142

Current Research Projects

it 3/2011

Software Security in Virtualized

Meter Example

nfrastructures — The Smart

Software-Sicherheit in virtualisierten Infrastrukturen — Das Beispiel der intelligenten

Stromzahler

Bernhard Beckert, Dennis Hofheinz, Jérn Miiller-Quade, Alexander Pretschner, Gregor Snelting, Karlsruher

Institut fiir Technologie (KIT)

Summary Future infrastructures for energy, traffic, and com-
puting will be virtualized: they will consist of decentralized,
self-organizing, dynamically adaptive, and open collections of
physical resources such as virtual power plants or computing
clouds. Challenges to software dependability, in particular soft-
ware security will be enormous. We use the example of smart
power meters to discuss advanced technologies for the protection
of integrity and confidentiality of software and data in virtualized
infrastructures. We show that approaches based on homomor-
phic encryption, proof-carrying code, information flow control,
deductive verification, and runtime verification are promising
candidates for providing solutions to a plethora of representative
challenges in the domain of virtualized infrastructures. »»»
Zusammenfassung Zukinftige Infrastrukturen fir Energie,

Verkehr und Computing werden virtualisiert sein: sie wer-
den aus dezentralisierten, selbstorganisierenden, dynamisch
adaptiven und offenen Verbanden physischer Resourcen wie
etwa virtuelle Kraftwerke oder Computing Clouds bestehen.
Die Herausforderungen an Verlasslichkeit der Software, ins-
besondere an Software-Sicherheit werden enorm sein. Wir
diskutieren am Beispiel intelligenter Stromzahler zukiinftige
Technologien zum Schutz von Integritdt und Vertraulichkeit
von Software und Daten in virtualisierten Infrastrukturen.
Wir zeigen, dass homomorphe Kryptographie, beweistragender
Code, Informationsflusskontrolle, deduktive Verifikation und
Laufzeitverifikation ein hohes Potential haben, Lésungen fir
eine Flle von Herausforderungen im Bereich der virtualisierten
Infrastrukturen zu liefern.

Keywords D [Software]; virtualized infrastructures, e-energy, smart meters, software security, homomorphic encryption,
proof-carrying code, information flow control, deductive verification, runtime verification »»» Schlagworter Virtualisierte
Infrastrukturen, E-Energy, intelligente Stromzahler, Software-Sicherheit, homomorphe Verschliisselung, beweistragender Code,
Informationsflusskontrolle, deduktive Verifikation, Laufzeitverifikation

1 Introduction

Future infrastructures for energy, traffic, and computing
will be virtualized, and will depend on software to an
unprecedented amount. Virtual power plants will con-
sist of dynamically adaptive, heterogeneous collections of
physical power sources such as wind power generators
or photovoltaic panels. Traffic management will rely on

it — Information Technology 53 (2011) 3 / DOI 10.1524/itit.2011.0636

large-scale simulation and multi-modal route planning;
future trips will happen in a virtual environment before
they take place in the physical world. Cloud computing —
the prototype of a virtualized infrastructure — provides
computing power through Internet outlets.

Hence, future infrastructures will depend on software
to an amount previously unimaginable. And while the

© Oldenbourg Wissenschaftsverlag

“Jap|oy JybuAdos ayy Aq uoissiwiad uapLim yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad unoK 1oy ajaie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoud si ajonle

state of the art perhaps allows to develop the necessary
software functionality, virtualization generates software
dependability problems, which cannot be handled by
today’s software technology. Dependable functionality,
communication, fault tolerance, adaptivity, safety, se-
curity, and privacy will not only require the adaption
of known dependability techniques, but also the devel-
opment of new ones. For example, model checking or
verification have never been applied to self-organizing
software driving virtual power plants.

Software security will pose a particular challenge in
virtualized infrastructures. Recent attacks, e. g., based on
the Stuxnet worm, on SCADA (Supervisory Control and
Data Acquisition) systems controlling industrial infra-
structure demonstrate that even today, security is fragile.
This problem will multiply in virtualized infrastructures.
Thus, integrity will be essential, meaning that input, out-
put, and critical computations cannot be manipulated
from outside. For the protection of privacy, confiden-
tiality will be essential (meaning that private or secret
data cannot flow to unauthorized recipients), as well
as appropriate filtering and aggregation of data. Clas-
sical IT security techniques such as access control and
encryption will need additional breakthroughs, such as
homomorphic cryptography, to be useful in energy or
traffic infrastructures. New techniques such as semantics-
based software security analysis and information flow
control will be needed to master integrity and confiden-
tiality challenges.

In this overview article, we investigate software secu-
rity problems in future virtualized infrastructures; using
smart metering as an example. We demonstrate how
advanced security technologies will be able to protect
integrity and privacy. We concentrate on particularly
promising techniques, namely homomorphic cryptogra-
phy, information flow control, deductive verification,
proof-carrying code, and runtime verification. We in-
dicate how these techniques can be used to protect other
components in critical infrastructure, such as SCADA sys-
tems. Note that we present a design for a future security
toolbox, but not (yet) specific results.

2 Smart Metering Systems

2.1 Background

Smart metering technology makes it possible to continu-
ously measure the consumption of energy, gas, and water.
Because the measuring devices are directly connected to
a respective IT infrastructure, it is possible to transmit
the measurement data in varying intervals to a piece of
data administration software (“cockpit”) which runs on
a PC in the respective household or company, or directly
to the energy provider or billing company.

The advantages are considered manifold: there is no
need for physical people to read the meters; households
can themselves detect a potential waste of energy by
continuously monitoring consumption; fine-grained con-
sumption information allows energy providers to tune

the load balancing of their networks; since resources cost
differently at different times, households can automati-
cally switch on, say, washing machines at the cheapest
moment of the night.

Whether or not all these anticipated advantages will
become reality is not the subject of this paper: for
instance, we do not discuss if the energy used for a contin-
uously running DSL modem does not outweigh the saved
energy (which is estimated to not exceed ca. Euro 3.00
per month per household); nor do we discuss if load
balancing should continue to be done at the street level;
nor do we touch the legal perspective (see, e.g., [15]).

We are convinced, however, that smart metering sys-
tems are an excellent example for the convergence of
business and embedded IT and therefore are highly
representative of tomorrow’s virtualized infrastructures.
Moreover, it is a fact that there is a politically motivated
desire to install these devices on a large scale; that in terms
of smart meters for electricity, a regulation (2006/32/EC)
requires new houses to be equipped with respective basic
technology for energy efficiency reasons as of January
2010, and that consumption data must be transmit-
ted electronically in standardized form since April 2010;
that, following European legislation, the German Energy
Industry Act (Energiewirtschaftsgesetz, EnWG) requires
the unbundling of energy providers, measurement de-
vice operators, and device readers; and that major energy
providers are running huge sets of test installations today.

On the other hand, the economic benefits of rolling
out smart metering technology remains to be proved;
information security problems that are concerned with
the measuring devices as well as with communication of
the measurement data have not fully been solved yet; and
it is also true that the population is becoming increasingly
aware of the potential privacy issues that emerge from this
innovative technology, as highlighted by the example of
the 2008 Big Brother award to Yello Strom for their smart
metering technology.

2.2 Architecture of a Typical Smart Metering System
Energy is measured in the measuring device, which sends
the data to a data concentrator (“MUC”); both de-
vices together are usually called the smart meter. Data
administration software is used to check the current con-
sumption, to build personal profiles, and to contrast these
personal profiles to other profiles (see below). In order
to reduce the attack surface, it seems of course advisable
to physically implement data management and control of
appliances in separate devices.

Text messaging and email services are being imple-
mented that warn members of a household if they have
likely forgotten to switch off, say, an oven. Metering data
can be sent from the data administration software to
many other IT systems, including Web 2.0 services such
as social networks. Conversely, parts of the data admin
software can be implemented in the cloud so that access
via external PCs becomes possible.

J1apjoy ybuAdoo ayy Aq uoissiwiad uapLm ypm pamojje Ajuo si asn J1ayjQ "Ajuo asn jeuosiad inok oy ajaipe siy} aynquisip pue £doa Aew no A “me| JybriAdoos uewas Aq pajoajoid si ajonle

143

144

Current Research Projects

: Appliance 3 Appliance 4 |€
Appliance 2 <

| Appliance 1 I

[Mobile Phone/PDA |
A

N

_| Powerline
“| adaptor

(A)DSL modem

Customer

\ 4

>[Date Agmin sw |
>{ Data Admin SW

Energy Provider/
Billing Company

Data Admin
Backend

y

e H—] Gateway |

3rd Parties

| Call Center |
-I Text Msg Service |(—

A 4

>| External IT device |

—>| +Web 2.0 Forum“ |

I Appliance Manufacturers |

Figure 1 Smart metering systems: Bird’s eye view.

When data is transmitted from the household to
the energy provider or the respective billing company,
a plethora of IT systems enters the game. These include
gateways for the metering data, a web back-end for the
end customer’s data administration software that, among
other things, can provide profiling data of comparable
households, billing services, CRM systems, the imple-
mentation of sending the above warning text messages
or emails, etc. Finally, it is perfectly conceivable that in
case customers agree, their data is sent to third parties,
including appliance vendors, call centers, advertisement
providers, marketing companies, etc.

A typical architecture of the overall system — of which
every energy provider of course offers differing instanti-
ations — very roughly looks as depicted in Fig. 1 (boxes
are components, arrows represent data flows).

2.3 Trusted Device
For security reasons, certain components of the smart
metering system must be physically protected from
manipulation. In particular, the measuring device it-
self must be protected from physical manipulation
to ensure that the measurement corresponds to the
true electricity consumption; there must be a trusted
device providing certain (software) functionality, includ-
ing encryption, which is protected from manipulation
of its software; finally, the devices that physically
switch appliances must be protected from manipula-
tions.

In our architecture, we assume that the smart meter
(i. e., the measuring device and the MUC) and the trusted

device are the same logical component. Software with dif-
ferent trust levels runs on the trusted device (core, kernel,
application). The core cannot be updated remotely. The
kernel can be updated but only from trusted sources.
The applications can come from the same source as the
cockpit software.

3 Challenges

In a smart metering environment as described above,
a number of challenges arise, both related to the integrity
and confidentiality of software and data. Concretely, we
can isolate several desirable properties of a smart metering
system.

First of all, a customer might be interested in pro-
tecting his or her detailed power consumption traces:
Individual electrical devices (ovens, hair dryers, TV sets,
etc.) have characteristic power consumption patterns
which make it possible to even identify single appli-
ances [18]. Hence, detailed power traces are useful for
marketing purposes. For instance, heavy users of kitchen
devices are more likely to be susceptible to food-related
advertisements. Heavy computer users might be more
susceptible to advertisements for microelectronics or
computer games.

One could also analyse power consumption patterns to
identify individuals from certain groups (e.g., students,
jobless persons, night-shift workers, etc.). Besides, power
traces can be used to determine, e.g., how many people
live in the household, when the household members are
on vacation, or even when they leave the house. In prin-
ciple, this data is useful for burglars.

“Jap|oy JybuAdos ayy Aq uoissiwiad uapLim yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad unoK 1oy ajaie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoud si ajonle

Hence, to protect the customer’s privacy, detailed
power consumption traces should be protected [18]. Of
course, on the other hand, the energy provider has a legit-
imate interest in using power consumption information
for billing and to predict power demands and adjust its
infrastructure.

Furthermore, the integrity of the system and, in par-
ticular, the trusted device must be protected from attacks.
For this, the design and the correct implementation of
the software in the trusted device play a central role.
As a smart meter will be installed in households for
quite some time before they are exchanged, it should be
possible to remotely update the software on the trusted
device. It is a difficult challenge to nevertheless ensure
integrity. The core of the trusted device, which cannot be
updated itself, has to provide this assurance.

Measurements exist both in raw and in aggregated
form. These aggregations pertain to the dimensions of
both time (seconds, hours, days, months) and space
(one appliance, a household, a house, a block, a district,
a city). Among other things, whenever these aggrega-
tions are used for control purposes, e.g., load balancing,
their integrity and authenticity become crucial proper-
ties. Otherwise, a possible attack consists in tricking an
energy provider into thinking that either too much or
too little energy will be needed at a specified moment
in time, with potentially hazardous consequences for the
infrastructure.

Finally, one has to ensure that control signals are not
tampered with. Even if they are generated by the cockpit
or the user via PDA they cannot be trusted completely.
Terrorists could start a distributed denial-of-service at-
tack or worse if they can install malware on the cockpit
and thus switch on a large number of appliances at the
same time, producing a surge in energy consumption and
system breakdown. The only protection is that switch-
ing is done by the trusted device (possibly requiring
authorisation from the provider for certain changes in
consumption).

4 Homomorphic Encryption

In this section, we will outline techniques to securely and
efficiently aggregate data using homomorphic encryption.
This will in particular be useful to our secure metering use
case. However, of course the techniques will be versatile
enough for more general applications.

In smart metering, we will only need to operate in
a very specific way on encrypted data. More specifically,
we will only need an additively homomorphic encryption
scheme, which allows to compute the encryption of the
sum of several encrypted plaintexts.

Paillier’s encryption scheme [19] is an example of an
additively homomorphic encryption scheme. A distin-
guishing feature of Paillier’s encryption scheme is the
(additively) homomorphic property: we have

Enc(pk, m;) - Enc(pk, m,) = Enc(pk, my + m;)

4.1 Applications to Smart Metering

In a smart metering system, the aggregation of measure-
ments before transmitting them to the energy provider,
will ensure confidentiality of the customer’s detailed
power traces. Aggregation can happen in two dimensions:
over time (i.e., we can aggregate measurements from
throughout the week), or space (i.e., we can aggregate
from several customers). In both cases, only an additively
homomorphic encryption scheme is necessary. Garcia
and Jacobs [10] explain how the secure aggregation of
measurements across several customers can be performed
using an additively homomorphic encryption scheme
such as Paillier’s scheme (other approaches in the con-
text of billing and load distribution also exist [4;5;20]).
Concretely, the idea is as follows: Each customer i per-
forms his or her own measurement m;. The goal is to
compute the aggregation), m; of several measurements
from several customers. Each customer possesses a Pail-
lier public/secret key pair, as does the energy provider.
All customers engage in an efficient multi-party protocol
to compute an encryption of the aggregation), m; of
measurements under the energy provider’s public key.
This requires only a link from each customer to the en-
ergy provider. In the end, the energy provider decrypts
the aggregated data and only learns the aggregation of
measurements, while no customer learns anything about
other customers.

This approach of secure aggregation demonstrates the
applicability of (limited) homomorphic encryption to the
smart metering setting. In particular, cryptography can be
used to simultaneously achieve seemingly contradictory
requirements (the energy provider’s desire to gather in-
formation vs. the customer’s privacy) [10]. Our goal is
to extend these ideas for the use in a practical smart
metering system. In particular, it is a unique challenge
to combine aggregation and homomorphic cryptography
with digital signatures (which are an important instru-
ment for integrity of smart meters).

4.2 Fully Homomorphic Encryption

Essentially, additively homomorphic encryption schemes
only allow the summation (and hence averaging) of en-
crypted data. This property is useful in the smart metering
example, and can be efficiently achieved, e. g., using Pail-
lier’s encryption scheme. However, certain scenarios call
for more general homomorphic properties of encryption
schemes.

For instance, a fully homomorphic encryption (FHE)
scheme allows arbitrary computations on encrypted
data. Until very recently, fully homomorphic encryption
schemes were actually deemed impossible. However, in
a breakthrough work, in 2008 Craig Gentry from the
IBM T.J. Watson research center finally succeeded in
constructing the first FHE scheme [11].

Fully homomorphic encryption might seem like the
obvious way to achieve secure cloud computing: instead
of sending all data in plain into the cloud to outsource

J1apjoy ybuAdoo ayy Aq uoissiwiad uapLm ypm pamojje Ajuo si asn J1ayjQ "Ajuo asn jeuosiad inok oy ajaipe siy} aynquisip pue £doa Aew no A “me| JybriAdoos uewas Aq pajoajoid si ajonle

145

146

Current Research Projects

computations on that data, encrypt all data, and let the
cloud compute on this encrypted data. The encrypted
result can then be sent back to the customer, who pos-
sesses the secret key to decrypt the result. But as of today,
FHE schemes are far too inefficient to be directly useful
in the cloud computing setting. That is, computing on
encrypted data is far more expensive than computing
on unencrypted data. Current implementations of FHE
schemes may require several seconds to perform a single
logical operation on encrypted data.

Hence, while FHE schemes offer vast possibilities,
additional research is required to fit FHE schemes to
applications. One current effort in the cryptographic
community is thus speeding up current FHE schemes
through algorithmic improvements. Furthermore, in sev-
eral applications (e.g., secure multiparty computations),
FHE schemes can be supported by existing solutions, e. g.,
secure hardware. We can hope to get “the best of both
worlds,” i. e., both the functionality of FHE schemes and
the efficiency of existing solutions.

5 Language-Based Security

Traditional software security mechanisms, such as ac-
cess control, certifications of origin, protocol verification,
intrusion detection, will of course be necessary in virtual-
ized infrastructures, but will not be sufficient. For smart
metering, integrity will be essential, meaning that critical
computations cannot be manipulated from outside. For
privacy, confidentiality will be essential, meaning that pri-
vate data cannot flow to public ports.

Research in software security has developed techniques
such as proof-carrying code and information flow control
(IEC), which analyze the true semantics of software, and
provide guarantees about software behavior and not just
its “packaging”. As such analyses examine the program
source code, they are called “language-based”. Experi-
mental security infrastructures based on these techniques
have been developed in large European projects [7]. Mod-
ern program analysis based on interprocedural dataflow
analysis, abstract interpretation, or model checking has
developed powerful tools for discovering anomalies in
software. IBM developed an IFC tool which can ana-
lyse large programs written in full Java [8]. New results
concerning central notions such as noninterference and
declassification are pursued in the new DFG priority
program “Reliably Secure Software Systems” (RS3). RS3
integrates software security with advanced verification
and program analysis.

5.1 Proof-Carrying Code

Proof-carrying code comes with an (encoded) formal
proof of some desirable property. Properties might be
functional, safety, or security related. Proofs are written
in some formal logic, and refer to the program text of
the software (e. g., loop invariants in Hoare logic). Upon
installation, the proof must automatically be checked for
correctness, and it must be checked that the proof does

indeed correspond to the software component. Proof-
carrying code is based on the fact that checking a proof
can be done efficiently, in contrast to the expensive (man-
ual) construction of the proof. In the literature, proof
checkers have been described in detail. The European
project Mobius has developed a security infrastructure
based on proof-carrying code, which is used for Java
code in mobile devices.

In the smart meter, proof-carrying code could be very
helpful once new software versions are downloaded to the
smart meter. Integrity and privacy properties must be for-
malized when developing the software to be downloaded,
and corresponding formal proofs be constructed (this will
be a nontrivial task). The checker is based on theorem
prover technology, and must be part of the trusted device
(see Sect. 2.3). Upon download, the checker will guaran-
tee functionality and security, or — if proof checking fails —
it will disallow installation.

Note that this approach assumes a fixed (formal) spe-
cification of the functionality to be downloaded. If the
specification changes, the checker can still check whether
the code satisfies it, but cannot check the validity of the
new specification. In such cases, the formal specification
must be supplied or downloaded independently and rely
on certification keys.

5.2 Information Flow Control

As an alternative to proof-carrying code, new IFC tech-
niques can be applied to guarantee integrity and privacy.
Data which is marked confidential (e.g., power con-
sumption traces) must not flow to public ports (e.g.,
the gateway of the energy provider), or perhaps only in
aggregated form as discussed in Sect. 4. Similarly, criti-
cal computations (e.g., appliance switching commands)
must not be manipulated from outside (e.g., by the
billing company — but perhaps manipulation from the
“cockpit” is allowed).

Technically, information flow control is difficult, in
particular for realistic programs (e. g., 100 KLOC) written
in realistic languages (e.g., full Java byte code). Con-
currency and multi-threading make information flow
particular demanding. The theoretical foundations, such
as noninterference and declassification, are still subject
to ongoing research. The Mobius project delivered the
first information flow infrastructure for Java Card appli-
cations on mobile devices; it is based on security type
systems. In Germany, RS3 integrates information flow
control with modern program analysis and verification
technology.

A precise IFC analysis must exploit flow-sensitive,
object-sensitive, and context-sensitive information as
computed by interprocedural dataflow analysis. The re-
sults of such an analysis can be encoded in form of
a program dependency graph, as indicated in Fig. 2. With-
out going into details, note that information can flow in
the program only along paths in the dependency graph.
If there is no path, it is guaranteed that there is no (ille-

“Jap|oy JybuAdos ayy Aq uoissiwiad uapLim yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad unoK 1oy ajaie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoud si ajonle

class PasswordFile {

private String[] names:
/# P: confidential =/
private String|[] passwords;
/* P: secret*/
// Pre:all strings are interned
public boolean check(String user ,
String password /*P: confidentialx/) {
boolean match = false;
ery {
for (int i=0; i<names.length; i++4) {
if (names|i]==user
&& passwords[i]——password) {
match = true;
break ;
1
}

}

catch (NullPointerException e) {}
cateh (IndexOutOfBoundsException e) {};
return match ; /* R: publics/
}

H

Figure2 A simple Java password checker and its program dependency graph (without exceptions) with computed security levels (white = public,
grey = confidential, dark = secret). The program contains a security leak showing up as a level conflict in the return node (upper right).

gal) flow of information. This fundamental property (for
which a machine-checked formal proof exists [22]) makes
dependency graphs so suitable for information flow con-
trol. Note that in the presence of procedures, arrays,
objects, exceptions, etc. the construction of the graph
becomes very complex. Today, two dependency graph
implementations for full Java exist (one, the JOANA tool,
developed at KIT), as well as a commercial implementa-
tion for C/C++, called CodeSurfer. JOANA can handle
full Java bytecode and scales up to 50 kLOC. Full details
can be found in [12;13].

For smart meters, IFC, together with other program
analysis methods (see e.g. [21]), can guarantee that in-
tegrity of the trusted device cannot be broken by software
attacks; which is essential for dependable cryptography
and proof checking. Information flow control can also
guarantee that household appliances cannot be controlled
directly by external software, thus protecting safety and
integrity of the appliances. Information flow control will
guarantee privacy protection by introducing appropriate
security levels for secret, encrypted, aggregated, and pub-
lic data and analysing the information flow for all such
data in the smart meter and the cockpit. Analysis must
carefully introduce declassification [17], e. g., at aggrega-
tion points.

6 Deductive Program Verification
Functional correctness of the trusted device’s kernel is
so central for integrity of the smart metering system
that a formal verification is certainly justified. Formal
verification is needed in particular for the hardware
interface (measuring device and appliance switching),
cryptographic services, the proof checker built into the
trusted device, information flow control implementa-
tions, and communication/authentification services.
Fortunately, program verification today can be ap-
plied to real-world software. The Verisoft XT project
showed that verifying an operating system micro kernel
is feasible [3]. It verified properties of SYSGO’s PikeOS,
which may very well serve as the basis for implement-

ing a trusted device kernel for an advanced smart meter
implementation. Another spectacular verification is the
L4.verified project [6]. Such achievements clearly demon-
strate that verification of the trusted device is indeed
possible.

Besides guaranteeing functional correctness, verifica-
tion can be used to formulate information-flow problems
as proof obligations in program logics. We can leverage
these advances together with our own experience in for-
mal methods for functional properties in order to specify
and verify information flow properties.

In the simplest case, a confidentiality policy can be
formalized as non-interference and described in terms
of an indistinguishability relation on states. That is, two
program states are indistinguishable for L if they agree on
values of L variables. The non-interference property says
that any two runs of a program starting from two initial
states indistinguishable for L, yield two final states that
are also indistinguishable for L variables.

In a smart-metering system, more complex properties
such as controlled information release need to be assured.
We plan to define syntax and semantics of a specification
language for information-flow properties at the level of
(Java) programs. The goal is a language that is expres-
sive enough to allow security requirements at the system
level to be easily and flexibly broken down into program
level requirements. Further, we will design and imple-
ment a system for verifying programs annotated with
security properties and specifications. More specifically,
we will be concerned with the rule-based generation of
first-order verification conditions from annotated Java
programs. The technological basis will be the KeY system
(co-developed at KIT) [2].

Our project is based on recent advances in using pro-
gram logics (such as Hoare Logic or Dynamic Logic)
for the specification and verification of information-flow
properties at code level. Using program logics, non-
interference can be directly formalized; or it can be trans-
lated into dependence properties, which in turn can be
formalized in program logics. Non-interference can also

J1apjoy ybuAdoo ayy Aq uoissiwiad uapLm ypm pamojje Ajuo si asn J1ayjQ "Ajuo asn jeuosiad inok oy ajaipe siy} aynquisip pue £doa Aew no A “me| JybriAdoos uewas Aq pajoajoid si ajonle

147

148

Current Research Projects

be translated into proof obligations that can — in princi-
ple — be handled by unmodified existing program verifi-
cation tools using a technique called self-composition [1].

We also plan to adapt the concept of ownership to the
verification of information-flow properties. This concept
has been developed in the context of deductive verifica-
tion of functional properties to specify that complex data
structures are not changed in unexpected ways (e. g. [16]).
For information-flow properties, ownership has to be
adapted so that one can specify that data structures are
not read in an unintended way.

7 Runtime Verification

The system architecture in Fig. 1 depicts several data flows
some of which are potentially privacy-sensitive and de-
serve protection. The data types in question include raw
sensor data, profiles, and customer master data, but also
traffic data that is created whenever the customer in-
teracts with any other of the various stakeholders. The
problem, then, is to make sure that these different kinds
of data are used w.r.t. laws and regulations, but also
w. 1. t. customer-defined requirements.

As an example, data is collected by the smart meter-
ing device and sent to the customer’s data management
system on a per-second basis, and to the frontend of the
energy provider on a 15-minutes basis. The data man-
agement software computes profiles, deltas with other
people’s profiles and historical data, and displays the re-
sult of these computations in graphical form. Because
the customer has provided his consent, this fine-grained
measurement data is sent to a vendor of appliances who
can recommend some energy class A fridge. At the same
time, the customer may not fully understand his monthly
bill and contact a call center which, in turn, has access to
a plethora of different kinds of data. In this setting, there
are different kinds of data in different representations on
different machines in different governance (and liability
domains). The problem then is, how can this data be
controlled. This is a real problem: Among other things,
only recently, a variety of Android mobile phone applica-
tions — that could be part of the smart metering system —
have been shown to disclose location information to ad-
vertisement servers or SIM and phone numbers to other
stakeholders without explicitly asking for the user’s con-
sent [9].

Roughly speaking, runtime verification denotes deci-
sion procedures for whether a future or past temporal
logic formula is satisfied, open, or violated for a finite
prefix of a possibly infinite trace of (sets of) events. As
such, runtime verification is, in contrast to model check-
ing or deductive theorem proving, a technique that is
solely used dynamically. Statements on the truth value of
a formula are hence made for one given trace and one
moment in time rather than for all traces of the system
under consideration.

Runtime verification is relevant in the context of smart
metering contexts when it comes to monitoring the usage

of data. Roughly, monitors are implemented that listen to
the events that happen in the system. These events include
the access to possibly sensitive data items, copying these
items, but also deletion requirements. These events hap-
pen at different levels of abstraction, including the level
of machine language, data bases, runtime systems such
as .NET or Java virtual machines, infrastructure applica-
tions such as X11, within applications such as those in
Microsoft Office, etc. For each of these layers, events that
relate to sensitive data items must be observed. This is
done by (automatically) transforming the temporal logic
formulas that specify adequate data usage into respective
monitors at the respective layers of abstraction.

For controlling data usage, a simple temporal logic
with abstractions for limited cardinality constraints is the
Obligation Specification Language, or OSL [14]. Traces
are sequences of sets of events. Then, given an OSL for-
mula ¢ and a trace (prefix) ¢, runtime verification decides
at runtime, for each moment in time #n, whether or not ¢
is true at n (can never be violated in the future), violated
(can never become true in the future), or whether this de-
cision cannot be taken yet. It is possible to automatically
synthesize monitors from policies written in OSL. These
generated monitors allow us to detect runtime violations
of properties like those described in Sect. 3. With minor
extensions, it is in many cases also possible to prevent
a policy violation.

OSL, augmented by constructs to speak of a system’s
data state, enables to specify policies that allow or disallow
the flow of information (1) within one layer of the sys-
tem, (2) across layers of abstraction, and (3) in-between
different systems. This can formally be captured by con-
tainers that may or may not contain specific data items.
Because OSL can be expressed in LTL, it is almost trivial
to automatically derive generic monitors from usage con-
trol policies. In order to be applied to the smart metering
system, we need to connect these generic monitors to the
concrete different subsystems, thus yielding a controlled
system where it is possible to detect or prevent the flow
of data from, say, the data management software, to,
say, a call center. Figure 3 shows an example: the sys-
tem evolves over time. In each step, the mapping from
containers (files or emails or data-base records stored in
one of the subsystems) to data (e.g., usage profiles) may
change. Policies that are transformed into monitors (state
machines) make sure that, at runtime, specific usage pat-
terns or specific mappings from containers to data are
disallowed.

For all the different systems that taken together make
the overall smart metering system, we need to either write
or generate OSL policies to configure the generic run-
time monitors that implement usage control and data
flow detection. Some of the monitors (or submonitors
at one layer of abstraction) are likely to leverage static
results from the work on language-based security and
static verification. Once such a system is in place, we can
provide guarantees in terms of system-wide data flows

“Jap|oy JybuAdos ayy Aq uoissiwiad uapLim yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad unoK 1oy ajaie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoud si ajonle

System trace: from one information state to the next information state (containers mapped to data):

|—{]
s
cl @
a b

2 < L —— - —
C

d4
c3 d5

)

l
by

Violation of the (transition— or usage—based) property (=policy) "ALWAYS(a IMPLIES NOT NEXT b)" is detected as soon as b is executed

Violation of the (state— or data—based) property (=policy) "NEVER d1 and d2 in same container" is detected as soon as a is executed

Monitor for first property:
a

b
NOT a
NOT b

Figure 3 Runtime Verification meets Data Flow Detection.

NOT({d1,d2} IN c1}

in the overall distributed smart metering system, thus
addressing the important privacy challenges described in
Sect. 3.

8 Conclusions
The recent Stuxnet attacks on SCADA systems controlling
industrial plants demonstrate that the software security
risk is high for today’s critical infrastructures. It will be
even higher for tomorrow’s virtualized infrastructures
such as E-Energy, E-Traffic, and Cloud Computing. In
this overview, we have described a mix of techniques
which will reduce security and privacy risks in such in-
frastructures. Concentrating on smart metering, we have
shown:

e Homomorphic encryption schemes, as well as their
combination with authentification methods, allow E-
Energy providers to collect usage profiles in aggregated
form, while customer privacy is still protected.

e Language-based security methods analyse the true se-
mantics of smart metering software, instead of just
providing guarantees about its origin.

e Proof-carrying code allows to securely download
software into the smart meter while checking its func-
tionality. The necessary proof checker (as well as the
encryption software) resides in a trusted device inside
the smart meter.

e Information flow control protects critical computa-
tions, such as control of household appliances, and
discovers privacy leaks. IFC is also used to protect
integrity of the trusted device.

e Deductive verification can guarantee functional cor-
rectness for, e. g., the proof checker and the encryption
software, as well as for the smart meter kernel. Verifi-
cation can as well support IFC.

e Runtime verification can dynamically detect illegal in-
formation flow in case static IFC is not possible or too
imprecise, or system boundaries need to be crossed.

Attacker models, social engineering, and similar aspects

are important as well, but were not discussed here for

Monitor for second property:

{d1,d2} IN c1

Q=R

reasons of space. While we have concentrated on the

smart metering example, let us conclude with an outlook

to how our technology will help to prevent attacks on

SCADA systems such as the recent Stuxnet attacks:

e Stuxnet used stolen certification keys. This highlights
our approach, namely that we need to analyse the
true semantics of a program and not just certify its
origin. Program analysis and IFC are becoming more
powerful every year, and will eventually kill Stuxnet.

e Current SCADA systems lack a trusted device, which
would greatly reduce the risk of infiltration.

e Stuxnet relies on a whole set of zero-day exploits. The
latter are often based on software bugs or attacks such
as buffer overflow attacks. Modern program analysis
has developed powerful tools for finding such anoma-
lies.

e Verification, while expensive, can today formally verify
realistic systems such as SCADA security cores.

e Proof-carrying code techniques prevent downloading
malware, and runtime verification can dynamically
discover illegal information flow.

We do not claim that we can prevent Stuxnet with our

current box of security approaches. But our techniques

will certainly make attacks much more difficult. We thus
plan to implement our approach in a large-scale project,
which aims at critical infrastructures as a whole, and will
support not just smart metering and E-Energy, but also
E-Traffic and Cloud Computing.

References

[1] G. Barthe, P.R. D’Argenio, and T. Rezk. Secure information flow
by self-composition. In: 17th IEEE Computer Security Foundations
Workshop (CSFW-17), pp. 100-114. IEEE Computer Society, 2004.
B. Beckert, R. Hidhnle, and P.H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach. LNCS 4334.
Springer-Verlag, 2007.
[3] B. Beckert and M. Moskal. Deductive verification of system soft-
ware in the Verisoft XT project. In: KI, 24(1), 2010. Online first
version available at SpringerLink.

2

J1apjoy ybuAdoo ayy Aq uoissiwiad uapLm ypm pamojje Ajuo si asn J1ayjQ "Ajuo asn jeuosiad inok oy ajaipe siy} aynquisip pue £doa Aew no A “me| JybriAdoos uewas Aq pajoajoid si ajonle

149

150

(4]

[5

[6

[7

[8

[9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Current Research Projects

J.-M. Bohli, C. Sorge, and O. Ugus. A privacy model for smart
metering. In: Proc. of the First IEEE Int’l Workshop on Smart Grid
Communications (SmartGridComm), pp. 1-5, May 2010.

C. Efthymiou and G. Kalogridis. Smart grid privacy via
anonymization of smart metering data. In: Proc. of the First IEEE
Int’l Workshop on Smart Grid Communications (SmartGridComm),
Pp. 238-243, 2010.

G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. Sel4: Formal Verification of
an Operating-System Kernel. In: Communications of the ACM,
53(6):107-115, 2010.

G. Barthe, L. Beringer, P.Crégut, B.Grégoire, M. Hofmann,
P. Miiller, E. Poll, G. Puebla, I. Stark, and E. Vétillard. Mobius:
Mobility, Ubiquity, Security. Objectives and progress report. In:
TGC 2006: Proc. of the Second Symp.on Trustworthy Global
Computing, LNCS 4661, pp. 10-29, November 2006.

O. Tripp, M. Pistoia, S.]J. Fink, M. Sridharan, and O. Weisman.
TAJ: Effective taint analysis of web applications. In PLDI ’09:
Proc. of the 2009 ACM SIGPLAN Conf. on Programming language
design and implementation, pages 87-97, ACM, 2009.

W. Enck, P. Gilbert, B.-G. Chun, L. Cox, J. Jung, P. McDaniel, and
A. Sheth. Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In: Proc. of the 9th
USENIX Symp. on Operating Systems Design and Implementation,
October 2010.

F. Garcia and B. Jacobs. Privacy-friendly Energy-metering via Ho-
momorphic Encryption. In: 6th Workshop on Security and Trust
Management (STM 2010), September 2010.

C. Gentry. Fully homomorphic encryption using ideal lattices.
In: Proc. of the 41st Annual ACM Symp. on Theory of Computing
(STOC 2009), pp. 169-178, 2009.

C. Hammer. Experiences with PDG-based IFC. In: Proc. of the
Int’l Symp. on Engineering Secure Software and Systems (ESS0S’10),
LNCS 5965, pp. 44-60, February 2010.

C.Hammer and G. Snelting. Flow-sensitive, context-sensitive,
and object-sensitive information flow control based on program
dependence graphs. In: Int’l Journal of Information Security,
8(6):399-422, 2009.

M. Hilty, A.Pretschner, D.Basin, C. Schaefer, and T. Walter.
A policy language for usage control. In: 12th European Symp. on
Research in Computer Security, pp. 531-546, 2007.

M. Karg. Datenschutzrechtliche Rahmenbedingungen beim Ein-
satz intelligenter Zahler. In: Datenschutz und Datensicherheit,
34(6):365-372, 2010.

K. Rustan, M. Leino, and P. Miiller. Object invariants in dynamic
contexts. In: Proc. of the European Conf. on Object-Oriented Pro-
gramming (ECOOP 2004), LNCS 3086, pp. 491-516, June 2004.
A.Lux and H. Mantel. Declassification with explicit reference
points. In: Proc. of the 14th European Conf. on Research in Com-
puter Securiy (ESORICS’09), pp. 69-85, 2009.

[18] K. Miiller. Gewinnung von Verhaltensprofilen am intelligenten
Stromzihler. In: Datenschutz und Datensicherheit, 34(6):359—-364,
2010.

[19] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In: Advances in Cryptology (EUROCRYPT
1999), pp. 223-238, 1999.

[20] A.Rial and G. Danezis. Privacy-Preserving Smart Metering. Tech-
nical Report MSR-TR-2010-150, Microsoft Research, 2010.

[21] A. Simon. Value-Range Analysis of C Programs. Springer Verlag,
2008.

[22] D. Wasserrab. Backing up slicing: Verifying the interprocedural
two-phase Horwitz-Reps-Binkley slicer. In: G.Klein, T.Nip-
kow, and L. Paulson, editors, The Archive of Formal Proofs.
http://afp.sf.net/entries/HRB- Slicing.shtml, November 2009.

Received: November 2010

B s
The authors from left: D. Hofheinz, J. Miiller-Quade, A. Pretschner,
G. Snelting, B. Beckert

Prof. Dr. Bernhard Beckert, Institute for Theoretical Informatics —
KIT, Am Fasanengarten 5, 76131 Karlsruhe, Germany, Tel.: +49 721 608
44025, Fax: +49 721 608 53088, e-mail: beckert@kit.edu

Jun.-Prof. Dr. Dennis Hofheinz, Institute for Cryptography and Secu-
rity — KIT, Am Fasanengarten 5, 76131 Karlsruhe, Germany, Tel.: +49
721 608 45271, Fax: +49 721 608 55022,

e-mail: dennis.hofheinz@kit.edu

Prof. Dr. Jérn Miiller-Quade, Institute for Cryptography and Security —
KIT, Am Fasanengarten 5, 76131 Karlsruhe, Germany, Tel.: +49 721 608
44205, Fax: +49 721 608 55022, e-mail: muellerq@ira.uka.de

Prof. Dr. Alexander Pretschner, Institute for Programming Structures
and Data Organisation — KIT, Am Fasanengarten 5, 76131 Karlsruhe,
Germany, Tel.: +49 721 608 45080, Fax: +49 721 608 55079,

e-mail: alexander.pretschner@kit.edu

Prof. Dr. Gregor Snelting, Institute for Programming Structures and
Data Organisation — KIT, Adenauerring 20a, 76131 Karlsruhe, Ger-
many, Tel.: +49 721 608 44760, Fax: +49 721 608 58457,

e-mail: gregor.snelting@kit.edu

“Jap|oy JybuAdos ayy Aq uoissiwiad uapLim yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad unoK 1oy ajaie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoud si ajonle

http://afp.sf.net/entries/HRB-Slicing.shtml
mailto:beckert@kit.edu
mailto:hofheinz@kit.edu
mailto:muellerq@ira.uka.de
mailto:pretschner@kit.edu
mailto:snelting@kit.edu

in Wissenschaftsverlag der
Oldenbourg gldgbourg gruppe e
Verlag

Interdisziplinare Einfuhrung in
Design und Performanceanalyse
paralleler Programme fur CPUs
und GPUs

Josef Schile

f Schille %
Paralleles Rechnen Paralleles
Performancebetrachtungen zu Gleichungslosern Rechnen
2010 | IX,226 S. | Br.

€ 39,80
ISBN 978-3-486-59851-3

Oderbourg

Zunachst werden Grundlagen der Informatik gelegt, danach
mathematische Algorithmen so einfach wie moglich als Rezepte
vorgestellt, analysiert und deren Performance mit vielen Beispielen
verbessert. Die Losung eines Gleichungssystems und die
Performancebetrachtungen zu Speicherungstechniken ziehen sich
dabei als roter Faden durch das Buch.

Fur Lehrende und Studierende der Informatik und interdisziplinarer
Studiengange wie Computational Mathematics, Computational Sciences in
Engineering etc. sowie Lehrende und Studierende der Ingeniuer- und
Naturwissenschaften mit Schwerpunkt in numerischen Simulationen.

Bestellen Sie in lhrer Fachbuchhandlung
oder direkt bei uns: Tel: 089/45051-248
Fax: 089/45051-333 | verkauf@oldenbourg.de www.oldenbourg-verlag.de

“Jap|oy JybuAdoa ayy Aq uoissiwiad uapLm yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad inoK 1o} ajoile siyy aynquisip pue Adoa Aew no, me| JyblAdoo uewas Aq pajoajoid si ajane siy|

mailto:verkauf@oldenbourg.de
http://www.oldenbourg-verlag.de

	1 Introduction
	2 Smart Metering Systems
	2.1 Background
	2.2 Architecture of a Typical Smart Metering System
	2.3 Trusted Device

	3 Challenges
	4 Homomorphic Encryption
	4.1 Applications to Smart Metering
	4.2 Fully Homomorphic Encryption

	5 Language-Based Security
	5.1 Proof-Carrying Code
	5.2 Information Flow Control

	6 Deductive Program Verification
	7 Runtime Verification
	8 Conclusions
	References

