
Tightly Secure Signatures and Public-Key Encryption ∗

Dennis Hofheinz† Tibor Jager‡

Abstract

We construct the first public-key encryption scheme whose chosen-ciphertext (i.e., IND-CCA) security can
be proved under a standard assumption and does not degrade in either the number of users or the number of
ciphertexts. In particular, our scheme can be safely deployed in settings in which no a-priori bound on the
number of encryptions and/or users is known.

As a central technical building block, we devise the first structure-preserving signature scheme with a tight
security reduction. (This signature scheme may be of independent interest.) Combining this scheme with Groth-
Sahai proofs yields a tightly simulation-sound non-interactive zero-knowledge proof system for group equations.
If we use this proof system in the Naor-Yung double encryption scheme, we obtain a tightly IND-CCA secure
public-key encryption scheme from the Decision Linear assumption.

We point out that our techniques are not specific to public-key encryption security. Rather, we view our
signature scheme and proof system as general building blocks that can help to achieve a tight security reduction.
Keywords. Tight security proofs structure-preserving signatures public-key encryption Groth-Sahai proofs.

1 Introduction

Security reductions. Many interesting cryptographic primitives (such as public-key encryption and signature
schemes) cannot be proven secure with current techniques, as their security would imply P 6= NP . Instead, we
usually provide a proof of security under a suitable (computational) assumption (such as the hardness of factoring
large integers). Concretely, a security reduction shows that any successful adversary A on the scheme’s security
can be converted into a successful solver B of the underlying computational problem. Naturally, we would desire
that B’s success εB is at least as large as A’s success εA in attacking the system. However, security reductions often
suffer from a nontrivial multiplicative security loss L (such that only εA ≤ L · εB can be guaranteed).

Cryptography in a multi-user setting. The issue of a nontrivial security loss becomes particularly problematic,
e.g., in the case of a realistic public-key encryption (PKE) scenario with many users who encrypt and send many
ciphertexts. Standard security notions for PKE schemes (such as IND-CCA security [58, 26]) only consider one
receiver and one ciphertext. In particular, with very few exceptions ([11, 42]), most security proofs of encryption
schemes only prove security in this simplified scenario. This can be justified with general results ([10, 11]) that show
that one-user, one-ciphertext PKE security implies security in the much more realistic multi-user, multi-ciphertext
case. However, this generic reduction suffers from a reduction loss of L = nU ·nC , where nU is the number of users,
and nC is the number of ciphertexts per user.

That is, even if a PKE scheme reaches a certain level of security in the commonly considered one-user, one-
ciphertext setting, its security level may be significantly lower in a realistic setting. (In fact, Bellare et al [9] give a
concrete example of such a scheme in the symmetric-key setting.) This is particularly problematic, since it may not
be clear at deployment time for how many users and encryptions a PKE scheme will be used. We thus note that
the analysis of cryptographic primitives in the multi-user setting is necessary to derive concrete security guarantees
for realistic settings.

The difficulty in constructing tightly secure schemes. Let us say that a security reduction (in the multi-user
setting) is tight if the corresponding reduction loss L is a (preferably small) constant. In particular, the security
of a tightly secure scheme does not deteriorate in the number of users (or encryptions). For some security notions

∗This paper constitutes an extended full version of a paper published in [43]. The journal version additionally contains a tightly
adaptively secure (EUF-CMA) structure-preserving signature scheme in the multi-user setting. Moreover, this journal version contains
additional explanations and full proofs.
†Karlsruhe Institute of Technology, Germany, Supported by DFG grant GZ HO 4534/2-1.
‡Ruhr-University Bochum, Germany, Part of work performed at KIT, supported by DFG grant GZ HO 4534/2-1.

1

and constructions, tightly secure reductions can be constructed relatively painlessly. For instance, the random
self-reducibility of the Decisional Diffie-Hellman problem allows to tightly prove the IND-CPA security of ElGamal
encryption [27] even with many users and ciphertexts [11]. However, for other security notions, it seems inherently
difficult to derive a tight security reduction.

For instance, there is no known PKE scheme with a tight (IND-CCA) security reduction from a standard
assumption.1 Diving into the technical details for a moment, one reason for this apparent difficulty is that an
IND-CCA security reduction must be able to decrypt all of A’s decryption queries, but must not be able to decrypt
its own IND-CCA challenge. One way to resolve this dilemma is to partition the set of ciphertexts into those
that can be decrypted, and those that cannot. (For instance, one can set up the proof simulation for A such that
the reduction can decrypt all ciphertexts except for one single challenge ciphertext; examples of this approach are
[14, 44, 45].) This proof technique can only argue about a small number of ciphertexts at a time, and a hybrid
argument is required to show security in the multi-ciphertexts case. Such a hybrid argument results again in a
reduction loss that is linear in the number of ciphertexts.

Another way to show IND-CCA security is to argue with the information the adversary has about the secret
key. (Examples of this approach are [22, 23, 51].) Since the size of the secret key is limited, its entropy can only be
used to argue about the security of a limited number of ciphertexts at a time. Again a hybrid argument (entailing
a linear reduction loss) is required to argue about the security of many ciphertexts. One could hope that the
described inherent hybrid arguments of partitioning and entropy-based strategies to show IND-CCA security could
be circumvented using dual system (identity-based) encryption techniques [63, 53]. In a nutshell, dual system en-
cryption provides a way to subtly and gradually randomize the distribution of challenge ciphertexts (and user secret
keys in an identity-based encryption scheme) without explicitly partitioning the set of ciphertexts into decryptable
and non-decryptable ones. However, while dual system techniques rely on re-randomizable computational problems
(such as the Decision Linear problem), and thus in principle should not suffer from the described problems, all
known dual systems schemes still have to use a hybrid argument and do not achieve a tight security reduction.

Note that one can construct IND-CCA-secure public-key encryption with tight reduction in the random oracle
model [6], for instance by applying the Fujisaki-Okamoto transform [32] to the tightly IND-CPA-secure schemes
from [11].

Our contribution. In this paper, we present a general technique to construct tightly secure cryptographic primi-
tives. As an example, we construct the first PKE scheme that is tightly IND-CCA secure under a simple assumption.
Concretely, all the constructions in this paper build on the Decision Linear (DLIN) assumption in groups with bi-
linear map.2

Our main technical building block is a structure-preserving signature scheme with a tight security reduction.3

Loosely speaking, a structure-preserving signature scheme is one in which verification can be expressed as a sequence
of group equations. In particular, structure-preserving schemes are amenable to Groth-Sahai (GS) proofs [40, 41],
which are efficient non-interactive proof systems for sets of equations over a group. Following a known paradigm [54,
39], we then turn our signature scheme into a simulation-sound non-interactive zero-knowledge proof system for
group equations.4 Since our signature is tightly secure, so is the proof system.

This tightly secure and simulation-sound proof system offers the technical means to achieve tight security. We
exemplify this by implementing the Naor-Yung paradigm [56, 54, 17] with our proof system to obtain a tightly
IND-CCA secure PKE scheme.5

1Bellare, Boldyreva, and Micali [11] show that the security loss of Cramer-Shoup encryption [22] does not depend on the number
of users; however, their reduction loss still grows linearly in the number of ciphertexts per user. On of the IND-SO-CCA secure PKE
schemes of Hofheinz [42] also achieves a form of tight security (in the single-user but multi-challenge setting); however, this work relies
on a non-standard multi-challenge assumption.

2However, we expect that our constructions also naturally generalize to the — potentially weaker — K-Linear assumption and to
suitable subgroup decision assumptions.

3We construct tightly secure structure-preserving signatures. (In fact, our schemes can sign their own public key; such signature
schemes are commonly also referred to as automorphic.) While there exist tightly secure signature schemes (e.g., [34, 15, 21, 12, 47, 60]),
and structure-preserving signature schemes (e.g., [31, 3, 20]), our scheme seems to be the first to achieve both properties. This
combination of properties is crucial for our applications.

4By a simulation-sound zero-knowledge proof system, we mean one in which it is infeasible to generate valid proofs for false statements,
even when already having observed many simulated proofs for possibly false statements.

5We remark that a tight security proof of the Naor-Yung-based encryption scheme in a security model with many challenge ciphertexts
requires to substitute many ciphertexts at once with encryptions of random messages. This in turn requires a proof system which allows
to simulate proofs for many (possibly false) statements, while still preserving soundness. Simulation-soundness in this sense is not
achieved, e.g., by the original Groth-Sahai proof system from [40].

2

Some technical details. Our signature scheme is tree-based and inspired by the scheme of Boneh, Mironov, and
Shoup [15]. However, their scheme is not structure-preserving, as it uses the hash of group elements as an exponent.
To avoid this kind of “domain translation,” we construct a one-time signature scheme in which signatures and
messages are vectors of group elements. (Since we want to implement a tree-based many-time signature scheme, we
require, however, that messages can be longer than public verification keys.) To describe our (one-time) scheme,
assume groups G,GT with non-degenerate bilinear map e : G×G→ GT . Write E : G3 ×G→ G3

T for component-
wise application of e. (That is, E((u1, u2, u3), v) = (e(u1, v), e(u2, v), e(u3, v).) In a nutshell, a signature for a
message m = (mi)

n
i=1 ∈ Gn is of the form (s, t) ∈ G2 and satisfies(

n∏
i=1

E(Ui,mi)

)
· E(G, s) · E(H, t) = E(X, z), (1)

where the G,H,X,U1, . . . , Un ∈ G3, and z ∈ G are part of the public verification key.6 This means that mi, s, t, z
act as coefficients in a linear equation (in the G-exponent) for the vectors Ui, G,H,X. Now if all the vectors
Ui, G,H,X are DLIN-tuples of the form (gx, hy, kx+y) (for fixed g, h, k), then any message can be signed when
knowing all Ui, G,H,X-exponents. Now consider a setup in which one Ui (say, Uj) and X are non-DLIN-tuples,
and the other Ui and G,H are DLIN-tuples. Then, only messages with a specific mj-component can be signed.
(This is easiest seen by thinking of DLIN-elements as linearly dependent vectors in the exponent; with this view,
X and Uj are the only vectors outside the vector space generated by DLIN-tuples. We note that this idea of
“unique signatures” already appears in the ROM-based signature scheme of Katz and Wang [48].) In the proof of
(non-adaptive) one-time security, this mj will be set up as the message signed for the adversary A. Furthermore,
if the adversary forges a message, we know that this message must have mj in its j-th component. Since a forged
signature must refer to a message M∗ that is different from the message M signed for A, there must be an j with
m∗j 6= mj . A small hybrid argument over j ∈ [n] thus shows security. (We stress that we employ a hybrid argument
only over a small set [n] that will not depend on the number of users or ciphertexts. Specifically, our scheme
can be implemented with n = 8.) From this one-time secure scheme, we will construct a tree-based many-time
secure scheme following ideas from [15]; in particular, we will re-use the Ui for many instances of the one-time
scheme. (Such a re-use of public key parts has also been used and made explicit [8].) This will finally yield an
adaptively secure structure-preserving signature scheme with a tight security reduction. The remaining steps that
lead to a tightly simulation-sound proof system and tightly IND-CCA secure public-key encryption follow existing
ideas [39, 17], so we will not outline them here. (Details follow inside.)

Further applications. We note that plugging our tightly simulation-sound proof system into the construction
of [17] yields a PKE scheme that is tightly chosen-ciphertext secure even under key-dependent message attacks.
Similarly, we expect that proofs of chosen-ciphertext security for identity-based encryption schemes can be made
independent of the number of challenge ciphertexts. (However, here we do not expect to obtain independence from
the number of users, i.e., identities.) Besides, structure-preserving signatures have found applications in several
areas (e.g., [19, 31, 38]). We expect that tightly secure structure-preserving signature schemes lead to tighter security
proofs in these applications.

Differences to conference version. This paper constitutes an extended full version of [43]. In addition to the
conference paper, it contains a description of a tightly adaptively secure (EUF-CMA) structure-preserving signature
scheme. Note that there are generic constructions of adaptively-secure signatures that combine a non-adaptively
secure signature with one-time signatures [28] or chameleon hashes [50]. However, the one-time signature approach
of [28] does not have a tight security proof. Therefore we cannot use it directly to obtain a tightly-secure signature
scheme. The approach of [50] allows a tight reduction, however, we are not aware of any suitable chameleon hash
function which is structure-preserving, therefore we can not use this approach to obtain a structure-preserving
signature scheme. In Section 3.4 we show how to construct a signature scheme which is both tightly adaptively-
secure and structure preserving. The approach uses our techniques (in particular our algorithm T described below)
in a way which is quite similar to [50].

In the conference version [43] we analyze our signature schemes only in the single-user setting. In this extended
version we additionally consider the multi-user setting. In Section 3.5 we give definitions for EUF-CMA security
in the multi-user setting and explain how the schemes from [43] can also be proven tightly-secure in a setting with
many users. We note that signature schemes in the multi-user setting have also been considered in [33].

All sections of this full version contain additional explanations and full proofs.

6We highlight that (1) actually consists of three pairing product equations. This can in part be justified by [3, Theorem 2], which
states that already any secure structure-preserving two-time signature scheme must have at least two verification equations.

3

Note on further related work. In [2, Appendix C] (the full version of [1]), Abe et al describe a DLIN-based
structure-preserving one-time signature scheme that is more efficient than ours and has subsequently also been
proven compatible with our tree-based approach [4]. In particular, together with our work, their scheme yields a
more efficient tightly IND-CCA-secure encryption scheme. (We were not aware of their one-time signature scheme
when designing ours.) Abe et al. [5] describe tagged one-time signatures with tight security, and use them to
construct a more efficient variant of our encryption scheme.

2 Preliminaries

Notation. If A is a set, then a
$← A denotes that a is distributed uniformly over A. If A is a probabilistic

algorithm, then a
$← A denotes that a is computed by A using fresh random coins. For n ∈ N we write [n] to denote

the set [n] = {1, . . . , n}. For j ∈ [n] we write [n \ j] to denote the set {1, . . . , n} \ {j}.

2.1 Digital Signatures

Syntax. Generally, we assume a parameter generation algorithm Sig.Param which takes as input the security

parameter κ and generates public parameters Π
$← Sig.Param(κ). A digital signature scheme Sig = (Sig.Gen,

Sig.Sign,Sig.Vfy) consists of three algorithms. Key generation algorithm Sig.Gen generates, on input parameters Π,

a keypair (vk , sk)
$← Sig.Gen(Π) consisting of a secret signing key sk and a public verification key vk . The signing

algorithm Sig.Sign takes a message and the secret signing key, and returns a signature σ
$← Sig.Sign(sk ,m) of the

message. The verification algorithm Sig.Vfy takes a verification key and a message with corresponding signature as
input, and returns b← Sig.Vfy(vk ,m, σ) where b ∈ {0, 1}. We require the usual correctness properties.

Security. Let us recall the existential unforgeability against chosen message attacks (EUF-CMA) security exper-
iment [37], played between a challenger and a forger A.

1. The forger, on input public parameters Π
$← Sig.Param(κ) generated by the challenger, may ask a non-adaptive

chosen-message query. To this end, it submits a list of messages M (1), . . . ,M (q0) to the challenger.

2. The challenger runs Sig.Gen(Π) to generate a keypair (vk , sk). The forger receives vk and a signature σ(i) for
each chosen message M (i), i ∈ [q0].

3. Now the forger may ask adaptive chosen-message queries. Each query consists of a message M (i), i ∈ [q0+1, q],
and is answered by the challenger with a signature σ(i) under sk for message M (i).

4. Finally the forger outputs a message M ∗ and signature σ∗.

Definition 2.1. An adversary is adaptive, if it asks at least one adaptive chosen-message query. Otherwise it
is non-adaptive. Let A be an adversary (adaptive or non-adaptive) that runs in time t, makes q chosen-message
queries (in total), and outputs (M ∗, σ∗). We say that A (ε, t, q)-breaks the EUF-CMA security of Sig if

Pr[Sig.Vfy(vk ,M ∗, σ∗) = 1 ∧M ∗ 6∈ {M (1), . . . ,M (q)}] ≥ ε.

We say that A (ε, t, q)-breaks the strong EUF-CMA security of Sig if

Pr[Sig.Vfy(vk ,M ∗, σ∗) = 1 ∧ (M ∗, σ∗) 6∈ {(M (1), σ(1)), . . . , (M (q), σ(q))}] ≥ ε.

Accordingly, a signature scheme Sig is (ε, t, q)-secure against adaptive (non-adaptive) EUF-CMA attacks, if there
exists no adaptive (non-adaptive) adversary that (ε, t, q)-breaks Sig.

2.2 Complexity Assumptions

Group setting. We will work in a setting in which a group G of large prime order p, along with a (symmetric)
pairing e : G × G → GT into a target group GT is available. We assume that these groups G,GT are externally
chosen (e.g., using a parameter generation algorithm), and may depend on the security parameter.

For a vector V = (v0, v1, v2) ∈ G3 and a group element w ∈ G, we write E(V,w) to denote the vector

E(V,w) = (e(v0, w), e(v1, w), e(v2, w)).

4

For two vectors V = (v0, v1, v2) and W = (w0, w1, w2) we denote with V ·W the component-wise product

V ·W = (v0 · w0, v1 · w1, v2 · w2).

For w ∈ Zp we write V w to denote V w = (vw0 , v
w
1 , v

w
2).

For g, h ∈ G, let logg(h) ∈ Zp be the discrete logarithm of h (to base g), such that glogg(h) = h.

Definition 2.2. Let g, h ∈ G be random generators of G. We say that an adversary A (ε, t)-breaks the Discrete
Logarithm (DLOG) assumption in G, if A runs in time t and

Pr[A(g, h) = logg(h)] ≥ ε.

Furthermore, for generators g, h, k ∈ G let DLIN(g, h, k) denote the set

DLIN(g, h, k) = {(gu, hv, ku+v) : u, v ∈ Zp}

Let G = (g, 1, k) ∈ G3 and H = (1, h, k) ∈ G3. Then we can write the set DLIN(g, h, k) equivalently as

DLIN(g, h, k) = {U : U = Gu ·Hv, u, v ∈ Zp}.

Definition 2.3. Let g, h, k
$← G be random generators of G, and let U

$← DLIN(g, h, k) and V
$← G3. We say that

an adversary B (ε, t)-breaks the Decision Linear (DLIN) assumption in G, if B runs in time t and

Pr[B(g, h, k, U) = 1]− Pr[B(g, h, k, V) = 1] ≥ ε.

3 Structure-Preserving Signatures

In the sequel, let g, h, k be uniformly chosen generators of G. (We assume that g, h, k are chosen along with G,GT
during parameter generation.)

3.1 Structure-Preserving One-Time Signatures for Single Group Elements

We will later need a structure-preserving one-time signature scheme which is able to sign several group elements at
once. In this section we first describe a construction of a scheme which is able to sign only single group elements,
which simplifies the description of the main idea underlying the construction. In Section 3.2 we will then extend
this construction to many group elements.

Let OTSig = (OTSig.Gen,OTSig.Sign,OTSig.Vfy) be the following signature scheme.

OTSig.Gen(g, h, k): Given random generators g, h, k ∈ G, choose a random generator z
$← G and integers u, v, x, y

$←
Zp. Set U := (gu, hv, ku+v) and X := (gx, hy, kx+y). Set vk := (g, h, k, U,X, z) and sk := (u, v, x, y) and
return (vk , sk).

OTSig.Sign(sk ,m): Given a message m ∈ G and a secret key sk = (u, v, x, y), compute s := zxm−u and t := zym−v

and return σ = (s, t).

OTSig.Vfy(vk ,m, σ): Given a public key vk = (g, h, k, U,X, z), message m, and signature σ = (s, t), let G := (g, 1, k)
and H = (1, h, k). Return 1 if equation

E(U,m) · E(G, s) · E(H, t) = E(X, z)

holds. Otherwise return 0.

It is a straightforward calculation to verify the correctness of this scheme. Before we prove security, let us state
a technical lemma which will simplify the proof.

Lemma 3.1. Let g, h, k ∈ G be generators, G := (g, 1, k) and H := (1, h, k). There exists an algorithm T which
takes as input G,H,U ∈ G3 and m ∈ G, and outputs X ∈ G3 and z, s, t ∈ G such that

(i) If U ∈ DLIN(g, h, k), then X is distributed uniformly over DLIN(g, h, k) and z is uniform over the generators
of G.

5

(ii) (s, t) satisfy the equation

E(U,m) · E(G, s) · E(H, t) = E(X, z). (2)

(iii) If U 6∈ DLIN(g, h, k) then (2) has a unique solution (m, s, t).

(iv) If U ∈ DLIN(g, h, k) then for each m there exist unique (s, t) such that (m, s, t) satisfies (2).

The running time of T is dominated by 7 exponentiations in G.

The proof is given at the end of this section.
As pointed out by one anonymous reviewer, we can view the values (X, z) output by T as a commitment to m,

with opening information (s, t). In fact, properties (iii) and (iv) make this a mixed (or “dual-mode”) commitment
in the sense of [24].

Theorem 3.2. Suppose there exists a non-adaptive adversary A that (ε, t, 1)-breaks the EUF-CMA security of
OTSig. Then there exists an adversary B that (ε′, t′)-breaks the DLIN assumption in G, where t′ is roughly the
runtime of the EUF-CMA experiment with A, and ε′ ≥ ε− 1/p.

Proof. We construct adversary B as follows. B receives as input a DLIN challenge (g, h, k, U), where either U
$←

DLIN(g, h, k) or U
$← G3. It starts A, and receives a chosen-message m ∈ G. Then B runs algorithm T from

Lemma 3.1 to obtain (X, z, s, t)
$← T (G,H,U,m). It defines vk := (g, h, k, U,X, z) and returns vk and signature

(s, t) to A.
If A outputs (m′, (s′, t′)) such that

E(U,m′) · E(G, s′) · E(H, t′) = E(X, z)

is satisfied and m′ 6= m, then B outputs 1. Otherwise it outputs 0.

Analysis. If U ∈ DLIN(g, h, k), then by Property (i) of Lemma 3.1 vk is a correctly distributed public key. By
Property (ii) (s, t) is a valid signature for m under vk , and by Property (iv) (s, t) is unique, thus correctly distributed.

Therefore in this case A outputs a forgery (m′, σ′) with probability ε by assumption. Thus, if U
$← DLIN(g, h, k)

then B outputs 1 with probability ε.

If U
$← G3 then we have U 6∈ DLIN(g, h, k) with probability 1− 1/p. Moreover, if indeed U 6∈ DLIN(g, h, k) then

by Property (iii) of Lemma 3.1 the solution (m, s, t) is unique, in which case B outputs 1 with probability 0. Thus,

if U
$← G3 then B outputs 1 with probability at most 1/p.

Proof of Lemma 3.1. Algorithm T chooses random integers ŝ, t̂
$← Zp and ẑ

$← Z∗p, and proceeds as follows.

• If m 6= 1, then T sets z = mẑ, s := mŝ, t := mt̂, and X := (U ·Gŝ ·H t̂)1/ẑ.

• If m = 1, then T sets z = gẑ, s := gŝ, t := gt̂, and X := (Gŝ ·H t̂)1/ẑ.

Note that in each case z is distributed uniformly over the generators of G (recall that we are working in a prime-
order group, therefore all group elements which are not equal to 1 are generators). If m 6= 1, then X is uniform
over DLIN(g, h, k) if U ∈ DLIN(g, h, k). If m = 1, then X is uniform over DLIN(g, h, k), regardless of U . This yields
(i). A straightforward calculation shows that in each case the values (s, t) are defined such that the equation in (ii)
is satisfied. Computing

• mẑ, mŝ, mt̂, Gŝ = (gŝ, 1, kŝ), and H t̂ = (1, ht̂, kt̂) (in case m 6= 1), or

• gẑ, gŝ, gt̂, Gŝ = (gŝ, 1, kŝ), and H t̂ = (1, ht̂, kt̂) (in case m = 1)

takes seven exponentiations in G.
In order to prove (iii), let us write U = (gu, hv, kw) and X = (x0, x1, x2). Then we can view Equation 2 as a

system of equations

e(gu,m) · e(g, s) · e(1, t) = e(x0, z)

e(hv,m) · e(1, s) · e(h, t) = e(x1, z)

e(kw,m) · e(k, s) · e(k, t) = e(x2, z)

6

Taking discrete logarithms to base e(g, g), the above system of equations is equivalent to u 1 0
v log h 0 log h
w log k log k log k

logm
log s
log t

 =

log x0 log z
log x1 log z
log x2 log z


The determinant of the 3× 3 matrix is equal to

w log h log k − u log h log k − v log h log k,

which equals 0 if and only if w = u + v (note that h and k are generators, therefore we have log h 6= 0 6= log k).
Since U 6∈ DLIN(g, h, k) implies w 6= u+ v, the solution (m, s, t) to the system of equations is unique, which proves
(iii). Finally, if we fix logm then (iv) follows from the fact that log h 6= 0.

3.2 Structure-Preserving One-Time Signatures for Vectors of Group Elements

In this section we extend the message space of OTSig from the previous section to vectors M = (m1, . . . ,mn) of n
elements of G. The scheme is very similar, except that now the public key and the verification equation contain n
elements U1, . . . , Un instead of a single element U .

Scheme OTSign = (OTSig.Genn,OTSig.Signn,OTSig.Vfyn) works as follows.

OTSig.Genn(g, h, k): Given generators g, h, k ∈ G, choose a random generator z
$← G and 2(n + 1) integers

u1, v1, . . . , un, vn, x, y
$← Zp. Set Ui := (gui , hvi , kui+vi) for i ∈ [n] and X := (gx, hy, kx+y). Finally, de-

fine the keys as vk := (g, h, k, U1, . . . , Un, X, z) and sk := (u1, v1, . . . , un, vn, x, y) and return (vk , sk).

OTSig.Signn(sk ,M): Given a message vectorM = (m1, . . . ,mn) ∈ Gn and secret key sk , compute s := zx
∏n
i=1m

−ui
i

and t := zy
∏n
i=1m

−vi
i and return σ = (s, t).

OTSig.Vfyn(vk ,M, σ): Given a public key vk , message M = (m1, . . . ,mn), and signature σ = (s, t), let G := (g, 1, k)
and H = (1, h, k). Return 1 if equation

n∏
i=1

E(Ui,mi) · E(G, s) · E(H, t) = E(X, z)

holds. Otherwise return 0.

Again it is a simple calculation to verify the correctness of this scheme.
The following lemma generalizes Lemma 3.1, and will be useful to prove the above theorem as well as for the

security proof of our tree-based signature scheme in the following section.

Lemma 3.3. Let g, h, k ∈ G be generators, G := (g, 1, k) and H := (1, h, k). There exists an algorithm Tn which
takes as input an index j ∈ [n], G,H,Uj ∈ G3, (ui, vi) ∈ Zp for i ∈ [n \ j] and M = (m1, . . . ,mn) ∈ Gn, and
outputs X ∈ G3 and z, s, t ∈ G such that

(i) If Uj ∈ DLIN(g, h, k), then X is distributed uniformly over DLIN(g, h, k) and z is uniform over G.

(ii) (s, t) satisfy the equation

n∏
i=1

E(Ui,mi) · E(G, s) · E(H, t) = E(X, z). (3)

where Ui := (gui , hvi , kui+vi) for i ∈ [n \ j].

(iii) If Uj 6∈ DLIN(g, h, k) then for each ((m∗1, . . . ,m
∗
n), s∗, t∗) satisfying (3) we have m∗j = mj.

(iv) If Uj ∈ DLIN(g, h, k) then for each M = (m1, . . . ,mn) ∈ Gn there exist unique (s, t) such that (M, s, t) satisfy
(3).

The running time of Tn is dominated by one execution of Algorithm T from Lemma 3.1 plus 2(n−1) exponentiations
in G.

7

The proof is a simple extension of the proof of Lemma 3.1, and deferred to the end of this section.

Theorem 3.4. Suppose there exists a non-adaptive adversary A that (ε, t, 1)-breaks the EUF-CMA security of
OTSign. Then there exists an adversary B that (ε′, t′)-breaks the DLIN assumption in G, where t′ is roughly with
runtime of the EUF-CMA experiment with A, and ε′ ≥ ε/n− 1/p.

Proof. We construct adversary B as follows. B receives as input a DLIN challenge (g, h, k, U), where either U
$←

DLIN(g, h, k) or U
$← G3. It picks a random index j ∈ [n], starts A, and receives a chosen-message vector

M = (m1, . . . ,mn) ∈ G. Then it chooses ui, vi
$← Zp and sets Ui = (gui , hvi , kui+vi) for each i ∈ [n \ j], and runs

algorithm Tn described in Lemma 3.3 on input (j,G,H,Uj , (ui, vi)i∈[n]\{j},M) to obtain (X, z, s, t)
$← Tn. Then it

sets vk = (g, h, k, U1, . . . , Un, X, z) and returns vk and signature σ = (s, t) for M to A.
If A outputs (M∗, s∗, t∗) , M∗ = (m∗1, . . . ,m

∗
n), such that m∗j 6= mj and equation

n∏
i=1

E(Ui,m
∗
i) · E(G, s∗) · E(H, t∗) = E(X, z).

is satisfied, then B outputs 1. Otherwise it outputs 0.

Analysis. If U ∈ DLIN(g, h, k), then by Property (i) of Lemma 3.3 vk is a correctly distributed public key. By
Property (ii) (s, t) is a valid signature forM under vk , and by Property (iv) (s, t) is unique, thus correctly distributed.
Therefore in this case A outputs a forgery (M∗, s∗, t∗) with probability ε by assumption. Since M 6= M∗ we have

mj 6= m∗j with probability at least 1/n. Thus, if U
$← DLIN(g, h, k) then B outputs 1 with probability ε/n.

If U
$← G3 then we have U ∈ DLIN(g, h, k) with probability 1/p. Moreover, if U 6∈ DLIN(g, h, k) then by

Property (iii) of Lemma 3.3 there exists no M∗ that satisfies the verification equation with m∗j 6= mj . Thus, if

U
$← G3 then B outputs 1 with probability 1/p.

Proof of Lemma 3.3. Algorithm Tn runs Algorithm T from Lemma 3.1 to compute (X, z, sj , tj)
$← T (G,H,U,

Uj ,mj), which yields a solution to the equation

E(Uj ,mj) · E(G, sj) · E(H, tj) = E(X, z).

Clearly Property (i) of Tn follows from Property (i) of T .
Then Tn sets s := sj ·

∏
i∈[n\j]m

−ui
i and t := tj ·

∏
i∈[n\j]m

−vi
i . Note that

n∏
i=1

E(Ui,mi) · E(G, s) · E(H, t)

=

n∏
i=1

E(Ui,mi) · E(G, sj) · E(H, tj) ·
∏

i∈[n\j]

E(Ui,mi)
−1

=E(Uj ,mj) · E(G, sj) · E(H, tj) = E(X, z),

which proves Property (ii) of Tn.
To prove Property (iii), suppose (for sake of contradiction) that there exists ((m∗1, . . . ,m

∗
n), s∗, t∗) with m∗j 6= mj

that satisfies Equation (3). Let

s∗j := s∗ ·
∏

i∈[n\j]

mui
i and t∗j := t∗ ·

∏
i∈[n\j]

mvi
i .

Then, as above, we have

n∏
i=1

E(Ui,m
∗
i) · E(G, s∗) · E(H, t∗)

=

n∏
i=1

E(Ui,m
∗
i) · E(G, s∗j) · E(H, t∗j) ·

∏
i∈[n\j]

E(Ui,m
′
i)
−1

=E(Uj ,m
∗
j) · E(G, s∗j) · E(H, t∗j) = E(X, z).

8

By Property (iii) of Algorithm T the latter is impossible, unless m∗j = mj , which is a contradiction.
Property (iv) of Algorithm Tn follows from Property (iv) of Algorithm T , and the observation that each Ui,

i ∈ [n \ j], can be written uniquely as Ui = Gui ·Hvi .

Remark 3.5. Note that scheme OTSign can be viewed as a tagged one-time signature scheme in the sense of
Abe et al. [4], where (X, z) is the tag.

3.3 Structure-Preserving Signatures Secure Against Non-adaptive Adversaries

Now we construct a signature scheme based on a binary tree of depth d. The scheme has message space G8, allows
us to issue up to 2d signatures (where d may be large enough such that 2d is virtually unbounded, e.g. d = 80),
and is provably secure against non-adaptive adversaries under the DLIN assumption.

Basic Idea. The construction is based on binary Merkle trees [55], instantiated such that all nodes except for
the root can be generated “on the fly.” In particular, not the complete tree must be stored (which would clearly be
infeasible for large d). Each node of the tree consists of a key pair (vk , sk) of our one-time signature scheme from
Section 3.2. The two children of this node are authenticated by a signature over their respective public keys that
verifies under vk . The key-pairs corresponding to tree leaves are used to sign actual messages.

Recall that a public key consists of a vector (g, h, k, U1, . . . , Un, X, z), where n is the number of group elements
to be signed. In order to obtain a tight security reduction, we re-use the public-key components (g, h, k, U1, . . . , Un)
for all nodes of the tree. Only the (X, z)-components are unique for each node. The tight reduction is inspired by
the proof of the tree-based signature scheme of Boneh et al. [15]. Let us give some more details on an informal
level.

• The tree is parametrized by (g, h, k) ∈ G3 and U1, . . . , U8 ∈ DLIN(g, h, k), where for each i ∈ [8] we have

Ui = (gui , hvi , kui+vi) for random ui, vi
$← Zp. (It will later become clear that we will sign vectors of group

elements, where each vector consists of 8 group elements. This is the reason why we choose n = 8 here).

• Each tree node N is identified by a four-tuple of group elements N = (X, z) ∈ G4, where z
$← G is random

and X = (gx, hy, kx+y) for random x, y
$← Zp.

• To each node N = (X, z) of the tree we assign the public key vk = (g, h, k, U1, . . . , U8, X, z) with secret key
skN = (u1, v1, . . . , u8, v8, x, y). Note that this is a valid key pair for the one-time signature scheme from
Section 3.2, instantiated such that vectors of 8 group elements can be signed. Note also that each node is
identified by (X, z) ∈ G4, so that we can sign two child nodes with each public key.

• The tree is constructed — on the fly — as follows. Let NL = (XL, zL) and NR = (XR, zR) be the two children
of node N = (X, z). Then a signature of the message M = (NL, NR) = (XL, zL, XR, zR) ∈ G8 under secret
key skN authenticates NL and NR as children of N . (This is why we chose n = 8).

• This gives the following signature scheme, which can be used to sign 8-tuples of elements of G:

– The public key of the signature scheme consists of (g, h, k, U1, . . . , U8) and the root node N0 = (X0, z0),
the secret key consists of the discrete logarithms (u1, v1, . . . , u8, v8, x0, y0).

– In order to sign a message M = Md ∈ G8, select a leaf node Nd which has not been used before. Let
Nd−1, . . . , N0 denote the path from Nd to the root N0, and for all Ni (i ∈ {1, . . . , d− 1}), let N co

i denote
the sibling of Ni. Let

Mi−1 :=

{
(Ni, N

co
i), if N co

i is the right-hand sibling of Ni,

(N co
i , Ni), if N co

i is the left-hand sibling of Ni.
(4)

A signature for Md consists of all pairs Md−1, . . . ,M0 and signatures (σd, . . . , σ0) such that each signature
σi authenticates Mi as child of node Ni−1.

See Figure 1 in Appendix A.1 for an illustration.

We note that, strictly speaking, the described scheme is not structure-preserving. (The reason is the case
distinction (4).) We will show in Section 4.2 how to implement our scheme in a structure-preserving way.

9

Full Scheme Description. Scheme TSig = (TSig.Gen,TSig.Sign,TSig.Vfy) is defined as follows.

TSig.Gen(g, h, k): Given generators g, h, k ∈ G, choose integers

u1, v1, . . . , u8, v8, x0, y0
$← Zp

and a random generator z0
$← G. Set Ui := (gui , hvi , kui+vi) for i ∈ [8] and X0 := (gx0 , hy0 , kx0+y0). Set

vk = (g, h, k, U1, . . . , U8, X0, z0) and sk = (u1, v1, . . . , u8, v8, x0, y0)

and return (vk , sk). This defines the root of the tree as N0 = (X0, z0).

TSig.Sign(sk ,M): To sign a message M = Md = (m1, . . . ,m8) ∈ G8, proceed as follows.

1. Generate the leftmost unused leaf Nd = (Xd, zd) of the tree by choosing zd
$← G, xd, yd

$← Zp, and setting
Xd = (gxd , hyd , kxd+yd). This defines the key pair associated to Nd as vkd = (g, h, k, U1, . . . , U8, Xd, zd)
and skd = (u1, v1, . . . , u8, v8, xd, zd).

2. Then compute all nodes Ni of the tree from Nd up to the root that have not been visited before by

choosing xi, yi
$← Zp and zi

$← G and setting Xi = (gxi , hyi , kxi+yi) and Ni = (Xi, zi). This defines the
keys associated to Ni as vk i = (g, h, k, U1, . . . , U8, Xi, zi) and sk i = (u1, v1, . . . , u8, v8, xi, zi).

For each node Ni the sibling N co
i is generated the same way, if it has not been visited before.

Each node Ni and its sibling N co
i and their respective key pairs (vk i, sk i) are stored as long as they are

an ancestor or the sibling of an ancestor of the current signing leaf.

3. The message Md is authenticated by a signature σd over Md under secret key skd

4. For each pair of siblings Ni, N
co
i , i ∈ 1, . . . , d, let Mi−1 ∈ G8 denote the tuple

Mi−1 :=

{
(Ni, N

co
i), if N co

i is the right-hand sibling of Ni,

(N co
i , Ni), if N co

i is the left-hand sibling of Ni.

The pair of siblings Mi−1 is authenticated with respect to ancestor Ni−1 by a signature σi−1 under key
sk i−1 of node Ni−1.

5. The resulting signature on message Md is consists of

σ = (Md−1, . . . ,M0, σd, . . . , σ0) ∈ G10d+2

TSig.Vfy(vk ,Md, σ): A given signature σ of message vector Md is verified by checking that σi is a valid one-time
signature over Mi for all i ∈ [d].

More precisely, note that each node Mi = (XL, zL, XR, zR) induces two verification keys, namely vk i,L =
(g, h, k, U1, . . . , U8, XL, zL) and vk i,R = (g, h, k, U1, . . . , U8, XR, zR). Therefore, for each i ∈ [d] the verification
algorithm tests whether σi is a valid one-time signature over Mi under key vk i,L or vk i,R. If this is true for
all i, then it outputs 1, otherwise 0.

Remark 3.6. We note that using the technique of Goldreich [35] the above scheme can be made stateless by using
a pseudo-random function to derive the randomness x, y ∈ Zp and z ∈ G of each node X = ((gx, hy, kx+y), z) and
to determine the leaf used to sign a given message.

Remark 3.7. Note that the scheme constructed in this section has message space G8. If an application requires
message space Gn for n < 8, then the message space can be reduced by adequate padding. For instance, assume
the application requires message space G. Then, given a message M ′ ∈ G, compute the padded message M :=
(M ′, g, . . . , g) ∈ G8, where g is a fixed group element, and sign M . (In particular, we may have n < 8 when
constructing our simulation-sound NIZK proof system in Section 4.3.)

In this section we prove that this scheme is secure against non-adaptive attacks, which suffices for our main
application. In addition, we describe in Section 3.4 how to combine the non-adaptively secure scheme with the
algorithm from Lemma 3.1 to obtain an adaptively-secure scheme with tight reduction.

Theorem 3.8. Suppose there exists a non-adaptive adversary A that (ε, t, q)-breaks the EUF-CMA security of TSig.
Then there exists an adversary B that (ε′, t′)-breaks the DLIN assumption in group G of order p, where t′ is roughly
the runtime of the EUF-CMA experiment with A, and ε′ ≥ ε/8− 1/p.

10

Note that the success probability ε′ of the DLIN-breaker B is independent of the number q of chosen-message
queries issued by A.

Proof. Let us fix some notation. In the sequel we will say that node Nj is a direct ancestor of leaf Nd, if Nj lies on
the path from Nd to the root N0. We say that N co

j is an indirect ancestor of leaf Nd, if it is a sibling of a direct
ancestor of Nd.

We will denote with Nd,1, . . . , Nd,q the q leaves of the tree that are used to sign the chosen-messages of A, where
Nd,i is used to sign message M (i). Note that these nodes are the q “leftmost” nodes of the tree, since they are used
from left to right (this is the stateful case, which is simpler to analyze; in the stateless variant the proof idea will be
the same, but the description will be more complicated). We denote with Nleaves := {Nd,1, . . . , Nd,q} the set of all
these leaves, with Ndir denoting the set of all direct ancestors of nodes in Nleaves, and with Nout the set of all indirect
ancestors of nodes in Nleaves which are not a direct ancestor of any Ni ∈ Nleaves. See Figure 2 in Appendix A.2 for
an illustration.

Let N := Nleaves ∪Ndir ∪Nout. Note also that the set of all tree nodes which the adversary ever sees throughout
the security experiment is identical to N .

We proceed in a sequence of games. Let Wini denote the event that A wins in Game i.

Game 0. This is the original (non-adaptive) security experiment. Recall that the adversary has to select a list
of messages M (1), . . . ,M (q) ∈ G8 to be signed at the beginning of the game, before seeing the public key. By
assumption we have Pr[Win0] = ε.

Game 1. Now we change the way the tree is set up. In the sequel let T8 denote the algorithm Tn from Lemma 3.3 in-
stantiated with n = 8. Moreover, to abbreviate notation let us write T8(j,m) short for T8(j,G,H,Uj , (ui, vi)i∈[8\j],m).

The challenger in this game chooses a random dummy message M̃
$← G8 and an index j

$← [8] at the beginning
of the game. It constructs the tree from bottom up, by proceeding as follows. Given the list of chosen-messages

M (1), . . . ,M (q), each node N
(i)
d ∈ Nleaves is determined by computing

(X
(i)
d , z

(i)
d , s

(i)
d , t

(i)
d)

$← T8(j,M (i))

and setting N
(i)
d := (X

(i)
d , z

(i)
d). Note that (s(i), t(i)) is a valid signature that authenticates M (i) as child of N

(i)
d .

Each node N ∈ Nout is computed by running

(X, z, s, t)
$← T8(j, M̃).

and setting N := (X, z). The tuple (s, t), which is a valid signature that authenticates the dummy message M̃ as
a child of N , is discarded, since the challenger does not need it.

Each ancestor N ∈ Ndir of two nodes (NL, NR) is computed, from the leaves up to the root, by running

(X, z, s, t)
$← T8(j, (NL, NR)).

Again (s, t) is a valid signature authenticating (NL, NR) as children of N .
Note that Uj ∈ DLIN(g, h, k), thus, due to the properties of algorithm Tn from Lemma 3.3, Game 1 is perfectly

indistinguishable from Game 0 for the adversary, which implies Pr[Win1] = Pr[Win0].

Game 2. Now we are ready to construct our DLIN distinguisher B. B receives as input a DLIN challenge
(g, h, k, U), and proceeds identical to the challenger in Game 1, except that it defines Uj as Uj := U . Note that B is
able to set-up the tree and compute all signatures as before, by running Algorithm T8(j,G,H,Uj , (ui, vi)i∈[8\j],m).

If A outputs a forgery (M∗d , σ
∗), consisting of a signature

σ∗ = (M∗d−1, . . . ,M
∗
0 , σ

∗
d, . . . , σ

∗
0)

and message M∗d ∈ G8, let N∗d , . . . , N
∗
1 , N0 denote the path from M∗d to the root N0 given by signature σ. B

determines δ ∈ {0, . . . , d} with δ the largest index such that N∗δ ∈ N . Recall that N∗δ was previously computed by

B by running (X, z, s, t)
$← T8(j,M ′) for some input M ′ = (m′1, . . . ,m

′
8) and setting N∗δ := (X, z). So in particular

equation
8∏
i=1

E(Ui,m
′
i) · E(G, s) · E(H, t) = E(X, z)

11

is satisfied. Moreover, since σ∗δ = (s∗δ , t
∗
δ) is a valid signature over message M∗δ = (m∗δ,1, . . . ,m

∗
δ,8), the equation

8∏
i=1

E(Ui,m
∗
δ,i) · E(G, s∗δ) · E(H, t∗δ) = E(X, z) (5)

is satisfied, too. B outputs 1 if m∗δ,j 6= m′j holds, otherwise it outputs 0.

Analysis. If U ∈ DLIN(g, h, k), then Game 2 is perfectly indistinguishable from Game 1, due to Properties (i)
and (ii) of Lemma 3.3. Therefore in this case A outputs a forgery with probability ε by assumption. If N∗δ ∈ N \Nout

we must have M∗δ 6= M ′, as otherwise this is not a valid forgery or δ is not the largest index such that N∗δ ∈ N .
Therefore in this case we also must have m∗δ,j 6= m′j with probability at least 1/8. If N∗δ ∈ Nout then, due to

Property (iv) of Lemma 3.3, A receives no information about the dummy message M̃ chosen to compute nodes
in Nout. Thus, in this case we have m∗δ,j 6= m′j with probability 1 − 1/p > 1/8. Thus we can conclude that if

U
$← DLIN(g, h, k), then B outputs 1 with probability at least ε/8.

If U
$← G3 then we have U 6∈ DLIN(g, h, k) with probability 1 − 1/p. Moreover, if U 6∈ DLIN(g, h, k) then by

Property (iii) of Lemma 3.3 there exists no M∗δ such that Equation (5) is satisfied and m∗δ,j 6= m′j . Thus, if U
$← G3

then B outputs 1 with probability at most 1/p.

3.4 Structure-Preserving Signatures Secure Against Adaptive Adversaries

It is well-known that one can combine a non-adaptively secure signature scheme with a non-adaptively secure
one-time signature scheme to obtain an adaptively secure signature scheme [28]. Thus, by combining our one-
time signature scheme from Section 3.1 (or the one-time signature scheme for vectors from Section 3.2) with our
tree-based signature scheme from Section 3.3 we obtain an adaptively secure structure-preserving signature scheme.7

The generic reduction from [28] loses a factor of q, where q is the number of signatures issued. We would like
to note that we can also obtain an adaptively secure scheme with tight security reduction. Consider the following
signature scheme Sig = (Sig.Gen,Sig.Sign,Sig.Vfy).

Sig.Gen(g, h, k): Run (vkT , skT)
$← TSig.Gen(g, h, k) and U

$← DLIN(g, h, k). Set vk := (vkT , U) and sk := skT .

Sig.Sign(sk ,m): Let G := (g, 1, k) and H := (1, h, k). Compute (X, z, s, t)
$← T (G,H,U,m), where T is from

Lemma 3.1. Set M := (X, z, g, g, g, g) ∈ G8 (the four g elements are a simple padding to obtain the correct

message size for TSig) and compute σT
$← TSig.Sign(skT ,M). The resulting signature is σ = (σT , X, z, s, t).

Sig.Vfy(vk ,m, σ): Parse σ = (σT , X, z, s, t). Set M := (X, z, g, g, g, g) and output 1 if

TSig.Vfy(vkT ,M, σT) = 1 and E(U,m) · E(G, s) · E(H, t) = E(X, z).

Otherwise output 0.

The security proof is rather simple and along the lines of [28], therefore we only sketch it. For i ∈ [q] let m(i)

denote the i-th message chosen by the adversary, and let σ(i) = (σ
(i)
T , X(i), z(i), s(i), t(i)) denote the corresponding

signature. In the security proof we consider two types of adversaries.

Type I. A Type-I adversary outputs a pair (m, (σT , X, z, s, t)) consisting of a message and a signature, such that
there exists σ(i) with (X(i), z(i)) = (X, z). Since this is impossible if U 6∈ DLIN(g, h, k), due to Property (iii)
of Lemma 3.1, this allows us to distinguish whether U ∈ DLIN(g, h, k) or not.

Type II. A Type-II adversary outputs a pair (m, (σT , X, z, s, t)) such that there exists no σ(i) with (X(i), z(i)) =
(X, z). In this case the adversary has to compute a new signature for TSig. In order to reduce to the
non-adaptive security of TSig, we generate U := Gu · Hv and all X(i) = Gxi · Hyi for random integers

u, v, xi, yi
$← Zp, i ∈ [q], at the beginning of the game, and use the integers u, v, (xi, yi)i∈[q] as a trapdoor to

sign messages, similar to the signing algorithm of OTSig.

Besides the one-time signature based construction of [28] there is also a construction based on chameleon
hashes [50], which offers a tight reduction. We are not aware of any suitable chameleon hash functions which are
structure-preserving, but we would like to note that our use of algorithm T in the above construction is very similar
— except that it does not meet the syntactic definition of a chameleon hash.

7As pointed out by an anonymous reviewer, this construction also has another interpretation. Namely, since our one-time signature
scheme can be interpreted as a commitment scheme (see the note after Lemma 3.1), combining it with a non-adaptively secure signature
scheme to obtain adaptive security can be viewed as a variant of the construction from [18].

12

3.5 Tight EUF-CMA Security in the Multi-User Setting

In Sections 3.3 and 3.4 we have described signature schemes with tight security proof in the single-user setting.
In this section we would like to note that these signature schemes also have tight security proofs in the multi-user
setting.

Random self-reducibility of DLIN. The following lemma extends [11, Lemma 5.2] from DDH to the DLIN
assumption.

Lemma 3.9. g, h, k ∈ G be generators. There exists a probabilistic algorithm R with the following properties. R
takes as input p, generators g, h, k ∈ G, a vector U ∈ G3, and a flag τ ∈ {0, 1}, and outputs (h′, k′) ∈ G2 and
U ′ ∈ G3. The running time of algorithm R is dominated by at most 9 exponentiations in G. The distribution of
the output (h′, k′, U ′) depends on τ and whether U ∈ DLIN(g, h, k) or not, according to the following table.

τ = 0 τ = 1

U ∈ DLIN(g, h, k) h′ = h, k′ = k h′, k′
$← G \ {1}

U ′
$← DLIN(g, h, k) U ′

$← DLIN(g, h′, k′)

U 6∈ DLIN(g, h, k) h′ = h, k′ = k h′, k′
$← G \ {1}

U ′
$← G3 U ′

$← G3

We note that a slight variant of the above Lemma was given in [52, Lemma 7]. Lemma 7 of [52] considers an

algorithm R that outputs (g′, h′, k′, U ′) with g′, h′, k′
$← G\{1}, instead of (h′, k′, U ′) as above, in the more general

K-linear setting, but only with τ = 1.

Proof. Consider the following algorithm R = (R0,R1), which consists of two sub-algorithms R0 and R1. Given
(p, g, h, k, U, τ), algorithmR runsRτ on input (p, g, h, k, U) and returns whateverRτ returns. Let U := (gu, hv, kw).

Algorithm R0. Algorithm R0 chooses integers r0, r1, r2
$← Zp and computes U ′ = (u′0, u

′
1, u
′
2) as

u′0 = (gu)r0 · gr1

u′1 = (hv)r0 · hr2

u′2 = (kw)r0 · kr1 · kr2 .

Then it returns (h, k, U ′).
To show that R0 produces the correct output distribution, let us first consider the case U ∈ DLIN(g, h, k), where

we have w = u+ v. Note that u′0 = gur0+r1 and u′1 = hvr0+r2 are distributed uniformly and independently over G,
since r1, r2 are uniform and independent. In this case we have u′2 = kwr0+r1+r2 = k(ur0+r1)+(vr0+r2), thus it holds
that U ′ is distributed uniformly over DLIN(g, h, k).

Now let us consider the case U 6∈ DLIN(g, h, k), which is equivalent to w 6= u+ v. Taking logarithms to base g,
we have log u′0

log u′1
log u′2

 =

 u 1 0
v log h 0 log h
w log k log k log k

 ·
r0r1
r2

 (6)

The 3× 3 matrix is invertible, because its determinant is equal to (w− u− v) · log h · log k, and we have w 6= u+ v
and log h 6= 0 6= log k since both h and k are generators. Thus, for each (r0, r1, r2) there exists a unique vector
(u′0, u

′
1, u
′
2) that satisfies the system of equations given by (6). Since (r0, r1, r2) is distributed uniformly over Z3

p,
vector U ′ = (u′0, u

′
1, u
′
2) is distributed uniformly over G3.

Algorithm R1. Algorithm R1 samples two random integers α, β
$← Z∗p, and computes h′ = hα, k′ = kβ , and

U ′′ = (gu, (hv)α, (kw)β). Then it runs R0(p, g, h′, k′, U ′′), and returns whatever R0 returns.
Note that h′ and k′ are random generators of G, and that we have U ′′ ∈ DLIN(g, h′, k′) if and only if U ∈

DLIN(g, h, k). Thus, correctness of R1 follows from the correctness of R0.

13

EUF-CMA Security in the Multi-User Setting. Let us first describe the (µ, q)-existential unforgeability
under adaptive chosen-message attacks ((µ, q)-EUF-CMA) experiment. This experiment is a simple adoption of the
classical EUF-CMA experiment from [37] (see also Section 2.1) to the multi-user setting. Consider the following
game, played between a challenger and a forger A.

1. The forger, on input (µ, q) and public parameters Π, may ask a non-adaptive chosen-message query. To this
end it submits, for each index i ∈ [µ], a list of messages M (i,1), . . . ,M (i,qi) to the challenger.

2. The challenger runs the key generation algorithm Sig.Gen(Π) µ times to generate keypairs (vk1, sk1), . . . ,
(vkµ, skµ). The forger receives the list (vk1, . . . , vkµ) of verification keys as input, as well as a signature σ(i,j)

for each chosen message M (i,j), (i, j) ∈ [µ]× [qi].

3. Now the forger may ask adaptive chosen-message queries. Each query consists of a tuple (i,M (i,j)), where
i ∈ [µ] is an index and M (i,j) is a message, j ∈ [qi, q]. The challenger returns a signature σ(i,j) under sk i for
M (i,j). Note that the forger may ask at most q signature queries per verification key, thus the forger asks at
most µq signature queries in total.

4. Finally the forger outputs a triplet (i∗,M ∗, σ∗).

Definition 3.10. An adversary is adaptive, if it asks at least one adaptive chosen-message query. Otherwise it is
non-adaptive. Let A be an (adaptive or non-adaptive) adversary that runs in time t and outputs (i∗,M ∗, σ∗). We
say that A (ε, t)-breaks the (adaptive or non-adaptive) (µ, q)-EUF-CMA security of Sig if

Pr[Sig.Vfy(vk i∗ ,M
∗, σ∗) = 1 ∧M ∗ 6∈ {M (i∗,1), . . . ,M (i∗,q)}] ≥ ε.

Tightly EUF-CMA Secure Signatures in the Multi-User Setting. One can prove that the signature
schemes from Sections 3.3 and 3.4 are tightly secure under the DLIN assumption in the multi-user setting, too. The
idea of these proofs is very simple, only a minor extension to the proofs in the single-user setting, therefore we only
sketch it.

Let us first consider the scheme from Section 3.3. Recall that in the security proof of this scheme we constructed
an algorithm B, which takes as input a vector ((g, h, k), U) ∈ G3 × G3 and uses the forger to decide whether
U ∈ DLIN(g, h, k). In the multi-user setting, we follow exactly the same proof strategy, except for the following.
Given a single DLIN-challenge ((g, h, k), U), we proceed as follows.

1. We first use the random self-reducibility of DLIN, by running the algorithm from Lemma 3.9 on input
(g, h, k, U, τ) with τ = 0, to generate µ vectors U (1), . . . , U (µ), such that (with probability negligibly close
to 1) for all i ∈ [µ] holds that

U (i) ∈ DLIN(g, h, k) ⇐⇒ U ∈ DLIN(g, h, k). (7)

2. Then we run µ copies B(1), . . . ,B(µ) of algorithm B in parallel to simulate the non-adaptive (µ, q)-EUF-
CMA security experiment. When the forger outputs its forgery (i∗,M ∗, σ∗), then B(i∗) will tell us whether
U (i∗) ∈ DLIN(g, h, k), which also allows us to decide whether U ∈ DLIN(g, h, k), due to (7).

This yields the tight non-adaptive (µ, q)-EUF-CMA security of the scheme from Section 3.3. The idea to prove
that the scheme from Section 3.4 is adaptively (µ, q)-EUF-CMA secure is identical.

4 Tightly Simulation-Sound NIZK Proofs for Pairing Product Equa-
tions

In this section we use the signature scheme from Section 3.3 to construct a NIZK proof for satisfiability of pairing
product equations whose security reduces tightly to the DLIN assumption. “Tight” means here that the success
probability of the reduction is independent of the number of simulated proofs the adversary sees. The construction
is a special case of Groth-Sahai (GS) proofs [40], and uses a trick from [39, Section 4] to express the disjunction of
two sets of pairing product equations as one set.

14

4.1 Non-Interactive Zero-Knowledge Proofs

Let R be a binary relation and let L := {x : ∃w s.t. R(x,w) = 1} be the language defined by R. A non-interactive
zero-knowledge proof system NIZK = (NIZK.Gen,NIZK.Prove,NIZK.Vfy) for L consists of three algorithms. The

common reference string generation algorithm crs
$← NIZK.Gen(κ) takes as input a security parameter κ and

outputs a common reference string crs. Algorithm π
$← NIZK.Prove(crs, x, w) takes as input crs, statement x, and

a witness w that x ∈ L, and outputs a proof π. The verification algorithm NIZK.Vfy(crs, π, x) ∈ {0, 1} takes as
input proof π and statement x. We say that NIZK.Vfy accepts if NIZK.Vfy(crs, π, x) = 1. We say that NIZK.Vfy
rejects if NIZK.Vfy(crs, π, x) = 0.

NIZK is (εZK, εsnd, εsimsnd, t, Q)-secure, if the following holds.

Perfect completeness. For each (x,w) ∈ R, each parameter κ, and each crs
$← NIZK.Gen(κ) holds that

Pr[NIZK.Vfy(crs, π, x) = 1 : π
$← NIZK.Prove(crs, x, w)] = 1.

Soundness. For all adversaries A running in time t holds that

Pr

[
x 6∈ L ∧ NIZK.Vfy(crs, π, x) = 1 :

crs
$← NIZK.Gen(κ)

A(crs) = (x, π)

]
≤ εsnd

Zero knowledge. There exists a simulator S = (S0,S1), such that (crs, td)
$← S0(κ) generates a common reference

string and trapdoor information td, and π
$← S1(crssim, td, x) generates a simulated proof π for statement x

(where not necessarily x ∈ L).

Let crs real
$← NIZK.Gen(κ) and let Oreal denote an oracle that takes as input (x,w) ∈ R and returns

NIZK.Prove(crs real, x, w). Let (crssim, td)
$← S0(κ) and let Osim return S1(crssim, td, x) on input (x,w) ∈ R.

We require that
Pr[AOreal(crs real) = 1]− Pr[AOsim(crssim) = 1] ≤ εZK

for all A running in time at most t that issue at most Q oracle queries.

Simulation soundness. For (crs, td)
$← S0(κ) and for all adversaries A running in time t that may query S1 at

most Q times for simulated proofs π1, . . . , πQ of arbitrary statements x1, . . . , xQ (where possibly xi 6∈ L for
some or all i ∈ [Q]) it holds that

Pr

[
AS1(crs) = (x, π) :

x 6∈ L ∧ (x, π) 6= (xi, πi)∀i ∈ [Q]
∧NIZK.Vfy(crs, π, x) = 1

]
≤ εsimsnd

We will also use two variants of NIZK proof systems as a technical building block. Namely, a (perfectly) non-
interactive witness-indistinguishable (NIWI) proof system is defined like a NIZK proof system above, with
the following difference. Instead of the zero-knowledge and simulation-soundness properties, we require (perfect)
witness-indistinguishability: for all crs in the image of NIZK.Gen, and all (x,w1), (x,w2) ∈ R (for the same x), we
require that the distributions of NIZK.Prove(crs, x, w1) and NIZK.Prove(crs, x, w2) are identical. An extractable
non-interactive proof system is defined like a NIZK proof system above, but instead of the zero-knowledge
and simulation-soundness properties, we require extractability, in the following sense. Namely, NIZK.Gen initially
outputs an additional special trapdoor that allows to extract valid witnesses out of valid proofs. (Note that
extractability trivially implies soundness.

4.2 Building Blocks

Pairing Product Equations. Following [39, 40], a pairing product equation (PPE) s of length ` over G is an
equation of the form ∏̀

j=1

e(Qj,0, Qj,1) = 1 with Qj,b = Aj,b ·
ν∏
i=1

X
αj,b,i

i (8)

where the Ai ∈ G and αj,b,i ∈ Zp are constants, and the Xi ∈ G are variables. We say that a vector ~x =
(x1, . . . , xν) ∈ Gν satisfies the equation, if Equation 8 holds when setting Xi = xi. A set S of pairing product
equations is satisfiable, if there exists a vector ~x that satisfies all equations s ∈ S simultaneously. In the following,
we will consider sets of satisfiable PPEs as languages for NIZK proof systems.

15

Disjunctions of Pairing Product Equations. Groth [39, Section 4.8] shows how to express the disjunction
of several sets of PPEs through one set. Concretely, given n sets S1, . . . , Sn of PPEs, he constructs a set S :=
OR(S1, . . . , Sn) of PPEs such that

• every solution ~x that satisfies S allows to efficiently derive a solution ~xi of at least one Si,

• every solution ~xi of some Si allows to efficiently derive a solution ~x of S,

• if Si has νi variables Xi and consists of equations of total length `i, then S has total length 2` + 1 for
` =

∑n
i=1 `i, and (

∑n
i=1 νi) + n+ ` variables.

NIWI Proofs for a Set of Pairing Product Equations. Groth and Sahai [40] present an efficient non-
interactive witness-indistinguishable proof system for arbitrary sets of PPEs. Their system features a CRS crs
that can be chosen either to be hiding or to be binding. If crs is hiding, then the resulting proofs are perfectly
witness-indistinguishable. If crs is binding, the resulting proofs enjoy perfect soundness, and become extractable,
in the sense defined above: a special trapdoor to crs allows to extract a witness ~x from a valid proof. Hiding
and binding CRSs are computationally indistinguishable under the DLIN assumption in the underlying group G.
When implemented over a DLIN-group (as will be the case in our setting), their system has the following efficiency
properties (cf. Figure 2 in [40]):

• the CRS contains 6 G-elements,

• each used variable Xi results in 3 G-elements in the proof,

• each PPE incurs 9 G-elements in the proof.

TSig-Verification as a Set of Pairing Product Equations. The verification algorithm of our weakly-secure
DLIN-based signature scheme TSig from Section 3.2 can be expressed as a set of PPEs. Concretely, assume a
verification key vk = (g, h, k, U1, . . . , U8, X0, z0) for TSig, and a message M = (md,1, . . . ,md,8) ∈ G8. Recall that a
TSig-signature Σ ∈ G10d+2 determines OTSig-verification-keys vk i, messages Mi, and signatures Σ(i) such that Σ is
valid iff Σ(i) is a valid OTSig-signature of Mi = (mi,j)

8
j=1 under vk i−1 for all i ∈ [d]. Hence, verification amounts

to checking a set STSig
vk ,M = {OR(SL,i, SR,i)}i∈[d] , where SD,i (for i ∈ [d] and D ∈ {L,R}) is given by

SD,i =


 8∏
j=1

E(Ui,mi,j)

 · E(G, si) · E(H, ti) = E(XD,i, zD,i)


of PPEs, where G,H,U1, . . . , U8 ∈ G3 and the md,j ∈ G are constants, and the mi,j ∈ G (for i ∈ [d − 1]),
XL,i, XR,i ∈ G3, and zL,i, zR,i, si, ti ∈ G (for i ∈ [d]) are variables.

Tightly Secure One-Time Signatures. As a final preparation, we require a means to secure proofs from
tampering. Typically, this is done via a one-time signature scheme (as, e.g., in [54]). For our purposes, however,
we require tightly secure (but not necessarily structure-preserving) one-time signatures. Since our construction in
Section 4.3 uses the scheme from Section 3.3 to compute signatures over verification keys, we furthermore require
that verification keys consist of at most 8 group elements. To enable a tight reduction, we will consider signature
schemes with an algorithm TOTS.Param that outputs common system parameters pars tots.

Definition 4.1. The security experiment for strong n-fold one-time EUF-CMA security is identical to the strong
one-time EUF-CMA experiment (see Section 2), except that the adversary A gets the scheme’s public parameters
and n verification keys pk i (i ∈ [n]) as input. A may request (up to) one signature for each pk i, and may finally
output a forged signature under exactly one pk i. We say that a signature scheme TOTS is strongly n-fold one-time
(ε, t, q)-secure if there is no A that (ε, t, q)-breaks the strong EUF-CMA security of TOTS.

We now construct a signature scheme TOTS whose n-fold one-time EUF-CMA security experiment reduces to
the discrete logarithm problem in G. The corresponding reduction loses only a factor of 2, independently of n.

TOTS.Param(κ): The common parameters pars tots are a two generators g, h0 and a collision-resistant hash function
H : {0, 1}∗ → Zp.

16

TOTS.Gen(pars tots, pars tots): Uniformly choose exponents ω1, s1 ∈ Zp and output vk tots := (h1, c1) := (gω1 , gs1) and
sk tots := (ω1, s1).

TOTS.Sign(pars tots, sk tots,m): Uniformly choose r0 ∈ Zp and compute c0 := gH(m)hr00 and r1 = (s1−H(c0))/ω1 mod
p, such that c1 = gH(c0)hr11 . Output σ = (r0, r1).

TOTS.Vfy(pars tots, vk tots,m, σ): Parse σ =: (r0, r1), and set c0 := gH(m)hr00 . If c1 = gH(c0)hr11 , output 1, else 0.

Note that TOTS essentially consists of a two-fold application of Pedersen commitments [57], interpreted as one-time
signatures.

Lemma 4.2. Let n ∈ N. Then scheme TOTS above is strongly n-fold one-time EUF-CMA secure assuming H
is collision-resistant and the discrete logarithm assumption in G holds. Concretely, εn-cma ≤ 2εdlog + εcrhf for the
advantage εn-cma of an arbitrary n-fold one-time EUF-CMA adversary A, and the advantages εdlog of a corresponding
DLOG-solver B and εcrhf of a H-collision-finder C.

The proof is fairly standard, therefore we only sketch it.

Proof sketch Let m∗ and σ∗ = (r∗0 , r
∗
1) denote forged message and signature; let vk∗tots = (h∗1, c

∗
1) be the

corresponding verification key. Let m be the message signed for A under vk∗tots, and let σ = (r0, r1) be the
corresponding signature. Write c∗0 = gH(m

∗)hr
∗
0 and c0 = gH(m)hr0 . We can assume (m∗, σ∗) 6= (m,σ) and

TOTS.Vfy(pars tots, vk∗tots,m
∗, σ∗) = 1. Distinguish the following cases:

H-collisions: If m∗ 6= m and H(m∗) = H(m), or if c∗0 6= c0 and H(c∗0) = H(c0), then A has found a H-collision. The
probability for a H-collision can be bounded by εdlog using a straightforward reduction. In the following we
silently assume that no H-collision took place.

c∗0 = c0: We can assume m∗ 6= m, since m∗ = m would imply r∗0 = r0 and r∗1 = r1. Hence, we have found two

different decompositions gH(m∗)h
r∗0
0 = c0 = gH(m)hr00 of c0, which allows to deduce logg(h0). A straightforward

reduction to the DLOG assumption bounds this event with εdlog.

c∗0 6= c0: In this case, we have found two different decompositions gH(c∗0)h
r∗1
1 = c1 = gH(c0)hr11 of c1, from which we

can derive logg(h1). A reduction B to the DLOG problem can proceed as follows, given input (g, h). First, B
sets up h0 = gω0 for known ω0; all verification keys are generated as (h1, c1) = (hα, gH(c0)hαr1) for c0 = gs0 ∈ G
and uniform α, r1, s ∈ Zp (chosen fresh for each key of course). This allows to generate signatures by setting
r0 := (s0 − H(m))/ω0 mod p and σ = (r0, r1). Finally, any forged signature with c∗0 6= c0 can then be used
to derive logg(h1) = logg(h

α) for some known α, from which logg(h) follows. Thus, c∗0 6= c0 can occur with
probability at most εdlog.

Taking things together yields the claim. Note that the derived bound for εn-cma does not depend on n.

4.3 Our Simulation-Sound NIZK Proof System

We are now ready to describe our proof system for a set S of PPEs. Intuitively, we will prove, using GS NIWI
proofs, that either S is satisfiable, or that we know a TSig-signature for a “suitably unique” value (or both). The
“suitably unique” value will be a verification key for a strongly (and tightly) secure one-time signature scheme.
Simulated proofs prove the “or” branch of the statement, using TSig’s signing key. Simulation-soundness (and also
soundness) follows from the existential unforgeability of TSig, and from the soundness of GS proofs. A bit more
formally, consider the following non-interactive proof system:

NIZK.Gen(G) outputs a CRS crs = (crsGS, vk , pars tots), where (a) crsGS is a binding CRS for DLIN-based GS proofs
over G, (b) vk is a verification key for TSig, (c) pars tots are parameters for a strongly n-fold EUF-CMA secure
one-time signature scheme TOTS, whose security reduction does not depend on n.

NIZK.Prove(crs, S, ~x) takes as input a CRS crs = (crsGS, vk , pars tots), a set S of PPEs, and a satisfying assignment
~x = (x1, . . . , xν) ∈ Zνp . Then, NIZK.Prove samples a TOTS keypair (vk tots, sk tots) and outputs the tuple

π = (πGS, vk tots, σtots). Here, πGS is a GS proof (using CRS crsGS) for the set OR(S, STSig
vk ,M) of PPEs for

M := vk tots (as described in Section 4.2), and σtots is a TOTS-signature under vk tots of (S, πGS).

NIZK.Vfy(crs, S, π) takes a CRS crs = (crsGS, vk , pars tots), a set S of PPEs, and a proof π as above, verifies σtots,

and then checks π as a GS proof for the set OR(S, STSig
vk ,vk tots

) of PPEs.

17

Theorem 4.3. The proof system NIZK just described is (εZK, εsnd, εsimsnd, t, Q)-secure, where εZK ≤ 2|εGS| and
εsnd, εsimsnd ≤ εtots + εtsig for the advantages of suitable adversaries on the indistinguishability of hiding and binding
GS CRSs, the strong Q-fold one-time EUF-CMA security of TOTS, and the weak EUF-CMA security of TSig. All
constructed adversaries have roughly the same runtime as the zero-knowledge, soundness, resp. simulation-soundness
experiments (with adversaries of runtime t).

Proof sketch Before we go through the properties necessary for a simulation-sound NIZK proof system, we
describe a simulator S. Initially, S samples a CRS crs = (crsGS, vk , pkCH, G,H) exactly like NIZK.Gen(G), but
remembers the signing key sk to vk . When asked to generate a proof for some set S of PPEs, S proceeds like
NIZK.Prove, but generates a proof πGS for OR(S, STSig

vk ,vk tots
) using a TSig-signature Σ for vk tots as witness.

We now check the properties of our proof system:

Completeness. Perfect completeness follows from the perfect completeness of GS proofs.

Soundness. Assume an adversary A who generates an unsatisfiable set S of PPEs, along with a (TOTS-signed) GS

proof πGS for OR(S, STSig
vk ,vk tots

). By the strong one-time EUF-CMA security of TOTS, we have that vk tots has
not been TSig-signed before. (Note that here, a tight reduction to TOTS’s strong n-fold one-time EUF-CMA
security is possible.) By the perfect soundness of GS proofs, this implies that A has proven knowledge of a
TSig-signature Σ for a fresh message vk tots. Since crsGS is binding, we can extract that signature using the
GS witness-extraction trapdoor and break the weak existential unforgeability of TSig. We obtain that the
soundness error εsnd is at most εtots + εtsig for the advantages of suitable TOTS- and TSig-forgers.8

Zero-knowledge. First note that simulated and real CRSs are identically distributed. Furthermore, simulated
proofs differ from real proofs only by their GS-witness. A straightforward reduction to the witness-indisting-
uishability of GS proofs shows that an adversary’s advantage εZK in distinguishing real from simulated CRSs
and proofs is bounded by 2|εGS| for the distinguishing advantage εGS between hiding and binding GS CRSs.

Simulation-soundness. A similar argument as for soundness shows that the simulation-soundness error εsimsnd is
at most εtots + εtsig for the advantages of suitable TOTS- and TSig-forgers.

We stress that all the reductions just sketched are tight. In particular, the (simulation-) soundness and zero-
knowledge errors do not depend on the number of simulated proofs.

On the extractability of our proof system. The proof system we have just described inherits a useful feature
from GS proofs. Namely, when operated with a binding CRS, a special trapdoor td allows to efficiently extract
witnesses from valid proofs. This trapdoor works even in a setting in which an adversary has access to simulated
proofs; but obviously, td cannot be used to extract witnesses from the simulated proofs themselves. However, care
must be taken when using td : for instance, td allows to distinguish between simulated and non-simulated proofs.
Consequently, the Zero-Knowledge property only holds in the absence of td . This “incompatibility” between the
Zero-Knowledge and extraction properties is the main reason why we have chosen not to formalize extraction. (For
our purposes, an explicit extraction provided by the NIZK proof system will not be necessary.) However, we note
that a suitable formalization of “simulation-extractability” can be very useful, see, e.g., Dodis et al [25].

5 Tight IND-CCA Security in the Multi-User Setting

Syntax. A public-key encryption scheme PKE consists of algorithms PKE = (PKE.Param,PKE.Gen,PKE.Enc,

PKE.Dec). On input a security parameter κ , algorithm Π
$← PKE.Param(κ) outputs parameters Π. The key

generation algorithm (pk , sk)
$← PKE.Gen(Π) generates, on input Π, a public encryption key pk and a secret

decryption key sk . The probabilistic encryption algorithm c
$← PKE.Enc(pk ,m) takes as input a public key pk and

a message m, and outputs a ciphertext c. The deterministic decryption algorithm PKE.Dec(sk , c) takes as input a
secret key sk and a ciphertext c, and outputs a message m or an error symbol ⊥. We require the usual correctness
properties.

8We note that perfect soundness (i.e., εsnd = 0) can be achieved as in [39, Section 6] with a slightly more complicated setup. In a
nutshell, we could add a non-DLIN-tuple T ∈ G6 to CRS and prove that either S is satisfiable, or T is a DLIN-tuple and we know a
TSig-signature for vk tots (or both). A simulator S would of course change T to a DLIN-tuple in simulated CRSs. We omit the details.

18

Security. The following security experiment, played between a challenger and an adversary A, is based on the
multi-user security definition from [11]. The experiment is parametrized by two integers µ, q ∈ N.

1. The challenger runs Π
$← PKE.Param(κ) once and then PKE.Gen(Π) µ times to generate µ key pairs (pk (i), sk (i)),

i ∈ [µ]. Then it tosses a coin b
$← {0, 1}, initializes a list Clist := ∅ to the empty list, and defines a counter

ji := 0 for each i ∈ [µ].

2. The adversary receives the public keys pk (1), . . . , pk (µ) as input. It may query the challenger for two types of
operations.

Encryption queries. The adversary submits two messages m0,m1 and an index i ∈ [µ]. If ji ≥ q then the

challenger returns ⊥. Otherwise it encrypts mb under pk (i) by computing c = PKE.Enc(pk (i),mb). Then
it appends (c, i) to Clist, updates counter ji as ji := ji + 1, and returns c.

Decryption queries. The adversary submits a ciphertext c and an index i ∈ [µ]. If (c, i) ∈ Clist then the

challenger returns ⊥. Otherwise it returns whatever PKE.Dec(sk (i), c) returns.

3. Eventually the adversary A outputs a bit b′. We say that the adversary wins the game, if b = b′.

Definition 5.1. Let A be an adversary that runs in time t and wins with probability 1/2 + ε. Then A (ε, t)-breaks
the (µ, q)-IND-CCA security of PKE. If A never asks any decryption query, then A (ε, t)-breaks the (µ, q)-IND-
CPA security of PKE. For ATK ∈ {CPA,CCA} we say that PKE is (ε, t, µ, q)-IND-ATK secure, if there exists no
adversary that (ε, t)-breaks the (µ, q)-IND-ATK security of PKE.

Note that for ATK ∈ {CPA,CCA} the classical definitions of IND-ATK security [36, 58] are identical to (1, 1)-
IND-ATK security in the above sense. Moreover, the generic reduction from [11] shows that an adversary A that
(ε, t)-breaks the (µ, q)-IND-ATK security of public-key encryption scheme PKE implies an adversary A′ that (ε′, t′)-
breaks the (1, 1)-IND-ATK security of PKE with t′ ≈ t and ε′ ≥ ε/(qµ). Thus, the generic reduction loses a factor
of qµ.

5.1 Generic Construction

The construction of the public-key encryption scheme EncCCA with tight security reduction follows the Naor-Yung
paradigm [56, 59, 54]. It uses a public-key encryption scheme EncCPA = (CPA.Param,CPA.Gen,CPA.Enc,CPA.Dec)
and a (simulation-sound) non-interactive zero-knowledge proof system NIZK = (NIZK.Gen,NIZK.Prove,NIZK.Vfy).

We define scheme EncCCA = (CCA.Param,CCA.Gen,CCA.Enc,CCA.Dec) as follows.

CCA.Param(κ) generates a common reference string for the NIZK proof system crs
$← NIZK.Gen(κ) for the language

L := {(pk0, pk1, c0, c1)}

such that (pk0, pk1, c0, c1) ∈ L if and only if

c0 = CPA.Enc(pk0,m) ∧ c1 = CPA.Enc(pk1,m).

That is, we have (pk0, pk1, c0, c1) ∈ L iff c0 and c1 encrypt the same message m.

CCA.Gen(Π) generates two key pairs (pk0, sk0), (pk1, sk1)
$← CPA.Gen of the public-key encryption scheme. The

resulting public key is pk = (pk0, pk1,Π), the secret key is sk = sk0.

CCA.Enc(pk,m) encrypts a message m by computing c0 = CPA.Enc(pk0,m), c1 = CPA.Enc(pk1,m), and a proof π
that (pk0, pk1, c0, c1) ∈ L, using the encryption randomness of c0 and c1 as witness. The resulting ciphertext
is

c = (c0, c1, π)

CCA.Dec(sk, c) decrypts a given ciphertext as follows. First it checks whether (pk0, pk1, c0, c1) ∈ L by verifying the
proof π. If false, then it returns ⊥. Otherwise it computes and returns m = CPA.Dec(sk0, c0).

19

It is a classical result [59] that the above encryption scheme is (1, 1)-IND-CCA secure, if EncCPA is (1, 1)-IND-CPA
secure and NIZK is one-time simulation sound. In the sequel we generalize this to showing that the (µ, q)-IND-CCA
security of EncCCA reduces tightly (i.e., independent of µ and q) to the (µ, q)-IND-CPA security of EncCPA and the
µq-security of NIZK.

We remark that our NIZK proof system from Section 4 inherits a certain form of (witness-) extractability from
GS proofs. (See also the comment at the end of Section 4.3.) Hence, one could think of treating the NIZK system
NIZK as one instance of an IND-CPA secure PKE scheme (with the extraction trapdoor as decryption key). It would
seem natural to expect that a variant of scheme EncCCA above with only one EncCPA instance might be IND-CCA
secure. In fact, this was accomplished in [5], by using a simulation-sound NIZK proof system which additionally is
simulation-extractable.

Theorem 5.2. Let EncCPA be (εCPA, tCPA, µ, q)-IND-CPA secure, and let NIZK be (εZK, εsnd, εsimsnd, tNIZK, µq)-secure.
Then EncCCA is (ε, t, µ, q)-IND-CCA secure, where tNIZK and tCPA are roughly the runtime of the IND-CCA experi-
ment with an adversary of runtime t, and

ε ≤ 2 · (εCPA + εZK) + εsnd + εsimsnd.

Proof. The proof structure follows [59]. We proceed in a sequence of games [7, 61]. Let Wini denote the event that
A wins in Game i.

Game 0. This is the (µ, q)-IND-CCA security experiment from Definition 5.1, executed with b = 0. Thus, the
challenger always returns encryptions of m0.

Game 1. This game is identical to Game 0, except that we change the way the NIZK proof is generated. Instead
of using the real proving algorithm, we compute all proofs π using the zero-knowledge simulator of NIZK. Due to
the zero-knowledge property of NIZK, we have

Pr[Win1]− Pr[Win0] ≤ εZK.

Game 2. This game is identical to Game 1, except that we change the way challenge ciphertexts are created.
For each ciphertext c = (c0, c1, π), created by the challenger under public key pk(j) for all j ∈ [µ], the challenger

computes c0 = CPA.Enc(pk
(j)
0 ,m0) and π as before, but computes c1 = CPA.Enc(pk

(j)
1 ,m1) as an encryption of m1.

Due to the (εCPA, tCPA, µ, q)-IND-CPA security of EncCPA, we have

Pr[Win2]− Pr[Win1] ≤ εCPA.

Game 3. This game is identical to Game 2, except that now the key pairs (pk(j), sk(j)), j ∈ [µ], are computed and

used differently. In the previous game, the challenger computes (pk
(j)
0 , sk

(j)
0)

$← CPA.Gen, (pk
(j)
1 , sk

(j)
1)

$← CPA.Gen,

and sets pk(j) = (pk
(j)
0 , pk

(j)
1) and sk(j) = sk

(j)
0 . In this game, the challenger sets pk(j) = (pk

(j)
0 , pk

(j)
1) as before,

but sk(j) = sk
(j)
1 . Moreover, for a given ciphertext c = (c0, c1, π) the challenger now first checks the proof π and, if

the proof verifies correctly, returns the decryption m = CPA.Dec(sk
(j)
1 , c1) of c1. Key sk

(j)
0 is never used throughout

the game.
Note that an adversary cannot distinguish Game 3 from Game 2, unless it submits a ciphertext c̃ = (c̃0, c̃1, π̃)

such that proof π̃ verifies, but CPA.Dec(sk
(j)
0 , c̃0) 6= CPA.Dec(sk

(j)
1 , c̃1). Thus, the adversary has to provide a proof

π̃ for a false statement. Note that the adversary sees at most µq simulated proofs throughout the game, thus, due
to the µq-simulation-soundness of NIZK, we have

Pr[Win3]− Pr[Win2] ≤ εsimsnd.

Game 4. Again we change the way challenge ciphertexts are created. For each ciphertext c = (c0, c1, π), created

by the challenger under pk(j) for some j ∈ [µ], the challenger computes c1 = CPA.Enc(pk
(j)
1 ,m1) and π as before,

but now also each c0 = CPA.Enc(pk
(j)
0 ,m1) will be an encryption of m1. Due to the (εCPA, tCPA, µ, q)-IND-CPA

security of EncCPA, we have
Pr[Win4]− Pr[Win3] ≤ εCPA.

20

Game 5. This game is identical to Game 4, but now the challenger uses the real proving algorithm for NIZK,
instead of using simulated proofs. Due to the zero-knowledge property of NIZK, again we have

Pr[Win5]− Pr[Win4] ≤ εZK.

Game 6. This game is identical to Game 5, except that now we return to using sk
(j)
0 for decryption. Again an

adversary cannot distinguish Game 6 from Game 5, unless it provides a proof π̃ for a false statement. Note that
the adversary does not see any simulated proofs in this game, thus due to the soundness of NIZK we have

Pr[Win6]− Pr[Win5] ≤ εsnd.

Note that Game 6 is identical to the (µ, q)-IND-CCA security experiment from Definition 5.1, executed with b = 1,
and we have

Pr[Win0]− Pr[Win6] ≤ 2 · (εCPA + εZK) + εsnd + εsimsnd.

5.2 Public-Key Encryption with Tight IND-CPA Security from DLIN

In order to instantiate the CCA-secure scheme from the previous section, we finally need an IND-CPA secure
encryption scheme with tight security reduction. In this section we describe an adequate example.

Lemma 3.9 gives rise to a “DLIN-based ElGamal” scheme with tight security reduction in the multi-user setting.
Consider the following encryption scheme, which was first described in [16].

CPA.Gen(Π) takes as input Π = (G, g) where G is a (description of a) group of prime order p and g is a generator

of G. It samples ĥ, k̂
$← Zp and sets h = gĥ and k = hk̂. The public key is pk = (g, h, k), the secret key is

sk = (ĥ, k̂).

CPA.Enc(pk,m) encrypts a message m ∈ G by sampling rg, rh
$← Zp and computing c0 = grg , c1 = hrh , c2 =

m · krg+rh . The resulting ciphertext is c = (c0, c1, c2).

CPA.Dec(sk, c) decrypts a given ciphertext by computing m = c2 · c−ĥk̂0 · c−k̂1 .

Theorem 5.3. Suppose there exists an adversary A that (ε, t)-breaks the (µ, q)-IND-CPA security of EncCPA. Then
there exists an adversary B that (ε′, t′)-breaks the DLIN assumption in G with t′ ≈ t and ε′ ≥ ε− µ/p.

Note that the success probability of B contains an additive term µ/p, which however is statistically small. It
seems that a similar term has been overlooked in [11, Lemma 5.2].

Proof sketch The proof is based on the random self-reducibility of the DLIN assumption, and nearly identical to
the proof of [11, Theorem 5.3]. Therefore we only sketch it here.

The DLIN distinguisher B receives as input a DLIN challenge (g, h, k, U) where U
$← DLIN(g, h, k) or U

$← G3.
It runs A as a subroutine by implementing the (µ, q)-IND-CPA challenger for A.

• At the beginning of the game, B tosses a coin b
$← {0, 1} and runs algorithm R from Lemma 3.9 µ times on

input τ = 1 and (g, h, k, U), so that it obtains µ vectors (h(i), k(i), U (i))i∈[µ]. It defines pk (i) = (g, h(i), k(i))

for i ∈ [µ] and provides A with (pk (i))i∈µ.

• When the adversary issues the j-th encryption query (pk (i),m
(i)
j,0,m

(i)
j,1) under pk (i), B runs R on input τ = 0

and (g, h(i), k(i), U (i)), to obtain a vector U
(i)
j = (u

(i)
j , v

(i)
j , w

(i)
j). Then B sets

c
(i)
j := (u

(i)
j , v

(i)
j ,m

(i)
j,b · w

(i)
j)

and returns the ciphertext c
(i)
j .

Eventually A outputs a guess b′. If b = b′ then B outputs 1, otherwise it outputs 0.

21

Analysis. Suppose that U ∈ DLIN(g, h, k). In this case, by the correctness of R, all pk (i) are correctly distributed,

and all ciphertexts are valid encryptions of message m
(i)
j,b. In this case B outputs 1 with probability 1/2 + ε.

If U 6∈ DLIN(g, h, k), then Ui is uniformly distributed over G3, and thus we have Ui 6∈ DLIN(g, h, k) for all i ∈ [µ]

except with probability µ/p. In this case each vector U
(i)
j = (u

(i)
j , v

(i)
j , w

(i)
j) is uniform over G3, and thus contains

(information-theoretically) no information about b. In this case B outputs 1 with probability 1/2 + µ/p.

Acknowledgements. We would like to thank Masayuki Abe and Kristiyan Haralambiev for pointing out a
missing argument in the proof of Lemma 3.1, Georg Fuchsbauer for pointing out a mistake in Section 4.3, and the
anonymous referees for many helpful comments.

References

[1] Abe M, Fuchsbauer G, Groth J, Haralambiev K, Ohkubo M (2010) Structure-preserving signatures and com-
mitments to group elements. In: Rabin T (ed) Advances in Cryptology – CRYPTO 2010, Springer, Berlin,
Germany, Santa Barbara, CA, USA, Lecture Notes in Computer Science, vol 6223, pp 209–236

[2] Abe M, Haralambiev K, Ohkubo M (2010) Signing on elements in bilinear groups for modular protocol design.
Cryptology ePrint Archive, Report 2010/133, http://eprint.iacr.org/

[3] Abe M, Groth J, Haralambiev K, Ohkubo M (2011) Optimal structure-preserving signatures in asymmetric
bilinear groups. In: Rogaway P (ed) Advances in Cryptology – CRYPTO 2011, Springer, Berlin, Germany,
Santa Barbara, CA, USA, Lecture Notes in Computer Science, vol 6841, pp 649–666

[4] Abe M, Chase M, David B, Kohlweiss M, Nishimaki R, Ohkubo M (2012) Constant-size structure-preserving
signatures: Generic constructions and simple assumptions. In: Wang X, Sako K (eds) Advances in Cryptology
– ASIACRYPT 2012, Springer, Berlin, Germany, Beijing, China, Lecture Notes in Computer Science, vol 7658,
pp 4–24, DOI 10.1007/978-3-642-34961-4 3

[5] Abe M, David B, Kohlweiss M, Nishimaki R, Ohkubo M (2013) Tagged one-time signatures: Tight security
and optimal tag size. In: Kurosawa K, Hanaoka G (eds) PKC 2013: 16th International Workshop on Theory
and Practice in Public Key Cryptography, Springer, Berlin, Germany, Nara, Japan, Lecture Notes in Computer
Science, vol 7778, pp 312–331, DOI 10.1007/978-3-642-36362-7 20

[6] Bellare M, Rogaway P (1993) Random oracles are practical: A paradigm for designing efficient protocols. In:
Ashby V (ed) ACM CCS 93: 1st Conference on Computer and Communications Security, ACM Press, Fairfax,
Virginia, USA, pp 62–73

[7] Bellare M, Rogaway P (2006) The security of triple encryption and a framework for code-based game-playing
proofs. In: Vaudenay S (ed) Advances in Cryptology – EUROCRYPT 2006, Springer, Berlin, Germany, St.
Petersburg, Russia, Lecture Notes in Computer Science, vol 4004, pp 409–426

[8] Bellare M, Shoup S (2007) Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir without
random oracles. In: Okamoto T, Wang X (eds) PKC 2007: 10th International Conference on Theory and
Practice of Public Key Cryptography, Springer, Berlin, Germany, Beijing, China, Lecture Notes in Computer
Science, vol 4450, pp 201–216

[9] Bellare M, Desai A, Jokipii E, Rogaway P (1997) A concrete security treatment of symmetric encryption. In:
38th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Miami Beach,
Florida, pp 394–403

[10] Bellare M, Desai A, Pointcheval D, Rogaway P (1998) Relations among notions of security for public-key
encryption schemes. In: [49], pp 26–45

[11] Bellare M, Boldyreva A, Micali S (2000) Public-key encryption in a multi-user setting: Security proofs and
improvements. In: Preneel B (ed) Advances in Cryptology – EUROCRYPT 2000, Springer, Berlin, Germany,
Bruges, Belgium, Lecture Notes in Computer Science, vol 1807, pp 259–274

[12] Bernstein DJ (2008) Proving tight security for Rabin-Williams signatures. In: [62], pp 70–87

22

http://eprint.iacr.org/

[13] Biham E (ed) (2003) Advances in Cryptology – EUROCRYPT 2003, Lecture Notes in Computer Science, vol
2656, Springer, Berlin, Germany, Warsaw, Poland

[14] Boneh D, Boyen X (2004) Efficient selective-ID secure identity based encryption without random oracles.
In: Cachin C, Camenisch J (eds) Advances in Cryptology – EUROCRYPT 2004, Springer, Berlin, Germany,
Interlaken, Switzerland, Lecture Notes in Computer Science, vol 3027, pp 223–238

[15] Boneh D, Mironov I, Shoup V (2003) A secure signature scheme from bilinear maps. In: Joye M (ed) Topics in
Cryptology – CT-RSA 2003, Springer, Berlin, Germany, San Francisco, CA, USA, Lecture Notes in Computer
Science, vol 2612, pp 98–110

[16] Boneh D, Boyen X, Shacham H (2004) Short group signatures. In: [30], pp 41–55

[17] Camenisch J, Chandran N, Shoup V (2009) A public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks. In: [46], pp 351–368

[18] Canetti R, Halevi S, Katz J (2003) A forward-secure public-key encryption scheme. In: [13], pp 255–271

[19] Cathalo J, Libert B, Yung M (2009) Group encryption: Non-interactive realization in the standard model.
In: Matsui M (ed) Advances in Cryptology – ASIACRYPT 2009, Springer, Berlin, Germany, Tokyo, Japan,
Lecture Notes in Computer Science, vol 5912, pp 179–196

[20] Chase M, Kohlweiss M (2011) A domain transformation for structure-preserving signatures on group elements.
Cryptology ePrint Archive, Report 2011/342, http://eprint.iacr.org/

[21] Chevallier-Mames B, Joye M (2007) A practical and tightly secure signature scheme without hash function.
In: Abe M (ed) Topics in Cryptology – CT-RSA 2007, Springer, Berlin, Germany, San Francisco, CA, USA,
Lecture Notes in Computer Science, vol 4377, pp 339–356

[22] Cramer R, Shoup V (1998) A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In: [49], pp 13–25

[23] Cramer R, Shoup V (2002) Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-
key encryption. In: Knudsen LR (ed) Advances in Cryptology – EUROCRYPT 2002, Springer, Berlin, Ger-
many, Amsterdam, The Netherlands, Lecture Notes in Computer Science, vol 2332, pp 45–64

[24] Damg̊ard I, Nielsen JB (2002) Perfect hiding and perfect binding universally composable commitment schemes
with constant expansion factor. In: Yung M (ed) Advances in Cryptology – CRYPTO 2002, Springer, Berlin,
Germany, Santa Barbara, CA, USA, Lecture Notes in Computer Science, vol 2442, pp 581–596

[25] Dodis Y, Haralambiev K, López-Alt A, Wichs D (2010) Efficient public-key cryptography in the presence of key
leakage. In: Abe M (ed) Advances in Cryptology – ASIACRYPT 2010, Springer, Berlin, Germany, Singapore,
Lecture Notes in Computer Science, vol 6477, pp 613–631

[26] Dolev D, Dwork C, Naor M (2000) Nonmalleable cryptography. SIAM Journal on Computing 30(2):391–437

[27] ElGamal T (1985) A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory 31:469–472

[28] Even S, Goldreich O, Micali S (1996) On-line/off-line digital signatures. Journal of Cryptology 9(1):35–67

[29] Feigenbaum J (ed) (1991) Advances in Cryptology – CRYPTO’91, Lecture Notes in Computer Science, vol
576, Springer, Berlin, Germany, Santa Barbara, CA, USA

[30] Franklin M (ed) (2004) Advances in Cryptology – CRYPTO 2004, Lecture Notes in Computer Science, vol
3152, Springer, Berlin, Germany, Santa Barbara, CA, USA

[31] Fuchsbauer G (2010) Automorphic signatures and applications. PhD thesis, ENS, Paris

[32] Fujisaki E, Okamoto T (1999) Secure integration of asymmetric and symmetric encryption schemes. In: Wiener
MJ (ed) Advances in Cryptology – CRYPTO’99, Springer, Berlin, Germany, Santa Barbara, CA, USA, Lecture
Notes in Computer Science, vol 1666, pp 537–554

23

http://eprint.iacr.org/

[33] Galbraith SD, Malone-Lee J, Smart NP (2002) Public key signatures in the multi-user setting. Inf Process Lett
83(5):263–266, DOI 10.1016/S0020-0190(01)00338-6, URL http://dx.doi.org/10.1016/S0020-0190(01)

00338-6

[34] Gennaro R, Halevi S, Rabin T (1999) Secure hash-and-sign signatures without the random oracle. In: Stern J
(ed) Advances in Cryptology – EUROCRYPT’99, Springer, Berlin, Germany, Prague, Czech Republic, Lecture
Notes in Computer Science, vol 1592, pp 123–139

[35] Goldreich O (1986) Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In: Odlyzko AM
(ed) Advances in Cryptology – CRYPTO’86, Springer, Berlin, Germany, Santa Barbara, CA, USA, Lecture
Notes in Computer Science, vol 263, pp 104–110

[36] Goldwasser S, Micali S (1984) Probabilistic encryption. Journal of Computer and System Sciences 28(2):270–
299

[37] Goldwasser S, Micali S, Rivest RL (1988) A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing 17(2):281–308

[38] Green M, Hohenberger S (2011) Practical adaptive oblivious transfer from simple assumptions. In: Ishai Y
(ed) TCC 2011: 8th Theory of Cryptography Conference, Springer, Berlin, Germany, Providence, RI, USA,
Lecture Notes in Computer Science, vol 6597, pp 347–363

[39] Groth J (2006) Simulation-sound NIZK proofs for a practical language and constant size group signatures.
In: Lai X, Chen K (eds) Advances in Cryptology – ASIACRYPT 2006, Springer, Berlin, Germany, Shanghai,
China, Lecture Notes in Computer Science, vol 4284, pp 444–459

[40] Groth J, Sahai A (2008) Efficient non-interactive proof systems for bilinear groups. In: [62], pp 415–432

[41] Groth J, Sahai A (2012) Efficient noninteractive proof systems for bilinear groups. SIAM J Comput 41(5):1193–
1232

[42] Hofheinz D (2012) All-but-many lossy trapdoor functions. In: Pointcheval D, Johansson T (eds) Advances in
Cryptology – EUROCRYPT 2012, Springer, Berlin, Germany, Cambridge, UK, Lecture Notes in Computer
Science, vol 7237, pp 209–227

[43] Hofheinz D, Jager T (2012) Tightly secure signatures and public-key encryption. In: Safavi-Naini R, Canetti R
(eds) Advances in Cryptology – CRYPTO 2012, Springer, Berlin, Germany, Santa Barbara, CA, USA, Lecture
Notes in Computer Science, vol 7417, pp 590–607

[44] Hofheinz D, Kiltz E (2007) Secure hybrid encryption from weakened key encapsulation. In: Menezes A (ed)
Advances in Cryptology – CRYPTO 2007, Springer, Berlin, Germany, Santa Barbara, CA, USA, Lecture Notes
in Computer Science, vol 4622, pp 553–571

[45] Hofheinz D, Kiltz E (2009) Practical chosen ciphertext secure encryption from factoring. In: [46], pp 313–332

[46] Joux A (ed) (2009) Advances in Cryptology – EUROCRYPT 2009, Lecture Notes in Computer Science, vol
5479, Springer, Berlin, Germany, Cologne, Germany

[47] Joye M (2008) An efficient on-line/off-line signature scheme without random oracles. In: Franklin MK, Hui
LCK, Wong DS (eds) CANS 08: 7th International Conference on Cryptology and Network Security, Springer,
Berlin, Germany, Hong-Kong, China, Lecture Notes in Computer Science, vol 5339, pp 98–107

[48] Katz J, Wang N (2003) Efficiency improvements for signature schemes with tight security reductions. In:
Jajodia S, Atluri V, Jaeger T (eds) ACM CCS 03: 10th Conference on Computer and Communications Security,
ACM Press, Washington D.C., USA, pp 155–164

[49] Krawczyk H (ed) (1998) Advances in Cryptology – CRYPTO’98, Lecture Notes in Computer Science, vol 1462,
Springer, Berlin, Germany, Santa Barbara, CA, USA

[50] Krawczyk H, Rabin T (2000) Chameleon signatures. In: ISOC Network and Distributed System Security
Symposium – NDSS 2000, The Internet Society, San Diego, California, USA

[51] Kurosawa K, Desmedt Y (2004) A new paradigm of hybrid encryption scheme. In: [30], pp 426–442

24

http://dx.doi.org/10.1016/S0020-0190(01)00338-6
http://dx.doi.org/10.1016/S0020-0190(01)00338-6

[52] Lewko AB, Waters B (2009) Efficient pseudorandom functions from the decisional linear assumption and
weaker variants. In: Al-Shaer E, Jha S, Keromytis AD (eds) ACM CCS 09: 16th Conference on Computer and
Communications Security, ACM Press, Chicago, Illinois, USA, pp 112–120

[53] Lewko AB, Waters B (2010) New techniques for dual system encryption and fully secure HIBE with short
ciphertexts. In: Micciancio D (ed) TCC 2010: 7th Theory of Cryptography Conference, Springer, Berlin,
Germany, Zurich, Switzerland, Lecture Notes in Computer Science, vol 5978, pp 455–479

[54] Lindell Y (2003) A simpler construction of cca2-secure public-key encryption under general assumptions. In:
[13], pp 241–254

[55] Merkle RC (1989) A certified digital signature. In: Brassard G (ed) Advances in Cryptology – CRYPTO’89,
Springer, Berlin, Germany, Santa Barbara, CA, USA, Lecture Notes in Computer Science, vol 435, pp 218–238

[56] Naor M, Yung M (1990) Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd
Annual ACM Symposium on Theory of Computing, ACM Press, Baltimore, Maryland, USA, pp 427–437

[57] Pedersen TP (1991) Non-interactive and information-theoretic secure verifiable secret sharing. In: [29], pp
129–140

[58] Rackoff C, Simon DR (1991) Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack.
In: [29], pp 433–444

[59] Sahai A (1999) Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th
Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, New York, New York,
USA, pp 543–553

[60] Schäge S (2011) Tight proofs for signature schemes without random oracles. In: Paterson KG (ed) Advances
in Cryptology – EUROCRYPT 2011, Springer, Berlin, Germany, Tallinn, Estonia, Lecture Notes in Computer
Science, vol 6632, pp 189–206

[61] Shoup V (2004) Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive,
Report 2004/332, http://eprint.iacr.org/

[62] Smart NP (ed) (2008) Advances in Cryptology – EUROCRYPT 2008, Lecture Notes in Computer Science, vol
4965, Springer, Berlin, Germany, Istanbul, Turkey

[63] Waters B (2009) Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In:
Halevi S (ed) Advances in Cryptology – CRYPTO 2009, Springer, Berlin, Germany, Santa Barbara, CA, USA,
Lecture Notes in Computer Science, vol 5677, pp 619–636

25

http://eprint.iacr.org/

A Illustrations

A.1 Illustration of the Tree-based Signature Scheme

N0

N co
1 N1

σ0

N2

σ1

Nd−2

Nd−1

σd−2

N co
d Nd

σd−1

Md ∈ G8

σd

N co
d−1

N co
2

Figure 1: Illustration of the tree-based signature scheme. In this example we have M0 = (N co
1 , N1), M1 = (N2, N

co
2),

. . ., Md−1 = (N co
d , Nd) and Md = M .

26

A.2 Illustration of the Definition of Sets Nleaves, Ndir, Nout

Ndir

Ndir

Ndir

Ndir

Ndir

Nd,1 Nd,2

Ndir

· · · Nd,q

Nout

Nout

Nout

Figure 2: Illustration of the Definition of Sets Nleaves, Ndir, Nout.

We have

• Nleaves = {Nd,1, . . . , Nd,q}.

• Each node Ndir is a direct ancestor of a node in Nleaves, therefore we have Ndir ∈ Ndir for all Ndir.

• Each node Nout is a sibling of a node Ndir, but not an ancestor of any node in Nleaves, thus we have Nout ∈ Nout

for all Nout.

27

	Introduction
	Preliminaries
	Digital Signatures
	Complexity Assumptions

	Structure-Preserving Signatures
	Structure-Preserving One-Time Signatures for Single Group Elements
	Structure-Preserving One-Time Signatures for Vectors of Group Elements
	Structure-Preserving Signatures Secure Against Non-adaptive Adversaries
	Structure-Preserving Signatures Secure Against Adaptive Adversaries
	Tight EUF-CMA Security in the Multi-User Setting

	Tightly Simulation-Sound NIZK Proofs for Pairing Product Equations
	Non-Interactive Zero-Knowledge Proofs
	Building Blocks
	Our Simulation-Sound NIZK Proof System

	Tight IND-CCA Security in the Multi-User Setting
	Generic Construction
	Public-Key Encryption with Tight IND-CPA Security from DLIN

	Illustrations
	Illustration of the Tree-based Signature Scheme
	Illustration of the Definition of Sets Nleaves, Ndir, Nout

