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Abstract. We elaborate on the problem of polynomial runtime in simalidity definitions for multi-
party computation. First, the need for a new definition is destrated by showing which problems
occur with common definitions of polynomial runtime. Therg give a definition which captures in
an intuitive manner what it means for a protocol or an advgrgahave polynomial runtime.

We show that this notion is suitable for simulatability d&fons for multi-party computation. In

particular, a composition theorem is shown for this notion.
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1 Introduction

1.1 Overview

It is a non-trivial task to define the security of a multi-gaprotocol. Even when one
restricts to protocols for a very specific application, $agsing a coin over a telephone
line, it may not be obvious what technically the protocollgaae. The situation gets
worse as soon as one tries to design a larger protocol, pypssimposed of different

smaller protocols with possibly colliding or incompatilsiecurity requirements.

" This is the full version of [19].



To cope with this problem, so-called simulation-based scdefinitions have been
introduced. These security definitions define the secufityg protocol relative to an
ideal specification of the protocol task. This gives a simgbel unified method for
defining the security requirements of a multitude of différprotocol tasks. Modern
simulation-based frameworks (e.g., the Reactive Simbilittaframework [24, 7] and
the Universal Composability framework [8, 12]) are furtleguipped with a powerful
composition theorem. These composition theorems guardahsg different protocols

can becomposedi.e., run togethenvithout losing their security

Since in most cases we are interested¢omputationalsecurity, i.e., security that
holds only with respect to computationally feasible atsaeksecurity definition should
come with a notion of what a feasible attack (and a feasild¢opol, for that matter)
is. Usually, cryptographers consider an attack or protéeadde feasible if it runs in
polynomial time. However, the notion of running in polyna@hiime (and therefore of
feasible protocols and attacks) in such a simulatabilggda setting turned out to be

nontrivial.

Straightforward approaches lead to technical artifactgfdtions on the classes of
protocols that may be investigated, or even to contradicdecurity models. (We will
exemplify this below when the idea of simulation-based sgchas been covered in

more detail.)



This problem has been recognized, but, as we will argue, olgég in a satisfy-
ing way. The goal of this work is thus to develop a notion ofyp@mial runtime that
is appropriate for simulatability frameworks. We will pimge a suitable notion, and
demonstrate its usefulness by discussing a simple exahgleannot be modeled with
other approaches in a meaningful way. We also give a genemgbasition theorem that
shows that the security notion induced by our notion of poiyial runtime still enjoys

the nice composability properties of a modern simulatiasdal framework.

Our argumentation will take place in the simulatability rebdf Reactive Simulata-
bility (RSIM, cf. [24, 7]) of Backes, Pfitzmann, and Waidner. Howewer ideas do not
rely on specific properties of this framework. Hence, we alsetch how to apply our

ideas to thaJniversal Composabilitgimulatability model (UC, cf. [8]) of Canetti.

We now give more details on the setting and our approach.

1.2 The general idea of simulatability

In a nutshell, a simulation-based notion of security coraparreal protocol to an ideal
specification. That ideal specification is modelled by araligwotocol or a so-called
ideal functionality. This ideal protocol is secure by asption. Then the simulation-
based notion guarantees that if any attack that is possibldereal protocol is also
possible on the ideal protocol. Since by assumption no hdrattack is possible on the
ideal protocaol, it follows that all attacks on the real piaibare harmless, too.
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More concretely, in the Reactive Simulatability framewarid the Universal Com-
posability framework, this idea is modelled as follows: Veéguire that for each ad-
versaryA; that attacks the real protocol, there is a correspondingl iddversary or
simulatorA, that attacks the ideal protocol. We then introduce a thitdyethe honest
usef that communicates both with the protocol and with the adargrdf then no hon-
est user can distinguish between running with the real pobtand the real adversary
and running with the ideal protocol and the ideal adversagycall the real protocol
as secure as the ideal protocol. (More details on this miodeah the case of Reactive
Simulatability are given in Section 2.)

However, when filling in the details of this definition, onesgtion that arises is how
to model feasible, i.e., polynomial-time adversariesAstrusers and protocols. Mod-
elling feasible adversaries/honest users is indispeassipice we want to quantify only
over these when modelling computational security. And aesponding definition of
feasible protocols turns out to be necessary since for uelthprotocols but computa-
tionally limited adversaries and honest users we lose,tagcompositionality property

of the security definition. We will discuss this issue furtirethe next section.

1.3 The traditional notion of feasibility and its problems

In this section, we will explain the various difficulties sing when trying to model

polynomial-time protocols and adversaries. To exempligse difficulties, we will con-

4 In the framework of [8], this entity is called the (protoceRvironmentZ.
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sider the ideal functionalityFpkg Which is often used to model the security of public-

key encryption. This functionality is defined as follows (simplify somewhat):

Functionality Fpkg

Key generation: Upon receiving a messagkeyGen) from a partyP;, request a value
e from the adversary and hardo P,.

Encryption: Upon receiving a messa@Encrypt, ¢/, m) from a partyP;, hand|m| to
the adversary. When the adversary answers with a cipheftpass: to P;. Further, if
e = ¢, store the paiftc, m).
Decryption: Upon receiving a messad®ecrypt, ¢) from P; (and P; only), check

whether(c, m) has been stored. If so, returnto P;. Otherwise, ask the adversary for

a value ofm and return that value.

A detailed explanation of the workings of this functiongalg out of the scope of this
section and given in [8]. Note however that the intended en@ntation (i.e., real proto-
col) of this functionality is as follows: We assume a puli&y encryption scheme to be
given. When party’; of the real protocol gets a messdgeyGen) from the honest user,
it chooses a public/secret key pé&it d) using the key generation algorithm and returns
the public keye. When P; gets a messag@&ncrypt, ¢/, m) it encryptsm with public
key ¢’ and returns the resulting ciphertextWhen P; gets a messag®ecrypt, ¢), it
decryptsc using the previously stored secret kégnd returns the plaintext.
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We are now ready to examine the various approaches to théepraid modelling

polynomial-time in simulation-based security model thatfaund in the literature.

Most models (e.g., [24] and [8]) bound the computational plaxity of all ma-
chines$ that participate in a protocol run (i.e., parties, adversand honest user) to
strict polynomial-time in the security parameterThat is, every machink (this could
be a protocol party, an adversary, or the honest H3dralts after runningw (k) steps

for a polynomialpy, which depends only on the machikke

Although this approach may seem very natural, it is probtenfiar several reasons.
First, it does not allow for modelling a protocol task thas e a-priori fixed bound
on its running time. For example, consider the case of a pialy encryption scheme.
Such a scheme should support to encrypt an arbitrary (thpamomial) number of
messages, i.e., the number of messages depends on thagpplising that encryption
scheme. In particular, the concrete number of messagesdhabe encrypted is not
part of the specification of the encryption scheme. This faaptured by the ideal

functionality Fpkg above.

However, with the above sketched notion of polynomial mnetj the machinépkg
must obey a strict polynomial bound on its runtime and heroainate after a poly-

nomial number of encryptions. This polynomial has to be fiaedpecification time of

® Depending on the chosen framework, this might be an 10 statmaton [24], or an interactive Turing ma-

chine [8].



Fpke. Thus the formulation ofFpig as given at the beginning of this section is not a

valid machine in this formulation of polynomial runtime.

Instead, it is necessary to usdamily of functionalities Fpkg, , parametrised by
a polynomialp bounding the number of activations and the length of the aopess
However, using such a family does not capture the fact tleagticryption scheme used
for implementing the functionality does not impose any sbohnds. Further, this ab-
straction makes modular protocol design more complicaiede there is not a single
functionality Fpkg that can be used once and for all, instead one has to choosador

application which functionalitypx g, to take.

However, there is a second, more technical issue with & pwignomial bound on
the runtime of each machine. Namely, recall that in the sataddility definition, and
consider the following order of quantifiers: “For every redversary there is an ideal
adversary such that no honest usezan distinguish the real and ideal protocol.” (Dif-
ferent orders of quantifiers can be used, see Section 2.hér wiords, the complexity
of H may depend on the complexity of the real and ideal adversaig. means thatl
can first of all “outrun” the adversary it runs with by sendthg adversary (and only the
adversary) useless messages. This forces the adversaagt® ¥ runtime by process-
ing these useless messages fidnkventually, the adversary will have to terminate, and
6 The (unparametrised) functionalifjex has actually been used in the literature together with thiemof strict

polynomial time, despite the fact that it formally is not didganachine. This exemplifies the need for a definition

that allows to use this functionality.



the only running machines will bld and the protocol (which, up to that point, has not
been activated at all). Hence, protoecand idealizatiom must look indistinguishable

from the perspective dl even when the respective adversary has halted

This is problematic when the real protoeotequires no adversary to provide mere
functionality, but the idealization does require the “help” of the ideal adversary to
look indistinguishable tar. While this may sound artificial, it is common practice to
use this technique to make simulatability at all possiblg:,¢his is the case when im-
plementingFpkg using a public key encryption scheme. Observe that, e.getimrm
an encryption, the functionalitfpkg invokes the adversary to get a ciphertext (this rep-
resents the fact that we impose no guarantees as how a epterks like). So in the
ideal model runningFpkg, an encryption can only be performed when the adversary
has not terminated yet. However, a party in the real protagiblusually encrypt by
internally invoking the encryption algorithm. This doed nequire interaction with the
adversary. So we have the surprising situation that fogrealteal protocol that does
perform communication when encrypting messages cannosbeuae implementation
of Frke, While a slight modification of that real protocol that seladsessage to itself

before returning the encryption would be secure.

In the special case of the functionaliipkg for public-key encryption, a solution
was proposed in [18]: keep all machines polynonpiat activation and quantify only
over honest userd that guarantee a polynomial total running time of the coneple
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protocol run (with bothr andr). However, their definition was especially adapted to the
special case afpkr and did not specify a general solution to the problem of nmougl

computational security of arbitrary protocols.

A similar approach was later used in [11]: here, all machi@@spolynomial per
activation in the maximum of the security parameter anddled tength of all messages
from the environment; however, environment and adversegysaictly polynomially
bounded. In this situation, an environment is no longer &bl#ood (and thereby dis-
able) the dummy parties with wrong inputs; y&tmay still “exhaust” the ideal-model
adversary. Furthermore, their model does not allow a partyn in polynomial time in
the length of the incoming messages from other parties, fiticpéar, a protocol party
that receives a ciphertext, decrypts it, and then outputeuid not be polynomial in the

sense of [11].

On December 13, 2005, the paper [12] was updated to contaaitermative ap-
proach to solve the problem of polynomial runtime. Howefartechnical reasons their
approach requires that the total length of the messagedgenparty to the function-
ality is less than the total length of the inputs from the emvinent to that party. This
implies that in protocols have to require special paddintpeir inputs to be allowed to
access the functionality. Furthermore, as with [11], pcotgarties are not allowed to
run in polynomial time in the length of the message comingifaiher parties, resulting
in the problems sketched in the preceding paragraph.
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The original formulation of the RSIM framework [24] uses dpproach of requiring
all machines to run in strict polynomial time, i.e., to runyifk) steps where: is the
security parameter. At the beginning of this section, we Haat this introduces the
problem that a given machine (e.g., the honest H3enay cause other machines (e.g.,

the adversary) to terminate by sending many messagestingsnlunexpected effects.

This technical problem was addressed in [1,2,7] by allonergry machine to
“block” selected connections. (To do so, a machine couldtssb-called “length func-
tion” for that connection to zero.) So for example, the id@aldel adversarp, may—
from a certain point in time on—>block all connections frore tiseH, when the corre-
sponding real-model adversary would have halted or blotikieadtonnection. Thugj is

not able to “kill” A, anymore, whiléA, may still service requests from the functionality.

However, this approach does not solve the issue that theidumadity has to be
parametrised over the maximum number or length of messagas inandle (i.e., we

still have to use a family of functionaliti€Bpkg, ;).

Furthermore, notions like “polynomial fairness” of an atbagy (which means that
this adversary schedules messages between parties aftgnamial number of activa-
tions, cf. [4]) are not compatible with an a priori polynoftydounded adversary. This
is due to the fact that the adversary is not able to schedudsages after it has halted,
and thus situations may arise where the adversary has tongei than the a-priori
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fixed runtime polynomial to fulfil its scheduling guaranteEgamples for this issue are
given in [4].

In [16] the problems with polynomial runtime have also beetiaed. Their solu-
tion consists of introducing so-called guards, a genetia of length functions. These
guards may reject or modify incoming messages without wgstny of the total run-
time of the concerned machine. This solves the problem dfrigi' a machine by send-
ing nonsensical inputs (these may be removed by the guard¥tibh requires that the
amount of actual work a machine does is a priori bounded. fitiqodar, we would still
need a family of functionalitiespkg ,, SinceFpkyr does not have an a-priori bound

on the number of messages it encryption and thus on the ambwdrk invested by

fPKE-

1.4 Our Contributions

Motivated by the discussion above we give a new definitionadyipomial runtime for
simulatability and prove several desirable propertiesusfdefinition. The definition is
stated in the model of reactive simulatability, but the @pids model-independent and
should carry over to the UC framework.

The honest uséd will be chosen to baveakly polynomia(cf. [7]), i.e., it will in
each activation be polynomially limited in the security graeter and the overall length
of all its incoming messages. The adversary (both real agal)avill be limited in the
runtime ofH. To guarantee this, two specific connections between thersary and
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the user will be used to limit the adversary in the messagewelcommunicated over
these lines. Honest users and adversaries limited in thgeseill be calleccontinuously

polynomial

We stress that this definition allows users and adversdratsib not terminate at all.
Specifically, they may run long enough to break every compjebased cryptographic
system. However, the definition guarantees that they magmsb in polynomial pre-
fixes of H’s view. In fact, the definition guarantees that in polynonpigefixes ofH's
view, bothA andH take only a polynomial number of stepmd both of them send
only messages of at most polynomial size to the protocok €aptures a very intuitive
notion of polynomial runtime for honest users and adveesathe intuition being that
a computationally secure protocol may well be broken giverualimited amount of
time, but not within a polynomial amount of time. This setpnotion is presented in

Section 3.

Polynomial limitations of a protocol will be captured by thetion of polynomially
shapedorotocols. Roughly, a set of machines is polynomially skiapthe total length
of all messages sent by these machines is polynomial in theigeparametek: plus
the overall length of inputs which machines from this setfgmih machines outside of
this set. If additionally all machines in the set are weakhypomial (see above) we
call this setpolynomially shaped weakly polynomigls-wpfor short). The notion of
ps-wp is a natural definition of a protocol being “polynortydounded in input length
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and security parameter” without having to give explicit aprbounds for the lifetime

of machines.

In Section 4, we prove a generalised composition theorenp$ewp protocols.
Specifically, in any ps-wp collection of machines, a funeéity may be replaced by a

secure implementation if the resulting collection of maelsi remains ps-wp.

We note that the set of ps-wp protocolsist closed under composition (i.e., there
are ps-wp protocols which yield a non-ps-wp protocol if casgd). We argue that this
is not a flaw of our notion, but a “necessary evil” if one wardscatch the intuitive
notion of a polynomially bounded protocol. Therefore, wastouct an example of two
protocols which are “intuitively polynomial” (and ps-wgut which compose to a pro-

tocol that is non-polynomial in every intuitive way.

Additionally, we give a sub-notion of ps-wp protocols thatclosed under com-
position. As a simple consequence, the mentioned ps-wp asitign theorem shows
that this notion allows for aecurecomposition of protocols (without any additional

conditions on the complexity of the composed protocols).

In Section 5, we relate our new notion of security to the @xgshotion of polyno-
mial security from [7]. More specifically, we prove that owtion is at least as strict as

the one from [7].

In Section 7, we sketch how to apply our ideas to the UC framlewo
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Finally, in Appendix B we show that the generalisation of giatable security to
machines which are intuitively polynomial as defined in thig’k, but not strictly poly-
nomial, will allow us to omit the formal concept of length fttrons, which was intro-
duced in [1] to solve problems arising with strictly polyn@aifunctionalities. More
specifically, we show that removing length functions frorotpcol machines does not

change the notion of security.

1.5 Interaction with previous results

An example of a published claim which is not formally corrgca setting with strictly
polynomial machines regards the ideal functionafiyr for public key cryptography.
Claim 15 in [9] states that the protocel given there realises the ideal functionality

Frke using an IND-CCA secure public key cryptosystem.

The ideal functionalityFpkg, as described above can be invoked an unlimited num-
ber of times and it is hence not allowed as a strictly polyradiigieal protocol and the
proof of Claim 15 is not formally correct. A bigger problemshalready been stated
as a motivating example in Section 1.3: An environment nrazhan exhaust the ideal
adversary and distinguish the real and the ideal model ag@ian and decryption will
still work in the real model, but cannot work in the ideal mbae the help of the ideal
adverssary is needed. This invalidates Claim 15. Howewveptoof of Claim 15 seems
to carry over to the setting of continuously polynomial ségwpresented here.
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The impossibility results for composable protocols remamshanged by the new
notion of continuously polynomial security. The imposhipiof bit commitment [13]
and other secure computations [14] seem to directly cary tmthe notion of continous
polynomial security, as the corresponding proofs and lttaethodology does not seem

to rely on specific complexity bounds.

Similarly, the proofs for the results in [20, 21] (these fesinvestigate the impor-
tance of the order of quantification &f, A, andH) seemto carry over to our setting,
although they use the notion of runtime in an inherent waythi@rother hand, the results

from [22] do not obviously carry over to our notion of polyn@iruntime.

The notion of continuously polynomial runtime may not onffeat proofs for pre-
vious results, but the presentation of protocols and fonetites could in future be
substantially simplified. The cryptographic library in [6$es explicit bounds on the
length of messages, the number of signatures per key, amdithber of inputs at each
port. All these bounds are needed to model a strictly polyabfanctionality which
can be realised by a protocol with strictly polynomial mags. The notion of continu-
ously polynomial security could help to remove these bownish inhibit a clear and
abstract presentation.

15



2 Review of Reactive Simulatability

In this section, we present the notion of Reactive Simulltabrl his introduction only

very roughly sketches the definitions, and the reader iswaged to read [7] for more
detailed information and formal definitions. A reader faarilith the model may skip
this section and proceed to Section 3. Additionally, a glogsf important terms in the

reactive simulatability framework can be found in Appendix

2.1 Outline

A protocol is simply a set of machinggntuitively, this includes only honest-acting pro-
tocol parties, but not an explicit adversary or corruptedigs. Assume a protocal/; .

To define what we mean by saying thd is secure, we also define an idealized proto-
col M,. Most of the time M, consists only of a single machine that provides the same
interface that all protocol machines 8f; (taken together as a whole) provide. Most
importantly, the definition ofi/, should be very simple and should guarantee “security
by construction.”

For exampleZ; could be a concrete two-party protocol, where pattyinputs a
messagé// and transmits it to party?, using a specific public-key encryption scheme.
Party P, then outputs\/ upon receipt and decryption. (For simplicity, we do not con-
sider a key distribution here.) Suppose we are interestdekiquestion: “Does this pro-

tocol achieve a secure message transmission?” Then thesponding idealisatioi/;,

7 We stick to the machine model of [24,7], that is, to IO statemata.
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is one single machine that inputs a mess&fen the same channel on whi¢h would
getits inputinAZ;. Then, M, outputs)M again on the output channel on whihwould

output the decrypted messagelify.

Note that the definition ofi/, does not involve any encryption scheme or key distri-
bution. M, captures the essence of a secure message transmissios,iageliendent
of the way in which this goal is eventually achieved. In fadt, does not even involve
transmitting a message over an insecure channel; it meséicts its input and returns

its output. In this senséy/, is “secure by construction.”

The notion of Reactive Simulatability now seeks to compeieand M, to express
statements of the formV¥; achieves the security df,.” This is captured by the require-
ment that any weakness 6f; should be already present in the idealizatigh. (The
mentioning of “weakness” here is nothing to be worried abdfit does not contain any
weakness by construction, so this essentially only meaats\th does not contain any
weakness as well. The only reason for this seemingly stream@rement is that it is
formally not easy to express the statemeM ‘does not contain any weakness” directly.

Furthermore, there may be certain explicitly toleratedkmeases irj\Zlg.)

More formally, we require that

— for every adversanj; that runs with)/; (and exhibits a potential weaknessiifi),
— there exists an adversafy that runs with)/, (and exhibits a corresponding weak-
ness in\.,),

17



— such that runs oA, with A7, look like runs ofA, with M.

This should hold in any protocol context in whidl;, resp.)M; is used.

We give a more formal definition with more details now.

2.2 Detailed definitions

We say that protocdlZl (thereal protoco) to beas secure aanother protocoMg (the
ideal protoco) thetrusted host if for any adversary, (also called theeal adversary,
and anyhonest useH, there is asimulatorA, (also called thedeal adversary, s.t. the

view of H is indistinguishable in the following two scenarios:

— The honest uset runs together with the real adversaxyand the real protocal/;

— The honest usdf runs together with the simulaté, and the ideal protocd|7[2.

Note that there is a security parametazommon to all machines, so that the notion of
indistinguishability makes sense.

This definition allows us to specify some trusted host—whgllefined to be a
secure implementation of some cryptographic task—as & rotocol, and then to
consider the question, whether a real protocol is as sesuttgedrusted host (and thus

also a secure implementation of that task).

2.3 Scheduling and runs

In order to understand the above definitions in more detalhewve to specify what is
meant by machines “running together”. Consider a set of mast{called aollection).
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Scheduler for buffep

pe!
Sending machine Receiving machine
Buffer p

Fig. 1. A connection

Each machine has sevemrtswith which it is connected to its outside world (i.e.,
to other machines, possibly in this collection). The maehieceives input on its-
ports and gives output on itsut-ports One distinguishesimpleports (i.e., simple in-
and out-ports) andlock ports. While simple ports transport protocol data (e.g.sme
sages, encryptions, etc.), clock ports are used for scimgdulirposes only. To illustrate
how this works, consider Figure 1. Each ugemt name(in this casep) represents a
unidirectional connection between two machines. The ngmesgigure 1 are all iden-
tical, and this is no accident: which ports connect whereoiglg determined by the
port namep. Precisely the ports with identical port name are conneatsbrding to

Figure 1.

The unique sending machine has the pdrtwhereas the receiving machine has
portp?. But once a message is sent opkrit is not immediately delivered tp’. First, it
is stored in @ufferp (which is a very special type of machine used only for the psep
of message scheduling). The buffer itself delivers the ags$to porp?) it has stored
only upon explicit request. This request has to come froneliek out-portp<!, and the
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machine that has this pagst! is called thescheduleffor buffer p. Note that the scheduler

for p may be the receiving machine itself, the sending machina different machine.

As an example, consider our real protocol from above thastrats an encrypted
message fron®; to P,. The connection fron®; to P, could then be modeled as in Fig-
ure 1, where the sending machinefs the receiving machine i8,, and the scheduler
for the buffer in between is the adversayy. ThatA; controls the buffer represents the
fact that generally we assume the adversary to control theonke betweenprotocol

parties.

Strictly speaking, this models secureconnection betweer; and P,, since the
adversary controlehena message is delivered i, but has no access to the contents.
To model an authenticated channel, we would additionallggd; to send a copy of

each sent messageAg. (More detailed descriptions can be found in [7].)

Now, when a collection runs, the following happens: At eyaoint in time, exactly
one machine is activated. It may now read its simple in-p@ggresenting incoming
network connections), do some work, and then write outputst@imple out-ports.
After such an activation the contents of the simple outgppltare appended to the
gueue of messages stored in the associated Quftdowever, since now all messages
are stored in buffers and will not be delivered by themselweschines additionally
have after each activation the possibility to write a number 1 to at most one clock
out-portp?!. Then then-th undelivered message of bufiewill be written to the simple
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in-portp? and deleted from the buffer's queue. The machine that hasittin@e in-port
p? will be activated next. (We stress again that in this desiompp denotes always the
same arbitrary, but fixed port name. Furthermore, for a gp@h namep, at most one
machine with a porp? is allowed in a given system, so the machine with gdris
uniquely determined.)

So the clock out-ports control the scheduling. Usually, anaetion is clocked by
(i.e., the corresponding clock out-port is part of) the s#ndr by the adversary. Since
the most important use of a clock out-port is to writé @anto it (deliver the oldest
message in the buffer), we say a machine clocks a connectianntessage when a
machine writes a onto the clock port of that connection.

At the start of a run, or when no machine is activated at soma,pe designated
machine called thenaster scheduleis activated For this, the master scheduler has a
special port, called themaster clock portlk®?.

Note that not all collections can be executed, only so-datlesed collections,
where all connections have their simple in-, simple outd alock out-port. If a col-

lection is not closed, we call the ports having no counteripae ports

Discussion of the scheduling-his definition of scheduling is quite general and, in fact,
somewhat complicated compared, e.g., to the (simple amdenainistic) scheduling in
ther-calculus [23]. There are several ideas behind this. Boteduling should gener-
ally be performed by the adversary. If, with a specific repn¢stion of attacks through
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an adversary as in our case, scheduling is performeeterministically then the ad-
versary could effectively act indeterministically if he deahis actions depend on his
observations of the scheduling. This, however, conflictth whe fact that the RSIM
framework considers probabilism in their security defons. (Being indeterministic
would, e.g., allow the adversary to “guess” the secret kethefemployed public-key
encryption scheme. However, this does not correspond tmgerésting” cryptographic

attack on the scheme.)

2.4 Protocols

In order to understand how this idea of networks relateséatiove sketch of reactive
simulatability, one has to get an idea of what is meant by &opwod. A protocol is
represented by a so-callsttucture(1/, S), consisting of a collection/ of the protocol
participants (parties, trusted hosts, etc.), and a subtet éree ports of\/, the so-called
service portsS. The service ports represent the protocol’s interface ¢tmnections to
the protocol’s users). The honest user can then only conodae service ports (and to
the adversary), all other free ports of the protocol arendésl for the communication
with the adversary (they may e.g. represent side chanregsijlplities of attack, etc.).

Such free non-service ports are more commonly found witstédi hosts (i.e., the
abstract idealizations of protocols that are used to deénergy), explicitly modelling
their imperfections.
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But also, free non-service ports can be found in protocola asodeling of the
adversary’s power to interfere with the protocol schedpyfnd the interactions among

honest protocol machines.

With this information we can review the above “definition”sgcurity. Namely, the
honest useH, the adversary, and the simulator are nothing else but meshand the
protocols are structures. The viewldfis then the restriction of the run (the transcripts
of all states and in-/output of all machines during the prote execution, also called

trace) to the ports and stateldf

A little more formally, we consideconfigurationsof the real and ideal protocol.
Concretely, a configuration of a structuf/, S) is a tuple(M, S, H, A), whereH is
a valid user and\ is a valid adversary fo(M, S). Validity simply means that certain
natural port requirements are. In particulAronly connects to non-service ports of
M and toH, andH only connects to service ports 8f and toA. The set of (in this
sense) valid configurations chM, S) is denoted bﬁonf(M, S). For the purpose of
comparing two structureg\f;, S) and (M, S) (with identical sets of service ports), it
is also useful to define the s@bnfM?(Ml, S) of valid configurationg M, S, H, A, ) for

(M, S) such thaH is also valid for(M5, S).

Formally, we then definé)/;, S) as secure ag\ls, S) iff for every valid configu-
ration (M, S, H, A,) € Conf2(11,, S), there is a valid configuratiof\/;, S, H, A,) €
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Conf(]\Zlg, S) (with the same honest usH), such that the views dfl in both configura-
tions is computationally indistinguishable.

What we have just defined sgandard securitythe default notion of security in the
Reactive Simulatability framwork. If we demand that in thmee definition, the ideal
adversanA, does not depend di, but only onA;, we obtain a stricter definition that is
calleduniversal security(The termuniversalrefers here to the universality & with
respect to the honest uder) These two definitions are not equivalent [20].

We stress that here, we dmt consider the concept dflack box securitywhich
intuitively demands thaf, only depends om\; in a “black box” manner. This is an
involved concept, and there are several definitions thatotigapture black box simu-

latability (e.g., the definitions in [24, 6, 12] are all diféant).

2.5 Systems

The definition, as presented so far, still has one drawbaekh&Ve not introduced the
concept of a corruption. This can be accommodated by defsoacalled systems. A

systems a set of structures, where to each “corruption situat{sat of machines, which

are corrupted) one structure corresponds. That is, wherchingis corrupted, it is not

present anymore in the corresponding structure, and thersaly takes its place. For a
trusted host, the corresponding system usually consistswuaftures for each corruption
situation, too, where those connections of the trusted, lloat are associated with a
corrupted party, are under the control of the adversary.
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We can now refine the definition of security as followsteal systembys, is as se-
cure as amdeal systenbys,, if every structure irfys, is as secure as the corresponding

structure inSys.,.

2.6 Combination

~

A very useful technical tool (that we will use later on) is tt@mbinationcomb(A/) of

a setM of machines. Informallycomb(1/) is the single machine that internally runs all
machines in\/ as submachines. All ports of machineslihare preserved. In [24], the
following statement is proven: If we substitute the combracomb(1/) for a setAf

of machines in any closed collection, then the common vieallohachines (including

~

the submachines itcomb(/) stays unchanged.

2.7 Composition

A major advantage of a security definition by simulatabiltyhe possibility olcompo-
sition. The notion of composition can be sketched as follows: If weshon structure or
systemA (usually a protocol) implementing some other structureystesm B (usually
some primitive), and we have some protodof (havingB as a sub-protocol, i.e. using
the primitive), then by replacing by A in X Z, we get a protocak# which is as secure
as X 2. This allows to modularly design protocols: first we desigoratocol X, and
then we find an implementation f@s.
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We stress that these composability guarantees are boughtigh price. Namely,
several protocol tasks are simply not realizable in a sitabilty-based framework.
This includes cryptographic building blocks such as bit oatment [13]. There have
been suggestions how to avoid these impossibilities (E18,,15]), but they rely on

additional assumptions or imply weakened composabiliprgntees.

3 Continuously Polynomial Security

In this section, a new notion of polynomial runtime for thevaidary and the proto-
col userH, continuously polynomialis defined. For users and adversaries subject to
our definition, terms like “guaranteed delivery after paymal time” can be defined in
a meaningful way. The definition of protocols which g@ynomially shapeaf Sec-
tion 4 together with the restriction to weakly polynomial chanes (ps-wp protocols)
will ensure without explicit lifetime bounds that only polgmial-time computations
are performed within polynomial time as seen by the protoserH.

First, we demand from the protocol ugérthat it isweakly polynomialas defined
in [7]. There it is required that there is a polynomgalsuch that in each activatioH,
runs at mosp(k + |I]) steps, wheré is the security parameter, anf is the length of
all inputsH has received so f&\We explicitly stress that this allowss that do not halt,
i.e., run infinitely long. It also does not forbid to send messages to itself (possibly
" 8 This is similar to [17], where this approach is taken for theal case of secure function evaluations.
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doubling the size of this “loopback” message every time tagie the computational

power for the next activation), or to receive large messages

To make sure that the induced security notion stays sensildewill restrict our
attention to polynomial prefixes éfs view. That is, we consider only things that happen
during polynomially-sized prefixes ¢f's view.? Here, the size of a view-prefix is the

concatenated size of all inputs and outputsisports.

Second, an adversady is required to be polynomial ikl’'s view. There are two
obvious ways to do this: keeping polynomial in the messagesréceivesirom H, or
keepingA polynomial in the messagessendso H. We decided for a combination of
both: in our definition A must be polynomial in the size of tileH-communication in
bothdirections. We did so to giv& more freedom: with the first notion, it would not be
possible, in some cases, fArto simply forward protocol messagesHho Conversely,
the second notion may forbilto forward messages frohhto the protocol. Thus, only
our combined notion allows for a “dummy adversary” (an adaey that only acts as a
relay between internal protocol lines aHyl The concept of such a dummy adversary

is useful, e.g., for proving concurrent composition proigst

9 Alternatively, one could fix such a prefix with and “hardwire” that bound intél to make it strictly polynomial
in the traditional sense. However, in the case of standandrigg the simulator is then chosen aftérand thus
knows the runtime bound df. When trying to define notions like fairness (i.e., the propéhat the adversary
eventually delivers messages), the simulator could thaplgideliver all messageafter the termination of the

honest useH. This would circumvent the idea of a fair delivery.
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However, this preliminary definition gives rise to a subttelgem with the proof
of the composition theorem. In this proof, surrounding pcol machines are, for cer-
tain steps of the proof, simulated by the protocol usefo an adversary considered in
the proof of composability may have communication lineschihare sometimes con-
nected to protocol machines and sometimes connected totecplaser mimicking
these machines. Hence an adversary which is polynomialszsided above could lose
this property by the “regrouping” of machines during the pasition proof, and the

proof would fail.

Therefore, we introduce two specific communication linescllareguaranteedo
connect the adversary aild The ports for these two lines will have names of the form
cpoly_..., and such ports will not be allowed in any protocol. Now th&altdength
of messages exchanged over these two specific lines is usetbagr bound for the
“time” which has passed fdf, and the adversary must be polynomial in this “volume”
plusk. This volume includes the messages which is sent from theradry toH in the

same activation.

Counting a message, that is senttan the same activation, to the volume in which
the adversary must be polynomial allows the adversary wve¢and, e.g., forward) ar-
bitrarily long messages from the protocol. However, an eshwy computing for a long
time mustsend a long message lbto ensure that a long “elapse in time” is observed
in the view ofH. There is one important detail here: every prefix of the viéwlas a
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sequence of results from whole activations. That is, if aveeshry took a superpoly-
nomial “debt” (e.g., by factoring a large integer), then guperpolynomial message
which he is forced to send té in the same activation will not be contained in any poly-
nomial prefix ofH’s view. So whenever the adversary is performing a supenuootyal
number of computation steps, it is ensured that the resilihat, not even in parts, be

considered in the definition of security.

A further condition we impose on the adversary is the follogviThe adversary is re-
quired to read all incoming messages completely. This seglgnuinnecessary condition
has important consequences: Assume a protocol (e.g.,doresenessage transmission)
in which a ciphertext is transmitted. Assume further thatgenerating a realistic first
bit of the ciphertext, a runtime linear in the length of thessage is requiretf. Then a
real adversarA could do the following: It intercepts the ciphertext, buads only the
first bit and forwards that bit to the honest ubeiSinceA only reads one bit, its running
time is independent of the length of the transmitted mesaadat does not need to out-
put anything on thepoly_. .. connection. However, the simulator now has the task to
generate a realistic first bit, which takes a runtime linadhe length of the message. In
the case of universal security, since the simulator is ahbséore the honest user, this
length may be larger than the number of steps the simulatgrorawithout output on
Wxample would be if the protocol prepended the Mit(0) to the ciphertext, wheré is the length of the

message, and! a suitable function so that computirfg'(0) cannot be done faster than ia(l). Clearly, an

IND-CCA2 secure cryptosystem would not lose its security by such ditiad.
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thecpoly_. .. connection. So the simulator must output something thedetzhonest
user can distinguish. By introducing the condition thatddeersary reads all its inputs,
this problem is fixed, sincA now has to read the whole message, too, and hence also
outputs on thepoly_. .. connection.

As a technicality, messages sent from the adversaty H over the specific line
which influence®\'s runtime must be delivered immediately to ensure the treae-
spondence between runtime and messages receividdby

Although we cannot guarantee that these requirements ediviechnical artifacts
that can happen, at least the sketched problems with exidéfinitions of polynomial
runtime do not occur. Furthermore, Section 6 demonstratast least in natural exam-
ples, no odd effects happen.

We turn to the actual definition:

Definition 1 (Continuously polynomial honest users and adusaries). We call an
honest useH continuously polynomialif it is weakly polynomial, has portgoly_ha!,
cpoly_ah? € ports(H), and the length function fatpoly_ah? is oo in every non-final
state (i.e., all inputs ompoly_ah? are written in full length taH’s view).
We call an adversarj continuously polynomialif
— it has portscpoly_ha?, cpoly_ah!, cpoly_ah“!, and
mthe presentation, we say that a messaderm a machinel/ is delivered immediately over a pgst

if the receiving machine is activated with this messagectliyafter M has entered a waiting state or a final state.

In the model of [24, 7], this happens if the buffeis empty and\/ performs the commands := m; p“! := 1.
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— there is a polynomigp, s.t. for any closed collectioff of machines witth € C, and
any possible view o& in C' (on security parameter*), the following holds:
e Lett, be the total number of Turing steps/tip to itsy:-th activation (inclusive).
Letc, be the total length of outputs apoly_ah! and inputs orcpoly_ha? up to

A’s u-th activation (inclusive). Then for all € N itis
ty < ple, + k).

¢ WheneveA sends a message opoly_ah!, it is delivered immediately.
e A never sets its length functions to anything other thapnand A always com-

pletely reads all incoming messagés.

We can now define continuously polynomial security by simgstricting honest

user and adversary to continuously polynomial ones:

Definition 2 (Continuously polynomial security). Let (A3, S) and (M, S) be struc-

tures (i.e., protocols), s.i7; and M, have no port namecpoly_ah or cpoly_ha. Definé?

Confepoty (M, S) := {(Ms,, S,H,A) € Conf(Ms,, S) :
A andH are continuously polynomigl

Confl2 (M, S) := Confepoy (M, S) N ConfMQ(Mh 5).

cpoly

2 That s, in each activatior takes at leasif| steps, wher¢/| is the length ofA’s input in that activation.

13 Recall thatConf2 (Ml, S) andConf(Mg, S) are the sets of configuratiomM, S,H, A) so thatH, A are valid
honest user and adversary for the given protocol in the rebidieal model, respectively, attis the set of service
ports of the protocoll = M, Mo, resp. Essentiallyd andA are called valid if there are no open connections,

andH only connects to service ports.
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Less formally, the class of admissible honest users, aduessand simulators is
restricted to continuously polynomial ones.

If view is a view of some machine, then ify, (view) we denote the longest prefix,
s.t. the total length of all inputs and outputs in that presoounded by € N (we will
call such a prefix a-prefix).

We call (M, S) continuously polynomially as secure @¥l,, S) (written: ><PoW),

—secC

if for every configuratiorconf, = (My,S,H,A;) € Conf2 (11, S), there exists a

cpoly
configurationconf, = (M, S, H, Ay) € Confeay (Mo, S) (essentially, this means that
for continuously polynomiaH, A; there is a continuously polynomial simulatds)

s.t. for all polynomialg

P (k) (view cons, k(H)) Rpoly P k) (view cons, x(H)).

Thatis, for every adversary; and useH that run with)M;, we require the existence
of an adversanA, that runs withH and M,, such that all polynomial prefixes éfs
view are indistinguishable in both protocols.

For universal security(written: >cpoly-uniy we additionally require thaf\, does not

—secC

depend orH.

4 A Generalised Composition Theorem

This section gives a generalised composition theorem fonaoessarily terminating
protocols. To this end, a new notion of polynomial runtimegotocolsis introduced.
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For describing polynomial complexity, it is not only necassto limit the computation
time of a machine in each activation. It should also hold sugterpolynomial “events”
within the protocol yield a view for the usérhaving a superpolynomial representation.
It should not pass unnoticed Ibyif a protocol machine gains superpolynomial comput-
ing power through a superpolynomial number of activatiomSi¢h intuitively means
that superpolynomial time must have passed) or by playing-pong with messages of
growing size.

The definition of apolynomially shapegbrotocol ensures that each protocol ma-
chine can produce only messages of a total length which gnpatial in the length
of the messages coming from outside the protocol, e.g. frenptotocol useH or the
adversary. The outside of the protocol is represented bychimaT in the definition
below. If additionally, each protocol machine is weaklyywmial, then the number of
Turing steps a protocol runs between two activations of the adversary is polynomi-

ally limited in the security parameter and the length of thierall protocol input.

Definition 3 (Polynomially shaped).A collectionC' of machines containing no master
scheduler is callegp-shaped for a functiop : N — N, if for all machinesT s.t.
C' U T is closed (i.e., there are no open connections) the follgwiroperty holds with
overwhelming probability in the security parameter

Leto, denote the total length of the output of all machine€'iat position. in the
runof CUT. Similarly,i,, denotes the total length of the input of machines'ion ports
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coming fromT (i.e., portsp? s.t.p! € ports(T)). Furthera, denotes the total number of

activations of machines i@ at that point. Then
o, +a, < pli, + k).

The following observation shows, in form of a lemma, that éstricting the honest
user’s view to polynomial prefixes, we also restrict wholes'to polynomial size. While
this lemma is never explicitly used in the upcoming proofslieady gives a good
intuition of what effect it has to restrict the user’s viewss, it formalizes the intuition
that protocol and adversary do not “run at a superpolyndyniaster speed” than the

protocol user.

Lemma 1. Let (]\Z/, S) be a structure withV/ that is polynomially shaped and weakly
polynomial. Assume th&f\/, S, H, A) is a valid configuration of M/, S) with continu-
ously polynomiaH andA.

Then, when the view honest user is restricted to a (fixedhpatyal size, the whole
protocol (including adversary and honest user) can be satedl inside a single strictly

polynomial-time machine.

Proof. Fix a polynomialg = ¢(k). BecauseA is continuously polynomial, there is a
polynomialp,; = p; (k) such thatA must output (in total) at leagt k) bits toH if it runs
at leastp, (k) steps itself.

On the other hand, the runtime df is polynomial in the size of its own input, since
M is weakly polynomial. By assumption @¥ the inputs thaf gives to)M are in turn
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polynomial in the size of’s view. Also, the input thaH hands toM appears irH’s
own view. In summary, there is a polynomjal = p»(k) such thati’s view is at least

of sizeq(k) if M runs at leasp, (k) steps.

Concluding, sincél itself is weakly polynomial, there is an overall polynomjak
p(k) such that the whole collectial’ U {H, A} runs at leasp(k) steps only if the view
of M is of size more than(k). The lemma follows, if we consider a single machive
that simulates the whole collection, but halts as soon atotaénumber of steps taken

by all machines exceedgk).

In principle, the adversary or the user could try to gain spgknomial computing
power by playing “ping-pong” with a protocol which has nceeliime bound. However,
this does not affect the security definition and computai@ssumptions can still be
used, because security is defined by comparing only polyalqgrefixes of the view of
the useH. It is easy to see that results of a superpolynomial pinggma@mnot be con-
tained in such a polynomial prefix if all machines are wealdiypomial, the protocol
is polynomially shaped, and the user and the adversary atenoasly polynomial. A
superpolynomial number of invocations of the protocol &ittlirectly implies a super-
polynomial view of the using maching or it implies a superpolynomial view of the
adversary. A result of such a superpolynomial computatsonanly appear in a super-
polynomial view of the adversary. For a continously polymanadversaryA and user
H an event not visible in any polynomially view of the adveyseannot be visible in
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a polynomial prefix of the view oH. Even though the weakly polynomial machines
could, in the long run, break any cryptosystem this does m@ly distinguishability

and computational assumptions can be used.

Next we generalise the composition theorem to continugastynomial users and

adversaries interacting with polynomially shaped prokeco

Note that the notion of polynomially shaped protocols iglftsiot closed under
composition. A simple counterexample can be obtained fl@1wo machine$;, M,
as follows. The machin®l; has two input lines and one output line. It forwards each
input to the output line and clocks the output line. The maelM, has one input line
and one output line and acts as a repeater. It forwards epahtm the output line and
clocks the output line in the same actiovation. Both machare polynomially shaped
(as collections), but if we connect the two machines leaving input line ofVl; open
we obtain a collection which can generate infinite interlm@hmunication on one single
input. This is a very bad effect as such a machine could ruih itiiias solved some

“hard” problem thereby invalidating computationmal asgtions.

So the generalised composition theorem states that a ceapostocol is secure
if it remainspolynomially shaped. It is in the responsibility of the ool designer to
avoid “loops” when designing a protocol.
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However, one can restrict the security definition to a sigsotd polynomially shaped
protocols which is closed under composition. Then the caitjpm theorem still holds
and e.g. loops cannot arise from composition.

A subclass of polynomially shaped protocols which is claseder composition can
be obtained by restricting to protocols which give a shastéput then the total length
of inputs given so far. This subclass contains a lot of najmatocols. It seems very
difficult to find a subclass which is closed under composiaod contains all natural
protocols: for instance, a broadcast protocol has a larggrub than the length of the
input.

Intuitively, the generalised composition theorem saysaweakly polynomial pro-
tocol M, use a sub-protocdlf}, such that the composition éf; and)/;, is polynomially
shaped. Let furtheb/, be a protocol which can connect to the prototflin the same
way as]\?[{) and for which the composition aff; and M/, is polynomially shaped, too.
Then the following holds: If\/, is at least as secure Mé according to Definition 2,

then )/}, can be replaced by/, without loss of security.

Theorem 1. Let(M,, Sy), (M}, So), (M, S1) be structures (i.e., protocols), s.t. no port
in My, Mo, or M, is namedpoly_ah or cpoly_ha. Let then(M#, S) := (M, S1)||(Mo, Sp),
(M*,S) == (My, Sy)||(M}, So) (i.e., M# is the composition ofiZ; and M, while M*

is the composition af/; and 1/}). Assume that

— The collections of machined# and AZ* are polynomially shaped.
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— The collection of machine¥/; is weakly polynomial.
— Itis (M, Sp) > (M, Sp).
— Itis ports(M}) NS¢ = ports(Mg) N S¢.14

Then we have

(M*#,S) >% (M*,S),

i.e., M# is continously polynomially as secure &5

The same holds for universal security.

Proof. In the following proof, we assume all polynomials to be mama&. Furthermore,
k always denotes the security parameter.

Let conf, = (M#,S,H,A,) € Confily (NI#,5) be given (i.e., let some suit-
able continuously polynomial honest ugdrand adversanA; be given). To prove

the theorem, we have to find a continuously polynomial sitoula,, s.t. conf, =

(M*,5,H,A;) € Confepey (M*,S) and

pfx, (vz’ewwnf1 (H)) Rpoly PIX; (Uiewconfz (H)) (1)

for all polynomials!.
To prove universal security, we additionally need, thatloes not depend dd.
W.l.0.g. we can restrict our attention to honest users wlinot terminate. Other

honest users can be transformed into an honesHisenich 1. does not terminate, 2. is

¥ This is a formally necessary structural condition on thelakie ports, which also appear in the original version

of the composition theorem, cf. [7] for details.

38



continuously polynomial, and for which 3. the view of thegonial H is a prefix of the
newH’.

Consider the combinatidd’ := comb({H}U M, ) of H and/,. SinceH andZ; are
weakly polynomial, so is their combinatidti. SinceH does not terminate, the length
function forcpoly_ah of H' is alwaysco, thereforeH’ is continuously polynomial.

Since(M,, Sy) >V (M}, S,) there is a continuously polynomial simulatby, s.t.

—secC
pfx;, (mewMOUH’UAl (H,)) Rpoly PX, (UieleéuH’UAg (H,))

for all polynomialsL.

To show (1) from this, it is sufficient to show that for any podymial/ there is a
polynomial L, s.t. thel-prefix of H is (with overwhelming probability) containédin
the L-prefix in H’ (intuitively, this means that the view &f does not grow superpoly-
nomially by inclusion of\/;).

First, consider the view dfl in the real model (i.e. in the collectidhU A, U M#).
Fix a polynomiall. Let then the random variabje, be the index in the run of the last
element of thé-prefix ofH's view (more formally, the minimaky,, s.t.pfx, (view(H))
is contained in the first, elements of the run).

SinceA; is continuously polynomial, there exists a polynomigbependent o)

s.t. up to theu,-th step in the run the total length Af’s output is bounded by(%).

15 Here, containment is to be understood in the sense that éne ofiH’ can be restricted to the subview of the

submachinéd of H’.
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Since the total length of the output 8ff up to they,.-th step is bounded bi(%)
(by definition of{), we conclude that the total input df# coming fromH andA; is
bounded by(k) + (k). SinceM# is polynomially shaped, it follows (by Definition 3)
that the total output of\/# is bounded by some polynomia(k) (dependent o, )
with overwhelming probability.

So the length of the inputs and outputdf(being the combination df andM, C
M#) is bounded by, (k) := I(k) + r(k) + (k) + p(k) + p(k) (the summands being
upper bounds for: in-/output df; output ofA;; output of H; output of M;; output of
M7# (the latter appearing as inputkt)). Therefore thé-prefix of H's view appear with
overwhelming probability in ar-prefix of the view ofH’ (in the real model).

Using the fact that/* is polynomially shaped, too, we get by analogous discussion
that thel-prefix of H's view appear with overwhelming probability in dna-prefix of the
view of H'. By choosingL as a polynomial bounding both;, L,, the remaining goal is

shown, so (1) follows.

5 Relations to Polynomial Security

Continuously polynomial security allows for users and agages which are not strictly
polynomial. On the other hand, every strictly polynomiair g user and adversary can
be interpreted as continuously polynomial ones—only tmmé&dly necessargpoly_ah
andcpoly_ha connections have to be added (but they need not be used).
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However, this inclusion does not immediately imply that tommously polynomial
security can be related in any way to the well-known concétractly polynomial
security (for which only strictly polynomially bounded useand adversaries are con-
sidered). Namely, in case of continuously polynomial sggurot only real adversaries,
but also simulators may be drawn from a larger pool of possldversaries. So in prin-
ciple, continuously polynomial security of a system couldam that even for strictly
polynomially bounded real attacks, a simulator might beessary which isiot polyno-
mially bounded; strictly polynomial security might not fimlv from continuously poly-
nomial one.

Fortunately, we can still show the following, not immedIlgtebvious relation be-

tween continuously polynomial and strictly polynomial sety:

Theorem 2. Let (]\2/1, S) and (Mg, S) be polynomially shaped structures (i.e., proto-

cols) satisfying My, S) >P (M, S). Then(My, S) >P (M, S), i.e. continuously

—secC

polynomial security implies strictly polynomial securfity polynomially shaped proto-

cols.

Proof. Assume(M;, S) > (M, S). To prove thaf M, S) > (MM, S) we have

—secC

to show that for everyonf, := (H,A,, M;,S) € Confﬁfy(]\?[l, S) (i.e., for any strictly
polynomial honest usé# and real adversark;), there is a simulatok, with conf, =

(H, Ay, My, S) € Confpo|y(M2, S) (i.e., a strictly polynomial adversary), s.t.

VIEW cong, (H) Rpoly VieW cong,(H). (2)
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Without loss of generality we can assume that no pok ehdA; is namedtpoly_ah or
cpoly_ha.

First, sinceH andA, are strictly polynomial, and/; is polynomially shaped, there
is a polynomialp, s.t. p(k) is with overwhelming probability an upper bound for the

total length of all messages sentin a ru{bf A; } U M.

Therefore, we can construct a new real adverggrjrom A, as follows: We add
new portscpoly_ha?, cpoly_ah!, andcpoly_ah”!. A completely reads all its inputs and
behaves a8, would (and ignorespoly_ha-messages). Only if the total length of the in-
coming messages received throughout the run exggédsall messages are forwarded
to H throughcpoly_ah instead of simulating\,. Clearly, sinceA,; was strictly polyno-

mial, A is continuously polynomial.

Similarly, we construct a new honest usérfrom H: We add new portspoly_ah?,
cpoly_ha!, cpoly_ha“!. The length function ompoly_ah? is set toco, but any input on
this port is ignored. No output is ever sent on the new pottsaidy, sinceH was strictly
polynomial,H’ is continuously polynomial.

Intuitively, we have added a new connection betweleand A; which is not used
at all, but needed to fulfil the formal requirements of continsly polynomial honest
users and adversaries. Since the new connection is notaiséd;’s communication

limit p(k) is reached only with negligible probability, it immediatdébllows that

VIEW conf, (H) = VIEW AP, (H). 3)
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Since the machinesl’ and A? are continuously polynomial, byM;,S) >ceoly

(Ms, S) there is a continuously polynomial simulats s.t. for all polynomialg

pfx; (viewH,UAfuMl (H’)) Rpoly PfX (viewH,UAguMQ (H’)) (4)

Since in runs oH U Al U M, the adversarA? sends anything ongpoly_ah only with
negligible probabilityA} only sends with negligible probability on that port, too.
Therefore it is possible to construct a new simulaerfrom A by removing the
portscpoly_ha?, cpoly_ah!, cpoly_ah®! (hereA, simply terminates wheA% would have
sent oncpoly_ah). Since only with negligible probability data is ever trem&ed over

these ports, it is immediate that
viewyapuir, (H') & viewy o, oy, (H) (5)

using the same identification of views as in (3).

Further, sinceAl is continuously polynomial, and thus can only make a polyno-
mial number of Turing steps while not receiving gsoly_ha or sending orepoly_ah, it
follows thatA, is strictly polynomial.

Settingconf, := (H, Ay, Mo, S), and combining (3), (4) and (5), we get
pfx; (m’ewwnfl (H)) Rpoly PX; (Uz'ewconf2 (H)) (6)

for all polynomials!.
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And sinceH andA, are strictly polynomial, and/ is polynomially shaped, it fol-

lows from Definition 3 that there is a polynomias.t.

pfxl(m'ewconfl(H)) = VieW conf, (H)

with overwhelming probability (i.e., that the view is almi@ways of length at most
(k).

The analogue holds fdt, A, andM,, so from (6) follows (2), which concludes the
proof.

Note that the above proof does not work for universal seggibhceA, depends on

p which again depends dh

This theorem has several applications: first, it shows tbaticuously polynomial
security is not “too weak” a security notion. In fact, anyomeo would accept strictly
polynomial security as a sufficiently strong security asgtiom should also find contin-
uously polynomial security sufficiently strong.

Second, established results which need strictly polynbseieurity of a given sys-
tem as a prerequisite can also be used with continuouslypotially secure systems.
Consider the following example: You have proven continlypslynomial security for
each of the many components of a large e-commerce protdeelpfiotocol and each of
its components are—to avoid fixing a priori runtimes—foratal as a ps-wp protocol.
Of course you use Theorem 1 to derive the security of the ceetgbprotocol. (Note that
already this step would not have been possible with thetlstpolynomial version of
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the composition theorem from [24], since for its applicatithe large protocol must be
strictly polynomial-time.) Using [1, Theorem 5%Jand Theorem 2, you can now show
that, e.g., integrity properties—as defined in [1]—the Ideasion of the large protocol
has are inherited by the composed (completely real) prot8aace these steps involve
composition of ps-wp systems, showing the same integripgnties of the composed
real system is non-trivial when using only results whichldei¢h strictly polynomial

security.

6 A Simple Example

We will show the applicability of our definition using the yesimple example of se-
cure message transmission (SMT) over an authenticateschehasing a one-time-pad.
Note that despite its simplicity, such a functionality abulot have been modelled in
earlier approaches without bounding number and lengtheofrtessages (e.g., the SMT-
functionality in [24] is parametrised by explicit bounglgnd L for number and length
of the messages).

To keep the presentation of this example simple, we assunegy axchange func-
tionality KE that is has the following specification: When receiving a sage of the
form 1~ from partyPajic., @ randomk € {0, 1} is sent to the partieBajc. andPg,p

18 This theorem states the preservation of integrity progsréind is applicable even to protocols which are not

polynomial-time.
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and a message is sent (with immediate scheduling) to the adversary (imfag him
that a key exchange took placé).

We now want to implement the following functionali®T: Whenever a message
m is received fromPaji., @ message!”! is sent (and immediately scheduled) to the
adversary, and the messagds sent toPg,,. (Note that here the adversary can reorder
the messages, since he may choose when to schedule theydefive from SMT to
PBob-)

The protocol we propose f&MT is fairly straightforward. When receiving a mes-
sagem, Pajice first requests a key of length := |m| + k from the functionalityKE
wherek is the security parameter. Upon receipt of the kéjt sendsc := (mo*) @ K
to Pg,, OVer an authenticated channeh;.. repeats this protocol for each new message.

Then, upon reception of a kdy from KE and a ciphertext from Pajice, Pgob Cal-
culatesm := ¢ ® K. If m has the formmo0”, Pg,, outputsm.

Obviously this protocol is ps-wp, for each input of lendtht generates a commu-
nication volume ob L + 4k.

We now give a proof sketch that this protocol indeed real#é3: First, consider
the case that no party is corrupted. Then, for each adverfsawe construct a simu-
lator A, as follows:A, simulates the adversary, as well Bgi.. andPg.,. When the

simulatorA, receives a messagé from SMT (informing it that a message of length

17 This key exchange functionality could then easily be immatad by doing ari-bit Diffie-Hellman-style key

exchange.
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is being sent), a random messagec {0, 1}* is given toP.. as input, thus creating
as fake view for the adversary. Whés,,, finally outputs the messagé € {0,1}*
(and the adversary schedules that output), the simulat@dsides the delivery of the

corresponding messagefrom SMT to the environment.

Since the adversary (and the honest user) does not leareyti¢ generated bKE,
they may not distinguish whether the cipertexts interagptethe adversary correspond
to the messages generated by the honest user, or to rand@ages®f the same length
generated by the simulator. However, one subtle point meisaken care of: If several
messages are in the process of being sent, the adversaryearaenr the keys from
KE differently onPuj..’'s andPg,,’s side. Then it is possible that wrong messages get
decoded. However, in order for this to happen, two geneitags have to match on the
lastk bits. Since the honest usidris continuously polynomial, for each prefix of length
p of H's view at mostO(p(k)) messages are sent, thus at mogt(k)) keys generated,

so the probability of such a collision of keys is boundedhiy(k)?27").

We add a short remark here: If instead of the one-time-padbncomputationally
secure cipher had been used, we would additionally havetethat since the protocol
is polynomially shaped, and the honest user and adversamgoatinously polynomial,
the adversary and honest user together can run at most aopalimumber of steps.
Hence, they cannot break the cipher with more than a netgigitobability.
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The last thing left to check for the uncorrupted case is thatsanulator is indeed
continuously polynomial. Whenever the simulator gets asagst” from SMT, a sim-
ulation of P5ji.e andPg,;, runs. The runtime needed for this simulation is polynonmal i
L. However, in the simulatioR ;.. immediately sends a message of lenfth & which
is passed to the simulated adversary. So the runtime needggefsimulation is polyno-
mial in the length of the messages the simulated adversésyAyed since the simulated
adversary is continuously polynomial, its runtime (whistalso an upper bound for its
incoming communication) is polynomial in its communicatn thecpoly . . . ports. So
the total runtime of the simulator is polynomial in its commzation on thecpoly . . .
ports (since all the communication of the simulated advgrea these ports is passed

to H), and thus the simulator is continuously polynomial.

So at least in the uncorrupted case, our protocol is a camiisiy polynomially

secure implementation 8MT.

The cases whety.. Or Pg,p, are corrupted are even easier, since here the simulator
can learn the transmitted message. Checking that the sonutathese cases is also
continuously polynomial is done very similarly to the unegted case. We omit the
details of these cases.
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7 Applying our idea to the UC framework

We have shown how to allow for a more general class of polyabitime protocols in
the framework of reactive simulatability. Since we haveus#d any specific properties
of the reactive simulatability framework, we believe that approach can be adapted
to the UC framework [8]. Several differences between the U@ the reactive simu-
latability framework that induce minor changes in our déifoms are worth mentioning

here:

— In the UC model, there is no concept of ports, the recipiest wlessage is dynami-
cally specified by the sending machine. Therefore in Dedinifi we cannot consider
the messages sent only over tipely_. . . ports. Instead, the messages intended to be
sent over this connection must be marked in a special way,l®/g special prefix
which is not allowed in messages sent to the protocol.

— In the UC model, indistinguishability of real and ideal mrotls is not formulated
in terms of the view, but in terms of the final output of the eamiment. Instead
of quantifying over polynomial prefixes of the views in Defw2 would simply
qguantify only over environments that must terminate aft@obynomial length of
input and output. We stress that for “specialized simulax@t' (the UC equivalent
of standard simulatability), this results in an order ofofiféers that differs from the
one presented here for reactive simulatability. We do notkwhat side effects this
may have for specialized simulator UC.

49



— In the UC model, it is possible that additional machines appiring the execu-
tion of the protocol (these can model e.g., new participarew/ly invoked subrou-
tine threads, multiple instances of a functionality). Tleéimition of a polynomially
shaped protocol (Def. 3) should therefore require, thabtitputs ofall machines
(including submachines that are created only during thewian of the protocol)
are bounded polynomially in the external inpudifmachines. Only considering the
machines present at the beginning of the protocol executaurld not be sufficient,

of course.

8 Conclusions

We have motivated and introduced a novel formulation of tieiiive requirement of
simulatable security with respect to polynomially boundgtcks and protocol runs.
We have shown that the induced security notion allows formmsition and is at least
as strong as the established notion of strictly polynonaalsity.

We have presented our approach in the modelling of readtivelatability [7]. The
ideas presented here should be applicable to the UC modéb{8]

Many of the oddities that arise with a combination of simald¢ security and a
strict polynomial bounding (as with strictly polynomialsegity) of all entities in a pro-
tocol are settled by our approach. Nonetheless, more fagiclaniques are possible:
e.g., message scheduling and scheduling of activatiorid betseparately managed by
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distinguished entities. In such a setting, machines cad sessages which are sched-
uledwhile the sending machine remains activated. Then, a very iméuirmulation of
“polynomial runtime,” which can even more closely modellistec protocol situations,

would seem possible.
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A Glossary

In this section we explain the technical terms of the reacsinulatability framework
used in this paper. Longer and formal definitions can be fonijid].

[C']: The completion of the collectiofi. Results from adding all missing buffers to
C. Conf,(Ms,,S): Set of ideal configurations that are possible for structite, S).
Conffb(Ml, S): Set of real configurations possible for struct(ié,, S). ports(M):
The set of all ports, a machine or collectidh has. to clock: To write 1 onto a clock
out-port. EXPSMALL: The set of exponentially small functions.NEGL: The
set of negligible functions (asymptotically smaller thae tnverse of any polynomial).
buffer: Stores message sent from a simple out- to a simple in-peedbdl an input
from a clock port to deliver. clock out-port p9!: A port used to schedule connection.
closed collection A collection is closed, if all ports have all their necegseounter-
parts. collection: A set of machines. combination: The combination of a set
of machines is a new machine simulating the other machinsgt Af machines can be
replaced by its combination without changing the view of arachine. composition
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Replacing sub-protocols by other sub-protocolsomputational security. When in
the security definition, honest user and adversary araatstito machines running in
polynomial time, and the views are computationally indigtiishable. configuration:

A structure together with an honest user and an adversaryee ports: The free
ports of a collection are those missing their counterparhonest user Represents
the setting in which the protocol runs. Also called envir@min intended structure:

A structure from which a system is derived making a structorevery corruption sit-
uation. master clock port clk®?: A special port by which the master scheduler is
activated. master scheduler The machine that gets activated when no machine
would get activated. perfect security. When in the security definition, the real
and ideal run have to be identical, not only indistinguidbaburther the machines are
completely unrestrictet® run: The transcript of everything that happens while a
collection is run. Formally a random variable over sequenee: ., ; is the random
variable of the run when running the configuratiam/ upon security parameteér, re-
stricted to its first elements. If is omitted, a family of random variables is meant. If
is omitted, we mean the full run.service ports The ports of a structure to which the

honest user may connect. They represent the interface pfrdtecol. As service ports

181n [7] a machine can in every activation for a given input andent state only reach one of a finite number of
states (this convention has been chosen for simplicity Bwever, this cannot even model the simple Turing
machine that tosses (within one activation) coins until @ppears, and then stores the number of coin tosses.
Therefore we will here adopt the convention that each statehave a countable number of potential successor

states, from which one is chosen following some distributiepending on the input and the current state.
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are most often ports of a buffer, they are sometimes spetifredgh the set of their
complementary portss© consists of all ports which directly connect to a servicet.por
simple in-port p?: A port of a machine, where it can receive messages from other
machines. simple out-port p!: As simple in-port, but for sending. statistical secu-

rity : When in the security definition the statistical distanceolfynomial prefixes of

the views have a statistical distance which lies in a set aflldomctionsSMALL (in the
security parametsr). UsuallySMALL = NEGL. Further the machines are completely
unrestricted® structure: A collection together with a set of service ports, représen

a protocol. view: A subsequence of the run. Thesw(M) of some collection or
machine)M consists of the run restricted to the ports and stated oPossible indices

are as with runs.

B Length Functions

In Section 1, we mentioned that in security definitions whelndle only strictly poly-
nomial protocols it is often necessary to restrict the amaofilata (lengths of inputs,
number of invocations) a protocol can handle by some polyabim the security pa-
rameter. We saw in Section 4 that the notion of continuouslynmpmial security allows
to consider a much larger class of protocols, namely prdgoebich are ps-wp. This
frees protocols from the necessity of terminating after s@mount of input; rather
protocols are only required to be polynomial in the “inpuinfr outside”.

56



In earlier versions of the reactive simulatability definits and the modelling of
universal composability (e.g., in [8]), the following pilem arose: consider e.g. the
seemingly trivial functionality/trusted host, that ha®tin-ports and two out-ports (rep-
resenting two parties) and on each pair of in-/out-port \@qust echo every input. In
order to make this functionality strictly polynomial, it w necessary to restrict the
amount of echoed data to some polynomiallhen the functionality has to terminate
after receivingp messages on the first port, otherwise it might have to spepdrsu
polynomial time by ignoring the incoming messages on that. dden of course the
functionality would not echo anything on the second poréreif no message has been
echoed there yet. This introduces a flow of information betwthe two echo ports

which certainly was not the intention of the original furoctality.

To handle this artefact and allow functionalities to “switaff” selected ports, [1]
introduces so-calletength functionsThese allow a machine to set the maximal length
of messages it can receive through a given port at a given timgarticular, by setting
the length function on a port t0, the port is blocked and will not be activated by

messages on that port, so that ignored messages do not consgotime.

Since with continuously polynomial security, we do not negdctly polynomial
protocols, one might wonder whether itis still necessagotusider and use length func-
tions in this modelling, since these are an answer to a pmolkich is actually solved
by our modelling in another manner. This question will beradded in the present sec-
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tion, where we will show that we can in fact assume all protocachines to have no

length functiong?

The question is therefore whether a ps-wp protocol/funetity with length func-
tions can be modified into another ps-wp protocol/functiyevithout length functions
so that the security is not affected. Fortunately the foilmastraightforward modifica-
tion already has the desired property: we say a mad¥iimesults from another machine
M by removing length functions ¥’ has no length functions, but otherwise behaves as
M does. That is, when receiving a message, the content of tesage after the prefix
the length function oM indicates is ignored, and only that prefix is used for the simu
lation of M (or the message is ignored, if the length functioR)isin other wordsM’
simulates the length functions bf without actually having them. Whel is a collec-

tion, removing length functions means removing them froergwachine in\/.2°

Since obviously the difference betwebhandM’ is only a formal property, not a
difference in behaviour, we would expédt to be a suitable replacement figr. This is

confirmed by the following

9 Formally, by a machinavithout length functionsve mean a machine, whose length functions @rén every

non-final state.
20 A careful study of the definition of machines in [7] shows, ttfemally we can define the machine resulting

from removing length functions from a machihdé = (name, Ports, States, 6,1, Ini, Fin) simply asM’ =
(name, Ports, States, 0, oo, Ini, Fin), whereco denotes the length function yielding for all ports and non-

final states.
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Lemma 2. Let )V, (: = 1, 2) be collections without master schedulers, and%tresult

from M; by removing length functions. Then it holds that

— M,; is polynomially shaped iff// is.
— If M; is weakly polynomial, so i&/!.

— The following are equivalent:

(MhS) Zsec (M27S>7 (Ml,S) Zsec (Mé,S),

(M, 5) Zeee (My,8), (M}, S) >eec (M}, 5)

Here >... denotes one of the following security notions: perfecttistiaal / strictly
polynomial / continuously polynomial in the flavours of stard or universal secu-

rity.

The main idea of the proof is that the removal of length funtdidoes not change
the behaviour of the protocol, therefore the equivalentésethree security relations.
Then it remains to be seen that the machines do not need siy®ymial runtime in the
input to ignore the inputs (this shows the modified machindsetweakly polynomial),
and that the amount of output does not change (this showgsldting structures to be
polynomially shaped). Note that such a property would ndd far strictly polynomial
structures, since by removing a length function from a béocgort the resulting ma-
chine would have to ignore but accept an unbounded numbees$ages on that port,
which is not allowed for strictly polynomial machines. Thél fproof goes as follows:
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Proof. Let C; be some collection, s.i\; U C; is a closed collection (i.e., no port is
unconnected). Then removing the length functions fidfyields a collectionV/! U C;,
so that the run of\f’ U C; differs from that ofAZ/ U C; only in the following points: 1.
the inputs of machines iM{ are changed (i.e., they are longer since with unmodified
M; they were added to the run in truncated form), 2. there aréiadal activations of
machines in\/{ with empty outputs.

Now let any machinél” without length functions be given, siZ; U T is closed.
Consider then a rurun of T U M; with security parametsr and the corresponding run
run’ of TU ]\Z/{ (i.e, the runs result from the same random choices)uLetN. Then let
t,, denote the total length of the outputdfa, the number of activations of machines in
M;, ando,, the total length of the output of machinesiifi, all up to theu-th activation
of T in run (cf. Definition 3). Lett,, a;,, ando,, be defined analogously four'. By

setting(; := {T} the considerations at the beginning of the proof tell us that

=t 0, =20

/
a, < a,, t, " " x

Note further that whenever a simple machine (no master sigds activated, some
other machine necessarily sent a nonempty message to fbett &his allows to con-
cludea;, <t + 0,

If then 1V, is p-shaped then from these inequalities we get with overwhemiob-

ability for all x4

a, +0, < t,+20, = t,+20, < t,+2pt,+k) < (2p+id)(t, + k),
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so M is (2p + id)-shaped.

If on the other hand/! is p-shaped, it is

ay + o0, < a, + o0, <p(t, +k)=p(t, +k),

so M; is p-shaped. So the claim follows thaf; is polynomially shaped iff\/! is.

Now assume some weakly polynomial machMds given, andVl’ results by re-
moving length functions. Let some input sequenceMbresp.M’ be given. Then for
activationu, we distinguish two cases: First, the length functiorvbis not zero on the
port containing input. TheM’ only has to ignore any trailing input, which can be done
with an overhead polynomial in the running timeMfin that activation. Second, if the
length function ofM is zero, the overhead &’ is constant, i.e., in particular poly-
nomially bounded in the size of the non-empty input. So sunsmmg we see that the
overhead oM’ is polynomial in the running time dfl and the length of the input, so
M’ is weakly polynomial, too. Therefore this shows the cldffp is weakly polynomial
if M, is.

Considering again the results from the beginning of the fpatd lettingC; be the
honest user together with the real adversary, we see thaetvef the honest user is not
changed by removing the length functions from the machinedji, so (M, S) >
(M,, S) is equivalent toq M!, S) > (M,, S) and(My, S) > (M}, S) is equivalent
with (M1, S) >ec (M}, S). Similarly with C, being the honest user together with the
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simulator, we see thadt\/;, S) > (M, S) is equivalent with(M;, S) >ec (M}, S).

This shows the third claim.
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