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Abstract. We elaborate on the problem of polynomial runtime in simulatability definitions for multi-

party computation. First, the need for a new definition is demonstrated by showing which problems

occur with common definitions of polynomial runtime. Then, we give a definition which captures in

an intuitive manner what it means for a protocol or an adversary to have polynomial runtime.

We show that this notion is suitable for simulatability definitions for multi-party computation. In

particular, a composition theorem is shown for this notion.
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1 Introduction

1.1 Overview

It is a non-trivial task to define the security of a multi-party protocol. Even when one

restricts to protocols for a very specific application, say,tossing a coin over a telephone

line, it may not be obvious what technically the protocol goals are. The situation gets

worse as soon as one tries to design a larger protocol, possibly composed of different

smaller protocols with possibly colliding or incompatiblesecurity requirements.
* This is the full version of [19].



To cope with this problem, so-called simulation-based security definitions have been

introduced. These security definitions define the security of a protocol relative to an

ideal specification of the protocol task. This gives a simpleand unified method for

defining the security requirements of a multitude of different protocol tasks. Modern

simulation-based frameworks (e.g., the Reactive Simulatability framework [24, 7] and

the Universal Composability framework [8, 12]) are furtherequipped with a powerful

composition theorem. These composition theorems guarantee that different protocols

can becomposed(i.e., run together)without losing their security.

Since in most cases we are interested incomputationalsecurity, i.e., security that

holds only with respect to computationally feasible attacks, a security definition should

come with a notion of what a feasible attack (and a feasible protocol, for that matter)

is. Usually, cryptographers consider an attack or protocolto be feasible if it runs in

polynomial time. However, the notion of running in polynomial time (and therefore of

feasible protocols and attacks) in such a simulatability-based setting turned out to be

nontrivial.

Straightforward approaches lead to technical artifacts, limitations on the classes of

protocols that may be investigated, or even to contradictory security models. (We will

exemplify this below when the idea of simulation-based security has been covered in

more detail.)

2



This problem has been recognized, but, as we will argue, not solved in a satisfy-

ing way. The goal of this work is thus to develop a notion of polynomial runtime that

is appropriate for simulatability frameworks. We will propose a suitable notion, and

demonstrate its usefulness by discussing a simple example that cannot be modeled with

other approaches in a meaningful way. We also give a general composition theorem that

shows that the security notion induced by our notion of polynomial runtime still enjoys

the nice composability properties of a modern simulation-based framework.

Our argumentation will take place in the simulatability model of Reactive Simulata-

bility (RSIM, cf. [24, 7]) of Backes, Pfitzmann, and Waidner. However, our ideas do not

rely on specific properties of this framework. Hence, we alsosketch how to apply our

ideas to theUniversal Composabilitysimulatability model (UC, cf. [8]) of Canetti.

We now give more details on the setting and our approach.

1.2 The general idea of simulatability

In a nutshell, a simulation-based notion of security compares a real protocol to an ideal

specification. That ideal specification is modelled by an ideal protocol or a so-called

ideal functionality. This ideal protocol is secure by assumption. Then the simulation-

based notion guarantees that if any attack that is possible on the real protocol is also

possible on the ideal protocol. Since by assumption no harmful attack is possible on the

ideal protocol, it follows that all attacks on the real protocol are harmless, too.
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More concretely, in the Reactive Simulatability frameworkand the Universal Com-

posability framework, this idea is modelled as follows: We require that for each ad-

versaryA1 that attacks the real protocol, there is a corresponding ideal adversary or

simulatorA2 that attacks the ideal protocol. We then introduce a third entity, the honest

user4 that communicates both with the protocol and with the adversary. If then no hon-

est user can distinguish between running with the real protocol and the real adversary

and running with the ideal protocol and the ideal adversary,we call the real protocol

as secure as the ideal protocol. (More details on this modelling in the case of Reactive

Simulatability are given in Section 2.)

However, when filling in the details of this definition, one question that arises is how

to model feasible, i.e., polynomial-time adversaries/honest users and protocols. Mod-

elling feasible adversaries/honest users is indispensable, since we want to quantify only

over these when modelling computational security. And a corresponding definition of

feasible protocols turns out to be necessary since for unlimited protocols but computa-

tionally limited adversaries and honest users we lose, e.g., the compositionality property

of the security definition. We will discuss this issue further in the next section.

1.3 The traditional notion of feasibility and its problems

In this section, we will explain the various difficulties arising when trying to model

polynomial-time protocols and adversaries. To exemplify these difficulties, we will con-

4 In the framework of [8], this entity is called the (protocol)environmentZ.
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sider the ideal functionalityFPKE which is often used to model the security of public-

key encryption. This functionality is defined as follows (wesimplify somewhat):

Functionality FPKE

Key generation:Upon receiving a message(KeyGen) from a partyPi, request a value

e from the adversary and hande to Pi.

Encryption: Upon receiving a message(Encrypt, e′, m) from a partyPj , hand|m| to

the adversary. When the adversary answers with a ciphertextc, passc to Pj . Further, if

e = e′, store the pair(c, m).

Decryption: Upon receiving a message(Decrypt, c) from Pi (andPi only), check

whether(c, m) has been stored. If so, returnm to Pi. Otherwise, ask the adversary for

a value ofm and return that value.

A detailed explanation of the workings of this functionality is out of the scope of this

section and given in [8]. Note however that the intended implementation (i.e., real proto-

col) of this functionality is as follows: We assume a public-key encryption scheme to be

given. When partyPi of the real protocol gets a message(KeyGen) from the honest user,

it chooses a public/secret key pair(e, d) using the key generation algorithm and returns

the public keye. WhenPj gets a message(Encrypt, e′, m) it encryptsm with public

key e′ and returns the resulting ciphertextc. WhenPi gets a message(Decrypt, c), it

decryptsc using the previously stored secret keyd and returns the plaintextm.
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We are now ready to examine the various approaches to the problem of modelling

polynomial-time in simulation-based security model that are found in the literature.

Most models (e.g., [24] and [8]) bound the computational complexity of all ma-

chines5 that participate in a protocol run (i.e., parties, adversary, and honest user) to

strict polynomial-time in the security parameterk. That is, every machineM (this could

be a protocol party, an adversary, or the honest userH) halts after runningpM(k) steps

for a polynomialpM which depends only on the machineM.

Although this approach may seem very natural, it is problematic for several reasons.

First, it does not allow for modelling a protocol task that has no a-priori fixed bound

on its running time. For example, consider the case of a public-key encryption scheme.

Such a scheme should support to encrypt an arbitrary (thoughpolynomial) number of

messages, i.e., the number of messages depends on the application using that encryption

scheme. In particular, the concrete number of messages thatcan be encrypted is not

part of the specification of the encryption scheme. This factis captured by the ideal

functionalityFPKE above.

However, with the above sketched notion of polynomial runtime, the machineFPKE

must obey a strict polynomial bound on its runtime and hence terminate after a poly-

nomial number of encryptions. This polynomial has to be fixedat specification time of

5 Depending on the chosen framework, this might be an IO state automaton [24], or an interactive Turing ma-

chine [8].
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FPKE. Thus the formulation ofFPKE as given at the beginning of this section is not a

valid machine in this formulation of polynomial runtime.

Instead, it is necessary to use afamily of functionalitiesFPKE,p parametrised by

a polynomialp bounding the number of activations and the length of the messages.6

However, using such a family does not capture the fact that the encryption scheme used

for implementing the functionality does not impose any suchbounds. Further, this ab-

straction makes modular protocol design more complicated,since there is not a single

functionalityFPKE that can be used once and for all, instead one has to choose foreach

application which functionalityFPKE,p to take.

However, there is a second, more technical issue with a strict polynomial bound on

the runtime of each machine. Namely, recall that in the simulatability definition, and

consider the following order of quantifiers: “For every realadversary there is an ideal

adversary such that no honest userH can distinguish the real and ideal protocol.” (Dif-

ferent orders of quantifiers can be used, see Section 2.) In other words, the complexity

of H may depend on the complexity of the real and ideal adversary.This means thatH

can first of all “outrun” the adversary it runs with by sendingthe adversary (and only the

adversary) useless messages. This forces the adversary to waste its runtime by process-

ing these useless messages fromH. Eventually, the adversary will have to terminate, and

6 The (unparametrised) functionalityFPKE has actually been used in the literature together with the notion of strict

polynomial time, despite the fact that it formally is not a valid machine. This exemplifies the need for a definition

that allows to use this functionality.
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the only running machines will beH and the protocol (which, up to that point, has not

been activated at all). Hence, protocolπ and idealizationτ must look indistinguishable

from the perspective ofH even when the respective adversary has halted.

This is problematic when the real protocolπ requires no adversary to provide mere

functionality, but the idealizationτ does require the “help” of the ideal adversary to

look indistinguishable toπ. While this may sound artificial, it is common practice to

use this technique to make simulatability at all possible: e.g., this is the case when im-

plementingFPKE using a public key encryption scheme. Observe that, e.g., toperform

an encryption, the functionalityFPKE invokes the adversary to get a ciphertext (this rep-

resents the fact that we impose no guarantees as how a ciphertext looks like). So in the

ideal model runningFPKE, an encryption can only be performed when the adversary

has not terminated yet. However, a party in the real protocolwill usually encrypt by

internally invoking the encryption algorithm. This does not require interaction with the

adversary. So we have the surprising situation that formally a real protocol that does

perform communication when encrypting messages cannot be asecure implementation

of FPKE, while a slight modification of that real protocol that sendsa message to itself

before returning the encryption would be secure.

In the special case of the functionalityFPKE for public-key encryption, a solution

was proposed in [18]: keep all machines polynomialper activation, and quantify only

over honest usersH that guarantee a polynomial total running time of the complete
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protocol run (with bothπ andτ ). However, their definition was especially adapted to the

special case ofFPKE and did not specify a general solution to the problem of modelling

computational security of arbitrary protocols.

A similar approach was later used in [11]: here, all machinesare polynomial per

activation in the maximum of the security parameter and the total length of all messages

from the environment; however, environment and adversary are strictly polynomially

bounded. In this situation, an environment is no longer ableto flood (and thereby dis-

able) the dummy parties with wrong inputs; yet,Z may still “exhaust” the ideal-model

adversary. Furthermore, their model does not allow a party to run in polynomial time in

the length of the incoming messages from other parties, in particular, a protocol party

that receives a ciphertext, decrypts it, and then outputs itwould not be polynomial in the

sense of [11].

On December 13, 2005, the paper [12] was updated to contain analternative ap-

proach to solve the problem of polynomial runtime. However,for technical reasons their

approach requires that the total length of the messages sentby a party to the function-

ality is less than the total length of the inputs from the environment to that party. This

implies that in protocols have to require special padding oftheir inputs to be allowed to

access the functionality. Furthermore, as with [11], protocol parties are not allowed to

run in polynomial time in the length of the message coming from other parties, resulting

in the problems sketched in the preceding paragraph.
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The original formulation of the RSIM framework [24] uses theapproach of requiring

all machines to run in strict polynomial time, i.e., to run inp(k) steps wherek is the

security parameter. At the beginning of this section, we sawthat this introduces the

problem that a given machine (e.g., the honest userH) may cause other machines (e.g.,

the adversary) to terminate by sending many messages, resulting in unexpected effects.

This technical problem was addressed in [1, 2, 7] by allowingevery machine to

“block” selected connections. (To do so, a machine could setits so-called “length func-

tion” for that connection to zero.) So for example, the ideal-model adversaryA2 may—

from a certain point in time on—block all connections from the userH, when the corre-

sponding real-model adversary would have halted or blockedthis connection. Thus,H is

not able to “kill” A2 anymore, whileA2 may still service requests from the functionality.

However, this approach does not solve the issue that the functionality has to be

parametrised over the maximum number or length of messages it can handle (i.e., we

still have to use a family of functionalitiesFPKE,p).

Furthermore, notions like “polynomial fairness” of an adversary (which means that

this adversary schedules messages between parties after a polynomial number of activa-

tions, cf. [4]) are not compatible with an a priori polynomially bounded adversary. This

is due to the fact that the adversary is not able to schedule messages after it has halted,

and thus situations may arise where the adversary has to run longer than the a-priori
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fixed runtime polynomial to fulfil its scheduling guarantees. Examples for this issue are

given in [4].

In [16] the problems with polynomial runtime have also been noticed. Their solu-

tion consists of introducing so-called guards, a generalisation of length functions. These

guards may reject or modify incoming messages without wasting any of the total run-

time of the concerned machine. This solves the problem of “killing” a machine by send-

ing nonsensical inputs (these may be removed by the guard), but still requires that the

amount of actual work a machine does is a priori bounded. In particular, we would still

need a family of functionalitiesFPKE,p, sinceFPKE does not have an a-priori bound

on the number of messages it encryption and thus on the amountof work invested by

FPKE.

1.4 Our Contributions

Motivated by the discussion above we give a new definition of polynomial runtime for

simulatability and prove several desirable properties of our definition. The definition is

stated in the model of reactive simulatability, but the concept is model-independent and

should carry over to the UC framework.

The honest userH will be chosen to beweakly polynomial(cf. [7]), i.e., it will in

each activation be polynomially limited in the security parameter and the overall length

of all its incoming messages. The adversary (both real and ideal) will be limited in the

runtime ofH. To guarantee this, two specific connections between the adversary and
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the user will be used to limit the adversary in the message volume communicated over

these lines. Honest users and adversaries limited in this sense will be calledcontinuously

polynomial.

We stress that this definition allows users and adversaries that do not terminate at all.

Specifically, they may run long enough to break every complexity-based cryptographic

system. However, the definition guarantees that they may notdo so in polynomial pre-

fixes of H’s view. In fact, the definition guarantees that in polynomial prefixes ofH’s

view, bothA andH take only a polynomial number of steps,and both of them send

only messages of at most polynomial size to the protocol. This captures a very intuitive

notion of polynomial runtime for honest users and adversaries, the intuition being that

a computationally secure protocol may well be broken given an unlimited amount of

time, but not within a polynomial amount of time. This security notion is presented in

Section 3.

Polynomial limitations of a protocol will be captured by thenotion ofpolynomially

shapedprotocols. Roughly, a set of machines is polynomially shaped if the total length

of all messages sent by these machines is polynomial in the security parameterk plus

the overall length of inputs which machines from this set gotfrom machines outside of

this set. If additionally all machines in the set are weakly polynomial (see above) we

call this setpolynomially shaped weakly polynomial(ps-wpfor short). The notion of

ps-wp is a natural definition of a protocol being “polynomially bounded in input length
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and security parameter” without having to give explicit a priori bounds for the lifetime

of machines.

In Section 4, we prove a generalised composition theorem forps-wp protocols.

Specifically, in any ps-wp collection of machines, a functionality may be replaced by a

secure implementation if the resulting collection of machines remains ps-wp.

We note that the set of ps-wp protocols isnot closed under composition (i.e., there

are ps-wp protocols which yield a non-ps-wp protocol if composed). We argue that this

is not a flaw of our notion, but a “necessary evil” if one wants to catch the intuitive

notion of a polynomially bounded protocol. Therefore, we construct an example of two

protocols which are “intuitively polynomial” (and ps-wp),but which compose to a pro-

tocol that is non-polynomial in every intuitive way.

Additionally, we give a sub-notion of ps-wp protocols that is closed under com-

position. As a simple consequence, the mentioned ps-wp composition theorem shows

that this notion allows for asecurecomposition of protocols (without any additional

conditions on the complexity of the composed protocols).

In Section 5, we relate our new notion of security to the existing notion of polyno-

mial security from [7]. More specifically, we prove that our notion is at least as strict as

the one from [7].

In Section 7, we sketch how to apply our ideas to the UC framework.
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Finally, in Appendix B we show that the generalisation of simulatable security to

machines which are intuitively polynomial as defined in thiswork, but not strictly poly-

nomial, will allow us to omit the formal concept of length functions, which was intro-

duced in [1] to solve problems arising with strictly polynomial functionalities. More

specifically, we show that removing length functions from protocol machines does not

change the notion of security.

1.5 Interaction with previous results

An example of a published claim which is not formally correctin a setting with strictly

polynomial machines regards the ideal functionalityFPKE for public key cryptography.

Claim 15 in [9] states that the protocolπS given there realises the ideal functionality

FPKE using an IND-CCA secure public key cryptosystem.

The ideal functionalityFPKE as described above can be invoked an unlimited num-

ber of times and it is hence not allowed as a strictly polynomial ideal protocol and the

proof of Claim 15 is not formally correct. A bigger problem has already been stated

as a motivating example in Section 1.3: An environment machine can exhaust the ideal

adversary and distinguish the real and the ideal model as encryption and decryption will

still work in the real model, but cannot work in the ideal model as the help of the ideal

adverssary is needed. This invalidates Claim 15. However, the proof of Claim 15 seems

to carry over to the setting of continuously polynomial security presented here.
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The impossibility results for composable protocols remainunchanged by the new

notion of continuously polynomial security. The impossibility of bit commitment [13]

and other secure computations [14] seem to directly carry over to the notion of continous

polynomial security, as the corresponding proofs and attack methodology does not seem

to rely on specific complexity bounds.

Similarly, the proofs for the results in [20, 21] (these results investigate the impor-

tance of the order of quantification ofA1, A2 andH) seemto carry over to our setting,

although they use the notion of runtime in an inherent way. Onthe other hand, the results

from [22] do not obviously carry over to our notion of polynomial runtime.

The notion of continuously polynomial runtime may not only affect proofs for pre-

vious results, but the presentation of protocols and functionalites could in future be

substantially simplified. The cryptographic library in [5]uses explicit bounds on the

length of messages, the number of signatures per key, and thenumber of inputs at each

port. All these bounds are needed to model a strictly polynomial functionality which

can be realised by a protocol with strictly polynomial machines. The notion of continu-

ously polynomial security could help to remove these boundswhich inhibit a clear and

abstract presentation.
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2 Review of Reactive Simulatability

In this section, we present the notion of Reactive Simulatability. This introduction only

very roughly sketches the definitions, and the reader is encouraged to read [7] for more

detailed information and formal definitions. A reader familiar with the model may skip

this section and proceed to Section 3. Additionally, a glossary of important terms in the

reactive simulatability framework can be found in AppendixA.

2.1 Outline

A protocol is simply a set of machines7. Intuitively, this includes only honest-acting pro-

tocol parties, but not an explicit adversary or corrupted parties. Assume a protocol̂M1.

To define what we mean by saying thatM̂1 is secure, we also define an idealized proto-

col M̂2. Most of the time,M̂2 consists only of a single machine that provides the same

interface that all protocol machines of̂M1 (taken together as a whole) provide. Most

importantly, the definition ofM̂2 should be very simple and should guarantee “security

by construction.”

For example,M̂1 could be a concrete two-party protocol, where partyP1 inputs a

messageM and transmits it to partyP2 using a specific public-key encryption scheme.

PartyP2 then outputsM upon receipt and decryption. (For simplicity, we do not con-

sider a key distribution here.) Suppose we are interested inthe question: “Does this pro-

tocol achieve a secure message transmission?” Then the corresponding idealisation̂M2

7 We stick to the machine model of [24, 7], that is, to IO state automata.
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is one single machine that inputs a messageM on the same channel on whichP1 would

get its input inM̂1. Then,M̂2 outputsM again on the output channel on whichP2 would

output the decrypted message in̂M2.

Note that the definition of̂M2 does not involve any encryption scheme or key distri-

bution.M̂2 captures the essence of a secure message transmission, and is independent

of the way in which this goal is eventually achieved. In fact,M̂2 does not even involve

transmitting a message over an insecure channel; it merely collects its input and returns

its output. In this sense,̂M2 is “secure by construction.”

The notion of Reactive Simulatability now seeks to compareM̂1 andM̂2 to express

statements of the form “̂M1 achieves the security of̂M2.” This is captured by the require-

ment that any weakness of̂M1 should be already present in the idealizationM̂2. (The

mentioning of “weakness” here is nothing to be worried about; M̂2 does not contain any

weakness by construction, so this essentially only means that M̂1 does not contain any

weakness as well. The only reason for this seemingly strangerequirement is that it is

formally not easy to express the statement “M̂1 does not contain any weakness” directly.

Furthermore, there may be certain explicitly tolerated weaknesses inM̂2.)

More formally, we require that

– for every adversaryA1 that runs withM̂1 (and exhibits a potential weakness in̂M1),

– there exists an adversaryA2 that runs withM̂2 (and exhibits a corresponding weak-

ness inM̂2),
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– such that runs ofA1 with M̂1 look like runs ofA2 with M̂2.

This should hold in any protocol context in whicĥM1, resp.M̂2 is used.

We give a more formal definition with more details now.

2.2 Detailed definitions

We say that protocol̂M1 (thereal protocol) to beas secure asanother protocolM̂2 (the

ideal protocol, thetrusted host), if for any adversaryA1 (also called thereal adversary),

and anyhonest userH, there is asimulatorA2 (also called theideal adversary), s.t. the

view of H is indistinguishable in the following two scenarios:

– The honest userH runs together with the real adversaryA1 and the real protocol̂M1

– The honest userH runs together with the simulatorA2 and the ideal protocol̂M2.

Note that there is a security parameterk common to all machines, so that the notion of

indistinguishability makes sense.

This definition allows us to specify some trusted host—whichis defined to be a

secure implementation of some cryptographic task—as the ideal protocol, and then to

consider the question, whether a real protocol is as secure as the trusted host (and thus

also a secure implementation of that task).

2.3 Scheduling and runs

In order to understand the above definitions in more detail, we have to specify what is

meant by machines “running together”. Consider a set of machines (called acollection).
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Buffer p̃
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Scheduler for buffer̃p

p⊳!

Fig. 1.A connection

Each machine has severalportswith which it is connected to its outside world (i.e.,

to other machines, possibly in this collection). The machine receives input on itsin-

ports, and gives output on itsout-ports. One distinguishessimpleports (i.e., simple in-

and out-ports) andclock ports. While simple ports transport protocol data (e.g., mes-

sages, encryptions, etc.), clock ports are used for scheduling purposes only. To illustrate

how this works, consider Figure 1. Each usedport name(in this casep) represents a

unidirectional connection between two machines. The namesp in Figure 1 are all iden-

tical, and this is no accident: which ports connect where is solely determined by the

port namep. Precisely the ports with identical port name are connectedaccording to

Figure 1.

The unique sending machine has the portp!, whereas the receiving machine has

portp?. But once a message is sent overp!, it is not immediately delivered top?. First, it

is stored in abufferp̃ (which is a very special type of machine used only for the purpose

of message scheduling). The buffer itself delivers the message (to portp?) it has stored

only upon explicit request. This request has to come from theclock out-portp⊳!, and the
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machine that has this portp⊳! is called theschedulerfor buffer p̃. Note that the scheduler

for p̃ may be the receiving machine itself, the sending machine, ora different machine.

As an example, consider our real protocol from above that transmits an encrypted

message fromP1 to P2. The connection fromP1 to P2 could then be modeled as in Fig-

ure 1, where the sending machine isP1, the receiving machine isP2, and the scheduler

for the buffer in between is the adversaryA1. ThatA1 controls the buffer represents the

fact that generally we assume the adversary to control the network betweenprotocol

parties.

Strictly speaking, this models asecureconnection betweenP1 andP2, since the

adversary controlswhena message is delivered toP2, but has no access to the contents.

To model an authenticated channel, we would additionally forceP1 to send a copy of

each sent message toA1. (More detailed descriptions can be found in [7].)

Now, when a collection runs, the following happens: At everypoint in time, exactly

one machine is activated. It may now read its simple in-ports(representing incoming

network connections), do some work, and then write output toits simple out-ports.

After such an activation the contents of the simple out-ports p! are appended to the

queue of messages stored in the associated bufferp̃. However, since now all messages

are stored in buffers and will not be delivered by themselves, machines additionally

have after each activation the possibility to write a numbern ≥ 1 to at most one clock

out-portp⊳!. Then then-th undelivered message of bufferp̃ will be written to the simple
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in-portp? and deleted from the buffer’s queue. The machine that has thesimple in-port

p? will be activated next. (We stress again that in this description, p denotes always the

same arbitrary, but fixed port name. Furthermore, for a givenport namep, at most one

machine with a portp? is allowed in a given system, so the machine with portp? is

uniquely determined.)

So the clock out-ports control the scheduling. Usually, a connection is clocked by

(i.e., the corresponding clock out-port is part of) the sender, or by the adversary. Since

the most important use of a clock out-port is to write a1 onto it (deliver the oldest

message in the buffer), we say a machine clocks a connection or a message when a

machine writes a1 onto the clock port of that connection.

At the start of a run, or when no machine is activated at some point, a designated

machine called themaster scheduleris activated For this, the master scheduler has a

special port, called themaster clock portclk⊳?.

Note that not all collections can be executed, only so-called closedcollections,

where all connections have their simple in-, simple out-, and clock out-port. If a col-

lection is not closed, we call the ports having no counterpart free ports.

Discussion of the scheduling.This definition of scheduling is quite general and, in fact,

somewhat complicated compared, e.g., to the (simple and indeterministic) scheduling in

theπ-calculus [23]. There are several ideas behind this. First,scheduling should gener-

ally be performed by the adversary. If, with a specific representation of attacks through
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an adversary as in our case, scheduling is performedindeterministically, then the ad-

versary could effectively act indeterministically if he made his actions depend on his

observations of the scheduling. This, however, conflicts with the fact that the RSIM

framework considers probabilism in their security definitions. (Being indeterministic

would, e.g., allow the adversary to “guess” the secret key ofthe employed public-key

encryption scheme. However, this does not correspond to an “interesting” cryptographic

attack on the scheme.)

2.4 Protocols

In order to understand how this idea of networks relates to the above sketch of reactive

simulatability, one has to get an idea of what is meant by a protocol. A protocol is

represented by a so-calledstructure(M̂, S), consisting of a collection̂M of the protocol

participants (parties, trusted hosts, etc.), and a subset of the free ports ofM̂ , the so-called

service portsS. The service ports represent the protocol’s interface (theconnections to

the protocol’s users). The honest user can then only connectto the service ports (and to

the adversary), all other free ports of the protocol are intended for the communication

with the adversary (they may e.g. represent side channels, possibilities of attack, etc.).

Such free non-service ports are more commonly found with trusted hosts (i.e., the

abstract idealizations of protocols that are used to define security), explicitly modelling

their imperfections.
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But also, free non-service ports can be found in protocols asa modeling of the

adversary’s power to interfere with the protocol scheduling and the interactions among

honest protocol machines.

With this information we can review the above “definition” ofsecurity. Namely, the

honest userH, the adversary, and the simulator are nothing else but machines, and the

protocols are structures. The view ofH is then the restriction of the run (the transcripts

of all states and in-/output of all machines during the protocols execution, also called

trace) to the ports and state ofH.

A little more formally, we considerconfigurationsof the real and ideal protocol.

Concretely, a configuration of a structure(M̂, S) is a tuple(M̂, S, H, A), whereH is

a valid user andA is a valid adversary for(M̂, S). Validity simply means that certain

natural port requirements are. In particular,A only connects to non-service ports of

M̂ and toH, andH only connects to service ports of̂M and toA. The set of (in this

sense) valid configurations for(M̂, S) is denoted byConf(M̂, S). For the purpose of

comparing two structures(M̂1, S) and(M̂2, S) (with identical sets of service ports), it

is also useful to define the setConfM̂2(M̂1, S) of valid configurations(M̂1, S, H, A1) for

(M̂1, S) such thatH is also valid for(M̂2, S).

Formally, we then define(M̂1, S) as secure as(M̂2, S) iff for every valid configu-

ration(M̂1, S, H, A1) ∈ ConfM̂2(M̂1, S), there is a valid configuration(M̂1, S, H, A2) ∈
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Conf(M̂2, S) (with the same honest userH), such that the views ofH in both configura-

tions is computationally indistinguishable.

What we have just defined isstandard security, the default notion of security in the

Reactive Simulatability framwork. If we demand that in the above definition, the ideal

adversaryA2 does not depend onH, but only onA1, we obtain a stricter definition that is

calleduniversal security. (The termuniversalrefers here to the universality ofA2 with

respect to the honest userH.) These two definitions are not equivalent [20].

We stress that here, we donot consider the concept ofblack box security, which

intuitively demands thatA2 only depends onA1 in a “black box” manner. This is an

involved concept, and there are several definitions that tryto capture black box simu-

latability (e.g., the definitions in [24, 6, 12] are all different).

2.5 Systems

The definition, as presented so far, still has one drawback. We have not introduced the

concept of a corruption. This can be accommodated by definingso-called systems. A

systemis a set of structures, where to each “corruption situation”(set of machines, which

are corrupted) one structure corresponds. That is, when a machine is corrupted, it is not

present anymore in the corresponding structure, and the adversary takes its place. For a

trusted host, the corresponding system usually consists ofstructures for each corruption

situation, too, where those connections of the trusted host, that are associated with a

corrupted party, are under the control of the adversary.
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We can now refine the definition of security as follows: Areal systemSys1 is as se-

cure as anideal systemSys2, if every structure inSys1 is as secure as the corresponding

structure inSys2.

2.6 Combination

A very useful technical tool (that we will use later on) is thecombinationcomb(M̂) of

a setM̂ of machines. Informally,comb(M̂) is the single machine that internally runs all

machines inM̂ as submachines. All ports of machines in̂M are preserved. In [24], the

following statement is proven: If we substitute the combination comb(M̂) for a setM̂

of machines in any closed collection, then the common view ofall machines (including

the submachines incomb(M̂) stays unchanged.

2.7 Composition

A major advantage of a security definition by simulatabilityis the possibility ofcompo-

sition. The notion of composition can be sketched as follows: If we have on structure or

systemA (usually a protocol) implementing some other structure or systemB (usually

some primitive), and we have some protocolXB (havingB as a sub-protocol, i.e. using

the primitive), then by replacingB by A in XB, we get a protocolXA which is as secure

asXB. This allows to modularly design protocols: first we design aprotocolXB, and

then we find an implementation forB.
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We stress that these composability guarantees are bought ata high price. Namely,

several protocol tasks are simply not realizable in a simulatability-based framework.

This includes cryptographic building blocks such as bit commitment [13]. There have

been suggestions how to avoid these impossibilities (e.g.,[13, 15]), but they rely on

additional assumptions or imply weakened composability guarantees.

3 Continuously Polynomial Security

In this section, a new notion of polynomial runtime for the adversary and the proto-

col userH, continuously polynomial, is defined. For users and adversaries subject to

our definition, terms like “guaranteed delivery after polynomial time” can be defined in

a meaningful way. The definition of protocols which arepolynomially shapedof Sec-

tion 4 together with the restriction to weakly polynomial machines (ps-wp protocols)

will ensure without explicit lifetime bounds that only polynomial-time computations

are performed within polynomial time as seen by the protocoluserH.

First, we demand from the protocol userH that it isweakly polynomial,as defined

in [7]. There it is required that there is a polynomialp, such that in each activation,H

runs at mostp(k + |I|) steps, wherek is the security parameter, and|I| is the length of

all inputsH has received so far.8 We explicitly stress that this allowsHs that do not halt,

i.e., run infinitely long. It also does not forbidH to send messages to itself (possibly

8 This is similar to [17], where this approach is taken for the special case of secure function evaluations.
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doubling the size of this “loopback” message every time to get twice the computational

power for the next activation), or to receive large messages.

To make sure that the induced security notion stays sensible, we will restrict our

attention to polynomial prefixes ofH’s view. That is, we consider only things that happen

during polynomially-sized prefixes ofH’s view.9 Here, the size of a view-prefix is the

concatenated size of all inputs and outputs onH’s ports.

Second, an adversaryA is required to be polynomial inH’s view. There are two

obvious ways to do this: keepingA polynomial in the messages itreceivesfrom H, or

keepingA polynomial in the messages itsendsto H. We decided for a combination of

both: in our definition,A must be polynomial in the size of theA-H-communication in

bothdirections. We did so to giveA more freedom: with the first notion, it would not be

possible, in some cases, forA to simply forward protocol messages toH. Conversely,

the second notion may forbidA to forward messages fromH to the protocol. Thus, only

our combined notion allows for a “dummy adversary” (an adversary that only acts as a

relay between internal protocol lines andH). The concept of such a dummy adversary

is useful, e.g., for proving concurrent composition properties.

9 Alternatively, one could fix such a prefix withH and “hardwire” that bound intoH to make it strictly polynomial

in the traditional sense. However, in the case of standard security, the simulator is then chosen afterH and thus

knows the runtime bound ofH. When trying to define notions like fairness (i.e., the property that the adversary

eventually delivers messages), the simulator could then simply deliver all messagesafter the termination of the

honest userH. This would circumvent the idea of a fair delivery.
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However, this preliminary definition gives rise to a subtle problem with the proof

of the composition theorem. In this proof, surrounding protocol machines are, for cer-

tain steps of the proof, simulated by the protocol userH. So an adversary considered in

the proof of composability may have communication lines which are sometimes con-

nected to protocol machines and sometimes connected to a protocol user mimicking

these machines. Hence an adversary which is polynomial as described above could lose

this property by the “regrouping” of machines during the composition proof, and the

proof would fail.

Therefore, we introduce two specific communication lines which areguaranteedto

connect the adversary andH. The ports for these two lines will have names of the form

cpoly . . . , and such ports will not be allowed in any protocol. Now the total length

of messages exchanged over these two specific lines is used asa lower bound for the

“time” which has passed forH, and the adversary must be polynomial in this “volume”

plusk. This volume includes the messages which is sent from the adversary toH in the

same activation.

Counting a message, that is sent toH in the same activation, to the volume in which

the adversary must be polynomial allows the adversary to receive (and, e.g., forward) ar-

bitrarily long messages from the protocol. However, an adversary computing for a long

time mustsend a long message toH to ensure that a long “elapse in time” is observed

in the view ofH. There is one important detail here: every prefix of the view of H is a
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sequence of results from whole activations. That is, if an adversary took a superpoly-

nomial “debt” (e.g., by factoring a large integer), then thesuperpolynomial message

which he is forced to send toH in the same activation will not be contained in any poly-

nomial prefix ofH’s view. So whenever the adversary is performing a superpolynomial

number of computation steps, it is ensured that the result will not, not even in parts, be

considered in the definition of security.

A further condition we impose on the adversary is the following: The adversary is re-

quired to read all incoming messages completely. This seemingly unnecessary condition

has important consequences: Assume a protocol (e.g., for secure message transmission)

in which a ciphertext is transmitted. Assume further that for generating a realistic first

bit of the ciphertext, a runtime linear in the length of the message is required.10 Then a

real adversaryA could do the following: It intercepts the ciphertext, but reads only the

first bit and forwards that bit to the honest userH. SinceA only reads one bit, its running

time is independent of the length of the transmitted messageand it does not need to out-

put anything on thecpoly . . . connection. However, the simulator now has the task to

generate a realistic first bit, which takes a runtime linear in the length of the message. In

the case of universal security, since the simulator is chosen before the honest user, this

length may be larger than the number of steps the simulator may run without output on

10 An example would be if the protocol prepended the bitH l(0) to the ciphertext, wherel is the length of the

message, andH a suitable function so that computingH l(0) cannot be done faster than inΩ(l). Clearly, an

IND-CCA2 secure cryptosystem would not lose its security by such an addition.
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thecpoly . . . connection. So the simulator must output something there and the honest

user can distinguish. By introducing the condition that theadversary reads all its inputs,

this problem is fixed, sinceA now has to read the whole message, too, and hence also

outputs on thecpoly . . . connection.

As a technicality, messages sent from the adversaryA to H over the specific line

which influencesA’s runtime must be delivered immediately to ensure the direct corre-

spondence between runtime and messages received byH.11

Although we cannot guarantee that these requirements coverall technical artifacts

that can happen, at least the sketched problems with existing definitions of polynomial

runtime do not occur. Furthermore, Section 6 demonstrates that at least in natural exam-

ples, no odd effects happen.

We turn to the actual definition:

Definition 1 (Continuously polynomial honest users and adversaries). We call an

honest userH continuously polynomial, if it is weakly polynomial, has portscpoly ha!,

cpoly ah? ∈ ports(H), and the length function forcpoly ah? is ∞ in every non-final

state (i.e., all inputs oncpoly ah? are written in full length toH’s view).

We call an adversaryA continuously polynomial, if

– it has portscpoly ha?, cpoly ah!, cpoly ah⊳!, and

11 To facilitate the presentation, we say that a messagem form a machineM is delivered immediately over a portp!

if the receiving machine is activated with this message directly afterM has entered a waiting state or a final state.

In the model of [24, 7], this happens if the bufferp̃ is empty andM performs the commandsp! := m; p⊳! := 1.

30



– there is a polynomialp, s.t. for any closed collection̂C of machines withA ∈ Ĉ, and

any possible view ofA in Ĉ (on security parameter1k), the following holds:

• Lettµ be the total number of Turing steps ofA up to itsµ-th activation (inclusive).

Let cµ be the total length of outputs oncpoly ah! and inputs oncpoly ha? up to

A’s µ-th activation (inclusive). Then for allµ ∈ N it is

tµ ≤ p(cµ + k).

• WheneverA sends a message oncpoly ah!, it is delivered immediately.

• A never sets its length functions to anything other than∞, andA always com-

pletely reads all incoming messages.12

We can now define continuously polynomial security by simplyrestricting honest

user and adversary to continuously polynomial ones:

Definition 2 (Continuously polynomial security).Let (M̂1, S) and(M̂2, S) be struc-

tures (i.e., protocols), s.t.̂M1 andM̂2 have no port namedcpoly ah or cpoly ha. Define13

Confcpoly(M̂2, S) := {(M̂2, S, H, A) ∈ Conf(M̂2, S) :

A andH are continuously polynomial},

ConfM̂2

cpoly(M̂1, S) := Confcpoly(M̂1, S) ∩ ConfM̂2(M̂1, S).

12 That is, in each activation,A takes at least|I | steps, where|I | is the length ofA’s input in that activation.
13 Recall thatConfM̂2(M̂1, S) andConf(M̂2, S) are the sets of configurations(M̂, S, H, A) so thatH, A are valid

honest user and adversary for the given protocol in the real and ideal model, respectively, andS is the set of service

ports of the protocolM̂ = M̂1, M̂2, resp. Essentially,H andA are called valid if there are no open connections,

andH only connects to service ports.
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Less formally, the class of admissible honest users, adversaries and simulators is

restricted to continuously polynomial ones.

If view is a view of some machine, then bypfxt(view) we denote the longest prefix,

s.t. the total length of all inputs and outputs in that prefix is bounded byt ∈ N (we will

call such a prefix at-prefix).

We call(M̂1, S) continuously polynomially as secure as(M̂2, S) (written: ≥cpoly
sec ),

if for every configurationconf 1 = (M̂1, S, H, A1) ∈ ConfM̂2

cpoly(M̂1, S), there exists a

configurationconf 2 = (M̂2, S, H, A2) ∈ Confcpoly(M̂2, S) (essentially, this means that

for continuously polynomialH, A1 there is a continuously polynomial simulatorA2)

s.t. for all polynomialsl

pfxl(k)

(

view conf 1,k(H)
)

≈poly pfxl(k)

(

view conf 2,k(H)
)

.

That is, for every adversaryA1 and userH that run withM̂1, we require the existence

of an adversaryA2 that runs withH and M̂2, such that all polynomial prefixes ofH’s

view are indistinguishable in both protocols.

For universal security,(written: ≥cpoly,uni
sec ) we additionally require thatA2 does not

depend onH.

4 A Generalised Composition Theorem

This section gives a generalised composition theorem for not necessarily terminating

protocols. To this end, a new notion of polynomial runtime for protocolsis introduced.
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For describing polynomial complexity, it is not only necessary to limit the computation

time of a machine in each activation. It should also hold thatsuperpolynomial “events”

within the protocol yield a view for the userH having a superpolynomial representation.

It should not pass unnoticed byH if a protocol machine gains superpolynomial comput-

ing power through a superpolynomial number of activations (which intuitively means

that superpolynomial time must have passed) or by playing ping-pong with messages of

growing size.

The definition of apolynomially shapedprotocol ensures that each protocol ma-

chine can produce only messages of a total length which is polynomial in the length

of the messages coming from outside the protocol, e.g. from the protocol userH or the

adversary. The outside of the protocol is represented by a machineT in the definition

below. If additionally, each protocol machine is weakly polynomial, then the number of

Turing steps a protocol runs between two activations ofH or the adversary is polynomi-

ally limited in the security parameter and the length of the overall protocol input.

Definition 3 (Polynomially shaped).A collectionĈ of machines containing no master

scheduler is calledp-shaped for a functionp : N → N, if for all machinesT s.t.

Ĉ ∪ T is closed (i.e., there are no open connections) the following property holds with

overwhelming probability in the security parameterk:

Let oµ denote the total length of the output of all machines inĈ at positionµ in the

run ofĈ∪T. Similarly,iµ denotes the total length of the input of machines inĈ on ports
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coming fromT (i.e., portsp? s.t.p! ∈ ports(T)). Furtheraµ denotes the total number of

activations of machines in̂C at that point. Then

oµ + aµ ≤ p(iµ + k).

The following observation shows, in form of a lemma, that by restricting the honest

user’s view to polynomial prefixes, we also restrict whole runs to polynomial size. While

this lemma is never explicitly used in the upcoming proofs, it already gives a good

intuition of what effect it has to restrict the user’s view. Also, it formalizes the intuition

that protocol and adversary do not “run at a superpolynomially faster speed” than the

protocol user.

Lemma 1. Let (M̂, S) be a structure withM̂ that is polynomially shaped and weakly

polynomial. Assume that(M̂, S, H, A) is a valid configuration of(M̂, S) with continu-

ously polynomialH andA.

Then, when the view honest user is restricted to a (fixed) polynomial size, the whole

protocol (including adversary and honest user) can be simulated inside a single strictly

polynomial-time machine.

Proof. Fix a polynomialq = q(k). BecauseA is continuously polynomial, there is a

polynomialp1 = p1(k) such thatA must output (in total) at leastq(k) bits toH if it runs

at leastp1(k) steps itself.

On the other hand, the runtime of̂M is polynomial in the size of its own input, since

M̂ is weakly polynomial. By assumption onA, the inputs thatA gives toM̂ are in turn
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polynomial in the size ofH’s view. Also, the input thatH hands toM̂ appears inH’s

own view. In summary, there is a polynomialp2 = p2(k) such thatH’s view is at least

of sizeq(k) if M̂ runs at leastp2(k) steps.

Concluding, sinceH itself is weakly polynomial, there is an overall polynomialp =

p(k) such that the whole collection̂M ∪ {H, A} runs at leastp(k) steps only if the view

of M̂ is of size more thanq(k). The lemma follows, if we consider a single machineM

that simulates the whole collection, but halts as soon as thetotal number of steps taken

by all machines exceedsp(k).

In principle, the adversary or the user could try to gain superpolynomial computing

power by playing “ping-pong” with a protocol which has no lifetime bound. However,

this does not affect the security definition and computational assumptions can still be

used, because security is defined by comparing only polynomial prefixes of the view of

the userH. It is easy to see that results of a superpolynomial ping-pong cannot be con-

tained in such a polynomial prefix if all machines are weakly polynomial, the protocol

is polynomially shaped, and the user and the adversary are continously polynomial. A

superpolynomial number of invocations of the protocol either directly implies a super-

polynomial view of the using machineH or it implies a superpolynomial view of the

adversary. A result of such a superpolynomial computation can only appear in a super-

polynomial view of the adversary. For a continously polynomial adversaryA and user

H an event not visible in any polynomially view of the adversary cannot be visible in
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a polynomial prefix of the view ofH. Even though the weakly polynomial machines

could, in the long run, break any cryptosystem this does not imply distinguishability

and computational assumptions can be used.

Next we generalise the composition theorem to continuouslypolynomial users and

adversaries interacting with polynomially shaped protocols.

Note that the notion of polynomially shaped protocols is itself not closed under

composition. A simple counterexample can be obtained from the two machinesM1, M2

as follows. The machineM1 has two input lines and one output line. It forwards each

input to the output line and clocks the output line. The machineM2 has one input line

and one output line and acts as a repeater. It forwards each input to the output line and

clocks the output line in the same actiovation. Both machines are polynomially shaped

(as collections), but if we connect the two machines leavingone input line ofM1 open

we obtain a collection which can generate infinite internal communication on one single

input. This is a very bad effect as such a machine could run until it has solved some

“hard” problem thereby invalidating computationmal assumptions.

So the generalised composition theorem states that a composed protocol is secure

if it remainspolynomially shaped. It is in the responsibility of the protocol designer to

avoid “loops” when designing a protocol.
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However, one can restrict the security definition to a subclass of polynomially shaped

protocols which is closed under composition. Then the composition theorem still holds

and e.g. loops cannot arise from composition.

A subclass of polynomially shaped protocols which is closedunder composition can

be obtained by restricting to protocols which give a shorteroutput then the total length

of inputs given so far. This subclass contains a lot of natural protocols. It seems very

difficult to find a subclass which is closed under compositionand contains all natural

protocols: for instance, a broadcast protocol has a larger output than the length of the

input.

Intuitively, the generalised composition theorem says: Let a weakly polynomial pro-

tocolM̂1 use a sub-protocol̂M ′
0 such that the composition of̂M1 andM̂ ′

0 is polynomially

shaped. Let further̂M0 be a protocol which can connect to the protocolM̂1 in the same

way asM̂ ′
0 and for which the composition of̂M1 andM̂0 is polynomially shaped, too.

Then the following holds: IfM̂0 is at least as secure aŝM ′
0 according to Definition 2,

thenM̂ ′
0 can be replaced bŷM0 without loss of security.

Theorem 1. Let (M̂0, S0), (M̂ ′
0, S0), (M̂1, S1) be structures (i.e., protocols), s.t. no port

in M̂1, M̂0, or M̂ ′
0 is namedcpoly ah or cpoly ha. Let then(M̂#, S) := (M̂1, S1)‖(M̂0, S0),

(M̂∗, S) := (M̂1, S1)‖(M̂
′
0, S0) (i.e., M̂# is the composition of̂M1 andM̂0, whileM̂∗

is the composition of̂M1 andM̂ ′
0). Assume that

– The collections of machineŝM# andM̂∗ are polynomially shaped.
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– The collection of machineŝM1 is weakly polynomial.

– It is (M̂0, S0) ≥
cpoly
sec (M̂ ′

0, S0).

– It is ports(M̂ ′
0) ∩ Sc

1 = ports(M̂0) ∩ Sc
1.14

Then we have

(M̂#, S) ≥cpoly
sec (M̂∗, S),

i.e.,M̂# is continously polynomially as secure aŝM∗.

The same holds for universal security.

Proof. In the following proof, we assume all polynomials to be monotone. Furthermore,

k always denotes the security parameter.

Let conf 1 := (M̂#, S, H, A1) ∈ ConfM̂∗

cpoly(M̂
#, S) be given (i.e., let some suit-

able continuously polynomial honest userH and adversaryA1 be given). To prove

the theorem, we have to find a continuously polynomial simulator A2, s.t. conf 2 :=

(M̂∗, S, H, A2) ∈ Confcpoly(M̂
∗, S) and

pfxl

(

view conf 1
(H)

)

≈poly pfxl

(

view conf 2
(H)

)

(1)

for all polynomialsl.

To prove universal security, we additionally need, thatA2 does not depend onH.

W.l.o.g. we can restrict our attention to honest users whichdo not terminate. Other

honest users can be transformed into an honest userH′ which 1. does not terminate, 2. is
14 This is a formally necessary structural condition on the available ports, which also appear in the original version

of the composition theorem, cf. [7] for details.
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continuously polynomial, and for which 3. the view of the original H is a prefix of the

newH′.

Consider the combinationH′ := comb({H}∪M̂1) of H andM̂1. SinceH andM̂1 are

weakly polynomial, so is their combinationH′. SinceH does not terminate, the length

function forcpoly ah of H′ is always∞, thereforeH′ is continuously polynomial.

Since(M̂0, S0) ≥
cpoly
sec (M̂ ′

0, S0) there is a continuously polynomial simulatorA2, s.t.

pfxL

(

view M̂0∪H′∪A1
(H′)

)

≈poly pfxL

(

view M̂ ′

0
∪H′∪A2

(H′)
)

for all polynomialsL.

To show (1) from this, it is sufficient to show that for any polynomial l there is a

polynomialL, s.t. thel-prefix of H is (with overwhelming probability) contained15 in

theL-prefix in H′ (intuitively, this means that the view ofH does not grow superpoly-

nomially by inclusion ofM̂1).

First, consider the view ofH in the real model (i.e. in the collectionH ∪ A1 ∪ M̂#).

Fix a polynomiall. Let then the random variableµk be the index in the run of the last

element of thel-prefix ofH’s view (more formally, the minimalµk, s.t.pfxl(k)(view(H))

is contained in the firstµk elements of the run).

SinceA1 is continuously polynomial, there exists a polynomialr (dependent onl)

s.t. up to theµk-th step in the run the total length ofA1’s output is bounded byr(k).

15 Here, containment is to be understood in the sense that the view of H′ can be restricted to the subview of the

submachineH of H′.
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Since the total length of the output ofH up to theµk-th step is bounded byl(k)

(by definition ofl), we conclude that the total input of̂M# coming fromH andA1 is

bounded byl(k) + r(k). SinceM̂# is polynomially shaped, it follows (by Definition 3)

that the total output ofM̂# is bounded by some polynomialp(k) (dependent onl, r)

with overwhelming probability.

So the length of the inputs and outputs ofH′ (being the combination ofH andM̂1 ⊆

M̂#) is bounded byL1(k) := l(k) + r(k) + l(k) + p(k) + p(k) (the summands being

upper bounds for: in-/output ofH; output ofA1; output ofH; output ofM̂1; output of

M# (the latter appearing as input toH′)). Therefore thel-prefix ofH’s view appear with

overwhelming probability in anL-prefix of the view ofH′ (in the real model).

Using the fact thatM̂∗ is polynomially shaped, too, we get by analogous discussion

that thel-prefix ofH’s view appear with overwhelming probability in anL2-prefix of the

view of H′. By choosingL as a polynomial bounding bothL1, L2, the remaining goal is

shown, so (1) follows.

5 Relations to Polynomial Security

Continuously polynomial security allows for users and adversaries which are not strictly

polynomial. On the other hand, every strictly polynomial pair of user and adversary can

be interpreted as continuously polynomial ones—only the formally necessarycpoly ah

andcpoly ha connections have to be added (but they need not be used).
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However, this inclusion does not immediately imply that continuously polynomial

security can be related in any way to the well-known concept of strictly polynomial

security (for which only strictly polynomially bounded users and adversaries are con-

sidered). Namely, in case of continuously polynomial security, not only real adversaries,

but also simulators may be drawn from a larger pool of possible adversaries. So in prin-

ciple, continuously polynomial security of a system could mean that even for strictly

polynomially bounded real attacks, a simulator might be necessary which isnotpolyno-

mially bounded; strictly polynomial security might not follow from continuously poly-

nomial one.

Fortunately, we can still show the following, not immediately obvious relation be-

tween continuously polynomial and strictly polynomial security:

Theorem 2. Let (M̂1, S) and (M̂2, S) be polynomially shaped structures (i.e., proto-

cols) satisfying(M̂1, S) ≥cpoly
sec (M̂2, S). Then(M̂1, S) ≥poly

sec (M̂2, S), i.e. continuously

polynomial security implies strictly polynomial securityfor polynomially shaped proto-

cols.

Proof. Assume(M̂1, S) ≥cpoly
sec (M̂2, S). To prove that(M̂1, S) ≥poly

sec (M̂2, S) we have

to show that for everyconf 1 := (H, A1, M̂1, S) ∈ ConfM̂2

poly(M̂1, S) (i.e., for any strictly

polynomial honest userH and real adversaryA1), there is a simulatorA2 with conf 2 :=

(H, A2, M̂2, S) ∈ Confpoly(M̂2, S) (i.e., a strictly polynomial adversary), s.t.

view conf 1
(H) ≈poly view conf 2

(H). (2)
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Without loss of generality we can assume that no port ofH andA1 is namedcpoly ah or

cpoly ha.

First, sinceH andA1 are strictly polynomial, and̂M1 is polynomially shaped, there

is a polynomialp, s.t.p(k) is with overwhelming probability an upper bound for the

total length of all messages sent in a run of{H, A1} ∪ M̂1.

Therefore, we can construct a new real adversaryA
p
1 from A1 as follows: We add

new portscpoly ha?, cpoly ah!, andcpoly ah⊳!. A
p
1 completely reads all its inputs and

behaves asA1 would (and ignorescpoly ha-messages). Only if the total length of the in-

coming messages received throughout the run exceedsp(k), all messages are forwarded

to H throughcpoly ah instead of simulatingA1. Clearly, sinceA1 was strictly polyno-

mial, Ap
1 is continuously polynomial.

Similarly, we construct a new honest userH′ from H: We add new portscpoly ah?,

cpoly ha!, cpoly ha⊳!. The length function oncpoly ah? is set to∞, but any input on

this port is ignored. No output is ever sent on the new ports. Clearly, sinceH was strictly

polynomial,H′ is continuously polynomial.

Intuitively, we have added a new connection betweenH andA1 which is not used

at all, but needed to fulfil the formal requirements of continuously polynomial honest

users and adversaries. Since the new connection is not used,andA
p
1’s communication

limit p(k) is reached only with negligible probability, it immediately follows that

view conf 1
(H) ≈ viewH′∪A

p
1
∪M̂1

(H′). (3)
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Since the machinesH′ and A
p
1 are continuously polynomial, by(M̂1, S) ≥cpoly

sec

(M̂2, S) there is a continuously polynomial simulatorA
p
2 s.t. for all polynomialsl

pfxl

(

viewH′∪A
p
1
∪M̂1

(H′)
)

≈poly pfxl

(

viewH′∪A
p
2
∪M̂2

(H′)
)

(4)

Since in runs ofH′ ∪ A
p
1 ∪ M̂1 the adversaryAp

1 sends anything oncpoly ah only with

negligible probability,Ap
2 only sends with negligible probability on that port, too.

Therefore it is possible to construct a new simulatorA2 from A
p
2 by removing the

portscpoly ha?, cpoly ah!, cpoly ah⊳! (hereA2 simply terminates whenAp
2 would have

sent oncpoly ah). Since only with negligible probability data is ever transmitted over

these ports, it is immediate that

viewH′∪A
p
2
∪M̂2

(H′) ≈ viewH∪A2∪M̂2
(H) (5)

using the same identification of views as in (3).

Further, sinceAp
2 is continuously polynomial, and thus can only make a polyno-

mial number of Turing steps while not receiving oncpoly ha or sending oncpoly ah, it

follows thatA2 is strictly polynomial.

Settingconf 2 := (H, A2, M̂2, S), and combining (3), (4) and (5), we get

pfxl

(

view conf 1
(H)

)

≈poly pfxl

(

view conf 2
(H)

)

(6)

for all polynomialsl.
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And sinceH andA1 are strictly polynomial, and̂M1 is polynomially shaped, it fol-

lows from Definition 3 that there is a polynomiall s.t.

pfxl

(

view conf 1
(H)

)

= view conf 1
(H)

with overwhelming probability (i.e., that the view is almost always of length at most

l(k)).

The analogue holds forH, A2 andM̂2, so from (6) follows (2), which concludes the

proof.

Note that the above proof does not work for universal security, sinceA2 depends on

p which again depends onH.

This theorem has several applications: first, it shows that continuously polynomial

security is not “too weak” a security notion. In fact, anyonewho would accept strictly

polynomial security as a sufficiently strong security assumption should also find contin-

uously polynomial security sufficiently strong.

Second, established results which need strictly polynomial security of a given sys-

tem as a prerequisite can also be used with continuously polynomially secure systems.

Consider the following example: You have proven continuously polynomial security for

each of the many components of a large e-commerce protocol. The protocol and each of

its components are—to avoid fixing a priori runtimes—formulated as a ps-wp protocol.

Of course you use Theorem 1 to derive the security of the composed protocol. (Note that

already this step would not have been possible with the strictly polynomial version of
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the composition theorem from [24], since for its application, the large protocol must be

strictly polynomial-time.) Using [1, Theorem 5.1]16 and Theorem 2, you can now show

that, e.g., integrity properties—as defined in [1]—the ideal version of the large protocol

has are inherited by the composed (completely real) protocol. Since these steps involve

composition of ps-wp systems, showing the same integrity properties of the composed

real system is non-trivial when using only results which deal with strictly polynomial

security.

6 A Simple Example

We will show the applicability of our definition using the very simple example of se-

cure message transmission (SMT) over an authenticated channel using a one-time-pad.

Note that despite its simplicity, such a functionality could not have been modelled in

earlier approaches without bounding number and length of the messages (e.g., the SMT-

functionality in [24] is parametrised by explicit boundss andL for number and length

of the messages).

To keep the presentation of this example simple, we assume a key exchange func-

tionality KE that is has the following specification: When receiving a message of the

form 1L from partyPAlice, a randomK ∈ {0, 1}L is sent to the partiesPAlice andPBob

16 This theorem states the preservation of integrity properties and is applicable even to protocols which are not

polynomial-time.
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and a message1L is sent (with immediate scheduling) to the adversary (informing him

that a key exchange took place).17

We now want to implement the following functionalitySMT: Whenever a message

m is received fromPAlice, a message1|m| is sent (and immediately scheduled) to the

adversary, and the messagem is sent toPBob. (Note that here the adversary can reorder

the messages, since he may choose when to schedule the delivery of m from SMT to

PBob.)

The protocol we propose forSMT is fairly straightforward. When receiving a mes-

sagem, PAlice first requests a key of lengthL := |m| + k from the functionalityKE

wherek is the security parameter. Upon receipt of the keyK it sendsc := (m0k) ⊕ K

to PBob over an authenticated channel.PAlice repeats this protocol for each new message.

Then, upon reception of a keyK from KE and a ciphertextc from PAlice, PBob cal-

culatesm̃ := c ⊕ K. If m̃ has the formm0k, PBob outputsm.

Obviously this protocol is ps-wp, for each input of lengthL it generates a commu-

nication volume of5L + 4k.

We now give a proof sketch that this protocol indeed realisesSMT: First, consider

the case that no party is corrupted. Then, for each adversaryA1 we construct a simu-

lator A2 as follows:A2 simulates the adversary, as well asPAlice andPBob. When the

simulatorA2 receives a message1L from SMT (informing it that a message of lengthL

17 This key exchange functionality could then easily be implemented by doing anL-bit Diffie-Hellman-style key

exchange.
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is being sent), a random messagem̃ ∈ {0, 1}L is given toPAlice as input, thus creating

as fake view for the adversary. WhenPBob finally outputs the messagẽm ∈ {0, 1}L

(and the adversary schedules that output), the simulator schedules the delivery of the

corresponding messagem from SMT to the environment.

Since the adversary (and the honest user) does not learn the keyK generated byKE,

they may not distinguish whether the cipertexts intercepted by the adversary correspond

to the messages generated by the honest user, or to random messages of the same length

generated by the simulator. However, one subtle point must be taken care of: If several

messages are in the process of being sent, the adversary may reorder the keys from

KE differently onPAlice’s andPBob’s side. Then it is possible that wrong messages get

decoded. However, in order for this to happen, two generatedkeys have to match on the

lastk bits. Since the honest userH is continuously polynomial, for each prefix of length

p of H’s view at mostO(p(k)) messages are sent, thus at mostO(p(k)) keys generated,

so the probability of such a collision of keys is bounded byO(p(k)22−k).

We add a short remark here: If instead of the one-time-pad an only computationally

secure cipher had been used, we would additionally have to note that since the protocol

is polynomially shaped, and the honest user and adversary are continously polynomial,

the adversary and honest user together can run at most a polynomial number of steps.

Hence, they cannot break the cipher with more than a negligible probability.
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The last thing left to check for the uncorrupted case is that our simulator is indeed

continuously polynomial. Whenever the simulator gets a message1L from SMT, a sim-

ulation ofPAlice andPBob runs. The runtime needed for this simulation is polynomial in

L. However, in the simulationPAlice immediately sends a message of lengthL+k which

is passed to the simulated adversary. So the runtime needed for the simulation is polyno-

mial in the length of the messages the simulated adversary gets. And since the simulated

adversary is continuously polynomial, its runtime (which is also an upper bound for its

incoming communication) is polynomial in its communication on thecpoly . . . ports. So

the total runtime of the simulator is polynomial in its communication on thecpoly . . .

ports (since all the communication of the simulated adversary on these ports is passed

to H), and thus the simulator is continuously polynomial.

So at least in the uncorrupted case, our protocol is a continuously polynomially

secure implementation ofSMT.

The cases wherePAlice or PBob are corrupted are even easier, since here the simulator

can learn the transmitted message. Checking that the simulator in these cases is also

continuously polynomial is done very similarly to the uncorrupted case. We omit the

details of these cases.
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7 Applying our idea to the UC framework

We have shown how to allow for a more general class of polynomial-time protocols in

the framework of reactive simulatability. Since we have notused any specific properties

of the reactive simulatability framework, we believe that our approach can be adapted

to the UC framework [8]. Several differences between the UC and the reactive simu-

latability framework that induce minor changes in our definitions are worth mentioning

here:

– In the UC model, there is no concept of ports, the recipient ofa message is dynami-

cally specified by the sending machine. Therefore in Definition 1 we cannot consider

the messages sent only over thecpoly . . . ports. Instead, the messages intended to be

sent over this connection must be marked in a special way, e.g., by a special prefix

which is not allowed in messages sent to the protocol.

– In the UC model, indistinguishability of real and ideal protocols is not formulated

in terms of the view, but in terms of the final output of the environment. Instead

of quantifying over polynomial prefixes of the views in Def. 2we would simply

quantify only over environments that must terminate after apolynomial length of

input and output. We stress that for “specialized simulatorUC” (the UC equivalent

of standard simulatability), this results in an order of quantifiers that differs from the

one presented here for reactive simulatability. We do not know what side effects this

may have for specialized simulator UC.
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– In the UC model, it is possible that additional machines appear during the execu-

tion of the protocol (these can model e.g., new participants, newly invoked subrou-

tine threads, multiple instances of a functionality). The definition of a polynomially

shaped protocol (Def. 3) should therefore require, that theoutputs ofall machines

(including submachines that are created only during the execution of the protocol)

are bounded polynomially in the external input ofall machines. Only considering the

machines present at the beginning of the protocol executionwould not be sufficient,

of course.

8 Conclusions

We have motivated and introduced a novel formulation of the intuitive requirement of

simulatable security with respect to polynomially boundedattacks and protocol runs.

We have shown that the induced security notion allows for composition and is at least

as strong as the established notion of strictly polynomial security.

We have presented our approach in the modelling of reactive simulatability [7]. The

ideas presented here should be applicable to the UC model [8], too.

Many of the oddities that arise with a combination of simulatable security and a

strict polynomial bounding (as with strictly polynomial security) of all entities in a pro-

tocol are settled by our approach. Nonetheless, more radical techniques are possible:

e.g., message scheduling and scheduling of activations could be separately managed by
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distinguished entities. In such a setting, machines can send messages which are sched-

uledwhile the sending machine remains activated. Then, a very intuitive formulation of

“polynomial runtime,” which can even more closely model realistic protocol situations,

would seem possible.
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A Glossary

In this section we explain the technical terms of the reactive simulatability framework

used in this paper. Longer and formal definitions can be foundin [7].

[Ĉ][Ĉ][Ĉ]: The completion of the collection̂C. Results from adding all missing buffers to

Ĉ. Confx(M̂2, S)Confx(M̂2, S)Confx(M̂2, S): Set of ideal configurations that are possible for structure(M̂2, S).

ConfM̂2

x (M̂1, S)ConfM̂2

x (M̂1, S)ConfM̂2

x (M̂1, S): Set of real configurations possible for structure(M̂1, S). ports(M)ports(M)ports(M):

The set of all ports, a machine or collectionM has. to clock: To write1 onto a clock

out-port. EXPSMALL: The set of exponentially small functions. NEGL: The

set of negligible functions (asymptotically smaller than the inverse of any polynomial).

buffer : Stores message sent from a simple out- to a simple in-port. Needs an input

from a clock port to deliver. clock out-port p⊳!p⊳!p⊳!: A port used to schedule connection.

closed collection: A collection is closed, if all ports have all their necessary counter-

parts. collection: A set of machines. combination: The combination of a set

of machines is a new machine simulating the other machines. Aset of machines can be

replaced by its combination without changing the view of anymachine. composition:
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Replacing sub-protocols by other sub-protocols.computational security: When in

the security definition, honest user and adversary are restricted to machines running in

polynomial time, and the views are computationally indistinguishable. configuration:

A structure together with an honest user and an adversary.free ports: The free

ports of a collection are those missing their counterpart.honest user: Represents

the setting in which the protocol runs. Also called environment. intended structure:

A structure from which a system is derived making a structurefor every corruption sit-

uation. master clock port clk⊳?clk⊳?clk⊳?: A special port by which the master scheduler is

activated. master scheduler: The machine that gets activated when no machine

would get activated. perfect security: When in the security definition, the real

and ideal run have to be identical, not only indistinguishable. Further the machines are

completely unrestricted.18 run : The transcript of everything that happens while a

collection is run. Formally a random variable over sequences. runconf ,k,l is the random

variable of the run when running the configurationconf upon security parameterk, re-

stricted to its firstl elements. Ifk is omitted, a family of random variables is meant. Ifl

is omitted, we mean the full run.service ports: The ports of a structure to which the

honest user may connect. They represent the interface of theprotocol. As service ports

18 In [7] a machine can in every activation for a given input and current state only reach one of a finite number of

states (this convention has been chosen for simplicity [3]). However, this cannot even model the simple Turing

machine that tosses (within one activation) coins until a1 appears, and then stores the number of coin tosses.

Therefore we will here adopt the convention that each state can have a countable number of potential successor

states, from which one is chosen following some distribution depending on the input and the current state.
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are most often ports of a buffer, they are sometimes specifiedthrough the setSc of their

complementary ports;Sc consists of all ports which directly connect to a service port.

simple in-port p?p?p?: A port of a machine, where it can receive messages from other

machines. simple out-port p!p!p!: As simple in-port, but for sending.statistical secu-

rity : When in the security definition the statistical distance ofpolynomial prefixes of

the views have a statistical distance which lies in a set of small functionsSMALL (in the

security parameterk). UsuallySMALL = NEGL. Further the machines are completely

unrestricted.18 structure: A collection together with a set of service ports, represents

a protocol. view: A subsequence of the run. Theview(M) of some collection or

machineM consists of the run restricted to the ports and states ofM . Possible indices

are as with runs.

B Length Functions

In Section 1, we mentioned that in security definitions whichhandle only strictly poly-

nomial protocols it is often necessary to restrict the amount of data (lengths of inputs,

number of invocations) a protocol can handle by some polynomial in the security pa-

rameter. We saw in Section 4 that the notion of continuously polynomial security allows

to consider a much larger class of protocols, namely protocols which are ps-wp. This

frees protocols from the necessity of terminating after some amount of input; rather

protocols are only required to be polynomial in the “input from outside”.
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In earlier versions of the reactive simulatability definitions and the modelling of

universal composability (e.g., in [8]), the following problem arose: consider e.g. the

seemingly trivial functionality/trusted host, that has two in-ports and two out-ports (rep-

resenting two parties) and on each pair of in-/out-port would just echo every input. In

order to make this functionality strictly polynomial, it isnow necessary to restrict the

amount of echoed data to some polynomialp. Then the functionality has to terminate

after receivingp messages on the first port, otherwise it might have to spend super-

polynomial time by ignoring the incoming messages on that port. Then of course the

functionality would not echo anything on the second port, even if no message has been

echoed there yet. This introduces a flow of information between the two echo ports

which certainly was not the intention of the original functionality.

To handle this artefact and allow functionalities to “switch off” selected ports, [1]

introduces so-calledlength functions. These allow a machine to set the maximal length

of messages it can receive through a given port at a given time. In particular, by setting

the length function on a port to0, the port is blocked and will not be activated by

messages on that port, so that ignored messages do not consume runtime.

Since with continuously polynomial security, we do not needstrictly polynomial

protocols, one might wonder whether it is still necessary toconsider and use length func-

tions in this modelling, since these are an answer to a problem which is actually solved

by our modelling in another manner. This question will be addressed in the present sec-
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tion, where we will show that we can in fact assume all protocol machines to have no

length functions.19

The question is therefore whether a ps-wp protocol/functionality with length func-

tions can be modified into another ps-wp protocol/functionality without length functions

so that the security is not affected. Fortunately the following straightforward modifica-

tion already has the desired property: we say a machineM′ results from another machine

M by removing length functions ifM′ has no length functions, but otherwise behaves as

M does. That is, when receiving a message, the content of the message after the prefix

the length function ofM indicates is ignored, and only that prefix is used for the simu-

lation of M (or the message is ignored, if the length function is0). In other words,M′

simulates the length functions ofM without actually having them. When̂M is a collec-

tion, removing length functions means removing them from every machine inM̂ .20

Since obviously the difference betweenM andM′ is only a formal property, not a

difference in behaviour, we would expectM′ to be a suitable replacement forM. This is

confirmed by the following

19 Formally, by a machinewithout length functionswe mean a machine, whose length functions are∞ in every

non-final state.
20 A careful study of the definition of machines in [7] shows, that formally we can define the machine resulting

from removing length functions from a machineM = (name,Ports ,States , δ, l, Ini ,Fin) simply asM′ =

(name,Ports ,States , δ,∞, Ini ,Fin), where∞ denotes the length function yielding∞ for all ports and non-

final states.
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Lemma 2. LetM̂i (i = 1, 2) be collections without master schedulers, and letM̂ ′
i result

fromM̂i by removing length functions. Then it holds that

– M̂i is polynomially shaped iff̂M ′
i is.

– If M̂i is weakly polynomial, so iŝM ′
i .

– The following are equivalent:

(M̂1, S) ≥sec (M̂2, S), (M̂1, S) ≥sec (M̂ ′
2, S),

(M̂ ′
1, S) ≥sec (M̂2, S), (M̂ ′

1, S) ≥sec (M̂ ′
2, S)

Here≥sec denotes one of the following security notions: perfect / statistical / strictly

polynomial / continuously polynomial in the flavours of standard or universal secu-

rity.

The main idea of the proof is that the removal of length functions does not change

the behaviour of the protocol, therefore the equivalences of the three security relations.

Then it remains to be seen that the machines do not need superpolynomial runtime in the

input to ignore the inputs (this shows the modified machines to be weakly polynomial),

and that the amount of output does not change (this shows the resulting structures to be

polynomially shaped). Note that such a property would not hold for strictly polynomial

structures, since by removing a length function from a blocked port the resulting ma-

chine would have to ignore but accept an unbounded number of messages on that port,

which is not allowed for strictly polynomial machines. The full proof goes as follows:
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Proof. Let Ĉi be some collection, s.t.̂Mi ∪ Ĉi is a closed collection (i.e., no port is

unconnected). Then removing the length functions fromM̂i yields a collectionM̂ ′
i ∪ Ĉi,

so that the run ofM̂ ′
i ∪ Ĉi differs from that ofM̂ ′

i ∪ Ĉi only in the following points: 1.

the inputs of machines in̂M ′
i are changed (i.e., they are longer since with unmodified

M̂i they were added to the run in truncated form), 2. there are additional activations of

machines inM̂ ′
1 with empty outputs.

Now let any machineT without length functions be given, s.t.̂Mi ∪ T is closed.

Consider then a runrun of T∪ M̂i with security parameterk and the corresponding run

run′ of T∪ M̂ ′
i (i.e, the runs result from the same random choices). Letµ ∈ N. Then let

tµ denote the total length of the output ofT, aµ the number of activations of machines in

M̂i, andoµ the total length of the output of machines in̂Mi, all up to theµ-th activation

of T in run (cf. Definition 3). Lett′µ, a′
µ, ando′µ be defined analogously forrun′. By

settingĈi := {T} the considerations at the beginning of the proof tell us that

aµ ≤ a′
µ, tµ = t′µ, oµ = o′µ.

Note further that whenever a simple machine (no master scheduler) is activated, some

other machine necessarily sent a nonempty message to that effect. This allows to con-

cludea′
µ ≤ t′µ + o′µ.

If thenM̂i is p-shaped then from these inequalities we get with overwhelming prob-

ability for all µ

a′
µ + o′µ ≤ t′µ + 2o′µ = t′µ + 2oµ ≤ t′µ + 2p(tµ + k) ≤ (2p + id)(t′µ + k),

60



soM̂ ′
i is (2p + id)-shaped.

If on the other handM̂ ′
i is p-shaped, it is

aµ + oµ ≤ a′
µ + o′µ ≤ p(t′µ + k) = p(tµ + k),

soM̂i is p-shaped. So the claim follows that̂Mi is polynomially shaped iffM̂ ′
i is.

Now assume some weakly polynomial machineM is given, andM′ results by re-

moving length functions. Let some input sequence forM resp.M′ be given. Then for

activationµ we distinguish two cases: First, the length function ofM is not zero on the

port containing input. ThenM′ only has to ignore any trailing input, which can be done

with an overhead polynomial in the running time ofM in that activation. Second, if the

length function ofM is zero, the overhead ofM′ is constant, i.e., in particular poly-

nomially bounded in the size of the non-empty input. So summarising we see that the

overhead ofM′ is polynomial in the running time ofM and the length of the input, so

M′ is weakly polynomial, too. Therefore this shows the claim̂M ′
1 is weakly polynomial

if M̂1 is.

Considering again the results from the beginning of the proof, and lettingĈ1 be the

honest user together with the real adversary, we see that theview of the honest user is not

changed by removing the length functions from the machines in M̂1, so (M̂1, S) ≥sec

(M̂2, S) is equivalent to(M̂ ′
1, S) ≥sec (M̂2, S) and(M̂1, S) ≥sec (M̂ ′

2, S) is equivalent

with (M̂ ′
1, S) ≥sec (M̂ ′

2, S). Similarly with Ĉ2 being the honest user together with the
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simulator, we see that(M̂1, S) ≥sec (M̂2, S) is equivalent with(M̂1, S) ≥sec (M̂ ′
2, S).

This shows the third claim.
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