params, pk ,m) : Parse params = pk ′. Sample r ← REnc′ and compute c′ ← Enc′(pk ′,m; r).
Compute c← Enc(pk , (m, r)). Output the ciphertext c∗ = (c′, c).

- Dec∗(params, sk , c∗) : Parse params = pk ′ and c∗ = (c′, c). Compute (m, r) = Dec(sk , c). Verify if
c′ ← Enc′(pk ′,m; r). If so, then output m, else output ⊥.

PKE∗ is not SecShare-SOA-K secure. We now formally show that PKE∗ allows for a simple SecShare-
SOA-K attack. The idea is straight-forward. An SecShare-SOA-K adversary, upon learning secret keys can
decrypt the ciphertexts and learn the random coins used to compute the PKE′ part of ciphertexts. This
amounts to an SecShare-SOA attack on PKE′, which is SecShare-SOA insecure.
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Experiment Expind-soa-kPKE,A

b← {0, 1}
params← PGen(1k)

((pk i, sk i))
n
i=1 ← Genn(1k, params)

msampD(·)← A(params,pk) for pk := (pk1, . . . , pkn)

m0 := (mi)i∈[n] ← msampD()

c := (ci)i∈[n] for ci := Enc(params, pk i,mi)

I ← A(c)

m1 ← msampD(mI)

outA ← A((sk i)i∈I ,mb)

return 1 if outA = b, and 0 otherwise

Experiment Expsecsh-soa-kPKE,A

params← PGen(1k)

((pk i, sk i))
n
i=1 ← Genn(1k, params)

m := (mi)i∈[n] ← DF,t,n
c := (ci)i∈[n]

for ci := Enc(params, pk i,mi)

I ← A(params,pk, c)

for pk := (pk1, . . . , pkn)

outA ← A((mi, sk i)i∈I)

return 1 if outA = F (0), and 0 else

Figure 4: The IND-SOA-K and SecShare-SOA-K experiments.

Theorem 5.4. If PKE′ is not SecShare-SOA secure then PKE∗ is not SecShare-SOA-K secure. In particular,
if there is a polynomial-time attack with advantage ε against the SecShare-SOA security of PKE′ then there
is also a polynomial time attack with the same advantage ε against the SecShare-SOA-K security of PKE∗.

Proof. Assume that there exists a PPT adversary A with non-negligible advantage ε against SecShare-SOA
security of PKE′. We construct a PPT algorithm B that breaks the SecShare-SOA-K security of PKE∗ also
with probability ε.
Adversary B: Upon receiving params = pk ′, B gives pk ′ to A. Upon receiving a tuple of public keys
pk := (pk1, . . . , pkn) and a tuple of ciphertexts c∗ := (c∗i )i∈[n], where c∗i = (c′i, ci), give (c′1, . . . , c

′
n) to A.

When A responds with a subset I ∈ [n], give I to the challenger. Then, upon receiving (mi, sk i)i∈I , compute
(mi, ri) = Dec(sk i, ci) for every i ∈ I. Then, give (mi, ri)i∈I to A. Since this emulates the SecShare-SOA
attack on PKE′ to A, A’s output is such that it breaks SecShare-SOA security of PKE′ with probability ε.
In turn, by outputting A’s output, B also breaks SecShare-SOA-K security of PKE∗ with probability ε.

PKE∗ is IND-CCA secure. We now show that PKE∗ inherits PKE’s IND-CCA security.

Theorem 5.5. Suppose that PKE is an IND-CCA-secure encryption scheme, PKE′ is an IND-CPA secure
encryption scheme. Then, PKE∗ is IND-CCA secure.

Proof. Assume for contradiction that there exists an adversary A that breaks the IND-CCA security of PKE∗

with some advantage ε. We shall show that ε is negligible through a hybrid argument as follows. Let us
denote the event that a hybrid Hybi outputs 1 by Hybi = 1. The first hybrid corresponds to the original
IND-CCA security game.
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• Hyb0 : In the first hybrid the following game is played.

1. Sample b← {0, 1}.
2. Sample (pk ′, sk ′)← Gen′(1k) and set params = pk ′.

3. Sample (pk , sk)← Gen(1k).

4. Give (params, pk) to A and answer its decryption queries using sk .

5. Upon receiving m0,m1, proceed as follows.

6. Sample r ← REnc′ and compute c̃′ ← Enc′(pk ′,mb; r).

7. Compute c̃← Enc(pk , (mb, r)).

8. Give (c̃′, c̃) to A and continue to answer A’s decryption queries using sk .

9. Finally, let b′ be the output of A. Output 1 if b′ = b and 0 otherwise.

• Hyb1 : This hybrid is the same as Hyb0, except that all of A’s decryption queries c∗ = (c′, c) with c = c̃
are automatically rejected.

We note that this change is purely conceptual: any such query would have been rejected already in
Hyb0 (by the decryption check for c′ = Enc(pk ′,m; r), where (m, r)← Dec(sk , c)).

• Hyb2 : This hybrid is the same as Hyb1 except for the following modification. In constructing c̃, instead
of using (mb, r) as the plaintext, we use (mb̃, r̃) for an indendently sampled random bit b̃, and a freshly
uniformly sampled random string r̃.

7. Sample b̃← {0, 1} and r̃ ← REnc′ . Compute c̃← Enc(pk , (mb̃, r̃)).

Claim 5.6. Hyb2 ≈c Hyb1.

Proof. We shall establish this claim by relying on the CCA security of PKE. Assume for contradiction that
|Pr[Hyb2 = 1] − Pr[Hyb1 = 1]| = ε is non-negligible. Then we construct an adversary B that breaks CCA
security of PKE with advantage ε.
Adversary B. B simultaneously interacts with its CCA challenger for PKE and A as follows. Upon receiving
pk from the challenger, sample (pk ′, sk ′) ← Gen′(1k), set params = pk ′, and give params, pk to A. Answer
A’s decryption queries by using its own decryption oracle as follows. Upon given a query c∗ = (c′, c)
by A, decrypt c using its own oracle to get (m, r); verify whether c′ ← Enc′(pk ′,m; r). If so, then give
m to A and give ⊥ otherwise. Next, upon receiving (m0,m1) from A, sample r ← REnc′ and compute
c̃′ ← Enc′(pk ′,mb; r). Also sample b̃ ← {0, 1} and r̃ ← REnc′ . Give (mb, r), (mb̃, r̃) to the challenger. Upon
receiving c̃, give c̃∗ = (c̃′, c̃) to the A. Continue to answer decryption queries in the same manner, except
that all of A’s decryption queries with c = c̃ are automatically rejected. (Note that B cannot decrypt the
corresponding c on its own; however, by our change from Hyb1, this is not necessary.)
Analysis. Observe that A perfectly simulates Hyb2 or Hyb1, depending on c̃.

• Hyb3 : This hybrid is the same as Hyb2 except for the following modification. In constructing c̃′, instead
of encrypting mb as the plaintext, we encrypt mb̃.

6. Sample r ← REnc′ and compute c̃′ ← Enc′(pk ′,mb̃; r).

Claim 5.7. Hyb3 ≈c Hyb2.
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Proof. We shall establish this claim by relying on the CPA security of PKE′. Assume for contradiction that
|Pr[Hyb3 = 1] − Pr[Hyb2 = 1]| = ε is non-negligible. Then we construct an adversary B that breaks CPA
security of PKE′ with advantage ε.
Adversary B. B simultaneously interacts with its CPA challenger for PKE′ and A as follows. B behaves the
same way as the Hyb2 challenger, except for the following modification. Instead of generating pk ′ and c̃′ by
himself, he uses pk ′ from the challenger and generates c̃′ as follows. Upon A giving (m0,m1), send (mb,mb̃)
to the challenger and use the response as c̃′ in the interaction with A. Finally, output the output of A.
Analysis. Firstly, we argue that the above description of B is sound: note that the random coins used in
computing c̃′ is not used in any part of B’s interaction with A. Next, we observe that when c̃′ encrypts 0
then the view of A is identical to that in Hyb2; when c̃′ encrypts 1 then the view of A is identical to that in
Hyb3. Thus, Advind-cpaPKE′,B(k) = ε, a contradiction.

We note here that in Hyb3, A’s view is independent of the challenge bit b, and thus the theorem follows.

6 Conclusions.

In this paper, we show that there are schemes which are CPA and even CCA secure, but which are clearly
insecure in the selective opening scenario. Several open questions remain. Most importantly, it would be
interesting to get such examples under weaker assumptions. As a first step, one could hope for an example
that only relies on indistinguihsability obfuscation rather than public-coin differing-inputs obfuscation and
correlation-intractable hash functions. Ideally, one would get rid of obfuscation altogether. Alternatively,
it would be interesting if such examples can lead to surprising positive results or perhaps can imply (some
variant of) obfuscation. Another open question is to construct a counterexample for SOA-K security without
relying on a scheme with common public parameters.
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A IND-CCA Game with Random Challenge Messages

We shall now define a variation of the IND-CCA game. The modification at a high level is that, in the new
game, the challenger himself samples the challenge message pair uniformly at random.

Definition A.1 ($-IND-CCA Secure PKE). Let PKE = (Gen,Enc,Dec) be a tuple of PPT algorithms. PKE
is said to be a $-IND-CCA-secure encryption, if it for every PPT adversary A,

Adv$-ind-ccaPKE,A (k) :=

∣∣∣∣Pr
[
Exp$-ind-ccaPKE,A (k) = 1

]
− 1

2

∣∣∣∣
is negligible.

Theorem A.2. Let PKE = (Gen,Enc,Dec) is a PKE scheme with polynomial-size message ciphertext. If
PKE is $-IND-CCA secure as per Definition A.1, then PKE is IND-CCA secure.

Proof. Let the message space of PKE beM, with |M| = `(k), for a polynomial `. Assume for contradiction
that there exists an adversary A that breaks the IND-CCA security of PKE with advantage ε. Then we shall
show an adversary B that breaks the $-IND-CCA security of PKE with advantage ε/`(k)2. With the help
of A, B interacts with its $-IND-CCA challenger as follows.
Adversary B: Upon receiving pk , (m0,m1), c

∗, give pk to A. Let (m′0,m
′
1) be the pair of message given in

response by A. Check if (m′0,m
′
1) = (m0,m1). If not, sample b′ ← {0, 1} and respond to the challenger with

b′. Otherwise, give c∗ to A. Output whatever A outputs.
Analysis: Let ESameChal denote the event that (m′0,m

′
1) = (m0,m1). Note that, since m0,m1 are chosen

uniformly at random, we have that Pr[ESameChal] = 1
`(k)2

. Furthermore,

Pr
[
Exp$-ind-ccaPKE,B (k) = 1|¬ESameChal

]
=

1

2
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On the other hand,

Pr
[
Exp$-ind-ccaPKE,B (k) = 1|ESameChal

]
=

1

2
+ ε

Putting them together, we have that, Thus,

Adv$-ind-ccaPKE,A (k) =

∣∣∣∣(1

2
+ ε

)
1

`(k)2
+

1

2

(
1− 1

`(k)2

)
− 1

2

∣∣∣∣
=

ε

`(k)2

leading to a contradiction.

Experiment Exp$-ind-ccaPKE,A

b← {0, 1}
(pk , sk)← Gen(1k)

(((((((((((((
(m0,m1)← ADec(sk ,·)(pk)

m0,m1 ←M
c∗ ← Enc(pk ,mb)

outA ← ADecc∗ (sk ,·)(pk , (m0,m1),c
∗)

return 1 if outA = b, and 0 otherwise

Figure 5: $-IND-CCA experiment.
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