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Abstract

We put forward a new technique to construct very efficient and compact signature
schemes. Our technique combines several instances of an only mildly secure signature scheme
to obtain a fully secure scheme. Since the mild security notion we require is much easier to
achieve than full security, we can combine our strategy with existing techniques to obtain
a number of interesting new (stateless and fully secure) signature schemes. Concretely, we
get:
• A scheme based on the computational Diffie-Hellman (CDH) assumption in pairing-

friendly groups. Signatures contain O(1) and verification keys O(log k) group elements,
where k is the security parameter. Our scheme is the first fully secure CDH-based
scheme with such compact verification keys.

• A scheme based on the (non-strong) RSA assumption in which both signatures and ver-
ification keys contain O(1) group elements. Our scheme is significantly more efficient
than existing RSA-based schemes.

• A scheme based on the Short Integer Solutions (SIS) assumption. Signatures contain
O(log(k) ·m) and verification keys O(n ·m) Zp-elements, where p may be polynomial
in k, and n,m denote the usual SIS matrix dimensions. Compared to state-of-the-art
SIS-based schemes, this gives very small verification keys, at the price of slightly larger
signatures.

In all cases, the involved constants are small, and the arising schemes provide significant
improvements upon state-of-the-art schemes. The only price we pay is a rather large (poly-
nomial) loss in the security reduction. However, this loss can be significantly reduced at the
cost of an additive term in signature and verification key size.

Keywords: digital signatures, CDH assumption, pairing-friendly groups, RSA assumption,
SIS assumption.

1 Introduction

Generic and non-generic signature schemes. Digital signature schemes can be built
from any one-way function [25, 28, 29]. However, this generic construction is not particularly
efficient. (For instance, each signature contains O(k2) preimages.) One could hope that for
concrete assumptions (such as the RSA or Diffie-Hellman-related assumptions), it is possible to
derive much more efficient schemes.

Tree-based signatures. But while indeed there exists a variety of efficient signature schemes
from concrete assumptions, there are surprisingly few different technical paradigms. For in-
stance, early RSA-based signature schemes (such as [17, 12, 13]) follow a tree-based approach,
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much like the generic construction from [28, 29]. Also later schemes (e.g., [14] and its variants
[15, 23, 18], or [21]) can at least be seen as heavily inspired by earlier tree-based schemes. For
instance, [14] can be seen as a more efficient variant of the scheme from [13] with an extremely
flat tree, at the price of a stronger computational assumption. On the other hand, the scheme
from [21] can be viewed as a tree-based scheme in which signatures are aggregated and thus
become very compact.

Partitioning strategies. A second class of signature schemes tries to enable a “partitioning
strategy” during the security proof (e.g., [10, 35, 18, 7]). (This means that during the security
proof, the set of messages is partitioned into those that can be signed by the simulator, and
those that cannot.) At least outside of the random oracle model, currently known instantiations
of partitioning strategies rely on certain algebraic structures, and lead to comparatively large
public keys.

More specific schemes. Finally, there are a number of very efficient signature schemes (e.g.,
[6, 34]) with specific requirements. For instance, the scheme of [6] relies on a specific (and
somewhat nonstandard) computational assumption, and the scheme of [34] inherently requires
a decisional (as opposed to a search) assumption. While we focus on the standard model, we
note that there are also very efficient schemes with a heuristic proof, i.e., a proof in the random
oracle model (e.g., [2]).

1.1 Our Contribution

In this work, we present a new paradigm for the construction of efficient signature schemes from
standard computational assumptions.

The technical difficulty. We believe that one of the main difficulties in constructing signature
schemes is the following. Namely, in the standard security experiment for digital signatures,
an adversary A wins if it generates a signature for a (fresh) message of his own choice. If we
use A in a straightforward way as a problem-solver in a security reduction to a computational
assumption, A itself may select which instance of the particular problem it is going to solve (by
choosing the forgery message). Note that we cannot simply guess which instance A is going to
solve, since there usually will be superpolynomially many possible messages (and thus problem
instances).1

Our main idea. We now explain the main idea behind our approach. As a stepping stone, we
introduce a very mild form of security for signature schemes that is much easier to achieve than
full (i.e., standard) security. Intuitively, the mild security experiment forces an adversary to
essentially commit to a crucial part of the forgery before even seeing the verification key. During
a security reduction, this allows to embed a computational problem into the verification key that
is tailored specifically to the adversary’s forgery. In particular, we do not have to rely on strong
assumptions to achieve mild security. Indeed, we present very efficient mildly secure schemes
based on the computational Diffie-Hellman (CDH) assumption (in pairing-friendly groups), the
RSA assumption, and the Short Integer Solutions (SIS) assumption. These constructions are
basically stripped-down versions of known (fully secure) stateful [22] and stateless [7] schemes.

The heart of our work is a very simple and efficient construction of a fully secure signature
scheme from log(k) instances of a mildly secure one. Note that we only use logarithmically
many mildly secure instances. In contrast, the related – but technically very different – prefix-
guessing technique of Hohenberger and Waters [21, 28, 8], uses k instances of a “less secure”
scheme. Furthermore, the signature schemes that result from our transformation can often be
optimized (e.g., using aggregation of signatures or verification keys). Concretely, if we use our

1There are more clever ways of embedding a computational problem into a signature scheme (e.g., partition-
ing [10, 35]). These techniques however usually require special algebraic features such as homomorphic properties
or pairing-friendly groups. For instance, partitioning is not known to apply in the (standard-model) RSA setting.
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transformation on the mildly secure schemes mentioned above, and optimize the result, we end
up with extremely efficient new signature schemes from standard assumptions.

More on our techniques. We now explain our transformation in a little more detail. We
start out with a tag-based signature scheme that satisfies only a very mild form of security. In a
tag-based signature scheme, signatures carry a tag t that can be chosen freely during signature
time. In our mild security experiment, the adversary A must initially (i.e., non-adaptively)
specify all messages Mi it wants signed, along with corresponding pairwise different tags ti.
After receiving the verification key and the requested signatures, A is then expected to forge a
signature for a fresh message M∗, but with respect to a “recycled” tag t∗ = ti (that was already
used for one of the initially signed messages).

Mild security thus forces A to choose the tag t∗ of his forgery from a small set {ti}i of
possible tags. In a security proof, we can simply guess t∗ = ti with significant probability, and
embed a computational problem that is specifically tailored towards t∗ into the verification key.2

How this embedding is done depends on the specific setting; for instance, in the CDH setting,
t∗ can be used to program a Boneh-Boyen hash function [5]. In fact, Hohenberger and Waters
[22] use such a programming to construct a very efficient stateful signature scheme.

A signature in our fully secure scheme consists of log(k) signatures (σi)
log(k)
i=1 of a mildly secure

scheme. (In some cases, these signatures can be aggregated.) The i-th signature component
σi is created with tag chosen as uniform 2i-bit string. Hence, tag-collisions (i.e., multiply used
tags) are likely to occur after a few signatures in instances with small i, while instances with
larger i will almost never have tag-collisions.

We will reduce the (full) security of the new scheme generically to the mild security of the
underlying scheme. When reducing a concrete (full) adversary B to a mild adversary A, we will
first single out an instance i∗ such that (a) the set of all tags is polynomially small (so we can
guess the i∗-th challenge tag t∗i∗ in advance), and (b) tag-collisions occur only with sufficiently
small (but possibly non-negligible) probability in an attack with A (so only a constant number
of t∗i∗-signatures will have to be generated for A). This instance i∗ is the challenge instance,
and all other instances are simulated by A for B.3 Any valid forgery of B must contain a valid
signature under instance i∗ with 2i

∗
-bit tag. Hence any B-forgery implies an A-forgery.4

The bottleneck of our transformation is the security reduction. Concretely, if B makes
q signature queries and forges with success probability ε, A will make up to Q = O(q4/ε)
signature queries and have success ε/2. (One “squaring” is caused by a birthday bound when
hoping for few tag-collisions; another squaring may occur when we have to round i∗ up to the
next integer.) This security loss is annoying, but can be significantly reduced by using techniques
from [18]. Namely, by first applying a suitable “weakly programmable” hash function to tags,
we can allow m-fold tag-collisions in the signatures prepared for B, at the cost of an extra m
group elements in verification key and signatures. Orthogonally, we can use ci-bit tags with
1 < c < 2 (instead of 2i-bit tags) in the i-th mildly secure instance to get a “finer-grained”
growth of possible tag sets. This costs a multiplicative factor of 1/ log2(c) in verification key
and signature size, of course unless aggregation is possible. With these measures, the security
reduction improves considerably: A will make Q = O(qc+c/m/εc/m) signature queries and have
success ε/2. Varying c and m gives thus an interesting tradeoff between efficiency and quality
of the security reduction.

Efficiency comparison. The most efficient previous CDH-based signature scheme [35] has
signatures and public keys of size O(1), resp. O(k) group elements. Our CDH-based scheme

2Since we guess t∗ from a small set of possible tags, we call our technique “confined guessing.”
3This neglects a subtlety: A must specify the messages to be signed for the i∗-th instance in advance, while

B expects to make adaptive signing queries. This difference can be handled using standard techniques (i.e.,
chameleon hashing [24]).

4We note that a similar combination of several weakly secure building blocks of rapidly growing size has been
given in the context of pseudorandom functions [3].
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also has constant-sized signatures, and more compact public keys. Concretely, we can get public
keys of O(log(k)) group elements at the price of a worse security reduction. Our RSA-based
scheme has similar key and signature sizes as existing RSA-based schemes [21, 19], but requires
significantly fewer (i.e., only O(log(k)) instead of O(k), resp. O(k/ log(k)) many) generations
of large primes. Again, this improvement is bought with a worse security reduction. Our SIS-
based scheme offers an alternative to the existing scheme of [7]. Concretely, our scheme has
larger (by a factor of log(k)) signatures and a worse security reduction, but significantly smaller
(by a factor of k/ log(k)) public keys.

On a related result by Seo. In an independent work, Seo [31] constructs essentially the
same CDH-based scheme, however with a very different security analysis. His analysis is much
tighter than ours, and for concrete security parameters, his scheme is more efficient. At the
same time, Seo only proves a bounded form of security in which the number of adversarial
signature queries has to be known at the time of key generation. The merged paper [4] presents
both his and our own analysis.

2 Preliminaries

Notation. For n ∈ R, let [n] := {1, . . . , bnc}. Throughout the paper, k ∈ N denotes
the security parameter. For a finite set S, we denote by s ← S the process of sampling s
uniformly from S. For a probabilistic algorithm A, we write y ← A(x) for the process of
running A on input x with uniformly chosen random coins, and assigning y the result. If
A’s running time is polynomial in k, then A is called probabilistic polynomial-time (PPT). A
function f : N→ R≥0 is negligible if it vanishes faster than the inverse of any polynomial (i.e.,
if ∀c∃k0∀k ≥ k0 : f(k) ≤ 1/kc). On the other hand, f is significant if it dominates the inverse
of some polynomial (i.e., if ∃c, k0∀k ≥ k0 : f(k) ≥ 1/kc).

Definition 2.1 (Signature scheme). A signature scheme SIG with message space Mk consists
of three PPT algorithms:
Setup. The setup algorithm Gen(1k), given the security parameter 1k in unary, outputs a public

key pk and a secret key sk.
Sign. The signing algorithm Sig(sk ,M), given the secret key sk and a message M ∈ Mk,

outputs a signature σ.
Verify. Given the public key pk, a message M , and a signature σ, Ver(pk ,M, σ) outputs a bit

b ∈ {0, 1}. (The case b = 1 corresponds to a valid signature on the message, and the case
b = 0 means invalid.)

For correctness, we require for any k ∈ N, all (pk , sk) ← Gen(1k), all M ∈ Mk, and all
σ ← Sig(sk ,M) that Ver(pk ,M, σ) = 1.

Definition 2.2 ((Distinct-message) existential unforgeability under (non-adaptive) chosen-mes-
sage attacks). We say a signature scheme is existential unforgeable under chosen-message
attacks (EUF-CMA) or existential unforgeable under distinct-message non-adaptive chosen-
message attacks (EUF-dnaCMA) iff

Adveuf-cma
SIG,F (k) := Pr

[
Expeuf-cma

SIG,F (k) = 1
]

and Adveuf-dnacma
SIG,F (k) := Pr

[
Expeuf-dnacma

SIG,F (k) = 1
]
,

respectively, are negligible for any PPT adversary F , where Expeuf-cma
SIG,F (k) and Expeuf-dnacma

SIGt,F (k),
respectively, are defined in Figure 1.

Pseudorandom functions. For any set S a pseudorandom function (PRF) with range S is
an efficiently computable function PRFS : {0, 1}k × {0, 1}∗ → S. We may also write PRFSκ (x)
for PRFS(κ, x) with key κ ∈ {0, 1}k. Additionally we require that

Advprf
PRFS ,A

(k) :=
∣∣∣Pr
[
APRFSκ (·) = 1 for κ← {0, 1}k

]
− Pr

[
AUS(·) = 1

]∣∣∣
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Experiment Expeuf-cma
SIG,F (k)

(pk , sk)← Gen(1k)
(M∗, σ∗)← F Sig(sk ,·)(pk)
if Ver(pk ,M∗, σ∗) = 1

and F has not queried Sig(sk ,M∗)
then return 1, else return 0

Experiment Expeuf-dnacma
SIG,F (k)

(Mi)i ← F (k)
(pk , sk)← Gen(1k)
σi ← Sig(sk ,Mi), for all i ∈ [q]
(M∗, σ∗)← F (pk , σ1, . . . , σq)
if Ver(pk ,M∗, σ∗) = 1

and ∀i 6= j : Mi 6= Mj

and M∗ 6∈ {Mi}i
then return 1, else return 0

Figure 1: EUF-CMA and EUF-dnaCMA experiment for signature schemes.

is negligible in k where US is a truly uniform function to S. Note that for any efficiently
samplable set S with uniform sampling algorithm Samp we can generically construct a PRF

with range S from a PRF PRF{0,1}
k

by using the output of PRF
{0,1}k
κ as random coins for Samp.

Following this principle we can construct (PRFSi)i∈[n] for a family of sets (Si)i∈[n] from a single

PRF PRF{0,1}
k

with sufficiently long output (hence we need only one key κ).

Chameleon hashing. A chameleon hash scheme consists of two PPT algorithms (CHGen,
CHTrapColl). CHGen(1k) outputs a tuple (CH, τ) where CH is the description of a efficiently
computable chameleon hash function CH :M×R→ N which maps a message M and random-
ness r to a hash value CH(M, r). We require collision-resistance in the sense that it is infeasible
to find (M, r) 6= (M ′, r′) with CH(M, r) = CH(M ′, r′). However, the trapdoor τ allows to pro-
duce collisions in the following sense: given arbitrary M, r,M ′, CHTrapColl(τ,M, r,M ′) finds r′

with CH(M, r) = CH(M ′, r′). We require that the distribution of r′ is uniform given only CH
and M ′.

3 Tag-based Signatures: From Mild to Full Security

We now describe our main result: a generic transformation from mildly secure tag-based sig-
nature schemes to fully secure schemes. Let us first define the notion of tag-based signature
schemes.

Definition 3.1. A tag-based signature scheme SIGt = (Gent, Sigt,Vert) with message space Mk

and tag space Tk consists of three PPT algorithms. The key generation algorithm (pk , sk) ←
Gent(1

k) takes as input a security parameter and outputs a key pair (pk , sk). The signing
algorithm σ ← Sigt(sk ,M, t) computes a signature σ on input a secret key sk, message M ,
and tag t. The verification algorithm Vert(pk ,M, σ, t) ∈ {0, 1} takes as input a public key pk,
message M , signature σ, and a tag t, and outputs a bit. For correctness, we require for any
k ∈ N, all (pk , sk) ← Gent(1

k), all M ∈ Mk, all t ∈ Tk, and all σ ← Sigt(sk ,M, t) that
Vert(pk ,M, σ, t) = 1.

We define a mild security notion for tag-based schemes, dubbed EUF-dnaCMA∗m security,
which requires an adversary F to initially specify all (distinct) messages Mi it wants signed,
along with corresponding tags ti. Only then, F gets to see a public key, and is subsequently
expected to produce a forgery for an arbitrary fresh message M∗, but with respect to an already
used tag t∗ ∈ {ti}i. As a slightly technical (but crucial) requirement, we only allow F to initially
specify at most m messages Mi with tag ti = t∗. We call m the tag-collision parameter ; it
influences key and signature sizes, and the security reduction.
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Gen(1k)
(pk ′, sk)← Gent(1

k)
κ← {0, 1}k
pk := (pk ′, κ)
return (pk , sk)

Sig(sk ,M)
ti := PRFTiκ (M) for i ∈ [l]
σi ← Sigt(sk ,M, ti)
return σ := (σi)

l
i=1

Ver((pk ′, κ), σ = (σi)
l
i=1,M)

ti := PRFTiκ (M) for i ∈ [l]

return
l∧

i=1
Vert(pk ′,M, σi, ti)

Figure 3: Our EUF-dnaCMA secure signature scheme.

Definition 3.2 (EUF-dnaCMA∗m). Let m ∈ N. A tag-based signature scheme SIGt is existen-
tially unforgeable under distinct-message non-adaptive chosen-message attacks with m-fold tag-

collisions (short: EUF-dnaCMA∗m secure) iff Adv
euf-dnacma∗m
SIGt,F

(k) := Pr
[
Exp

euf-dnacma∗m
SIGt,F

(k) = 1
]

is

negligible for any PPT adversary F . Here, experiment Exp
euf-dnacma∗m
SIGt,F

(k) is defined in Figure 2.

Experiment Exp
euf-dnacma∗m
SIGt,F

(k)

(Mj , tj)j ← F (1k)
(pk , sk)← Gent(1

k)
σj ← Sigt(sk ,Mj , tj) for all j
(M∗, σ∗, t∗)← F (pk , (σj)j)
if Vert(pk ,M∗, σ∗, t∗) = 1

and ∀i 6= j : Mi 6= Mj

and M∗ /∈ {Mj}j
and |{j : tj = t∗}| ≤ m
and t∗ ∈ {tj}j

then return 1, else return 0

Figure 2: EUF-dnaCMA∗m experiment
for tag-based signature schemes.

In this section, we will show how to use an
EUF-dnaCMA∗m secure scheme SIGt to build an EUF-
dnaCMA secure scheme SIG. (Full EUF-CMA secu-
rity can then be achieved using a chameleon hash
function [24].)

To this end, we separate the tag space Tk into
l := blogc(k)c pairwise disjoint sets T ′i , such that

|T ′i | = 2dc
ie. Here c > 1 is a granularity parameter

that will affect key and signature sizes, and the secu-
rity reduction. For instance, if c = 2 and Tk = {0, 1}k,
then we may set T ′i := {0, 1}2i . The constructed sig-
nature scheme SIG assigns to each messageM a vector
of tags (t1, . . . , tl), where each tag is derived from the
message M by applying a pseudorandom function as

ti := PRF
T ′i
κ (M). The PRF seed κ is part of SIG’s

public key.5

A SIG-signature is of the form σ = (σi)
l
i=1, where

each σi ← Sigt(sk ,M, ti) is a signature according to
SIGt with message M and tag ti. This signature is considered valid if all σi are valid w.r.t. SIGt.

The crucial idea is to define the sets T ′i of allowed tags as sets quickly growing in i. This
means that (m+ 1)-tag-collisions (i.e., the same tag ti being chosen for m+ 1 different signed
messages) are very likely for small i, but become quickly less likely for larger i.

Concretely, let SIGt = (Gent,Sigt,Vert) be a tag-based signature scheme with tag space
Tk =

⋃l
i=1 T ′i , let m ∈ N and c > 1, and let PRF be a PRF. SIG is described in Figure 3.

It is straightforward to verify SIG’s correctness. Before turning to the formal proof, we
first give an intuition why SIG is EUF-dnaCMA secure. We will map an adversary F on SIG’s
EUF-dnaCMA security to an adversary F ′ on SIGt’s EUF-dnaCMA∗m security. Intuitively, F ′

will internally simulate the EUF-dnaCMA security experiment for F and embed its own SIGt-
instance (with public key pk ′) in the SIG-instance of F by setting pk := (pk ′, κ). Additionally,
the seed κ for PRF is chosen internally by F ′.

Say that F makes q = q(k) (non-adaptive) signing requests for messages M1, . . . ,Mq. To
answer these q requests, F ′ can obtain signatures under pk ′ from its own EUF-dnaCMA∗m
experiment. The corresponding tags are chosen as in SIG, as t

(j)
i = PRFTiκ (Mj). Once F

5It will become clear in the security proof that actually a function with weaker security properties than a
fully-secure PRF is sufficient for our application. However, we stick to standard PRF security for simplicity.
Thanks to an anonymous reviewer for pointing this out.
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produces a forgery σ∗ = (σ∗i )
l
i=1, F ′ will try to use σ∗i∗ (with tag t∗i∗ = PRFTi∗κ (M∗) for some

appropiate i∗ ∈ [l]) as its own forgery.
Indeed, σ∗i∗ will be a valid SIGt-forgery (in the EUF-dnaCMA∗m experiment) if (a) F ′ did not

initially request signatures for more than m messages for the forgery tag t∗i∗ , and (b) t∗i∗ already
appears in one of F ′’s initial signature requests. Our technical handle to make this event likely
will be a suitable choice of i∗. First, recall that the i-th signature σi uses dcie-bit tags. We will
hence choose i∗ such that

(i) the probability of an (m + 1)-tag-collision among the t
(j)
i∗ is significantly lower than F ’s

success probability (so F will sometimes have to forge signatures when no (m + 1)-tag
collision occurs), and

(ii) |T ′i∗ | = 2dc
i∗e is polynomially small (so all tags in T ′i∗ can be initially queried by F ′).

We turn to a formal proof:

Theorem 3.3. If PRF is a PRF and SIGt is an EUF-dnaCMA∗m secure tag-based signature
scheme, then SIG is EUF-dnaCMA secure. Concretely, let F be an EUF-dnaCMA forger on SIG
that makes q = q(k) signature queries and has advantage ε := Adveuf-dnacma

SIG,F (k) with ε > 1/p(k)
for infinitely many k ∈ N. Then there exists an EUF-dnaCMA∗m forger F ′ on SIGt that makes

q′(k) ≤ 2 ·
(

2·qm+1

ε(k)

)c/m
+ l · q signature queries and has advantage ε′ := Adv

euf-dnacma∗m
SIGt,F ′

(k), and

a PRF distinguisher with advantage εPRF such that

ε′ ≥ ε/2− εPRF −
p′′(k)

|Mk|

for infinitely many k, where p′′(k) is a suitable polynomial, and Mk denotes SIGt’s (and thus
SIG’s) the message space.

Proof. Setup and sign. First, F ′ receives messages M1, . . . ,Mq from F . F ′ chooses the
challenge instance i∗ such that the probability of an (m+ 1)-tag collision is at most ε(k)/2, i.e.,
such that

Pr
[
∃ distinct j0, . . . , jm ∈ [q] with t

(j0)
i∗ = · · · = t

(jm)
i∗

]
≤ ε(k)

2
, (1)

(where the probability is over independently chosen t
(j)
i∗ ← T ′i∗), and such that |T ′i∗ | is polynomial

in k.6 We will prove in Lemma 3.5 that

i∗ :=

⌈
logc

(
log2

(
2 · qm+1

ε(k)

)1/m
)⌉

is an index that fulfills these conditions. F ′ then chooses a PRF key κ← {0, 1}k.
Recall that a signature σ = (σ1, . . . , σl) of SIG consists of l signatures of SIGt. In the sequel

we write σ(j) = (σ
(j)
1 , . . . , σ

(j)
l ) to denote the SIG-signature for message Mj , for all j ∈ {1, . . . , q}.

Adversary F ′ uses its signing oracle provided from the SIGt-security experiment to simulate these
SIG-signatures. To this end, it proceeds as follows.

In order to simulate all signatures σ
(j)
i with i 6= i∗, F ′ computes t

(j)
i := PRF

T ′i
κ (Mj) and

defines message-tag pair (Mj , t
(j)
i ). F ′ will later request signatures for these (l− 1) · q message-

tag pairs from its EUF-dnaCMA∗m-challenger. Note that t
(j)
i 6∈ T ′i∗ for all i 6= i∗, since the sets

T ′1 , . . . , T ′l are pairwise disjoint.

To compute the i∗-th SIGt-signature σ
(j)
i∗ contained in σ(j), F ′ proceeds as follows. First it

computes t
(j)
i∗ := PRF

T ′
i∗
κ (Mj) for all j ∈ {1, . . . , q}. If an (m+ 1)-fold tag-collision occurs, then

6There is a subtlety here, since we assume to know ε(k). To obtain a black-box reduction, we can guess
blog2(ε(k))c which would result in an additional security loss of a factor k in the reduction.
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F ′ aborts. This defines q more message-tag-pairs (Mj , tj) for j ∈ {1, . . . , q}. Note that the list

(t
(1)
i∗ , . . . , t

(q)
i∗ ) need not contain all elements of T ′i∗ , that is, it might hold that T ′i∗ \ {t

(j)
i∗ }j 6= ∅.

If this happens, then F ′ chooses for each so far unused tag t ∈ T ′i∗ \ {t
(j)
i∗ }j a different

uniformly selected dummy message M ′t ∈Mk \{Mj}j . (Here we implicitly assume that |Mk| >
m(|T ′i∗ | − 1), which guarantees that sufficiently many distinct dummy messages can be chosen.)

This defines no more than |T ′i∗ | further message-tag-pairs (M, t) for each t ∈ T ′i∗ \{t
(1)
i∗ , . . . , t

(q)
i∗ }.

We do this since F ′ has to re-use an already queried tag for a valid forgery later and F ′ does
not know at this point which tag F is going to use in his forgery later.

Finally F ′ requests signatures for all message-tag-pairs from its challenger, and receives in

return signatures σ
(j)
i∗ for all j, as well as a public key pk ′. (The number of requested signatures

is at most |T ′i∗ |+ q · l, which can be bounded as claimed using Lemma 3.5.)
F ′ defines pk := (pk ′, κ) and hands (pk , σ(1), . . . , σ(q)) to F . Note that each σ(j) is a valid

SIG-signature for message Mj .

Extraction. Suppose that F eventually forges a signature σ∗ = (σ∗i )
l
i=1 for a fresh message

M∗ 6∈ {M1, . . . ,Mq}. If M∗ is a previously selected dummy message, then F ′ aborts. Otherwise

it forwards (M∗, σ∗i∗ ,PRF
T ′
i∗
κ (M∗)) to the challenger of the EUF-dnaCMA∗m security experiment.

This concludes the description of F ′.

Analysis. We now turn to F ′’s analysis. Let badabort be the event that F ′ aborts. It is
clear that F ′ successfully forges a signature whenever F does so and badabort does not occur.
Note that the dummy messages M ′ are independent of the view of F , thus M∗ is a dummy
message with probability at most |T ′i∗ |/(|Mk| −m|T ′i∗ |). Furthermore, by Lemma 3.5, there is a
polynomial p′(k) with m|T ′i∗ | ≤ p′(k). Hence, there is another polynomial p′′(k), such that the
probability that M∗ is a dummy message is at most p′′(k)/|Mk|. Hence, to prove our theorem,
it suffices to show that Pr [badabort] ≤ ε/2+εPRF +p′′(k)/|Mk|, since this leaves a non-negligible
advantage for F ′.

First note that the probability of an (m+ 1)-tag collision would be at most ε/2 by (1) if the

tags t
(j)
i∗ were chosen truly uniformly and independently from T ′i∗ . Now recall that the actual

choice of the t
(j)
i∗ = PRF

T ′
i∗
κ (Mj) was performed in a way that uses PRF only in a black-box

way. Hence, if (m+ 1)-tag collisions (and thus badabort) occurred significantly more often than
with truly uniform tags, we had a contradiction to PRF’s pseudorandomness. (Note that this
implicitly uses that all messages Mj queried by F are distinct and thus lead to different PRF
queries.) Concretely, a PRF distinguisher that simulates F ′ until the decision to abort is made
shows Pr [badabort] ≤ ε/2 + εPRF + p′′(k)/|Mk|, and thus the theorem.

In order to obtain a fully EUF-CMA secure signature scheme, one may combine our EUF-
dnaCMA secure scheme with a suitable chameleon hash function or a one-time signature scheme.
This is a very efficient standard construction, see for instance [21, Lemma 2.3] for details.7

However, we will give more concrete optimized and fully secure schemes later on.
We now turn to the analysis of selecting the challenge index. For this, the following

Lemma 3.4 will be helpful.

Lemma 3.4 ([19], Lemma 2.3). Let A be a set with |A| = a. Let X1, . . . , Xq be q independent
random variables, taking uniformly random values from A. Then the probability that there exist
m + 1 pairwise distinct indices i1, . . . , im+1 such that Xi1 = · · · = Xim+1 is upper bounded by
qm+1

am .

7Technically, [21, Lemma 2.3] assumes an EUF-naCMA secure scheme (that is, one which is secure against non-
adaptive attacks with not necessarily distinct signed messages). However, it is easy to see that the corresponding
reduction to EUF-naCMA security actually leads to a distinct-message attack with overwhelming probability.
(In a nutshell, the EUF-naCMA secure scheme is used to sign honestly and independently generated chameleon
hash images, resp. signature verification keys. The probability for a collision of two such keys must be negligible
by the security of these building blocks.)
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Lemma 3.5. In the situation in Theorem 3.3,

i∗ :=

⌈
logc

(
log2

(
2 · qm+1

ε(k)

)1/m
)⌉

(2)

is an index that guarantees (1) and |T ′i∗ | ≤ p′(k) for a suitable polynomial p′(k) and all k ∈ N
with ε(k) ≥ 1/p(k).

Proof. From Lemma 3.4, we obtain

Pr
[
∃ distinct j0, . . . , jm with t

(j0)
i∗ = · · · = t

(jm)
i∗

]
≤ qm+1

|T ′i∗ |m
=

qm+1

2m·dci
∗e

(2)

≤ qm+1(
2qm+1

ε(k)

) =
ε(k)

2
.

Furthermore,

|T ′i∗ | = 2dc
i∗e

(2)

≤ 2 · 2c·log2((2qm+1/ε(k))1/m) = 2 ·
(

2qm+1

ε(k)

)c/m ε(k)≥1/p(k)

≤ 2 ·
(
2p(k)qm+1

)c/m
,

which is bounded by a suitable polynomial p′(k).

4 Our CDH-based Scheme

In this section we construct a fully EUF-CMA-secure signature scheme based on the CDH
assumption. We start with constructing a tag-based scheme, which is derived from the stateful
CDH-based scheme of Hohenberger and Waters [22], and prove it EUF-dnaCMA∗m-secure. Then
we can apply our generic transformation from Section 3 to achieve full EUF-CMA security.
Finally, we illustrate some optimizations that allow us to reduce the size of public keys and
signatures, for instance by aggregation. Our scheme is the first fully secure CDH-based signature
scheme with such compact public keys.

Definition 4.1 (CDH assumption). We say that the Computational Diffie-Hellman (CDH)
assumption holds in a group G of order p iff AdvcdhG,F (k) := Pr

[
F (1k, g, ga, gb) = gab

]
is negligible

for any PPT adversary F , where g ← G and a, b← Zp are uniformly chosen.

CDH Construction. The signature scheme SIGCDH described in Figure 4 is derived from
the CDH-based scheme of [22], but with two modifications. First, we substitute the implicit
chameleon hash function umvr used in [22] with a product uM =

∏m
i=0 u

M i

i . Second, we omit the
wdlog(t)e-factor in the “Boneh-Boyen hash function” which simplifies this part to (zth)s. From
now on, we assume thatG andGT are groups of prime order and e : G×G→ GT is an efficiently
computable non-degenerate bilinear map, i.e., e(g, g) 6= 1 for g 6= 1 and e(ga, gb) = e(g, g)ab for
a, b ∈ Z. Our message space in this construction is M = Zp. (Technically, if G is not fixed
for a given security parameter, then a fixed message message space can be, e.g., Z2` , where 2`

lower bounds all possible p = |G| for this security parameter.)

Theorem 4.2. If the CDH assumption holds in G, then the scheme SIGCDH from Figure 4
is EUF-dnaCMA∗m-secure. Let F be a PPT adversary with advantage ε := Adv

euf-dnacma∗m
SIGCDH,F

(k)

asking for q := q(k) signatures, then it can be used to solve a CDH challenge with probability at
least ε/q′, where q′ denotes the number of distinct tags queried by F .

Proof. Public key setup. The simulation receives a CDH-Challenge (g, ga, gb) and pairs
(Mi, ti)i∈[q] for which the adversary F asks for signatures. We first guess an index i∗ ← [q] for
which we suppose F will forge a signature on a fresh message M∗ /∈ {Mi}i but with t∗ = ti∗ .

The adversary F queries q =
∑q′

i=1mi > 0 signatures for messages with tags where q′ is the

9



Gent(1
k)

Choose G s.t. p := |G| > 2k

a← Zp
g, u0, . . . , um, z, h← G
sk := a
pk := (g, ga, u0, . . . , um, z, h)
return (pk , sk)

Sigt(sk ,M, t)
s← Zp
uM :=

m∏
i=0

uM
i

i

σ̃1 := (uM )a(zth)s

σ̃2 := gs

return (σ̃1, σ̃2)

Vert(pk ,M, σ = (σ̃1, σ̃2), t)
if t 6∈ Tk

return 0
if e(σ̃1, g) 6= e(uM , ga)e(zth, σ̃2)

return 0
else

return 1

Figure 4: The modified Hohenberger-Waters CDH-based signature scheme SIGCDH [22].

number of distinct tags (t′i)i∈[q′] and mi the number of messages queried for tag t′i. During the
simulation, we define by M∗j , j = 1, . . . ,mi∗ , the corresponding messages for tag ti∗ . Using these,

we construct a polynomial f(X) :=
∏mi∗
i=1 (X−M∗i ) =

∑mi∗
i=0 diX

i ∈ Zp[X] for some appropriate
coefficients d0, . . . , dmi∗ ∈ Zp. In particular, for mi∗ = 0 we have

∏0
i=1(X −M∗i ) = 1.

Next, we set up the public key for F by first choosing random r0, . . . , rm, xz, xh ∈ Zp and then
set ui := (gb)digri , i = 0, . . . ,m, where di = 0 for i > mi∗ , z := gbgxz , and h := g−bti∗gxh . The
simulation outputs pk := (g, ga, u0, . . . , um, z, h) and implicitly sets the secret key as sk := a.
We set r(X) :=

∑m
i=0 riX

i so we can write uM = gbf(M)+r(M).

Signing. Now, there are two cases we have to consider when F asks for a signature on (Mi, ti).
If ti = ti∗ and thus Mi = M∗j for some j = 1, . . . ,mi∗ , we can compute a valid signature as
follows: We choose a random si ← Zp and set σi := (σ̃1,i, σ̃2,i), where

σ̃1,i = (ga)r(M
∗
j ) · (zti∗h)si , σ̃2,i = gsi .

We verify this by using that f(M∗j ) = 0, i.e.,

σ̃1,i = (ga)r(M
∗
j ) · (zti∗h)si = (gbf(M∗j )gr(M

∗
j ))a · (zti∗h)si = (uM

∗
j )a · (zti∗h)si .

If ti 6= ti∗ then, following the original Boneh-Boyen simulation, choose a random s′i ← Zp

and set Si := gs
′
i/(ga)f(Mi)/(ti−ti∗ ) = gs

′
i−af(Mi)/(ti−ti∗ ). We compute our valid signature σi :=

(σ̃1,i, σ̃2,i) as follows:

σ̃1,i = (ga)r(Mi) · Sxzti+xhi · (gb)s′i(ti−ti∗ ) , σ̃2,i = Si.

Thus, implicitly, we set the randomness si = s′i − af(Mi)/(ti − ti∗) and obtain Si = gsi .
We verify by showing that

σ̃1,i = (ga)r(Mi) · Sxzti+xhi · (gb)s′i(ti−ti∗ )

= (gr(Mi))a · (gxztigxh)si · (gb)s′i(ti−ti∗ )

= (gab)f(Mi) · (gr(Mi))a · (gxztigxh)si · (gb)s′i(ti−ti∗ ) · (g−ab)f(Mi)

= ((gbf(Mi)+r(Mi))a · (gxztigxh)si · (gb(ti−ti∗ ))si

= (uMi)a · ((gb+xz)ti · (g−bti∗+xh))si

= (uMi)a · (ztih)si .

Extract from forgery. The adversary F responds with (M∗, σ∗, t∗) for some tag t∗ ∈
{t1, . . . , tq′} and σ∗ = (σ̃∗1, σ̃

∗
2) . We abort if σ∗ is not a valid forgery. Otherwise, since the

verification equation holds, we have

σ̃∗1 = (uM
∗
)a(zt

∗
h)s
∗
, σ̃∗2 = gs

∗
.
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Gen(1k)
ChooseG s.t. p := |G| > 2k

a← Zp
g, w, h, u0, . . . , um,
z1, . . . , zl ← G
κ← {0, 1}k
sk := (g, w, a)
pk := (g, w, ga, (uj)

m
j=0,

(zi)
l
i=1, h, κ)

return (pk , sk)

Sig(sk ,M)
s, r ← Zp
x := CH(g,w)(M, r)

ux :=
∏m
i=0 u

xi
i

for i := 1 to l do
ti := PRFTiκ (x)

z :=
∏l
i=1 z

ti
i

σ̃1 := (ux)a(z · h)s

σ̃2 := gs

return (σ̃1, σ̃2, r)

Ver(pk ,M, σ = (σ̃1, σ̃2, r))
x := CH(g,w)(M, r)
for i := 1 to l do
ti := PRFTiκ (x)

if e(σ̃1, g) 6= e(ux, ga)e(h
l∏

i=1
ztii , σ̃2)

return 0
else

return 1

Figure 5: The optimized CDH-based signature scheme SIGCDH
opt .

If ti∗ 6= t∗, we abort, otherwise, our guess was correct and it holds that

σ̃∗1 = ((gb)f(M∗)(gr(M
∗)))a((gb+xz)t

∗
(g−bti∗+xh))s

∗

= gabf(M∗)gar(M
∗)(gxzt

∗
gxh)s

∗

= gabf(M∗)gar(M
∗)gs

∗(xzt∗+xh).

Since M∗ 6= M∗j , we have f(M∗) 6= 0 and the simulator can compute

(σ̃∗1/(g
ar(M∗)σ̃∗

(xzt
∗+xh)

2 ))1/f(M∗) = gab.

Analysis. We show that the adversary F cannot distinguish effectively between the experiment
and the simulation. We denote by ε the advantage of the adversary F in the experiment and
by success the event, that the simulation outputs a solution gab. The simulator does not pick
(ui)

m
i=0, z, and h at random, but sets them as described above. Since the ri, xz and xh are

randomly chosen, this yields the correct distribution, so the view of the adversary is still the
same as in the experiment. The simulator is successful if it does not abort, that means, if F is
successful and it guesses t∗ correctly. So we have Pr [success] = ε

q′ .

4.1 Optimizations

Now, with this result and our generic transformation from Section 3, we can construct a stateless
signature scheme, which is proven EUF-dnaCMA secure by Theorem 3.3. Then, we add an
explicit chameleon hash function CH(g,w)(M, r) := gMwr in each instance i = 1, . . . , blogc(k)c to
achieve a fully EUF-CMA-secure signature scheme. This signature scheme does have a constant
size public key, but signatures consist of O(log k) group elements, i.e., σ = (σ1, . . . , σlog k) where
σi = (σ̃1,i, σ̃2,i, ri).

Now, we concentrate on how we can improve this and achieve constant size signatures. This
will be done by aggregation, essentially by multiplying the signatures of each instance similar to
[26]. We re-use u0, . . . , um, one sk := a and one randomness s for all instances i (see Figure 5).
Unfortunately, we need additional elements in the public key for the aggregation to work. In
this sense our optimization is rather a tradeoff: We prefer constant-size signatures with public
keys of logarithmic length over logarithmic-length signatures with constant-size public keys.

Theorem 4.3. If the CDH assumption holds in G, then the optimized CDH-based signature
scheme in Figure 5 is an EUF-CMA secure signature scheme. Let F be a PPT adversary with
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advantage ε := Adveuf-cma
SIGCDH

opt ,F
(k) asking for q := q(k) signatures, then it can be used to solve a

CDH challenge with probability at least

εc/m+1 − 2εc/m(εPRF + εCH)

22+c/m · qc+c/m
,

where εPRF and εCH correspond to the advantages for breaking PRF and CH respectively.

Proof. We only sketch the proof here, because it is essentially a combination of the proofs from
Theorem 4.2 and Theorem 3.3. We emphasize the differences and important parts. We have to
deal with l = blogc(k)c instances and obtain our signature by generic aggregation.

Public key setup. First, we select an index i∗ and guess a tag ti∗ from the corresponding
set Ti∗ . Next, we pick a random κ ← {0, 1}k and random distinct M1, . . . ,Mq, r1, . . . , rq ← Zp

and compute xj = CH(Mj , rj), j ∈ [q].8 Due to the collision resistance of our chameleon hash
function and the fact that |Zp| > q, we can assume that all xj are distinct, otherwise, we abort.

From that, we derive a tag t
(j)
i := PRFTiκ (xj) for each instance i ∈ [l]. Then, we consider the

set J = { j ∈ [q] | t(j)i∗ = ti∗}. If |J | > m, we abort, otherwise, |J | = m′ ≤ m. With that,
we can, similar to Theorem 4.2, compute a polynomial f s.t. f(xj) = 0 for j ∈ J . We set up
u0, . . . , um′ , h, zi∗ as before in Theorem 4.2 to embed our challenge here and choose random zi
for i ∈ [q] \ {i∗} by choosing random exponents xzi for them.

Signing. The adversary will send us messages M1, . . . ,Mq and we have to compute a valid
signature σ(j) = (σ̃1,j , σ̃2,j , r

′
j) for each of them. We compute r′j s.t. xj = CH(Mj , r

′
j). Thus,

t
(j)
i belongs to Mj , for i = 1, . . . , l. Now, we consider the instance i = i∗:

Again, we have two cases, either t
(j)
i∗ = ti∗ or t

(j)
i∗ 6= ti∗ . In both cases we can apply the same

techniques as in Theorem 4.2 to obtain a valid (uxj )a(z
t
(j)
i∗
i∗ h)sj .

For the other instances i 6= i∗, we can compute (z
t
(j)
i
i )sj = (gxzi t

(j)
i )sj = (gsj )xzi t

(j)
i due to

the fact that we know the exponents xzi and then can aggregate them to get

σj := ((uxj )a(h

l∏
i=1

z
t
(j)
i
i )sj , gsj , r′j).

Extract from forgery. The adversary F responds with (M∗, σ∗) where σ∗ = (σ̃∗1, σ̃
∗
2, r
∗) and

M∗ 6= Mj for j ∈ [q]. Abort if σ∗ is not valid. We can assume that F has not produced a
collision x∗ = CH(M∗, r∗) = xj for some j ∈ [q] due to the collision resistance of our chameleon
hash function. Thus, we have f(x∗) 6= 0. Now, we compute t∗i = PRFTiκ (x∗) for each instance
i ∈ [l]. If t∗i∗ 6= ti∗ , abort, otherwise it holds

σ̃∗1 = (ux
∗
)a(h

l∏
i=1

z
t∗i
i )s

∗
, σ̃∗2 = gs

∗
.

We can compute (gs
∗
)xzi t

∗
i = (z

t∗i
i )s

∗
for i 6= i∗ and obtain

σ∗1/

l∏
i=1,i 6=i∗

(z
t∗i
i )s

∗
= (ux

∗
)a(z

t∗
i∗
i∗ h)s

∗
.

Therefore, we apply the same method as in Theorem 4.2 since f(x∗) 6= 0 and t∗i∗ = ti∗ to extract
a solution gab.

8Similarly to footnote 6, here, we assume to know the number of signature queries q ≥ 0.
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Analysis. The analysis is similar to Theorem 3.3 and Theorem 4.2. Hence,

Pr[success] ≥ 1

|Ti∗ |

(ε
2
− (εPRF + εCH)

) (∗)
≥ ε1+c/m − 2εc/m(εPRF + εCH)

22+c/m · qc+c/m
,

where (*) holds by Lemma 3.5, since we have |Ti∗ | ≤ 2 ·
(

2qm+1

ε(k)

)c/m
. Here, εPRF is the advantage

for a suitable adversary on PRF and εCH is the advantage to produce a collision for CH, both
negligible in the security parameter.

5 Our RSA-based Scheme

In this section we construct a stateless signature scheme SIGRSA
opt secure under the RSA assump-

tion. The result is the most efficient RSA-based scheme currently known.
The prototype for our construction is the stateful RSA-based scheme of Hohenberger and

Waters [22] which we reference as SIGRSA
HW09 from now on. We first show that a stripped-to-the-

basics variation of their scheme (which is tag-based but stateless), denoted SIGRSA, is mildly
secure, i.e., EUF-dnaCMA∗m-secure. Subsequently, we apply our generic transformation from
Section 3 and add a chameleon hash to construct a fully secure stateless scheme. Finally, we
apply common aggregation techniques which yield the optimized scheme SIGRSA

opt .

5.1 Preliminaries

RSA(k) is a polynomially bounded function that maps a given security parameter k to the
bitlength of the RSA modulus.

Definition 5.1 (RSA assumption). Let N ∈ N be the product of two distinct safe primes P

and Q with 2
RSA(k)

2 ≤ P,Q ≤ 2
RSA(k)

2
+1 − 1. Let e be a randomly chosen positive integer less than

and relatively prime to ϕ(N) = (P − 1)(Q − 1). For y ← Z
×
N we call the triple (N, e, y) RSA

challenge. The RSA assumption holds if for every PPT algorithm A the probability

Pr [A(N, e, y) = x ∧ xe ≡ y (mod N)]

is negligible in k for a uniformly chosen RSA challenge (N, e, y).

Lemma 5.2 (Shamir’s trick [32, 11]). Given w, y ∈ ZN together with a, b ∈ Z such that wa = yb

and gcd(a, b) = 1, there is an efficient algorithm for computing x ∈ ZN such that xa = y.

Lemma 5.3. Let π(n) denote the number of primes p ≤ n. For n ∈ N, n ≥ 221 we have

n

log2(n)
≤ π(n) ≤ 2n

log2(n)

Proof. This lemma is just a variation of the well-known prime bound n
ln(n)+2 ≤ π(n) ≤ n

ln(n)−4

for n ≥ 55 [30]. We find
• n

log2(n) ≤
n

ln(n)+2 since log2(n) ≥ ln(n) + 2 for n ≥ 92 ≥ e2/(log2(e)−1) and

• n
ln(n)−4 ≤

2n
log2(n) since ln(n)− 4 ≥ 1

2 log2(n) for n ≥ 221 ≥ e8/(2−log2(e))

which proves the claim.

Lemma 5.4. For k ∈ N we define P∗k := {p prime |2
k
2 ≤ p ≤ 2k}. It holds |P∗k| >

2k

5k .
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Proof.

|P∗k| = π(2k)− π(2
k
2 ) ≥ π(2k)− π(2b

k
2
c) =

dk/2e∑
i=1

(π(2i+b
k
2
c)− π(2i+b

k
2
c−1))

∗
>

dk/2e∑
i=1

2i+b
k
2
c−1

3 ln(2)(i+ bk2c)
=

1

6 ln(2)

dk/2e∑
i=1

2i+b
k
2
c

i+ bk2c
>

1

6 ln(2)

2k

k
>

2k

5k

(*) by [33], Theorem 5.8 (Betrand’s postulate): π(2l)− π(2l−1) ≥ 2l−1

3 ln(2)l

Lemma 5.5. For `, k ∈ N we have that for all sets X ⊆ [2k] with |X | ≤ 2`

Pr [p← P∗k : ∃x ∈ X such that p|x] ≤ 10k

2k−`

where P∗k is the set of primes p with 2
k
2 ≤ p ≤ 2k.

Proof. For any x ∈ [2k] we have |{p ∈ P∗k : p|x}| ≤ 2 since the product of any three elements of
P∗k is bigger than 2k. Hence

Pr [p← P∗k : ∃x ∈ X such that p|x]
(1)

≤ 2|X |
|P∗k|

(2)

≤ 2 · 2l

|P∗k|
(3)

≤ 2 · 2`
2k

5k

=
10k

2k−`

(1) by the union bound, (2) by assumption |X | ≤ 2`, (3) by Lemma 5.4.

5.2 EUF-dnaCMA∗m-Secure Signature Scheme

The basic scheme SIGRSA. Let N = PQ be an RSA modulus consistent with the RSA
assumption (Definition 5.1). Basically, a SIGRSA signature for a message-tag-pair (M, t) is a

tuple ((uM )
1
p mod N, t) where p is a prime derived from the tag t. Analogously to our CDH

scheme (Section 4), we define uM :=
∏m
i=0 u

M i

i using quadratic residues (ui)
m
i=0 to allow for the

signing of up to m messages with the same tag. The message space is {0, 1}` where we pick
` = k/max(2,m) for our realization – we will need later that 1

2k−`
is negligible and that `m ≤ k.

To construct a mapping from tags to primes, we use a technique from [21] and [19]: For a PRF

PRF{0,1}
RSA(k)

, a corresponding key κ ← {0, 1}k, and a random bitstring b ← {0, 1}RSA(k), we
define

P(κ,b)(t) := PRF{0,1}
RSA(k)

κ (t||µt)⊕ b,

where µt := min{µ ∈ N : PRF
{0,1}RSA(k)
κ (t||µ) ⊕ b is prime} and || denotes the concatenation of

bitstrings.9 We call µt the resolving index of t. The complete scheme SIGRSA is depicted in
Figure 6.

Differences to SIGRSA
HW09. For readers acquainted with the stateful Hohenberger-Waters con-

struction [22], also known as HW09a, we give a quick overview how SIGRSA relates to its pro-
totype SIGRSA

HW09. To have the least amount of overhead, we first removed all components from
SIGRSA

HW09 that are not required to prove the scheme EUF-dnaCMA∗m secure. This includes the
chameleon hash (we are in a non-adaptive setting) and logarithm-of-tag-construction in the
exponent (we guess from a small set of tags only). Our setup of P(κ,b) slightly differs from the

one in SIGRSA
HW09 since we do need that every tag is mapped to a prime.

9P(κ,b)(t) can be computed in expected polynomial time but not in strict polynomial time. However, one can
simply pick an upper bound µ and set P(κ,b)(t) = p for some arbitrary but fix prime p if µt > µ for the resolving
index of t µt. For a proper µ the event µt > µ will only occur with negligible probability (see Theorem 5.6,
Game 3).
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Gent(1
k)

Pick modulus N = PQ
ui ← QRN (i ∈ {0, . . . ,m})
κ← {0, 1}k
b← {0, 1}RSA(k)

pk := (N, (ui)
m
i=0, κ, b)

sk := (P,Q)
return (pk , sk)

Sigt(sk ,M, t)
p := P(κ,b)(t)

σ̂ := (
∏m
i=0 u

M i

i )
1
p mod N

return (σ̂, t)

Vert(pk ,M, σ = (σ̂, t))
if t 6∈ T

return 0
p := P(κ,b)(t)

if σ̂p 6≡
∏m
i=0 u

M i

i mod N
return 0

else
return 1

Figure 6: The tag-based RSA scheme SIGRSA.

5.3 EUF-dnaCMA∗m Security

Theorem 5.6. If F is a PPT EUF-dnaCMA∗m-adversary for SIGRSA with advantage ε :=

Adv
euf-dnacma∗m
SIGRSA,F

(k) asking for q := q(k) signatures, then it can be used to efficiently solve an RSA

challenge according to Definition 5.1 with probability at least

1

RSA(k)2

(
ε

8q′RSA(k)
− εPRF −

1

2RSA(k)

)
− εPRF′ −

q′ · RSA(k)

2RSA(k)
− 10k

2k/2

where q′ denotes the number of distinct tags queried by F , and εPRF and εPRF
′ are the advantage

of suitable distinguishers for the PRF.

Proof. We first describe the simulation and subsequently provide a detailed analysis. In the
following (N, e∗, y) denotes the RSA challenge given to the simulator. First, we guess an index
i∗ ← [q] for which we suppose F will forge a signature on a new message M∗ 6= Mi∗ , but with

t∗ = ti∗ . The adversary F queries q =
∑q′

i=1mi > 0 signatures for messages with tags where
q′ is the number of distinct tags (ti)i∈[q′] and mi the number of messages queried for tag ti.
(M∗i )i∈[mi∗ ] denotes the list of messages queried for tag ti∗ .

If e∗ is not a prime with log2(e∗) ≥ RSA(k)
2 , we abort. Otherwise, we proceed as follows:

Public key setup. We guess an index i∗ ← [q′] and write ti∗ for the corresponding tag.
Intuitively, ti∗ is the tag we will use to embed our challenge. We pick κ and µ∗t ← [RSA(k)2] at

random and compute b := PRF
{0,1}RSA(k)
κ (ti∗ ||µ∗t )⊕e∗. If P(κ,b)(ti∗) 6= e∗ or if P(κ,b)(ti) = e∗ for any

ti 6= ti∗ (i ∈ [q′]), we abort. We compute pi := P(κ,b)(ti) for i ∈ [q′] and set p∗ := pi∗ (note that
p∗ = e∗). Next, we define two polynomials over Z[X]. The first one, f(X) :=

∏mi∗
i=1 (X −M∗i ),

is determined by the messages queried for the challenge tag ti∗ . We have f(X) =
∑mi∗

i=0 αiX
i

for some appropriate coefficients αi ∈ Z and set αi := 0 for i ∈ {mi∗ + 1, . . . ,m}. For the
second one we pick βi ← ZN/4 for i ∈ {0, . . . ,m} and set g(X) :=

∑m
i=0 βiX

i. For a more
comprehensive notation we define φI :=

∏
i∈([q′]\I) pi for any set of indexes I ⊆ [q′], φ := φ∅ and

uM :=
∏m
i=0 u

M i

i . We set
ui := (yφ{i∗}αi+φβi)2.

Note that for any message M
uM = (yφ{i∗}f(M)+φg(M))2.

We send the public key (N, (ui)
m
i=0, κ, b) to the adversary.

Signing. For each query (M, t) we compute the corresponding signature σ as follows. If t = ti∗ ,
σ is (σ̂, t) where

σ̂ := (yφ{i∗}g(M))2.

We use the fact that M = M∗i for some i ∈ [m] and hence f(M) = 0 to verify(
uM
) 1
p∗ ≡ ((yφ{i∗}f(M)+φg(M))2)

1
p∗ ≡ (yφ{i∗}g(M))2 ≡ σ̂.
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If t = ti 6= ti∗ (i ∈ [q′]), the corresponding signature σ is (σ̂, t) where

σ̂ := (yφ{i,i∗}f(M)+φ{i}g(M))2.

We verify (
uM
) 1
pi ≡ ((yφ{i∗}f(M)+φg(M))2)

1
pi ≡ (yφ{i,i∗}f(M)+φ{i}g(M))2 ≡ σ̂.

Finally, we send all signatures to the adversary.

Extract from forgery. The adversary responds with (M∗, σ∗) where σ∗ = (σ̂, t∗) for some
tag t∗ ∈ {t1, . . . , tq′}. Here, if t∗ 6= ti∗ and if σ∗ is not a valid forgery, we abort. Otherwise,
since the verification equation holds, we have

(σ∗)p
∗ ≡ uM

∗ ≡ (yφ{i∗}f(M∗)+φg(M∗))2 ≡ y2φ{i∗}f(M∗)y2φg(M∗)

and hence
(σ∗/y2φ{i∗}g(M

∗))p
∗ ≡ y2φ{i∗}f(M∗).

Note that f(M∗) 6= 0 since M∗ 6= M∗i for i ∈ [m]. Clearly, p∗ does not divide 2φ{i∗}. If
gcd(p∗, f(M∗)) 6= 1, we abort. Otherwise, we use Shamir’s trick (Lemma 5.2) to compute x
such that xp

∗ ≡ y (mod N). Since p∗ = e∗ by construction, x is the output of the simulator
and a solution to the RSA challenge (N, e∗, y) was given.

Analysis. We show that the adversary F cannot distinguish effectively between the experiment
and the simulation. Let Xi denote the event that the adversary is successful in Game i.

Game 0. In Game 0 the simulator runs the original EUF-dnaCMA∗m experiment and, hence,
we have Pr [X0] = ε.

Game 1. In Game 1 the simulator aborts if e∗ is not a prime with log2(e∗) ≥ RSA(k)
2 . Hence,

we do not abort with probability

π(ϕ(N))− π(2RSA(k)/2)− 2

ϕ(ϕ(N))

(∗)
≥ 1

8RSA(k)

(∗) since 2RSA(k) ≥ ϕ(ϕ(N)), ϕ(N) ≥ N/4, and Lemma 5.3 (all for sufficiently large N). Thus,

Pr [X1] ≥ 1

8RSA(k)
Pr [X0] .

Game 2. In Game 2 the simulator aborts if t∗ 6= ti∗ , for challenge tag t∗ and guessed tag ti∗ .
In particular, for given (distinct) tags (ti)i∈[q′], the simulator first chooses an index i∗ ← [q′] as
above. Now, if F outputs a forgery (M∗, σ̂, t∗) with tag t∗ 6= ti∗ , the simulator aborts. Thus,
we have

Pr [X2] ≥ Pr [X1]

q′
.

Game 3. In Game 3 we set up P(κ,b) as described in the simulation above. Concretely,

we choose µ∗t ← [RSA(k)2] and set b := PRF
{0,1}RSA(k)
κ (ti∗ ||µ∗t ) ⊕ e∗. If µ∗t is not the resolving

index of P(κ,b)(ti∗), we abort. We denote this event as abortµ. Assume PRF
{0,1}RSA(k)
κ is a truly

random function. Now, by evaluating P(κ,b), we derive uniformly random RSA(k)-bit strings.
By Lemma 5.3, the probability that the output of P(κ,b) is a RSA(k)-bit prime is at least 1/RSA(k).
Further, for RSA(k)2 P(κ,b)-evaluations, the probability of not outputting a RSA(k)-bit prime is

at most (1 − 1/RSA(k))RSA(k)2 . Hence, we can construct a PRF distinguisher with probability
εPRF ≥ Pr [abortµ]− (1− 1/RSA(k))RSA(k)2 . (For a detailed analysis of this Game see [20], Proof

of Theorem 4.1, Games 8-10. In particular, we have (1 − 1/RSA(k))RSA(k)2 ≤ 1/RSA(k)k.) We
conclude

Pr [X3] ≥ 1

RSA(k)2

(
Pr [X2]− εPRF −

1

2RSA(k)

)
.
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Game 4. Now, in Game 4, we abort if P(κ,b)(ti) = e∗ for some ti 6= ti∗ (i ∈ [q′]). Let
abortcoll denote the corresponding event. If PRF is a truly random function, then the output of

P(κ,b)(ti) is a uniform RSA(k)-bit prime. By Lemma 5.3, there are at least 2RSA(k)

RSA(k) such primes.

Hence, the probability of a collision with e∗ is at most
(
q′·RSA(k)

2RSA(k)

)
. Using this, we can construct

an adversary that distinguishes PRF from a truly random function with advantage εPRF
′ ≥

Pr [abortcoll]−
(
q′·RSA(k)

2RSA(k)

)
. Thus, it follows that

Pr [X4] ≥ Pr [X3]− εPRF′ −
q′ · RSA(k)

2RSA(k)
.

Game 5. In Game 5 we do not pick (ui)
m
i=0 at random but set them as described above.

Since the βi are randomly chosen and blind the αi known to the adversary this yields a correct
distribution. Hence, we have

Pr [X5] = Pr [X4] .

The view of the adversary in this Game is exactly the view in the simulation described above.

Game 6. In Game 6 let abortgcd denote the event that gcd(p∗, f(M∗)) 6= 1. Remember that
messages are bitstrings of length `. The range of f is a set X ⊆ [2k] containing 2` elements at
most. Therefore, by Lemma 5.5 with ` = k/max(2,m), we have

Pr [abortgcd] ≤ 10k

2k−`
=

10k

2
k·max(2,m)−1

max(2,m)

≤ 10k

2k/2

and, thus,

Pr [X6] ≥ Pr [X5]− 10k

2k/2
.

Finally, we summarize and see that the simulator is successful with probability at least

Pr [X5]− 10k

2k/2

= Pr [X4]− 10k

2k/2

≥ Pr [X3]− εPRF′ −
q′ · RSA(k)

2RSA(k)
− 10k

2k/2

≥ 1

RSA(k)2

(
Pr [X2]− εPRF −

1

2RSA(k)

)
− εPRF′ −

q′ · RSA(k)

2RSA(k)
− 10k

2k/2

≥ 1

RSA(k)2

(
Pr [X1]

q′
− εPRF −

1

2RSA(k)

)
− εPRF′ −

q′ · RSA(k)

2RSA(k)
− 10k

2k/2

≥ 1

RSA(k)2

(
ε

8q′RSA(k)
− εPRF −

1

2RSA(k)

)
− εPRF′ −

q′ · RSA(k)

2RSA(k)
− 10k

2k/2
.

Now, by Theorem 5.6, our generic transformation from Section 3 applied to SIGRSA yields an
EUF-dnaCMA-secure signature scheme. Finally, we use chameleon hashing [24] to generically
construct the fully secure scheme SIGRSA

gen , like for instance the RSA-based chameleon hash
from [21, Appendix C].

5.4 Optimizations

The resulting signature scheme of the previous section SIGRSA
gen may be EUF-CMA-secure but is

not very compact yet. In addition to parameters for the chameleon hash, a signature of SIGRSA
gen
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Gen(1k)
Pick modulus N = PQ
ui ← QRN (i ∈ {0, . . . ,m})
κ← {0, 1}k
b← {0, 1}RSA(k)

(CH, τ)← CHGen(1k)
pk := (N, (ui)

m
i=0, κ, b,CH)

sk := (P,Q)
return (pk , sk)

Sig(sk ,M)
Pick uniform r for CH
x := CH(M, r)
for i := 1 to l do
ti := PRFTiκ (x)
pi := P(κ,b)(ti)

p :=
∏
i∈[l] pi

σ̂ := (
∏m
i=0 u

xi
i )

1
p mod N

return (σ̂, r)

Ver(pk ,M, (σ̂, r))
x := CH(M, r)
for i := 1 to l do
ti := PRFTiκ (x))
pi := P(κ,b)(ti)

p :=
∏
i∈[l] pi

if σ̂p 6≡
∏m
i=0 u

xi
i mod N

return 0
else

return 1

Figure 7: The optimized RSA-based signature scheme SIGRSA
opt .

consists of l = blogc(k)c SIGRSA signatures. This can be improved considerably to constant size
signatures by generic aggregation.

Figure 7 depicts the resulting scheme SIGRSA
opt for the two parameters l (which implicitly

contains the granularity parameter c) and m. We still use l tags (intuitively representing the
l instances of the original scheme) for signing and verification. However, the public key’s size
depends only on m (which is a fixed parameter) and the signature size is constant: We need
one group element and randomness for the chameleon hash (which is typically also about the

size of a group element). Additionally to PRF{0,1}
RSA(k)

, we now need functions (PRFTi)i∈[l] to
generate the tags for a signature. We can construct all of these functions from a single PRF
PRF{0,1}

∗
with sufficiently long output and use κ ∈ {0, 1}k as its key.

Theorem 5.7. Let F be a PPT EUF-CMA adversary against SIGRSA
opt with advantage ε :=

Adveuf-cma
SIGRSA,F

(k) asking for q := q(k) signatures (at most). Then it can be used to efficiently solve

an RSA challenge according to Definition 5.1 with probability at least

1

RSA(k)2

(
εc/m+1

25+c/m · qc+c/m · RSA(k)
− εPRF −

1

2RSA(k)

)
−εPRF′−εPRF′′−εCH−

q · l · RSA(k)

2RSA(k)
− 10k

2k/2

where εPRF, εPRF
′, εPRF

′′, and εCH are the success probabilities for breaking PRF and CH respec-
tively.

Proof. Since the proof is very similar to the combination of proofs Theorem 3.3 and Theorem 5.6,
we only describe the interesting parts. Additionally, we omit the chameleon hash here and
prove the EUF-dnaCMA security of the corresponding modified scheme (with x := M instead
of x := CH(M, r) and no randomness for the chameleon hash in the signature). The chameleon
hash is then added at the end using generic arguments [24].

Again, w.l.o.g. we assume that the adversary will ask for exactly q > 0 signatures.

Setup. Analogously to Theorem 3.3, we use the select algorithm to pick an i∗. Intuitively, i∗

represents one of the l instances and Ti∗ is the set of tags used for this instance. We will embed
the challenge only in this instance and simulate all the others.

We start off by picking a random key κ for the PRF PRF. For each queried message (Mj)j∈[q]

we compute the tags t
(j)
i := Samp(Ti,PRFκ(Mj)). Subsequently, we guess a tag ti∗ ← Ti∗ and

abort if the list of tags for the i∗th instance (t
(i∗)
j )j∈[q] contains any tag more than m times.

Next, we embed the challenge exponent. Like in Theorem 5.6, we set up P(κ,b) such that

P(κ,b)(ti∗) = e∗ =: p∗ and abort if P(κ,b)(t
(j)
i ) = p∗ for any t

(j)
i 6= ti∗ . Afterwards we compute

primes p
(j)
i := P(κ,b)(t

(j)
i ) corresponding to the instance tags for i ∈ l, j ∈ [q].
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Finally and analogously to Theorem 5.6, we define two polynomials f and g. For the

construction of f we use the messages Mj with t
(j)
i∗ = ti∗ . If there are no such messages, we

define f(M) := 1. For i ∈ [m] we set

ui := (yπfαi+πgβi)2,

where πf is the product of all the primes for all instances computed above omitting occurrences
of p∗and πg := πf · p∗.
Signing. Signing works exactly like in Theorem 3.3: For the signature of Mj we use the tags

(t
(j)
i )i∈[l]. If t

(j)
i∗ = ti∗ , we make use of the fact that f(Mj) = 0 and sign by omitting the primes

(p
(j)
i )i∈[l] in πg. Otherwise, if t

(j)
i∗ 6= ti∗ , and hence p

(j)
i 6= p∗ for i ∈ [l], we can sign by omitting

the corresponding factors in πf and πg.

Extract from forgery. Eventually, we receive a message M∗ and a forged signature σ∗. If
Samp(Ti∗ ,PRFκ(M∗)) 6= t∗, we abort. Otherwise, if the adversary was successful, the verification
equation holds and we can, analogously to Theorem 5.6, compute

(σ/y2πfg(M))p
∗ ≡ y2πff(M).

Again, we need gcd(p∗, 2πff(M)) = 1 as a prerequisite for Shamir’s trick (Lemma 5.2). We can
then compute a solution for the given RSA challenge.

Analysis. The analysis is very similar to that of Theorem 5.6. The following differences occur:
• The chance for the simulator to guess the tag used for the forgery correctly is 1

|Ti∗ |
instead

of 1
q′ .

• More primes are computed using P(κ,b). All of these q · l primes must be distinct from
p∗. Hence instead of q′ in Theorem 5.6, Game 4, we have q · l. However, the relevant
probability is still negligible q·l·RSA(k)

2RSA(k)
instead of q·RSA(k)

2RSA(k)
.

• There is an additional abort if more than m of the queried messages have the same tag
in instance i∗. Analogously to Theorem 3.3, we lose εPRF

′′ and ε
2 here.

Finally, we generically add a chameleon hash with the techniques of [24] to reach full security
which reduces the success negligibly by εCH (the success of an adversary to produce a collision
for the chameleon hash). Hence, the simulator is successful with probability at least

1

RSA(k)2

(
ε

16|Ti∗ |RSA(k)
− εPRF −

1

2RSA(k)

)
− εPRF′ − εPRF′′ − εCH −

q · l · RSA(k)

2RSA(k)
− 10k

2k/2

(∗)
≥ 1

RSA(k)2

(
εc/m+1

25+c/mqc+c/mRSA(k)
− εPRF −

1

2RSA(k)

)
− εPRF′ − εPRF′′ − εCH −

q · l · RSA(k)

2RSA(k)
− 10k

2k/2
.

Here, (*) holds; since by Lemma 3.5, we have |Ti∗ | ≤ 2 ·
(

2·qm+1

ε

)c/m
.

6 Our SIS-based Scheme

Let us now describe our SIS-based signature scheme. Again we start with constructing a tag-
based signature scheme and prove EUF-dnaCMA∗m-security, but only for m = 1. This scheme
can be converted into a fully EUF-CMA secure signature scheme by applying the generic trans-
formation from Section 3.

Note that in the previous chapters we have used the character m to denote the number of
repeating tags in the EUF-dnaCMA∗m security experiment. Unfortunately, the same character
is commonly used in lattice-based cryptography to denote the dimension of a matrix Zn×mp . In
order to be consistent with the literature, and since we consider only EUF-dnaCMA∗1-security
in the sequel, we will from now on use m to denote the dimension of matrices.
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6.1 Preliminaries

In this section we summarize some known facts about lattices, as far as relevant for our signa-
ture scheme and its security analysis. The reader familiar with lattice-based cryptography, in
particular with [16, 1, 9, 7], can safely skip this section.

6.1.1 Lattices and SIS

For positive integers p,m, n and A ∈ Zn×mp , the m-dimensional integer lattices Λ⊥p (A) and Λup
are defined as

Λ⊥p (A) := {e ∈ Zm : Ae = 0 mod p}
Λup(A) := {e ∈ Zm : Ae = u mod p}

Definition 6.1. The (p, n,m, β)-small integer solution (SIS) problem (in `2-norm, denoted ‖·‖)
is: given p ∈ N, A ∈ Zn×mp , and β ∈ R, find a non-zero vector e ∈ Zm such that Ae = 0 mod p
and ‖e‖ ≤ β.

Fact 1 (Theorem 4 of [1]). Let p ≥ 3 be odd and let m ≥ 6n log p. There exists a probabilistic
polynomial-time algorithm TrapGen that, on input (p, n), outputs a matrix A ∈ Zn×mq which is

statistically close to uniform, and a basis TA of Λ⊥p (A) such that ‖T̃A‖ ≤ O(
√
m), where T̃A

denotes the Gram-Schmidt orthogonalization of TA, and ‖TA‖ ≤ O(m), with all but negligible
(in n) probability.

Fact 2 (Theorem 4.1 of [16]). Let DΛ,γ,c denote the discrete Gaussian distribution over Λ with
center c and parameter γ. Let TA be any basis of Λ⊥p (A). There exists a probabilistic polynomial-

time algorithm that takes as input (A, TA, c, γ) with γ ≥ ‖T̃A‖ · ω(
√

logm), and whose output
distribution is identical to DΛ⊥p (A),γ,c up to a negligible statistical distance.

To simplify our notation we write DΛ⊥p (A),γ for DΛ,γ,c if c = 0.

Fact 3 (Lemma 4.4 of [27]). Let e ← DΛ⊥p (A),γ. Then the probability that ‖e‖ > γ
√
m is

negligible (in n).

Fact 4 (Algorithm SampleLeft of [1]). Let
• A ∈ Zn×mp be a matrix of rank n, and TA be a (short) basis Λ⊥p (A),
• F ∈ Zn×mp ,
• u ∈ Znp be a vector, and

• γ ≥ ‖T̃A‖ · ω(
√

logm) be a Gaussian parameter.
There exists an efficient algorithm SmpL that takes as input (A, TA, F, u, γ), and outputs e ∈ Z2m

p

such that the distribution of e is statistically close to DΛup (A|F ),γ.

Fact 5 (Algorithm SampleRight of [1]). Let
• A,B ∈ Zn×mp be matrices, where B has rank n and TB is a (short) basis of Λ⊥p (B),
• ∆ ∈ Zn×np be of full rank n,
• R ∈ {−1, 1}m×m be a random matrix, and sR := ‖R‖ = sup‖x‖=1 ‖Rx‖ (note that for

random R ∈ {−1, 1}m×m we have sR ≤ O(
√

logm) with overwhelming probability),
• u ∈ Znp be a vector, and

• γ ≥ ‖T̃B‖ · sR · ω(
√

logm) be a Gaussian parameter.
There exists an efficient algorithm SmpR that takes as input (A,B, TB,∆, R, u, γ), and outputs
e ∈ Z2m

p such that the distribution of e is statistically close to DΛup (A|F ),γ, where F := AR+∆B.

Fact 6 (Lemma 13 of [1]). Let p ∈ N be an odd prime and let m > (n+ 1) log p+ω(log n). Let
R ← {−1, 1}m×m and A,A′ ← Zn×mp be uniformly random. Then the distribution of (A,AR)
is statistically close to the distribution of (A,A′).
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Gent(1
k)

(A, TA)← TrapGen(p, n)
Z, Y ← Zn×mq

U ← Zn×`q

v ← Znp
sk := TA
pk := (U,A,Z, Y, v)
return (sk , pk)

Sigt(sk ,M, t)
Gt := Z +H(t)Y mod p
u := UM + v
e← SmpL(A, TA, Gt, u, γ)
return (e, t) ∈ Z2m

p × T

Vert(pk ,M, σ = (e, t))
if t 6∈ T or M 6∈ {0, 1}`

return 0
if e ≤ 0 or ‖e‖ >

√
2m · γ

return 0
Gt := Z +H(t)Y ∈ Zn×2m

p

if (A|Gt)e = UM + v mod p
return 1

else return 0

Figure 8: The tag-based SIS scheme.

Fact 7 (Corollary 5.4 of [16], Fact 14 of [7]). Let p be a prime and let n,m be integers such that
m ≥ 2n log p. Let e← DZm,γ, where γ ≥ ω(

√
logm). Then for all but at most a 2p−n fraction

of all matrices A ∈ Zn×mp the distribution of the syndrome u := Ae mod p is statistically close
to uniform over Znp . Furthermore, the conditional distribution of e, given u, is DΛup (A),γ.

6.1.2 Full-Rank Difference Hashing

We will need a map H : T → Zn×np that allows to map tags from T to matrices in Zn×np , with
the property that the difference matrix ∆ := H(t) − H(t′) has full rank for all t, t′ ∈ T with
t 6= t′.

Definition 6.2. Let p be prime, n ∈ N be a positive integer, and let T be a set. We say
that a hash function H : T → Zn×np is a full-rank difference hash function, if H is efficiently
computable, and for all distinct t, t′ ∈ T holds that the difference matrix ∆ := H(t)−H(t′) has
full rank.

The notion of full-rank difference hash functions was introduced in [1], together with a
simple and elegant construction of such hash functions with domain T = Znp , which is suitable
for our purposes.

6.2 EUF-dnaCMA∗1-Secure Signature Scheme

Our tag-based signature scheme SIGSIS
t is described in Figure 8. The scheme uses a full-rank

difference hash function H : T → Zn×np , and the tag space is an arbitrary set T such that there
exists a such a hash function (e.g. T := Znp , as in [1]). We use parameters p, n,m ∈ N, where
p is prime, and γ ∈ R, whose choice partially depends on our security analysis and is therefore
deferred to Section 6.3. Correctness of this scheme follows from Fact 3.

Theorem 6.3. For each efficient adversary F breaking the EUF-dnaCMA∗1-security of SIGSIS
t

as described in Figure 8 we can construct an efficient algorithm Sim solving the (p, n,m, β)-SIS
problem with β = O(γm).

Scheme SIGSIS
t exhibits many similarities to the identity-key generation algorithm of the

IBE scheme from [1], where our tags correspond to identities of [1]. In the security proof we
simulate signatures in a way very similar to the identity-key generation in [1], by embedding an
additional trapdoor in the matrix Gt that allows to simulate signatures for arbitrary messages
and for all tags except for one tag ti = t∗ which equals the tag from the forgery (M∗, t∗)
output by the forgery (since the tag-space is polynomially bounded, we can guess t∗ with
non-negligible probability). To this end, in the simulation matrix Gt is defined such that the
additional trapdoor “vanishes” exactly for tag ti = t∗.
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The difference to the proof from [1] is that we must also be able to issue one signature
for message-tag-pair (Mi, ti) with ti = t∗, but without knowing any trapdoor. To simulate
a signature for this message-tag pair, we define the vector v contained in the public key as
v := (A|Gti)ei − UMi for a random short vector ei ← DZ2m,γ . Note that this defines v such
that ei is a valid signature for message-tag-pair (Mi, ti).

A successful forger F has to produce a forgery e∗ for a message M∗ 6= Mi, from which we
obtain an equation (A|Gti)ei − UMi = (A|Gti)e∗ − UM∗. By an adequate set-up of matrices
Gti and U this equation allows us to extract a solution to the given SIS problem instance with
high probability.

Proof. For simplicity let us assume a message length ` with ` = m. The security proofs works
identically for any ` ∈ [1,m].

Sim receives as input an SIS-challenge A ∈ Zn×mp , and runs F as a subroutine by simulating
the EUF-dnaCMA∗1-experiment for F . To this end, it proceeds as follows.

Start. Sim starts F (1k) to receive a list (M1, t1), . . . , (Mq, tq) of q chosen message-tag-pairs,
where ti 6= tj for all i 6= j.

Setup of the public key. To create a public key, Sim chooses a full-rank difference hash
function H : T → Zn×mp . Then it runs the algorithm of Fact 1 to generate a matrix B ∈ Zn×mp

together with a short basis TB ⊂ Λ⊥p (B) with ‖T̃B‖ ≤ L. Furthermore, it samples two random
matrices RU , RZ ← {0, 1}m×m, and defines matrices U,Z, Y ∈ Zn×mp and vector v ∈ Znp as

U := ARU , Z := ARZ −H(ti∗)B, Y := B ∈ Zn×mp , v := (A|Gti∗ )ei∗ − UMi∗

where i∗ ← [q] is chosen uniformly random, ei∗ ← DZ2m,γ , Gti∗ := Z + H(ti∗)Y , and all
computations are performed modulo p.

The public key is defined as (U,A,Z, Y, v). Note that matrices U,Z, Y are statistically close
to uniform over Zn×mp (due to Fact 6 and Fact 1), and v is statistically close to uniform (due
to Fact 7), thus this is a correctly distributed public key (up to a negligibly small statistical
distance).

Simulating signatures. A signature σi for message-tag-pair (Mi, ti), i ∈ [q], is computed as
follows.

Case i 6= i∗. In this case we have

Gti = ARZ −H(ti∗)B +H(ti)B = ARZ + ∆B,

where ∆ := H(ti) − H(ti∗) is a full-rank matrix, since H is a full-rank difference hash
function.

By running the algorithm from Fact 5 on input (A,B, TB,∆, RZ , u, γ), where u := UMi+v,
Sim computes a low-norm non-zero vector ei ← DΛup ,γ satisfying

(A|Gti)ei = UMi + v,

and sets σi := (ei, ti), which thus is a valid signature.

Case i = i∗. Now we have

Gti∗ = ARZ −H(ti∗)B +H(ti∗)B = ARZ ,

thus Sim is not able to use the trapdoor TB to simulate a signature, since B “vanishes”.

However, in this case Sim can set σi∗ := (ei∗ , ti∗). Recall that we have defined v :=
(A|Gsi∗ )ti∗ − UMi∗ in the setup phase, thus

(A|Gti∗ )ei∗ = UMi∗ + v ⇐⇒ (A|Gti∗ )ei∗ − UMi∗ = v.
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Note that ei∗ is correctly distributed due to Fact 7, and we have ti 6= tj for all i 6= j, thus
ei∗ is contained in exactly one signature.

Note also that this is the case where our construction and proof differ from [7], since in [7]
it is never necessary to simulate a signature in the case where matrix B “vanishes”, due
to a different construction and security experiment.

In either case Sim is able to compute a valid and correctly distributed signature for each i ∈ [q],
and thus simulates the EUF-dnaCMA∗1 security experiment properly. By assumption, F will
thus output (M∗, (e∗, t∗)), where t∗ = ti for some i ∈ [q] and (e∗, t∗) is a valid signature for
M∗ 6∈ {M1, . . . ,Mq}, with non-negligible probability.

Extracting the SIS solution. Suppose that i = i∗, which happens with probability 1/q.
Note that in this case it holds that

(A|Gt∗)ei∗ − UMi∗ = v = (A|Gt∗)e∗ − UM∗

⇐⇒
(A|ARZ)ei∗ −ARUMi∗ = v = (A|ARZ)e∗ −ARUM∗

⇐⇒
(A|ARZ)(ei∗ − e∗)−ARU (Mi∗ −M∗) = 0.

Let us write vector ê := (ei∗ − e∗) ∈ Z2m
p as ê> = (ê>1 , ê

>
2 ) for two vectors ê1, ê2 ∈ Zmp , and let

us write M̂ := (M∗ −Mi∗) ∈ {−1, 0, 1}m. Then the above equation is equivalent to

Aê1 +ARZ ê2 +ARUM̂ = 0 ⇐⇒ A(ê1 +RZ ê2 +RUM̂) = 0.

Algorithm Sim computes and outputs e := (ê1 + RZ ê2 + RUM̂) as solution to the given SIS
challenge. It remains to show that e is sufficiently short and non-zero with high probability.

Note that we have ‖ê1‖ ≤ ‖ê‖ ≤ 2 · γ
√
m, and similarly ‖ê2‖ ≤ 2 · γ

√
m. Note furthermore

that ‖M̂‖ ≤
√
m. By [1, Lemma 15] it furthermore holds that ‖RU‖ ≤ 12

√
2m and ‖RZ‖ ≤

12
√

2m, except for a negligibly small probability. In summary we thus have

‖e‖ = ‖ê1 +RZ ê2 +RUM̂‖ ≤ ‖ê1‖+ ‖RZ‖ · ‖ê2‖+ ‖RU‖ · ‖M̂‖
≤ 2γ

√
m+ 24 ·

√
2 ·mγ + 24 ·

√
2 ·m

= O(mγ).

Finally let us show that e 6= 0 with high probability. Note that we must have M̂ = Mi∗ −
M∗ 6= 0 ∈ {−1, 0, 1}m, since Mi∗ 6= M∗. Note furthermore that F does not receive RZ and RU
explicitly as input, but only implicitly as (A,ARZ , ARU ).

We will show a slightly stronger result than necessary, namely that even any unbounded
algorithm Γ, that receives as input (A,RZ , ARU ) (i.e. RZ in explicit form), will output ê1, ê2, M̂
such that e := ê1 +RZ ê2 +RUM̂ 6= 0 with significant probability. Since RZ is given explicitly,
we may simplify this to

RUM̂ = δ ∈ Znp ,

where M̂ 6= 0 and δ := −ê1 − RZ ê2 are chosen by Γ. Writing RU = (r1, . . . , rm) ∈ {0, 1}m×m
for vectors ri ∈ {0, 1}m and M̂ = (M̂1, . . . , M̂m)>, we can write this equivalently as

δ = RUM̂ =
m∑
i=1

riM̂i = rjM̂j +
m∑

i=1,i 6=j
riM̂i ∈ Znp ,

where M̂j ∈ {−1, 1} is an arbitrary non-zero component of M̂ (note that there must be at least
one non-zero component, since M̂ 6= 0 ∈ Znp ).
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Recall that Γ receives only implicit information about RU , in form of ARU . If we can show
that there exist two possible choices rj , r

′
j ∈ {−1, 1}m such that rj 6= r′j which are equally likely

in the view of Γ, then clearly we must have Pr[e 6= 0] ≥ 1/2, because

rj 6= r′j =⇒ rjM̂j +

m∑
i=1,i 6=j

riM̂i 6= r′jM̂j +

m∑
i=1,i 6=j

riM̂i.

Note that ARU = (Ar1| · · · |Arm). Thus we need to show that with overwhelming probability
there exists rj , r

′
j ∈ {−1, 1}m with

Arj = Ar′j ∈ Znp .

Let fA(r) : {−1, 1}m → Znp be the map r 7→ Ar. By the pigeonhole principle there are at most
pn−1 vectors r in {−1, 1}m such that the value fA(r) = Ar ∈ Znp has a unique preimage. Since
rj is chosen uniformly random from {−1, 1}m, the probability that rj is one of those vectors is
at most (pn − 1)/2m ≤ 2−m+n log p, which is negligible in n if m ≥ 2n log p.

Thus, with overwhelming probability there exist at least two vectors rj , r
′
j with rj 6= r′j that

are consistent with the view of Γ, and thus equally likely, and therefore any algorithm Γ will
output (ê1, ê2, M̂) with ê1 +RZ ê2 +RUM̂ 6= 0 with probability at least 1/2− 2−m+n log p.

6.3 Selection of Parameters

For the scheme to work correctly, we set n := k, where k is the security parameter. Furthermore
we need to ensure that
• TrapGen can operate, that is, we have m ≥ 6n log p,
• That γ is chosen such that the sampling algorithms from Facts 2, 4, and 5 produce the

required distribution, and that Fact 7 applies, i.e., that γ ≥ m · ω(
√
m),

• that the worst-case to average-case reductions for SIS [27, 16] apply, that is, we have
p ≥ β · ω(n log n),
• and that the SIS solutions produced in the reduction are sufficiently short, that is, β ≥

O(mγ).

6.4 EUF-CMA-Secure Scheme

By applying the generic transformation from Section 3 to our lattice-based EUF-dnaCMA∗1-
secure signature scheme, we obtain EUF-dnaCMA-secure signatures. Concretely, suppose we
use message space {0, 1}` with ` = m. Then the resulting EUF-dnaCMA-secure signature
scheme has public keys consisting of 4nm+n elements of Zp plus a key κ for the PRF. Signatures
consist of l low-norm vectors in Znp , where l = blogc(k)c = O(log k) is defined as in Section 3.
The resulting scheme is depicted in Figure 9.

Unfortunately we are not able to aggregate signatures, like we did for the optimized CDH-
and RSA-based constructions, due to the lack of signature aggregation techniques for lattice-
based signatures. We leave this as an interesting open problem.

To obtain a fully EUF-CMA-secure signature scheme, it suffices to combine the scheme
from Figure 9 with a suitable chameleon hash function, like for instance the SIS-based con-
struction from [9, Section 4.1]. This chameleon hash adds another 2mn elements of Zp to the
public key, plus one additional low-norm vector e ∈ Zmp to each signature.
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Gen(1k)
(A, TA)← TrapGen(p, n)
Z, Y ← Zn×mq

U ← Zn×`q

v ← Znp
κ← {0, 1}k
sk := TA1

pk := (U,A,Z, Y, v, κ)
return (sk , pk)

Sig(sk ,M)
u := UM + v
For i ∈ [l] do
ti := PRFTiκ (M)
Gti := Z +H(ti)Y mod p

ei ← SmpL(A, TA, Gti , u, γ)
return (ei)i∈[l]

Ver(pk ,M, (ei)i∈[l])

if M 6∈ {0, 1}` return 0
For i ∈ [l] do

if ei ≤ 0 or ‖ei‖ > γ
√

2m
return 0

ti := PRFTiκ (M)
Gti := Z +H(ti)Y
if (A|Gti)ei 6= UM + v

return 0
return 1

Figure 9: The EUF-naCMA-secure SIS scheme.
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