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Abstract

The security of two public key encryption schemes relying on the
hardness of different computational problems in non-abelian groups is
investigated. First, an attack on a conceptual public key scheme based
on Grigorchuk groups is presented: We show that from the public data
one can easily derive an ‘equivalent’ secret key that allows the decryp-
tion of arbitrary messages encrypted under the public key. Hereafter,
a security problem in another conceptual public key scheme based on
non-abelian groups is pointed out: We show that in the present form
the BMW scheme is vulnerable to an attack, which can recover large
parts of the private subgroup chain from the public key.

1 Introduction

During the last years, several proposals have been made to use non-abelian
groups as foundation for public key schemes; however, only few of them
remain unbroken. Interestingly, one of the (conceptual) schemes where still
no successful attack has been published, is more than 10 years old [6]. It is
due to Garzon and Zalcstein and based on the word problem in Grigorchuk
groups. In Section 2 we demonstrate that in its present form this scheme
must be considered as insecure, as it succumbs to an annoyingly simple
attack, which allows to derive an ‘equivalent’ secret key from the public
data alone. Here ‘equivalent’ means, that the recovered key is not necessarily
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2 González Vasco et al.

identical to the one owned by the legitimate recipient, but can nevertheless
be used to decrypt arbitrary ciphertexts encrypted under the public key.

In Section 3 we analyze another interesting conceptual proposal for a
public key scheme that is due to Birget, Magliveras, and Wei [1]. Their
BMW-scheme is based on a special kind of factorizations of finite non-abelian
groups. In contrast to earlier proposals along this line (cf. [7]), here the
group structure is ‘partially destroyed’, and it is interesting to explore to
what extent this approach helps to thwart a successful cryptanalysis. In
this contribution we show that the simple method used in [1] to hide the
secret subgroup chain, is not sufficient yet: We explain, how an attacker can
sometimes derive large parts of the secret data from the public key.

2 A proposal of Garzon and Zalcstein

For a complete description of the cryptosystem from [6], including details
about how to interpret the elements of Grigorchuk groups as permutations
of the infinite complete binary tree, we refer to the original paper. Here we
restrict the description to those aspects necessary for explaining our attack.

2.1 Description of the scheme

First, we recall the following facts:

• Given an infinite ternary sequence χ = (χi)i≥1 over {0, 1, 2}, the Grig-
orchuk group Gχ associated with χ is an infinite 4-generator group,
generated by four involutions a, bχ, cχ, and dχ (the latter three of
which depend on χ).

• If at least two of 0, 1, and 2 repeat infinitely often in χ, then Gχ is
not finitely presentable and has subexponential growth.

• For the values of χ considered in the sequel, one can check efficiently
whether a word w ∈ {a, bχ, cχ, dχ}N represents the identity in Gχ, if
the first dlog2(N)e positions of χ are known.

With this, the Garzon-Zalcstein public key cryptosystem can be sketched as
follows:

Private key: Alice chooses an infinite ternary sequence χ such that both
Gχ is not finitely presentable and the word problem in Gχ can be
solved efficiently. More precisely, her private key is a Turing machine
MGχ solving the word problem in the Grigorchuk group Gχ.

Public key: The corresponding public information consists of a finite sub-
set of relators R of Gχ (i. e., some words in the generators a, bχ, cχ, dχ
that are equal to the identity in Gχ), and two words w0,w1 in the gen-
erators a, bχ, cχ, dχ representing distinct group elements ω0, ω1 ∈ Gχ.
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Encryption: Plaintexts are encrypted bit-wise. To encrypt a single mes-
sage bit b ∈ {0, 1}, Bob starts with the word c = wb and repeatedly
applies some of the public relators R to c, i. e. he inserts words r ∈ R
into c and/or removes occurrences of words in R from c. After having
done this a couple of times (in [6] no precise specification is given here),
he stops and transmits the resulting ciphertext c ∈ {a, bχ, cχ, dχ}∗ to
Alice.

Decryption: To decrypt a ciphertext c ∈ {a, bχ, cχ, dχ}∗ to a plaintext bit
b, Alice uses her secret Turing maching MGχ for checking whether in
Gχ the equality c = ω0 or c = ω1 holds (where c is the element of
Gχ represented by c). Due to the choice of χ, this can be checked
efficiently: If c is the result of an encryption as described above, it is
sufficient to check with MGχ whether w−1

0 c represents the identity in
Gχ.

2.2 Cryptanalysis

In [6] the assumption is adopted that verifying the correctness of a guess for
the first few positions of χ is difficult, because of Alice’s public key revealing
only the finite subset R of relators of (the not finitely presentable group)
Gχ. However, an attacker can exploit that only the public relators R are
used during encryption:

Let N := max{|r| : r ∈ R ∪ {w−1
0 w1}} be the maximum of the lengths

of the ‘relational words’ in Alice’s public key and of the word w−1
0 w1, where

w0, w1 are Alice’s two distinct public words. Then, having in mind a sensible
size of the public key, we must assume that the number B := dlog2Ne is
rather small and that a brute-force search over all 3B words in {0, 1, 2}B
is feasible. Let us denote by χ̄ the finite sequence consisting of the first B
elements of the secret χ. Then, an attacker can use the following strategy:

1. For each possible choice of the first B positions of χ, he can check
whether both each element of R vanishes and w−1

0 w1 does not vanish
in Gχ. By construction, at least one possible choice must satisfy these
conditions (for χ̄ does).

2. Once such a finite sequence is found, he can complete it in an arbitrary
suitable manner (e. g. by appending zeroes) to an infinite ternary
sequence Ψ. The public key depends on χ̄ only, i. e., the public key
could have been derived from Ψ as well as from χ. Thus, a Turing
maching solving the word problem in GΨ now correctly decrypts all
ciphertexts encrypted under Alice’s public key.

Consequently, in its present form, the proposal in [6] must be considered
as insecure. We are not aware of possible modifications of the scheme that
may help to achieve greater cryptographic security, and it remains unclear
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if the complexity of the word problem in Grigorchuk groups can be used for
cryptographic applications.

3 A proposal of Birget, Magliveras, and Wei

Recently, another public key scheme based upon a computational problem
in non-abelian groups has been introduced [1]. In contrast to the above
scheme of Garzon and Zalcstein, the proposal of Birget, Magliveras, and
Wei which we discuss now is based on the use of finite non-abelian groups.
The BMW-scheme is still rather conceptual, and no concrete parameters
have been proposed so far. Thus, our discussion can be understood as an
attempt to recognize certain weak parameter choices.

Similarly, as in the previous section, we recall only those aspects of
BMW, which are relevant for our discussion; a more complete description of
the scheme can be found in the original paper [1].

3.1 Description of the scheme

Analogousy as in the MST1 public key scheme [7]—a group based proposal
of Magliveras, Stinson, and van Trung—the main tool of BMW is a certain
kind of group factorization called logarithmic signature :

Definition 3.1 Let G be a finite group, and A1, . . . , As finite sequences
over G, i. e., Ai = [αi,1, . . . , αi,ri ] with ri ∈ N0 and αi,j ∈ G (1 ≤ j ≤ ri,
1 ≤ i ≤ s). Then the sequence A := [A1, . . . , As] is a logarithmic signature
for G if and only if for each g ∈ G there is a unique factorization

g = αg,1 · . . . · αg,s (3.1)

with αg,i ∈ Ai (1 ≤ i ≤ s).

In BMW, permutation groups along with a special kind of logarithmic sig-
natures are used. Namely, these logarithmic signatures are derived from
a chain of subgroups, and there are efficient algorithms for computing the
factorization (3.1) with respect to such a logarithmic signature (see, for in-
stance, [8]). This is crucial for decrypting ciphertexts in BMW. To illustrate
the construction, assume we are given a permutation group G along with a
chain of subgroups

G = G0 > · · · > Gs+2 = {id} (where s > 2).

Now fix a partition {1, . . . , s + 1} = I ] J , say I = {i1, . . . , ix} (x ≥ 2)
with i1 < · · · < ix and J = {j1, . . . , js+1−x} with j1 < · · · < js+1−x. Then
for each i ∈ I we fix a right transversal Ri of Gi in Gi−1 containing the
identity id, and for each j ∈ J we choose a left transversal Lj of Gj in Gj−1

containing the identity id. That is, the group G can be factored as

G = Lj1Lj2 · · ·Ljs+1−xGs+1Rix · · ·Ri2Ri1 .
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Now we obtain a logarithmic signature A := [A1, . . . , As] for G by setting

• Ak := Ljk (1 ≤ k ≤ s− x),

• As+1−x := Ljs+1−x ·Gs+1,

• Ak := Ris+2−k (s+ 2− x ≤ k ≤ s− 1), and

• As := Ri2 ·Ri1 .

Here, the products Ljs+1−x ·Gs+1 and Ri2 ·Ri1 are actually Kronecker/tensor
products of matrices when we interpret finite sequences as single-row ma-
trices; hence, As+1−x and As are again finite (ordered) sequences. If the
subgroup chain and the sets I, J along with the respective transversals are
known, then factoring a permutation g ∈ G with respect to such a logarith-
mic signature provides no algorithmic difficulties. Basically, in BMW the
mentioned parameters form the

Private key: A subgroup chain with transversals as described—the addi-
tional requirements imposed in [1] are not important for our discussion.
Also, variations are possible: The subgroup Gs+1 can be melted with a
right instead of a left transversal, and instead of melting the ‘last’ two
transversals Ri2 , Ri1 we could melt the ‘first’ ones Lj1 , Lj2 . For the
sequel, it is sufficient to assume that—up to two exceptions—each Ak
is a transversal as described above; one ‘exceptional’ block is obtained
by melting Gs+1 with a transversal to its left or right, and the other
‘exceptional’ block is A1 = Lj1 · Lj2 or As = Ri2 · Ri1 (depending on
whether j1 = 1 or i1 = 1).

Public key: With the exception of a single block, the complete logarith-
mic signature A for G is made public. Namely, the public key is the
sequence B := [B1, . . . , Bs] where Bk := Ak for all but one value of k:
Instead of the block obtained by melting Gs+1 with the transversal to
its left or right, only the respective transversal is published. Thus, for
As+1−x = Ljs+1−x · Gs+1 we set Bs+1−x := Ljs+1−x , and analogously
when Gs+1 has been melted with a right transversal. In summary,
the subgroup Gs+1 is ‘cut out’, which in particular means that only a
subset Γ of the elements of G can be factored with respect to B.

Encryption: Plaintexts are regarded as elements of M := Z|B1|×· · ·×Z|Bs|,
where |Bk| denotes the size of Bk. Thus, a plaintext m ∈ M can
be taken for a pointer that in each block Bk determines a unique
element βk,m ∈ Bk (1 ≤ k ≤ s). Now, the ciphertext computes to
c := β1,m · . . . · βs,m ∈ Γ ⊆ G.

Decryption: Knowing the subgroup chain G = G0 > · · · > Gs+2 = {id},
as well as I, J , and A, factoring a ciphertext c with respect to B
provides no algorithmic difficulties.
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3.2 An attack

As already pointed out in [1], the removal of the subgroup Gs+1 in the public
key is crucial: Assume we had As+1−x = Ljs+1−x · Gs+1 and Bs+1−x =
Ljs+1−x . Then the attacker would know that the public key contains two
consecutive blocks Bl, Bl+1 with Bl ·Bl+1 being a group (namely Bl ·Bl+1 =
Gs−1). For permutation groups, we can (with some luck) efficiently locate
these two blocks by simply computing the size of the group generated by
the elements in consecutive blocks. Once Bl and Bl+1 are identified, the
attacker knows that either Bl−1 ·BlBl+1 or BlBl+1 ·Bl+2 is a group, which
can again be checked efficiently by computing the size of the group spanned
by the elements in these three blocks. Continuing in this manner, large parts
of the secret sets I, J , and the subgroup chain can be revealed. To avoid this
attack, the group Gs+1 is not part of the public key. However, for certain
groups G this might not be sufficient for hiding Gs+1 from the attacker, as
quite some information on Gs+1 is public. Namely, if the attacker learns G,
then he can try to exploit that

• |Gs+1| = |G|/
∏s
k=1 |Bk|

• Gs+1 ∩Bk = {id} for k = 1, . . . , s

• For some k ∈ {1, . . . , s}, BkGs+1 or Gs+1Bk is a group.

It can well be the case that this information suffices for identifying the group
Gs+1 and thus the attack just described applies. But even if Gs+1 cannot
be found, an adaption of the attack may work:

When dealing with permutation groups of degree n, a subgroup chain
can be no longer than d3n/2e − b(n) − 1 where b(n) is the number of 1s
in the binary representation of n [4]. Thus, having in mind practical key
sizes, we must assume that the attacker can guess the position of the block
that contains the (right or left) transversal of Gs+1 in Gs. Actually, we can
simply apply the subsequently described steps to all blocks in parallel and
discard all those where an ‘impossible situation’ is encountered.

Say, the block with the transversal of Gs+1 in Gs is Bs+1−x = Ljs+1−x .
Depending on the (left) transversal used, now it may well happen that
Ljs+1−x generates Gs. Clearly, we cannot expect this to happen in all cases.
Nevertheless, it seems plausible to assume that this situation occurs ‘too
often’, when the block Bs+1−x has not specifically been designed to dodge
this problem: Permutation groups require quite ‘few’ generators. Namely,
from [9] we know that a permutation group of degree n > 3 can always be
generated with ≤ bn/2c generators, and for certain groups (like the sym-
metric ones) this bound is far from tight. Further on, in [5] it is shown that
if β > 1/2 and n is large enough, then bβnc randomly chosen elements of a
permutation group of degree n almost certainly form a system of generators.
On the one hand, modeling the transversals in the public key of BMW as
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randomly chosen elements is certainly not appropriate; in particular, special
requirements on such a transversal will be imposed. On the other hand,
it is interesting to note that the requirement of using anticlosed transver-
sals (considered in [1]) supports the attacker in the sense, that it prohibits
‘superfluous’ generators:

Definition 3.2 A subset S of a group G is anticlosed in G if and only if
u, v ∈ S \ {1} implies that uv 6∈ S \ {1}.

Of course, once we know the subgroup Gs, we can proceed exactly as
described in the first paragraph of this section to recover a large part of
the secret subgroup chain and the secret sets I, J . Moreover, there is a
trivial extension of this approach: If the public transversal of Gs+1 in Gs
does not generate Gs, it may still happen that two consecutive blocks form
a generating system for Gs−1. Thus in this case much of the secret subgroup
chain can leak, too.

As in [1] no concrete parameter choices are proposed, we illustrate the
above attack with the setting in [1, Example 1]:

Example 3.3 Let G be some permutation group, s := 6, I := {1, 3, 7},
J := {2, 4, 5, 6}, and consider the subgroup chain

G = G0 > G1 > · · · > G6 > G7 > G8 = {id}.

Thus, we have three right transversals R1, R3, R7 and four left transversals
L2, L4, L5, L6, which induce the following factorizations:

G0 = G1R1 G4 = L5G5

G1 = L2G2 G5 = L6G6

G2 = G3R3 G6 = G7R7

G3 = L4G4

Combining these, we obtain

G = (L2((L4(L5(L6(G7R7))))R3))R1

= (L2)(L4)(L5)(L6G7)(R7)(R3R1)
=: A1A2A3A4A5A6.

Basically, from the logarithmic signature [A1, . . . , A6], we now obtain a pub-
lic key for BMW by setting [B1, . . . , B6] := [A1, A2, A3, L6, A5, A6], i. e., the
subgroup G7 is ‘cut out’.

If B5 = R7 happens to form a generating system for G6, and the at-
tacker has (by guessing or exhaustive search) identified this block, then he
can proceed as follows to reveal almost the complete secret subgroup chain:
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1. Compute the size of the subgroups generated by B4G6 and G6B6. Now
check which of B4G6 and G6B6 forms a group by comparing the re-
spective sizes of the generated subgroups to that of B4G6 resp. G6B6.
This should reveal the left transversal B4 = L6 of G6 in G5, so that
the attacker knows a generating system for G5 = 〈B4, B5〉.

2. Analogously, by checking which of B3G5 and G5B6 is a subgroup, the
attacker should identify the left transversal L5 of G5 in G4.

3. Next, by checking which of B2G4 and G4B6 is a subgroup, finding the
left transversal L4 of G4 in G3 should be possible.

Now we expect that neither B1G3 nor G3B6 is a subgroup, and the above
approach gets ‘stuck’. With some luck, an exhaustive search over the subsets
of B6 allows to recover R3—and thereafter L2 and R1. But even if this is
not possible, a significant part of the secret key has leaked.

To hamper cryptanalysis, [1] proposes to impose additional requirements
on the public blocks. For this aim, the notion of anticlosedness (see Defi-
nition 3.2) is introduced, and in the next section, we want to look at this
concept in more detail.

3.3 On using anticlosed blocks

When constructing a logarithmic signature by simply juxtaposing left or
right transversals along a subgroup chain, there is one block whose elements
form a group. As factoring elements with respect to such an exact transversal
logarithmic signature can be done efficiently, it is intuitively desirable that
the public key B is ‘as far away as possible’ from a transversal logarithmic
signature. This problem is well-known from the MST1 public key cryptosys-
tem, and one may ask how to recognize ‘good’ public keys, where effectively
factoring group elements with respect to the public blocks is algorithmically
hard.

As a possible criterion, in [7] the notion of being totally-non-transversal
has been introduced. However, in [2] it has been proven that a logarithmic
signature A for a permutation group G can be both totally-non-transversal
and tame, i. e., allow for a polynomial time algorithm for factoring elements
of G with respect to A. In fact, the next proposition illustrates with two
examples, that for anticlosedness the situation is similar:

Proposition 3.4 Let G be a symmetric group or a cyclic 2-group. Then
there exists an exact transversal logarithmic signature A = [A1, . . . , As] for
G such that each block Ai (1 ≤ i ≤ s) is anticlosed in G.

Proof. For the symmetric group Sn we can use the exact transversal loga-
rithmic signature A := [A2, . . . , An] where

Am := [(m, 1), (m, 2), . . . , (m,m− 1), id] (2 ≤ m ≤ n)
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is a right transversal of Sm−1 in Sm. Verifying anticlosedness is straight-
forward: Let (m, i1), (m, i2) ∈ Am \ {id} with 1 ≤ i1, i2 ≤ m − 1. Then
(m, i1)(m, i2) ∈ {(m, i2, i1), id}, and therefore (m, i1)(m, i2) 6∈ Am \ {id}.

Now let G ' Z/2nZ be a(n additively written) cyclic 2-group. W. l. o. g.
we may assume n > 0. Then from the subgroup chain

G = 〈20〉︸︷︷︸
'Z/2nZ

> 〈21〉︸︷︷︸
'Z/2n−1Z

> · · · > 〈2n−1〉︸ ︷︷ ︸
'Z/21Z

> {0}

we derive the following exact transversal logarithmic signature for G:

A := [[0, 20], [0, 21], . . . , [0, 2n−1]]

For violating anticlosedness, the relation 2m + 2m ≡ 2m mod 2n had to
hold for some m ∈ {0, . . . , n− 1}. In other words, we had 2n | 2m for some
m ∈ {0, . . . , n− 1}, which is impossible. �

It should be stressed that this proposition does not imply, that factoring
with respect to a logarithmic signature is easy, provided that all its blocks
are anticlosed. However, it illustrates that the property of being comprised
of anticlosed blocks does not imply that a logarithmic signature is ‘far from
being transversal’. It would be interesting to know whether there is a family
of finite groups where

1. logarithmic signatures comprised of anticlosed blocks can be computed
efficiently, and

2. only a negligible fraction of these logarithmic signatures is tame.

Such a family could provide a starting point for building a key generation
procedure for a secure MST1- or BMW-like scheme. At the moment, it
remains unclear whether it is possible to use logarithmic signatures as a
foundation of a practical and secure public key scheme. In particular, our
discussion illustrates some obstacles which have to be taken into account
when trying to derive secure instances of the BMW-scheme proposed in [1].

4 Conclusion

The above cryptanalysis of the Grigorchuk group based public key cryptosys-
tem from [6] shows that, in its present form, this scheme must be considered
as insecure: The described attack allows an attacker to decrypt arbitrary
ciphertexts encrypted under the public key. Nonetheless, it is an inspiring
research topic to try to exploit well studied instances of the word problem
in finitely presented groups for cryptographic applications.

Moreover, we have pointed out a potential security problem in the BMW
scheme proposed in [1]. While the described attack does not ‘break’ the
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general scheme, it points out new obstacles that have to be dealt with for
deriving concrete instances of BMW. It remains an interesting challenge to
explore the potential of logarithmic signatures for finite groups as a basis
for practical and secure public key encryption schemes.
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