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Abstract

We introduce a new lattice-based cryptographic structure called a bonsai tree, and use it to resolve
some important open problems in the area. Applications of bonsai trees include:

• An efficient, stateless ‘hash-and-sign’ signature scheme in the standard model (i.e., no random
oracles), and

• The first hierarchical identity-based encryption (HIBE) scheme (also in the standard model) that
does not rely on bilinear pairings.

Interestingly, the abstract properties of bonsai trees seem to have no known realization in conventional
number-theoretic cryptography.

1 Introduction

Lattice-based cryptographic schemes have undergone rapid development in recent years, and are attractive due
to their low asymptotic complexity and potential resistance to quantum-computing attacks. One notable recent
work in this area is due to Gentry, Peikert, and Vaikuntanathan [GPV08], who constructed an efficient ‘hash-
and-sign’ signature scheme and an identity-based encryption (IBE) scheme. (IBE is a powerful cryptographic
primitive in which any string can serve as a public key [Sha84].)

Abstractly, the GPV schemes are structurally quite similar to Rabin/Rabin-Williams signatures [Rab79]
(based on integer factorization) and the Cocks/Boneh-Gentry-Hamburg IBEs [Coc01, BGH07] (based on the
quadratic residuosity problem), in that they all employ a so-called “preimage sampleable” trapdoor function
as a basic primitive. As a result, they have so far required the random oracle model (or similar heuristics) for
their security analysis. This is both a theoretical drawback and also a practical concern (see, e.g., [LN09]), so
avoiding such heuristics is an important goal.
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Another intriguing open question is whether any of these IBE schemes can be extended to deliver
richer levels of functionality, as has been done in pairing-based cryptography since the work of Boneh and
Franklin [BF01]. For example, the more general notion of hierarchical IBE [HL02, GS02] permits multiple
levels of secret-key authorities. This notion is more appropriate than standard IBE for large organizations,
can isolate damage in the case of secret-key exposure, and has further applications such as forward-secure
encryption [CHK03] and broadcast encryption [DF02, YFDL04].

1.1 Our Results

We put forward a new cryptographic notion called a bonsai tree, and give a realization based on hard lattice
problems. (Section 1.2 gives an intuitive overview of bonsai trees, and Section 1.4 discusses their relation
to other primitives and techniques.) We then show that bonsai trees resolve some central open questions
in lattice-based cryptography: to summarize, they remove the need for random oracles in many important
applications, and facilitate delegation for purposes such as hierarchical IBE.

Our first application of bonsai trees is an efficient, stateless signature scheme that is secure in the standard
model (no random oracles) under conventional lattice assumptions. Our scheme has a ‘hash-and-sign’
flavor that does not use the key-refresh/authentication-tree paradigm of many prior constructions (both
generic [GMR84, NY89] and specialized to lattice assumptions [LM08]), and in particular it does not require
the signer to keep any state. (Statelessness is a crucial property in many real-world scenarios, where distinct
systems may sign relative to the same public key.) In our scheme, the verification key, signature length,
and verification time are all an O(k) factor larger than in the random-oracle scheme of [GPV08], where
k is the output length of a chameleon hash function, and the O(·) notation hides only a 1 or 2 factor. The
signing algorithm is essentially as efficient as the one from [GPV08].1 The underlying hard problem is the
standard short integer solution (SIS) problem dating back to the seminal work of Ajtai [Ajt96], which is
known to be as hard as several worst-case approximation problems on lattices (see also [MR04, GPV08]). Via
SIS, the security of our signature scheme rests upon the hardness of approximating worst-case problems on
n-dimensional lattices to within an Õ(

√
k · n3/2) factor; this is only a

√
k factor looser than that of [GPV08].

Our second application is a collection of various hierarchical identity-based encryption (HIBE) schemes,
which are the first HIBEs that do not rely on bilinear pairings. Our main scheme works in the standard
model, also making it the first non-pairing-based IBE (hierarchical or not) that does not use random oracles
or qualitatively similar heuristics. The underlying hard problem is the standard learning with errors (LWE)
problem as defined by Regev, which may be seen as the ‘dual’ of SIS and is also as hard as certain worst-case
lattice problems [Reg05, Pei09b]; LWE is also the foundation for the plain IBE of [GPV08], among many
other recent cryptographic schemes.

Additionally, our HIBE is anonymous across all levels of the hierarchy, i.e., a ciphertext conceals
(computationally) the identity to which is was encrypted. Anonymity is a useful property in many applications,
such as fully private communication [BBDP01] and searching on encrypted data [BCOP04, ABC+05]. While
there are a few anonymous (non-hierarchical) IBEs [BF01, CS07, BGH07, GPV08], only one other HIBE is
known to be anonymous [BW06].

1.2 Overview of Bonsai Trees and Applications

The ancient art of bonsai is centered around a tree and the selective control thereof by an arborist, the tree’s
cultivator and caretaker. By combining natural, undirected growth with controlled propagation techniques

1Our signing algorithm performs about k forward computations of a trapdoor function, plus one inversion (which dominates the
running time).
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such as wiring and pruning, arborists cultivate trees according to a variety of aesthetic forms.
Similarly, cryptographic bonsai is not so much a precise definition as a collection of principles and

techniques, which can be employed in a variety of ways. (The informal description here is developed
technically in Section 3.) The first principle is the tree itself, which in our setting is a hierarchy of trapdoor
functions having certain properties. The arborist can be any of several entities in the system — e.g., the signer
in a signature scheme or a simulator in a security proof — and it can exploit both kinds of growth, undirected
and controlled. Briefly stated, undirected growth of a branch means that the arborist has no privileged
information about the associated function, whereas the arborist controls a branch if it knows a trapdoor for
the function. Moreover, control automatically extends down the hierarchy, i.e., knowing a trapdoor for a
parent function implies knowing a trapdoor for any of its children.

In our concrete lattice-based instantiation, the functions in the tree are indexed by a hierarchy of public
lattices chosen at random from a certain ‘hard’ family (i.e., one having a connection to worst-case problems).
The lattices may be specified by a variety of means, e.g., a public key, interaction via a protocol, a random
oracle, etc. Their key property is that they naturally form a hierarchy as follows: every lattice in the tree
(excepting the root) is a higher-dimensional superlattice of its parent. Specifically, a parent lattice in Rm is
simply the restriction of its child(ren) in Rm′ (where m′ > m) to the first m dimensions. As we shall see
shortly, this hierarchical relationship means that a parent lattice naturally ‘subsumes’ its children (and more
generally, all its descendants).

Undirected growth in our realization is technically straightforward, emerging naturally from the underly-
ing hard average-case lattice problems (SIS and LWE). This growth is useful primarily for letting a simulator
embed a challenge problem into one or more branches of the tree (but it may have other uses as well).

To explain controlled growth, we first need a small amount of technical background. As explored in
prior works on lattice-based cryptography (e.g., [GGH97, HPS98, HHGP+03, GPV08, PVW08, Pei09b]),
a lattice has a ‘master trapdoor’ in the form of a short basis, i.e., a basis made up of relatively short lattice
vectors. Knowledge of such a trapdoor makes it easy to solve a host of seemingly hard problems relative
to the lattice, such as decoding within a bounded distance, or randomly sampling short lattice vectors. As
described in [GPV08], these two operations are effectively the inversion algorithms for certain families of
injective and ‘preimage sampleable’ trapdoor functions, respectively. The reader may view a short basis for a
lattice as roughly analogous to the factorization of an RSA modulus, though we emphasize that there are in
general many distinct short bases that convey roughly ‘equal power’ with respect to the lattice.

In light of the above, we say that an arborist controls a branch of a bonsai tree if it knows a short basis for
the associated lattice. The hierarchy of lattices is specially designed so that any short basis of a parent lattice
can be easily extended to a short basis of any higher-dimensional child lattice, with no loss in quality. This
means that control of a branch implicitly comes with control over all its offshoots. In a typical application,
the privileged entity in the system (e.g., the signer in a signature scheme) will know a short basis for the root
lattice, thus giving it control over the entire tree. Other entities, such as an attacker, will generally have less
power, though in some applications they might even be given control over entire subtrees.

So far, we have deliberately avoided the question of how an arborist comes to control a (sub)tree
by acquiring a short basis for the associated lattice. A similar issue arises in other recent cryptographic
schemes [GPV08, PVW08, Pei09b], but in a simpler setting involving only a single lattice and short basis (not
a hierarchy). In these schemes, one directly applies a special algorithm, originally conceived by Ajtai [Ajt99]
and recently improved by Alwen and Peikert [AP09], which generates a hard random lattice together with a
short basis ‘from scratch.’ At first glance, the algorithms of [Ajt99, AP09] seem useful only for controlling a
new tree entirely by its root, which is not helpful if we need finer-grained control. Fortunately, we observe
that the same technique used for extending an already-controlled lattice also allows us to ‘graft’ a solitary
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controlled lattice onto an uncontrolled branch.2

This whole collection of techniques, therefore, allows an arborist to achieve a primary bonsai aesthetic:
a carefully controlled tree that nonetheless gives the appearance of having grown without any outside
intervention. As we shall see next, bonsai techniques can reduce the construction of complex cryptographic
schemes to the design of simple combinatorial games between an arborist and an adversary.

1.2.1 Application 1: Hash-and-Sign without Random Oracles

Our end goal is a signature scheme that meets the de facto notion of security, namely, existential unforgeability
under adaptive chosen-message attack [GMR84]. By a standard, efficient transformation using chameleon
hashes [KR00] (which have efficient realizations under conventional lattice assumptions, as we show), it
suffices to construct a weakly secure scheme, namely, one that is existentially unforgeable under a static
attack in which the adversary non-adaptively makes all its queries before seeing the public key.

Our weakly secure scheme signs messages of length k, the output length of the chameleon hash. The
public key represents a binary bonsai tree T of depth k in a compact way, which we describe in a moment.
The secret key is a short basis for the lattice Λε at the root of the tree, which gives the signer control over all
of T . To sign a string µ ∈ {0, 1}k (which is the chameleon hash of the ‘true’ message m), the signer first
derives the lattice Λµ from T by walking the root-to-leaf path specified by µ. The signature is simply a short
nonzero vector v ∈ Λµ, chosen at random from the ‘canonical’ Gaussian distribution, which can be sampled
efficiently using the signer’s control of Λµ. A verifier can check the signature v simply by deriving Λµ itself
from the public key, and checking that v is a sufficiently short nonzero vector in Λµ.

The bonsai tree T is represented compactly by the public key in the following way. First, the root lattice
Λε is specified completely. Then, for each level i = 0, . . . , k − 1, the public key includes two blocks of
randomness that specify how a parent lattice at level i branches into its two child lattices. We emphasize that
all nodes at a given depth use the same two blocks of randomness to derive their children.

The proof of security is at heart a combinatorial game on the tree between the simulator S and forger F ,
which goes roughly as follows. The forger gives the simulator a set M = {µ1, . . . , µQ} of messages, and S
needs to cultivate a bonsai tree (represented by pk) so that it controls some set of subtrees that cover all of
M , yet is unlikely to control the leaf for whatever arbitrary message µ∗ 6∈ M that F eventually produces
in its forgery. If the latter condition happens to hold true, then the forger has found a short nonzero vector
in an uncontrolled lattice, in violation of the underlying assumption. (This combinatorial game is closely
related to the recent “prefix technique” introduced by Hohenberger and Waters [HW09]; see Section 1.4 for
discussion.)

To satisfy the conflicting constraints of the game, S colors red all the edges on the root-to-leaf paths of
the messages in M , and lets all the other edges implicitly be colored blue. The result is a forest of at most
Q · k distinct blue subtrees {B`}, each growing off of some red path by a single blue edge. The simulator
chooses one of these subtrees B` uniformly at random (without regard to its size), guessing that the eventual
forgery will lie in B`. It then cultivates a bonsai tree so that all the growth on the path up to and throughout
B` is undirected (by embedding its given challenge instance as usual), while all the remaining growth in
T \B` is controlled. This can be achieved by controlling one branch at each level leading up to B` (namely,
the branch growing off of the path to B`), and none thereafter.

2It is worth noting that in [Ajt99, AP09], even the simple goal of generating a solitary lattice together with a short basis actually
proceeds in two steps: first start with a sufficient amount of random undirected growth, then produce a single controlled offshoot by
way of a certain linear algebraic technique. Fittingly, this is analogous to the traditional bonsai practice of growing a new specimen
from a cutting of an existing tree, which is generally preferred to growing a new plant ‘from scratch’ with seeds.
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1.2.2 Application 2: Hierarchical Identity-Based Encryption

Bonsai trees also provide a very natural and flexible approach for realizing HIBE. For simplicity, consider
an authority hierarchy that is a binary tree, which suffices for forward-secure encryption and general HIBE
itself [CHK03]. The master public key of the scheme describes a binary bonsai tree, which mirrors the
authority hierarchy. The root authority starts out by controlling the entire tree, i.e., it knows a trapdoor short
basis for the lattice at the root. Each authority is entitled to control its corresponding branch of the tree. Any
entity in the hierarchy can delegate control over an offshoot branch to the corresponding sub-authority, simply
by computing and revealing a short basis of the associated child lattice. In this framework, encryption and
decryption algorithms based on the LWE problem are standard.

For the security proof, the simulator again prepares a bonsai tree so that it controls certain branches
(which should cover the adversary’s queries), while allowing the undirected growth of others (corresponding
to the adversary’s target identity). This can be accomplished in a few ways, with different advantages and
drawbacks in terms of the security notion achieved and the tightness of the reduction. One notion is security
against a selective-identity attack, where the adversary must declare its target identity before seeing the public
key, but may adaptively query secret keys afterward. In this model, the simulator can cultivate a bonsai tree
whose growth toward the (known) target identity is undirected, while controlling each branch off of that path;
this setup makes it easy for the simulator to answer any legal secret-key query.

A stronger notion is security against a fully adaptive attack (“full security”), where the adversary may
choose its target identity after making its secret-key queries. (See Section 2.2 for a precise definition.) There
are generic combinatorial techniques for converting selective-identity-secure (H)IBE schemes into fully
secure ones; we show how to apply and optimize these techniques to our HIBE. First, we use the approach of
Boneh and Boyen [BB04a] to construct a fully secure HIBE scheme in the random oracle model. The basic
idea is to hash all identities; this way, the target identity can be dynamically embedded as the answer to a
random oracle query. Secondly, we demonstrate that other tools of Boneh and Boyen [BB04b] can be adapted
to our setting to yield a fully secure HIBE scheme without random oracles. This works by hashing identities
to branches of a bonsai tree, where a probabilistic argument guarantees that any given identity hashes to a
controlled branch with a certain probability. We can adjust this probability in the right way, so that with
non-negligible probability, all queried identities hash to controlled branches, while the target identity hashes
to an uncontrolled branch. In our probabilistic argument, we employ admissible hash functions (AHFs), as
introduced by [BB04b]. However, as we will explain in Section 5.4.4, their original AHF definition and proof
strategy do not take into consideration the statistical dependence of certain crucial events. We circumvent this
with a different AHF definition and a different proof.

Based on the above description, the reader may still wonder whether secret-key delegation is actually
secure, i.e., whether the real and simulated bases are drawn from the same probability distribution. In
fact, they may not be! For example, under the most straightforward method of extending a basis, the child
basis actually contains the parent basis as a submatrix, so it is clearly insecure to reveal the child. We
solve this issue with an additional bonsai principle of randomizing control, using the Gaussian sampling
algorithm of [GPV08]. This produces a new basis under a ‘canonical’ distribution, which ensures that the
real system and simulation coincide. The randomization increases the length of the basis by a small factor
— which accumulates geometrically with each delegation from parent to child — but for reasonable depths,
the resulting bases are still short enough to be useful when all the parameters are set appropriately. (See
Section 1.3 for more details.)

For achieving security under chosen-ciphertext attacks (CCA security), a transformation due to Boneh,
Canetti, Halevi, and Katz [BCHK07] gives a CCA-secure HIBE for depth d from any chosen plaintext-secure
HIBE for depth d + 1. Alternatively, we observe that the public and secret keys in our HIBE scheme are
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Application Model Public key Secret key Signature Assumption

Hash-and-sign [GPV08] RO Õ(n2) Õ(n2) Õ(n) Õ(n)-SIS

Hash-and-sign Standard Õ(kn2) Õ(n2) Õ(kn) Õ(
√
k · n)-SIS

Application Model Public key Secret key Ciphertext 1/α for LWE

IBE [GPV08] RO Õ(n2) Õ(n2) Õ(n) Õ(n)

IBE Standard Õ(kn2) Õ(n2) Õ(kn) Õ(
√
k · n)

HIBE (depth d) RO Õ(d2n2) Õ(d5n2) Õ(d3n)
√
dn · Õ(d

√
n)d

HIBE (depth d) Standard Õ(d3kn2) Õ(d5k2n2) Õ(d3kn)
√
dn · Õ(d

√
kn)d

Figure 1: Complexity of our bonsai tree applications in comparison with prior work; n is the main security
parameter and k is the output length of a chameleon hash function (for the signature scheme) or collision-
resistant hash function (for the IBEs). “RO” means random oracle model under fully adaptive attack, while
“Standard” means standard model under selective-identity attack (standard-model schemes with adaptive
security are omitted). “Public key,” “secret key,” etc. refer to their lengths in bits; for the HIBEs, these
quantities are the maximum possible over all levels of the hierarchy. The column labelled “1/α for LWE”
refers to the inverse error rate of the underlying LWE problem used in the proofs of security.

of exactly the same ‘type’ as those in the recent CCA-secure cryptosystem of [Pei09b], so we can simply
plug that scheme into our bonsai tree/HIBE framework. Interestingly, the two approaches result in essentially
identical schemes.

1.2.3 Variations

This paper focuses almost entirely on bonsai trees that are related, via worst- to average-case reductions, to
general lattices. Probably the main drawback is that the resulting public and secret keys are rather large. For
example, the public key in our signature scheme is larger by a factor of k (the output length of a chameleon
hash function) than that of its random-oracle analogue [GPV08], which is already at least quadratic in the
security parameter. Fortunately, the principles of bonsai trees may be applied equally well using analogous
hard problems and tools for cyclic/ideal lattices (developed in, e.g., [Mic02, PR06, LM06, PR07, SSTX09,
LPR10]), with little to no essential changes to the proofs. This approach can ‘miniaturize’ the bonsai trees
and most of their associated operations by about a linear factor in the security parameter. The resulting
schemes are still not suitable for practice, but their asymptotic behavior is attractive.

1.3 Complexity and Open Problems

Here we discuss some additional quantitative details of our schemes, and describe some areas for further
research.

Several important quantities in our bonsai tree constructions and applications depend upon the depth of
the tree. The dimension of a lattice in the tree grows linearly with its depth, and the size of the trapdoor basis
grows roughly quadratically with the dimension.

Accordingly, in our HIBE schemes, the dimension of a ciphertext vector grows linearly with the depth
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of the identity to which it is encrypted. Moreover, the Euclidean length of a user’s trapdoor basis increases
geometrically with its depth in the tree (more precisely, with the length of the delegation chain), due to
the basis randomization that is performed with each delegation. To ensure correct decryption, the inverse
noise parameter 1/α in the associated LWE problem, and hence the approximation factor of the underlying
worst-case lattice problems, must grow with the basis length. In particular, a hierarchy of depth d corresponds
(roughly) to an nd/2 approximation factor for worst-case lattice problems, where n is the dimension. Because
lattice problems are conjectured to be hard to approximate to within even subexponential factors, the scheme
may remain asymptotically secure for depths as large as d = nc, where c < 1.

Our HIBE scheme that enjoys security under a full adaptive-identity attack requires large keys and has a
somewhat loose security reduction. In particular, the attack simulation partitions an (implicit) bonsai tree into
controlled and undirected branches. This is done in the hope that all user secret key queries correspond to
controlled branches (so the simulation can derive the corresponding secret key), and that the target identity
refers to an undirected branch (so the attack can be converted into one on the LWE problem). This simulation
approach (dubbed ‘partitioning strategy’ in [Wat09]) involves, to a certain extent, guessing the adversary’s
user secret key and challenge queries. The result is a rather loose security reduction.

In contrast, recent works have achieved tight reductions (and even small keys, in some cases) for pairing-
based (H)IBEs under various assumptions [Gen06, GH09, Wat09], and a variant of the GPV IBE (in the
random oracle model) also has a tight reduction, but their approaches do not seem to translate to our setting.
The issue, essentially, is that our simulator is required to produce a ‘master trapdoor’ for each queried identity,
which makes it difficult to embed the challenge problem into the adversary’s view. In prior systems with tight
reductions, secret keys are less ‘powerful,’ so the simulator can embed a challenge while still knowing at
least one secret key for every identity (even the targeted one).

A final very interesting (and challenging) question is whether bonsai trees can be instantiated based on
other mathematical foundations, e.g., integer factorization. At a very fundamental level, our lattice-based
construction seems to rely upon a kind of random self-reducibility that the factorization problem is not known
to enjoy.

1.4 Related Techniques and Works

This paper represents a combination of two concurrent and independent works by the first three au-
thors [CHK09] and the fourth author [Pei09a], which contained some overlapping results and were accepted
to Eurocrypt 2010 under the condition that they be merged.

The abstract properties of bonsai trees, as hierarchies of trapdoor functions, appear to have no known real-
ization in conventional number-theoretic cryptography. However, our applications use several combinatorial
techniques that are similar to those from several prior works.

The analysis of our signature scheme may be seen as a refinement of the recent “prefix technique” of
Hohenberger and Waters [HW09] for standard-model signatures. Our scheme and its proof appear quite
different from their main RSA-based construction, but is closely related (at least at a combinatorial level) to
their construction based on bilinear pairings. Interestingly, in both of these constructions the scheme itself
does not deal with message prefixes at all; they only show up in the security proofs. The main difference
between our simulation strategies is that, in the prefix technique, the simulator in a static chosen-message
attack sets up the public key by guessing a uniformly random prefix of a random queried message, in the
hope that the adversary’s forged message will start with that prefix (but its next bit will be different). With
this strategy, some of the simulator’s potential guesses may prevent it from being able to sign all the queried
messages, thus causing the simulation to fail. (Fortunately, a noticeable fraction of the simulator’s guesses
avoid this outcome, so the reduction goes through correctly.) In contrast, our simulator looks at all the queried
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messages, and sets up the public key so that it always knows how to sign all of them (and potentially many
others). This is done by constructing a forest of subtrees as described in Section 1.2.1.

The structure of our HIBE is also similar, at a combinatorial level, to that of prior pairing-based HIBEs,
in that the simulator can ‘control’ certain edges of an implicit tree by choosing certain random exponents
itself. However, there are no trapdoor functions per se in pairing-based constructions; instead, the pairing is
used to facilitate key agreement between the encrypter and decrypter. Our approach, therefore, may be seen
as a blending of pairing-based techniques and the trapdoor techniques found in [Coc01, BGH07, GPV08].

Following the initial dissemination of our results in [CHK09, Pei09a], several extensions and additional
applications have been found. Rückert [Rüc10] modified our signature scheme to make it strongly unforgeable,
and constructed hierarchical identity-based signatures. Agrawal and Boyen [AB09] constructed a standard-
model IBE based on LWE, which is secure under a selective-identity attack; their construction has structure
similar to ours, but it does not address delegation, nor does it give an efficient signature scheme. Agrawal,
Boneh, and Boyen [ABB10] improved the efficiency of our (H)IBE schemes (under a quantitatively stronger
LWE assumption), and Boyen [Boy10] used similar techniques to obtain shorter signatures (under a stronger
SIS assumption).

2 Preliminaries

2.1 Notation

For a positive integer k, [k] denotes the set {1, . . . , k}; [0] is the empty set. We denote the set of integers
modulo an integer q ≥ 1 by Zq. For a string x over some alphabet, |x| denotes the length of x. For an
alphabet X and nonnegative integer n, define X≤n =

⋃n
i=0X

i, and X<n similarly. We say that a function
in n is negligible, written negl(n), if it vanishes faster than the inverse of any polynomial in n. We say that a
probability p(n) is overwhelming if 1− p(n) is negligible.

The statistical distance between two distributions X and Y (or two random variables having those
distributions), viewed as functions over a countable domain D, is defined as maxA⊆D|X (A)− Y(A)|.

Column vectors are named by lower-case bold letters (e.g., x) and matrices by upper-case bold letters
(e.g., X). We identify a matrix X with the ordered set {xj} of its column vectors, and let X‖X′ denote the
(ordered) concatenation of the sets X,X′. For a set X of real vectors, we define ‖X‖ = maxj‖xj‖, where
‖·‖ denotes the Euclidean norm.

For any (ordered) set S = {s1, . . . , sk} ⊂ Rm of linearly independent vectors, let S̃ = {s̃1, . . . , s̃k}
denote its Gram-Schmidt orthogonalization, defined iteratively as follows: s̃1 = s1, and for each i = 2, . . . , k,
the vector s̃i is the component of si orthogonal to span(s1, . . . , si−1). In matrix notation, there is a unique
QR decomposition S = QR where the columns of Q ∈ Rm×k are orthonormal (i.e., QtQ = I ∈ Rk×k)
and R ∈ Rk×k is right-triangular with positive diagonal entries; the Gram-Schmidt orthogonalization is
S̃ = Q · diag(r1,1, . . . , rk,k). Clearly, ‖s̃i‖ ≤ ‖si‖ for all i.

2.2 Cryptographic Definitions

The main cryptographic security parameter through the paper is n, and all algorithms (including the adversary)
are implicitly given the security parameter n in unary.

For a (possibly interactive) algorithmA, we define its distinguishing advantage between two distributions
X and Y to be |Pr[A(X ) = 1]− Pr[A(Y) = 1]|. We use the general notation Advatk

SCH(A) to describe the
advantage of an adversary A mounting an atk attack on a cryptographic scheme SCH, where the definition
of advantage is specified as part of the attack. Similarly, we write AdvPROB(A) for the advantage of an
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adversary A against a computational problem PROB (where again the meaning of advantage is part of the
problem definition).

Chameleon hash functions. Chameleon hashing was introduced by Krawczyk and Rabin [KR00]. For our
purposes, we need a slight generalization in the spirit of “preimage sampleable” (trapdoor) functions [GPV08].

A family of chameleon hash functions is a collectionH = {hi :M×R→ Y} of functions hi mapping
a message m ∈ M and randomness r ∈ R to a range Y . The randomness spaceR is endowed with some
efficiently sampleable distribution (which may not be uniform). A function hi is efficiently computable
given its description, and the family has the property that for any m ∈ M, for hi ← H and r ← R, the
pair (hi, hi(m, r)) is uniform over (H,Y) (up to negligible statistical distance). The chameleon property
is that a random hi ← H may be generated together with a trapdoor t, such that for any output y ∈ Y and
message m ∈M, it is possible (using t) to efficiently sample r ∈ R (under theR’s distribution) conditioned
on the requirement that hi(m, r) = y. Finally, the family has the standard collision-resistance property,
i.e., given hi ← H it should be hard for an adversary to find distinct (m, r), (m′, r′) ∈ M×R such that
hi(m, r) = hi(m

′, r′).
In Section 4 we realize chameleon hash functions (in the above sense) using lattices, via bonsai techniques.

Signatures. A signature scheme SIG for a message spaceM is a tuple of PPT algorithms as follows:

• Gen outputs a verification key vk and a signing key sk.

• Sign(sk, µ), given a signing key sk and a message µ ∈M, outputs a signature σ ∈ {0, 1}∗.

• Ver(vk, µ, σ), given a verification key vk, a message µ, and a signature σ, either accepts or rejects.

The correctness requirement is: for any µ ∈ M, generate (vk, sk) ← Gen and σ ← Sign(sk, µ). Then
Ver(vk, µ, σ) should accept with overwhelming probability (over all the randomness in the experiment).

We recall two standard notions of security for signatures. The first, existential unforgeability under static
chosen-message attack, or eu-scma security, is defined as follows: first, the forger F outputs a list of query
messages µ1, . . . , µQ for some Q. Next, (vk, sk) ← Gen and σi ← Sign(sk, µi) are generated for each
i ∈ [Q], then vk and σi (for each i ∈ [Q]) are given to F . Finally, F outputs an attempted forgery (µ∗, σ∗).
The advantage Aeu-scma

SIG (F) of F is the probability that Ver(vk, µ∗, σ∗) accepts and µ∗ 6= µi for all i ∈ [Q],
taken over all the randomness of the experiment.

Another notion, called existential unforgeability under adaptive chosen-message attack, or eu-acma
security, is defined similarly, except that F is first given vk and may adaptively choose the messages µi.

Using a family of chameleon hash functions (as defined above), there is a generic construction of eu-acma-
secure signatures from eu-scma-secure signatures; see, e.g., [KR00]. Furthermore, the construction results
in an online/offline signature scheme; see [ST01]. The basic idea behind the construction is that the signer
chameleon hashes the message to be signed, then signs the hashed message using the eu-scma-secure scheme
(and includes the randomness used in the chameleon hash with the final signature).

Key-Encapsulation Mechanism (KEM). We present all of our encryption schemes in the framework of
key encapsulation, which simplifies the definitions and leads to more modular constructions. A KEM for
keys of length ` = `(n) is a triple of PPT algorithms as follows:

• Gen outputs a public key pk and a secret key sk.
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• Encaps(pk) outputs a key κ ∈ {0, 1}` and its encapsulation as σ ∈ {0, 1}∗.

• Decaps(sk, σ) outputs a key κ.

The correctness requirement is: for (pk, sk)← Gen and (κ, σ)← Encaps(pk), Decaps(sk, σ) should output
κ with all but negl(n) probability.

In this work we are mainly concerned with indistinguishability under chosen-plaintext attack, or ind-cpa
security. The attack is defined as follows: generate (pk, sk) ← Gen, (κ∗, σ∗) ← Encaps(pk), and κ′ ←
{0, 1}` (chosen uniformly and independently of the other values). The advantage Adv

ind-cpa
KEM (A) of an

adversary A is its distinguishing advantage between (pk, σ∗, κ∗) and (pk, σ∗, κ′).

Hierarchical Identity-Based Encryption (HIBE). In HIBE, identities are strings (tuples) over some
alphabet ID. Hence hierarchical identities of maximal depth d ∈ N are of the form ID≤d =

⋃d
i=0 ID

i. A
HIBE for keys of bit length ` = `(n) is a tuple of PPT algorithms as follows:

• Setup(1d) outputs a master public key mpk and root-level secret key skε. Here d is the maximal depth
of the hierarchy, specified in unary. (In the following, d and mpk are implicit parameters to every
algorithm, and every user secret key skid is assumed to include id itself.)

• Extract(skid, id
′), given a user secret key for identity id ∈ ID<d =

⋃d−1
i=0 ID

i that is a proper prefix
of id′ ∈ ID≤d, outputs a user secret key skid′ for identity id′.

• Encaps(id) outputs a key κ ∈ {0, 1}` and its encapsulation as σ ∈ {0, 1}∗, to identity id.

• Decaps(skid, σ) outputs a key κ.

The correctness requirement is: for any identity id ∈ ID≤d, first generate (mpk, skε)← Setup(1d), then
generate skid via any legal sequence of calls to Extract starting from skε, then generate (κ, σ)← Encaps(id).
Then Decaps(skid, σ) should output κ with overwhelming probability (over all the randomness in the
experiment).

There are several attack notions for HIBE. One simple notion is indistinguishability under a chosen-
plaintext, selective-identity attack, or sid-ind-cpa security. The attack is defined as follows: first, the adversary
A is given 1d and names a target identity id∗ ∈ ID≤d. Next, (mpk, skε) ← Setup(1d), (κ, σ∗) ←
Encaps(id∗), and κ′ ← {0, 1}` are generated. Then A is given (mpk, κ∗, σ∗), where κ∗ is either κ or
κ′. Finally, A may make extraction queries, i.e., it is given oracle access to Extract(skε, ·), subject to the
constraint that it may not query any identity that is a prefix of (or equal to) the target identity id∗. The
adversary’s advantage Adv

sid-ind-cpa
HIBE (A) is its distinguishing advantage between the two cases κ∗ = κ and

κ∗ = κ′.
A related notion is security against an adaptive-identity attack, known as aid-ind-cpa or “full” security.

Here the adversary is first given mpk and has oracle access to Extract(skε, ·) both before and after choosing
its target identity id∗; as above, the adversary may never query any identity that is a prefix of the id∗ it
eventually names. Finally, both of the above notions may be extended to chosen-ciphertext attacks in the
natural way; since our focus is on chosen-plaintext security, we omit precise definitions.

2.3 Lattices

In this work, we use m-dimensional full-rank integer lattices, which are discrete additive subgroups of Zm
having finite index, i.e., the quotient group Zm/Λ is finite. A lattice Λ ⊆ Zm can equivalently be defined as
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the set of all integer linear combinations of m linearly independent basis vectors B = {b1, . . . ,bm} ⊂ Zm:

Λ = L(B) =

{
Bc =

∑
i∈[m]

cibi : c ∈ Zm
}
.

When m ≥ 2, there are infinitely many bases that generate the same lattice.
Every lattice Λ ⊆ Zm has a unique canonical basis H = HNF(Λ) ∈ Zm×m called its Hermite normal

form (HNF). The only facts about the HNF that we require are that it is unique, and that it may be computed
efficiently given an arbitrary basis B of the lattice (see [MW01] and references therein). We write HNF(B)
to denote the Hermite normal form of the lattice generated by basis B.

The following lemma will be useful in our constructions.

Lemma 2.1 ([MG02, Lemma 7.1, page 129]). There is a deterministic poly-time algorithm ToBasis(S,B)
that, given a full-rank set (not necessarily a basis) S of lattice vectors in Λ = L(B), outputs a basis T of Λ
such that ‖t̃i‖ ≤ ‖s̃i‖ for all i.

2.3.1 Hard Lattices and Problems

We will work with a certain family of integer lattices whose importance in cryptography was first demonstrated
by Ajtai [Ajt96]. Let n ≥ 1 and modulus q ≥ 2 be integers; the dimension n is the main cryptographic
security parameter throughout this work, and all other parameters are implicitly functions of n. An m-
dimensional lattice from the family is specified relative to the additive group Znq by a parity check (more
accurately, “arity check”) matrix A ∈ Zn×mq . The associated lattice is defined as

Λ⊥(A) =

{
x ∈ Zm : Ax =

∑
j∈[m]

xj · aj = 0 ∈ Znq
}
⊆ Zm.

One may check that Λ⊥(A) contains qZm (and in particular, the identity 0 ∈ Zm) and is closed under
addition, hence it is a full-rank subgroup of (and lattice in) Zm. For any y in the subgroup of Znq generated
by the columns of A, we also define the coset

Λ⊥y (A) = {x ∈ Zm : Ax = y} = Λ⊥(A) + x̄,

where x̄ ∈ Zm is an arbitrary solution to Ax̄ = y.
It is known (see, e.g., [Reg05, Claim 5.3]) that for any fixed constant C > 1 and any m ≥ Cn lg q, the

columns of a uniformly random A ∈ Zn×mq generate all of Znq , except with 2−Ω(n) = negl(n) probability.
(Moreover, the subgroup generated by A can be computed efficiently.) Therefore, throughout the paper we
sometimes implicitly assume that such a uniform A generates Znq .

We recall the short integer solution (SIS) and learning with errors (LWE) problems, which may be seen
as average-case problems related to the family of lattices described above.

Definition 2.2 (Short Integer Solution). An instance of the SISq,β problem (in the `2 norm) is a uniformly
random matrix A ∈ Zn×mq for any desiredm = poly(n). The goal is to find a nonzero integer vector v ∈ Zm

such that ‖v‖2 ≤ β and Av = 0 ∈ Znq , i.e., v ∈ Λ⊥(A).

Let χ be some distribution over Zq. For a vector v ∈ Z`q of any dimension ` ≥ 1, Noisyχ(v) ∈ Z`q
denotes the vector obtained by adding (modulo q) independent samples drawn from χ to each entry of v
(one sample per entry). For a vector s ∈ Znq , As,χ is the distribution over Znq × Zq obtained by choosing a
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vector a ∈ Znq uniformly at random and outputting (a,Noisyχ(〈a, s〉)). In this work (and most others relating
to LWE), χ is always a discretized normal error distribution parameterized by some α ∈ (0, 1), which is
obtained by drawing x ∈ R from the Gaussian distribution of width α (i.e., x is chosen with probability
proportional to exp(−πx2/α2)) and outputting bq · xe mod q.

Definition 2.3 (Learning with Errors). The LWEq,χ problem is to distinguish, given oracle access to any
desired m = poly(n) samples, between the distribution As,χ (for uniformly random and secret s ∈ Znq ) and
the uniform distribution over Znq × Zq.

We write AdvSISq,β (A) and AdvLWEq,χ(A) to denote the success probability and distinguishing advan-
tage of an algorithm A for the SIS and LWE problems, respectively.

For appropriate parameters, solving SIS and LWE (on the average, with non-negligible advantage) is
known to be as hard as approximating certain lattice problems, such as the (decision) shortest vector problem,
in the worst case. Specifically, for q ≥ β · ω(

√
n log n), solving SISq,β yields approximation factors of

Õ(β ·
√
n) [MR04, GPV08]. For q ≥ (1/α) · ω(

√
n log n), solving LWEq,χ yields approximation factors of

Õ(n/α) (in some cases, via a quantum reduction); see [Reg05, Pei09b] for precise statements.

2.3.2 Gaussians over Lattices

We briefly recall Gaussian distributions over lattices, specialized to the family described above; for more
details see [MR04, GPV08]. For any s > 0 and dimension m ≥ 1, the Gaussian function ρs : Rm → (0, 1]
is defined as ρs(x) = exp(−π‖x‖2/s2). For any coset Λ⊥y (A), the discrete Gaussian distribution DΛ⊥y (A),s

(centered at zero) over the coset assigns probability proportional to ρs(x) to each x ∈ Λ⊥y (A), and probability
zero elsewhere.

We summarize several facts from the literature about discrete Gaussians over lattices, again specialized to
our family of interest.

Lemma 2.4. Let S be any basis of Λ⊥(A) for some A ∈ Zn×mq whose columns generate Znq , let y ∈ Znq be
arbitrary, and let s ≥ ‖S̃‖ · ω(

√
log n).

1. [MR04, Lemma 4.4]: Prx←D
Λ⊥y (A),s

[‖x‖ > s ·
√
m] ≤ negl(n).

2. [PR06, Lemma 2.11]: Prx←D
Λ⊥(A),s

[x = 0] ≤ negl(n).

3. [Reg05, Corollary 3.16]: a set of O(m2) independent samples from DΛ⊥(A),s contains a set of m
linearly independent vectors, except with negl(n) probability.

4. [GPV08, Theorem 3.1]: For x← DZm,s, the marginal distribution of y = Ax ∈ Znq is uniform (up to
negl(n) statistical distance), and the conditional distribution of x given y is DΛ⊥y (A),s.

5. [GPV08, Theorem 4.1]: there is a PPT algorithm SampleD(S,A,y, s) that generates a sample from
DΛ⊥y (A),s (up to negl(n) statistical distance).

For Item 5 above, a recent work of Peikert [Pei10] gives an alternative SampleD algorithm that is more
efficient and fully parallelizable; it works for any s ≥ σ1(S) · ω(

√
log n), where σ1(S) is the largest singular

value of S (which is never smaller than ‖S̃‖, but is also not much larger in most important cases; see [Pei10]
for details).
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3 Principles of Bonsai Trees

In this section we lay out the framework and main techniques for the cultivation of bonsai trees. There are
four basic principles: undirected growth, controlled growth, extending control over arbitrary new growth, and
randomizing control.

3.1 Undirected Growth

Undirected growth is useful primarily for allowing a simulator to embed an underlying challenge problem (i.e.,
SIS or LWE) into a tree. This is done simply by drawing fresh uniformly random and independent samples
ai ∈ Znq from the problem distribution, and grouping them into (or appending them onto) a parity-check
matrix A.

More formally, let A ∈ Zn×mq be arbitrary for some m ≥ 0, and let A′ = A‖Ā ∈ Zn×m′q for some
m′ > m be an arbitrary extension of A. Then it is easy to see that Λ⊥(A′) ⊆ Zm′ is a higher-dimensional
superlattice of Λ⊥(A) ⊆ Zm, when the latter is lifted to Zm′ . Specifically, for any v ∈ Λ⊥(A), the vector
v′ = v‖0 ∈ Zm′ is in Λ⊥(A′) because A′v′ = Av = 0 ∈ Znq .

In addition, the columns of A′ may be ordered arbitrarily (e.g., the columns of Ā may be both appended
and prepended to A), which simply results in the entries of the vectors in Λ⊥(A′) being permuted in the
corresponding manner. That is,

Λ⊥(A′ ·P) = P · Λ⊥(A′)

for any permutation matrix P ∈ {0, 1}m′×m′ , because (A′P)x = A′(Px) ∈ Znq for all x = Zm′ .

3.2 Controlled Growth

We say that an arborist controls a lattice if it knows a relatively good (i.e., short) basis for the lattice. The
following lemma says that a random lattice from our family of interest can be generated under control.3

Proposition 3.1 ([AP09]). There is a fixed constant C > 1 and a probabilistic polynomial-time algorithm
GenBasis(1n, 1m, q) that, for poly(n)-bounded m ≥ Cn lg q, outputs A ∈ Zn×mq and S ∈ Zm×m such that:

• the distribution of A is within negl(n) statistical distance of uniform,

• S is a basis of Λ⊥(A), and

• ‖S̃‖ ≤ L̃ = O(
√
n log q).

3.3 Extending Control

Here we describe how an arborist may extend its control of a lattice to an arbitrary higher-dimensional
extension, without any loss of quality in the resulting basis.

Lemma 3.2. There is a deterministic polynomial-time algorithm ExtBasis with the following properties:
given an arbitrary A ∈ Zn×mq whose columns generate the entire group Znq , an arbitrary basis S ∈ Zm×m

of Λ⊥(A), and an arbitrary Ā ∈ Zn×m̄q , ExtBasis(S,A′ = A‖Ā) outputs a basis S′ of Λ⊥(A′) ⊆ Zm+m̄

3An earlier version of this paper [Pei09a] used a core lemma from [AP09] to directly extend a given random parity-check
matrix A (without known good basis) into a random matrix A′ = A‖Ā with known good basis. While using that method can
improve our applications’ key sizes by a small constant factor, it also makes the applications more cumbersome to describe, so we
opt to use the above proposition instead.
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such that ‖S̃′‖ = ‖S̃‖. Moreover, the same holds even for any given permutation of the columns of A′ (e.g.,
if columns of Ā are both appended and prepended to A).

Proof. Let m′ = m+ m̄. The ExtBasis(S,A′) algorithm computes and outputs an S′ of the form

S′ =

(
S W
0 I

)
∈ Zm

′×m′ ,

where I ∈ Zm̄×m̄ is the identity matrix, and W ∈ Zm×m̄ is an arbitrary (not necessarily short) solution to
AW = −Ā ∈ Zn×m̄q . Note that W exists by the hypothesis that A generates Znq , and it may be computed
efficiently using, e.g., Gaussian elimination.

We now analyze S′. First,

A′S′ = AS‖(AW + Ā) = 0 ∈ Zn×m
′

q

by assumption on S and by construction of W, so S′ ⊂ Λ⊥(A′). Moreover, S′ is in fact a basis of Λ⊥(A′):
let v′ = v‖v̄ ∈ Λ⊥(A′) be arbitrary, where v ∈ Zm and v̄ ∈ Zm̄. Then

0 = A′v′ = Av + Āv̄ = Av − (AW)v̄ = A(v −Wv̄) ∈ Znq .

Thus v −Wv̄ ∈ Λ⊥(A), so by assumption on S there exists some z ∈ Zm such that Sz = v −Wv̄. Now
let z′ = z‖v̄ ∈ Zm+m̄. By construction, we have

S′z′ = (Sz + Wv̄)‖v̄ = v‖v̄ = v′.

Because v′ ∈ Λ⊥(A′) was arbitrary, S′ is therefore a basis of Λ⊥(A′).
We next confirm that ‖S̃′‖ = ‖S̃‖. By the design of S′ and the definition of Gram-Schmidt orthogonal-

ization, it is easy to check that

S̃′ =

(
S̃ 0
0 I

)
,

because S is full-rank. It follows that ‖S̃′‖ = max{‖S̃‖, 1} = ‖S̃‖, because s̃1 = s1 ∈ Zm is nonzero.
For the final part of the lemma, we simply compute S′ for A′ = A‖Ā as described above, and output

S′′ = PS′ as a basis for Λ⊥(A′ ·P), where P is the given permutation matrix. The Gram-Schmidt lengths
remain unchanged, i.e., ‖s̃′′i ‖ = ‖s̃′i‖, because P is orthogonal and hence the right-triangular matrices in the
QR decompositions of S′ and PS′ are exactly the same.

3.3.1 An Optimization: Gaussian Sampling via Implicit Extension

In many of our cryptographic applications, a common design pattern is to extend a basis S of anm-dimensional
lattice Λ⊥(A) to a basis S′ of a dimension-m′ superlattice Λ⊥(A′), and then immediately sample (one or
more times) from a discrete Gaussian over the superlattice. For the construction and analysis of our schemes,
it is more convenient and modular to treat these operations separately; however, a naive implementation
would be rather inefficient, requiring at least (m′)2 space and time (where m′ can be substantially larger
than m). Fortunately, the special structure of the extended basis S′, together with the recursive “nearest-plane”
operation of the SampleD algorithm from [GPV08], can be exploited to avoid any explicit computation of S′,
thus saving a significant amount of time and space over the naive approach.

Let S ∈ Zm×m be a basis of Λ⊥(A), and let A′ = A‖Ā for some Ā ∈ Zn×m̄q , where m′ = m + m̄.
Consider a hypothetical execution of SampleD(S′,y′, s), where S′ =

(
S W
0 I

)
is the extended basis as
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described in the proof of Lemma 3.2, and S̃′ =
(
S̃ 0
0 I

)
. By inspection, it can be verified that a recursive

execution of v′ ← SampleD(S′,y′, s) simply chooses all the entries of v̄ ∈ Zm̄ independently from DZ,s,
then chooses v← SampleD(S,y′ − Āv̄, s), and outputs v′ = v‖v̄. Therefore, the optimized algorithm can
perform exactly the same steps, thus avoiding any need to compute and store W itself. A similar optimization
also works for any permutation of the columns of A′.

In the language of the “preimage sampleable” function fA′(v′) := A′v′ ∈ Znq defined in [GPV08],
the process described above corresponds to sampling a preimage from f−1

A′ (y
′) by first computing ȳ =

fĀ(v̄) = Āv̄ ∈ Znq in the “forward” direction (for random v̄← DZm̄,s), then choosing a random preimage
v← f−1

A (y′ − ȳ) under the appropriate Gaussian distribution, and outputting v′ = v‖v̄.4

3.4 Randomizing Control

Finally, we show how an arborist can randomize its lattice basis, with a slight loss in quality. This operation
is useful for securely delegating control to another entity, because the resulting basis is still short, but is
(essentially) statistically independent of the original basis.

The probabilistic polynomial-time algorithm RandBasis(S, s) takes a basis S of anm-dimensional integer
lattice Λ and a parameter s ≥ ‖S̃‖ · ω(

√
log n), and outputs a basis S′ of Λ, generated as follows.

1. Let i← 0. While i < m,

(a) Choose v ← SampleD(S, s). If v is linearly independent of {v1, . . . ,vi}, then let i ← i + 1
and let vi = v.

2. Output S′ = ToBasis(V,HNF(S)).

In the final step, the (unique) Hermite normal form basis HNF(S) of Λ is used to ensure that no information
particular to S is leaked by the output; any other publicly available (or efficiently computable) basis of the
lattice could also be used in its place.

Lemma 3.3. With overwhelming probability, S′ ← RandBasis(S, s) repeats Step 1a at most O(m2) times,
and ‖S′‖ ≤ s ·

√
m. Moreover, for any two bases S0,S1 of the same lattice and any s ≥ max{‖S̃0‖, ‖S̃1‖} ·

ω(
√

log n), the outputs of RandBasis(S0, s) and RandBasis(S1, s) are within negl(n) statistical distance.

Proof. The bound on ‖S′‖ and on the number of iterations follow immediately from Lemma 2.4, items 1
and 3, respectively. The claim on the statistical distance follows from the fact that each sample v drawn in
Step 1a has the same distribution (up to negl(n) statistical distance) whether S0 or S1 is used, and the fact
that HNF(S0) = HNF(S1) because the Hermite normal form of a lattice is unique.

4 Signatures

Here we use bonsai tree principles to construct a signature scheme that is existentially unforgeable under
a static chosen-message attack (i.e., eu-scma-secure). As discussed in Section 2.2, to convert this into an
(offline / online) signature scheme that is unforgeable under adaptive chosen-message attack (eu-acma-secure),
we need a suitable notion of chameleon hash, which we also construct here.

4An earlier version of this paper [CHK09] explicitly defined a sampling procedure using this algorithm, and gave a (somewhat
involved) proof that it correctly samples from a discrete Gaussian over Λ⊥(A′). Here, correctness follows directly by examining the
execution of SampleD on the structured basis S′.
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4.1 Chameleon Hash

Let n ≥ 1, q ≥ 2 be integers, let m = O(n log q) and L̃ be as in Proposition 3.1, let s = L̃ · ω(
√

log n) be
a Gaussian parameter, and let k ≥ 1 be an integer message length. Define a message spaceM = {0, 1}k,
randomness spaceR = {r ∈ Zm : ‖r‖ ≤ s ·

√
m} with distribution DZm,s (restricted toR, which by Item 1

of Lemma 2.4 changes the distribution by only negl(n) statistical distance), and range Y = Znq .
For A0 ∈ Zn×kq , A1 ∈ Zn×mq and A = A0‖A1, define the hash function hA : M×R→ Y as

hA(m; r) = A · (m‖r) = A0m + A1r.

Lemma 4.1. The familyH = {hA} (under the uniform distribution overH) is a family of chameleon hash
functions, assuming that SISq,β is hard for β =

√
k + 4s2 ·m.

Proof. It is easy to verify that all of the required properties described in Section 2.2 hold. First, each hA is
efficiently computable given A, and for every m ∈M, the distribution of (A, hA(m; r)) for r← DZm,s is
within negl(n) statistical distance of uniform overH× Y by Item 4 of Lemma 2.4.

For the trapdoor property, a uniformly random (up to negl(n) statistical distance) instance hA = A0‖A1

may be selected by choosing A0 at random, and generating (A1,S) ← GenBasis(1n, 1m, q), where S is
a basis of Λ⊥(A1) and ‖S̃‖ ≤ L̃, as described in Proposition 3.1. Then for any y ∈ Znq and m ∈ M, by
Item 5 of Lemma 2.4 one can use the basis S to efficiently sample randomness r from (a distribution within
negl(n) statistical distance of) DΛ⊥u (A1),s, where u = y −A0m ∈ Znq . By Item 4 of Lemma 2.4, this is the
distribution of r ∈ R conditioned on hA(m; r) = y.

Finally, for the collision-resistance property, note that any collision m‖r 6= m′‖r′ ∈M×R for hA (for
uniformly random A) immediately yields a solution z = (m−m′)‖(r− r′) 6= 0 to the instance A of SISq,β ,
because

Az = hA(m; r)− hA(m′; r′) = 0,

and ‖z‖2 ≤ k + 4s2 ·m = β2 by the triangle inequality.

4.2 Signature Scheme

In addition to the main SIS parameters n and q, our signature scheme also involves:

• a dimension m = O(n log q) and a bound L̃ = O(
√
n log q), as per Proposition 3.1;

• a (hashed) message length k ≥ 1, which induces a ‘total dimension’ m′ = m · (k + 1);

• a Gaussian parameter s = L̃ · ω(
√

log n).

The scheme SIG is defined as follows.

• Gen: generate (A0,S0)← GenBasis(1n, 1m, q) (see Proposition 3.1), where A0 ∈ Zn×mq is negligibly
close to uniform and S0 is a basis of Λ⊥(A0) with ‖S̃0‖ ≤ L̃. (Recall that the columns of A0 generate
all of Znq , with overwhelming probability.)

Then for each (b, j) ∈ {0, 1} × [k], choose uniformly random and independent A(b)
j ∈ Zn×mq . Output

vk = (A0, {A(b)
j }) and sk = (S0, vk).
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• Sign(sk, µ ∈ {0, 1}k): let Aµ = A0‖A(µ1)
1 ‖ · · · ‖A(µk)

k ∈ Zn×m′q . Output v← DΛ⊥(Aµ),s, via

v← SampleD(ExtBasis(S0,Aµ),0, s).

(In the rare event that ‖v‖ > s ·
√
m′ or v = 0 (Lemma 2.4, items 1 and 2, respectively), resample v.

Note also that the optimization of Section 3.3.1 applies here.)

• Ver(vk, µ,v): let Aµ be as above. Accept if v 6= 0, ‖v‖ ≤ s ·
√
m′, and v ∈ Λ⊥(Aµ); else, reject.

Completeness is by inspection. Note that the matrix A0 can be omitted from the public key (thus making
the total dimension m · k), at the expense of a secret key that contains two short bases S(b)

1 of Λ⊥(A
(b)
1 ), for

b = 0, 1. The scheme and its security proof are easy to modify accordingly.

4.3 Security

Theorem 4.2. There exists a PPT oracle algorithm (a reduction) S attacking the SISq,β problem for β =
s ·
√
m′ such that, for any adversary F mounting an eu-scma attack on SIG and making at most Q queries,

AdvSISq,β (SF ) ≥ Adveu-scma
SIG (F)/((k − 1) ·Q+ 1)− negl(n).

Proof. Let F be an adversary mounting an eu-scma attack on SIG. We construct a reduction S attacking
SISq,β . The reduction S takes as input m′′ = m · (2k + 1) uniformly random and independent samples
from Znq in the form of a matrix A ∈ Zn×m′′q , parsing A as

A = A0‖U(0)
1 ‖U

(1)
1 ‖ · · · ‖U

(0)
k ‖U

(1)
k

for matrices A0,U
(b)
i ∈ Zn×mq .

The reduction S simulates the static chosen-message attack to F as follows. First, S invokes F to receive
Q′ ≤ Q messages µ(1), µ(2), . . . , µ(Q′) ∈ {0, 1}k. Then S computes the nonempty set P of all strings
p ∈ {0, 1}≤k having the property that p is a shortest string for which no µ(i) has p as a prefix. Equivalently, P
is the set of maximal subtrees of {0, 1}≤k (viewed as a tree) that do not contain any of the queried messages.
Such a set may be computed iteratively as follows. Start with P = {ε}. Then for i = 1, . . . , Q′, do the
following: if any element p ∈ P is a prefix of µ(i) (there will be at most one such p), then remove p from P ,
and add to P all the k−|p| elements p′ ∈ {0, 1}≤k of length |p′| ≥ |p|+1 that agree with the length-(|p′|−1)
prefix of µ(i) on all but the last bit of p′. By induction, it is straightforward to see that after the ith iteration
(the one dealing with µ(i)), the set P is correct for the message set {µ(1), . . . , µ(i)}, so the algorithm is
correct. Finally, the size of the output set P is at most (k − 1) ·Q+ 1, because initially |P | = 1, and in each
iteration the size of P can grow by at most k− 1 elements (up to k can be added, and only if one is removed).

Next, S chooses some p from P uniformly at random, letting t = |p|. It then provides an SIG verification
key vk = (A0, {A(b)

j }) to F , generated as follows:

• Uncontrolled growth: for each i ∈ [t], let A(pi)
i = U

(0)
i . For i = t + 1, . . . , k, and b ∈ {0, 1}, let

A
(b)
i = U

(b)
i .

• Controlled growth: for each i ∈ [t], invoke Proposition 3.1 to generate A
(1−pi)
i and basis Si of

Λ⊥(A
(1−pi)
i ) such that ‖S̃i‖ ≤ L̃.
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Next, S generates signatures for each queried message µ = µ(j) as follows: let i ∈ [t] be the first position
at which µi 6= pi (such i exists by construction of p). Then S generates the signature v← DΛ⊥(Aµ),s as

v← SampleD(ExtBasis(Si,Aµ),0, s),

where Aµ = AL‖A(1−pi)
i ‖AR (for some matrices AL,AR) is exactly as in the signature scheme, and has

the form required by ExtBasis. (In the event that v = 0 or ‖v‖ > β = s ·
√
m′, resample v.)

Finally, if F produces a valid forgery (µ∗,v∗ 6= 0), then we have v∗ ∈ Λ⊥(Aµ∗), for Aµ∗ as defined
in the scheme. First, S checks whether p is a prefix of µ∗. If not, S aborts; otherwise, note that Aµ∗ is the
concatenation of A0 and k blocks U(b)

i . Therefore, by inserting zeros into v∗, S can generate a nonzero
v ∈ Zm′′ so that Av = 0 ∈ Znq . Finally, S outputs v as a solution to SIS.

We now analyze the reduction. First observe that conditioned on any choice of p ∈ P , the verification
key vk given to F is negligibly close to uniform, and the signatures given to F are distributed exactly as in
the real attack (up to negligible statistical distance), by Lemma 2.4 and the fact that s ≥ ‖S̃i‖ · ω(

√
log n).

Therefore, F outputs a valid forgery (µ∗,v∗ 6= 0) with probability at least Adveu-scma
SIG (F)−negl(n). Finally,

conditioned on the forgery, the choice of p ∈ P is still negligibly close to uniform, so p is a prefix of µ∗

with probability at least 1/|P | − negl(n) ≥ 1/((k − 1) · Q + 1) − negl(n). In such a case, Av = 0 and
‖v‖ = ‖v∗‖ ≤ β by construction, hence v is a valid solution to the given SIS instance, as desired.

5 Hierarchical ID-Based Encryption

5.1 Key Encapsulation Mechanism

For our HIBE schemes, it is convenient and more modular to abstract away the encryption and decryption
processes into a key-encapsulation mechanism (KEM). The following LWE-based KEM from [GPV08]
(which is dual to the scheme of Regev [Reg05]) is well-known. To progress to our HIBE systems, it is enough
to simply understand the KEM interface (i.e., the forms of the public/secret keys and ciphertexts) and the
conditions on the parameters needed for correct decapsulation.

The scheme KEM is parametrized by a modulus q, dimension m, and Gaussian parameter s that deter-
mines the error distribution χ used for encapsulation. As usual, all these parameters are functions of the LWE
dimension n, and are instantiated based on the particular context in which KEM is used.

• Gen: Choose A ← Zn×mq uniformly at random, x ← DZm,s and set y = Ax ∈ Znq . Output public

key pk = A‖y ∈ Zn×(m+1)
q and secret key sk = x.

• Encaps(pk = A‖y): Choose s← Znq and let

b← Noisyχ(Ats) and b′ ← Noisyχ(yts + κ · bq/2c),

where κ ∈ {0, 1} is a uniformly random bit. Output κ and encapsulation σ = b‖b′ ∈ Zm+1
q .

• Decaps(sk = x, σ = b‖b′): Compute b′ − xtb mod q and output 0 if the result is closer to 0 than to
bq/2c modulo q, and 1 otherwise.

Observe that, conditioned on the public key A‖y, the secret decapsulation key x has distribution
DΛ⊥y (A),s. Later on, our HIBE schemes will generate a decapsulation key for a given A and y using
x← SampleD(S,A,y, s), where S is a suitable basis of Λ⊥(A). By Item 5 of Lemma 2.4, the behavior of
Decaps is the same (up to negligible error probability) using such an x.

The following lemma is standard from prior work, e.g., [GPV08].
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Lemma 5.1 (Correctness and Security). Let m ≥ Cn lg q for any fixed constant C > 1, let q ≥ 4s(m+ 1),
and let χ be the discretized Gaussian with parameter α, where 1/α ≥ s

√
m+ 1 ·ω(

√
log n). Then Decaps is

correct with overwhelming probability over all the randomness of Gen and Encaps. Moreover, there exists a
PPT oracle algorithm (a reduction) S attacking the LWEq,χ problem such that, for any adversaryA mounting
an ind-cpa attack on KEM,

AdvLWEq,χ(SA) ≥ Advind-cpa
KEM (A)− negl(n).

As explained in [GPV08], the basic single-bit scheme can be amortized to allow for keys of length
` = poly(n) bits, with ciphertexts in Zm+`

q and public keys in Zn×(m+`)
q . Here the secret key consists of

` independent samples xi ← DZm,s for i ∈ [`], and the public key includes the corresponding syndromes
yi = Axi (along with A itself). Each bit of the KEM key is concealed using a different syndrome, but
using the same s and ‘preamble’ b ← Noisyχ(Ats). Furthermore, it is also possible to conceal Ω(log n)
encapsulated bits per syndrome by using a smaller error rate α, which yields an amortized expansion factor
of O(1). For simplicity, in this work we deal only with encapsulation of single bits, but all of our schemes
can be amortized in the manner described above.

We point out one nice property of KEM, which is convenient for the security proof of our HIBE schemes:
for any dimensions m ≤ m′ (and leaving all other parameters the same), the adversary’s view for dimension
m may be produced by taking a view for dimension m′, and truncating the values A ∈ Zn×m′q and b ∈ Zm′q
to any m out of m′ of their components (i.e., columns of A and corresponding entries of b).

5.2 A Generalized Hierarchical Scheme

In this section we describe a generalized hierarchical identity-based encryption scheme, called GENHIBE,
which we later instantiate in different ways to yield concrete constructions in both the random oracle and
standard models. The generalized system captures the essential features of all of our HIBE systems, which
are the ability to encrypt to any node in an (implicit) authority tree, and any node’s ability to securely delegate
a secret key to any of its descendants.

In GENHIBE there is an identity tree of depth d over some alphabet ID, which is identified with the
set ID≤d in the natural way: the empty string ε ∈ ID≤d is the root of the tree, and an identity id′ is a
descendant of id if and only if id is a proper prefix of id′. Each identity id is implicitly assigned a public
key pkid = Aid‖yid for the KEM scheme described above in Section 5.1. These public keys must have the
property that if id′ is a descendant of id, then Aid′ is an extension of Aid (that is, Aid′ = Aid‖Ā for some
Ā). The secret key for an identity id consists of a decapsulation key xid for its KEM public key Aid‖yid, as
well as a relatively short basis Sid for the lattice Λ⊥(Aid). (In our instantiations, the short basis is used only
for delegation, and so it can be omitted for users at the leaves of the hierarchy.)

In GENHIBE we deliberately leave out the Setup algorithm, which must be provided by an instantiation.
The algorithm should output a master public key mpk and the root-level secret key (Sε,xε), as well a
description of the mapping from an identity id to a KEM public key pkid. These are the only aspects of
GENHIBE that need to be defined when instantiating it. (The Extract, Encaps, and Decaps algorithms are
common to all the instantiations, and rely on the assignment of KEM public keys to identities.) Looking
ahead, an instantiation of GENHIBE will assign public keys to identities either via a random oracle, or (in the
standard model) by piecing together different parts of the master public key.

The GENHIBE scheme is parametrized by a few quantities that are indexed by depth within the hierarchy.
For an identity at depth t ≥ 0 (where t = 0 corresponds to the root),
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• mt is the maximum possible dimension of the identity’s associated lattice, where we require mj ≤ mt

for all j < t. (In our instantiations, all identities at a given depth have the same lattice dimension);

• L̃t is an upper bound on the Gram-Schmidt lengths of the user’s secret short basis;

• st is the Gaussian parameter used to generate the decapsulation key and (when t ≥ 1) the secret basis,
which must exceed L̃j · ω(

√
log n) for all j < t.

These parameters, along with the maximum length of any possible delegation chain (which is always at
most d, but can be less in instantiations), determine the modulus q and error rate α used in the underlying
KEM. We instantiate all the parameters after defining the GENHIBE scheme.

Definition of GENHIBE. The algorithms of GENHIBE are as follows:

• Extract(skid = (Sid,xid), id
′ = id‖īd): if t′ = |id′| > d, output ⊥. Otherwise, let pkid′ = Aid′‖yid′ ,

where Aid′ is an extension of the Aid component of pkid by assumption. Sample a decapsulation key

xid′ ← SampleD(ExtBasis(Sid,Aid′),Aid′ ,yid′ , st′),

and a basis
Sid′ ← RandBasis(ExtBasis(Sid,Aid′), st′).

Output skid′ = (Sid′ ,xid′).

(Note that as required by RandBasis, we have st′ ≥ L̃t · ω(
√

log n) ≥ ‖S̃id‖ · ω(
√

log n), where
t = |id| < t′. Note also that if |id′| = t′ = d, we need not generate Sid′ , because it is only needed for
extracting keys for descendants, not decapsulation.)

• Encaps(id): Output (κ, σ)← KEM.Encaps(pkid).

• Decaps(skid = (Sid,xid), σ): Output κ← KEM.Decaps(xid, σ).

A multi-bit version of GENHIBE follows in the same way from the multi-bit KEM scheme, by using multiple
uniform syndromes yi ∈ Znq and corresponding decapsulation keys xi, one for each bit of the KEM key.

Instantiating the parameters. Suppose that GENHIBE is instantiated in a setting in which Extract is
invoked only on identities id′ whose lengths are a multiple of some integer k ≥ 1. (Looking forward, our
random-oracle instantiation will use k = 1, and in our standard-model schemes k will be the output length of
some hash function.) Then it is enough to define st and L̃t only for values of t that are multiples of k.

Let L̃0 be determined by a concrete instantiation, and let s0 = L̃0 · ω(
√

log n). For t > 0 that is a
multiple of k, let

st = L̃t−k · ω(
√

log n) and L̃t = st ·
√
mt ≤ st ·

√
md.

Note that as required, with overwhelming probability L̃t ≥ ‖S̃id‖ when |id| = t, by Lemma 3.3. Now
unwind the above recurrences to obtain the bounds

st ≤ s0 ·
(√
md · ω(

√
log n)

)t/k−1 and L̃t ≤ L̃0 ·
(√
md · ω(

√
log n)

)t/k
.
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Finally, to satisfy the hypotheses of Lemma 5.1 that are needed for completeness, we can let

1/α ≥ sd ·
√
md + 1 · ω(

√
log n)

= L̃0 · Õ(
√
md)

d/k, (5.1)

q ≥ 4sd · (md + 1)

= L̃0 · Õ(
√
md)

d/k+1. (5.2)

(Note also that for each level of the hierarchy it is possible to use a different error rate αt, which varies
inversely with st ·mt.)

Extensions: Anonymity and chosen-ciphertext security. With a small modification, GENHIBE (or more
accurately, our concrete instantiations of it) may be made anonymous over all levels of the hierarchy. That
is, a ciphertext computationally hides the particular identity to which it was encrypted. The modification is
simply to extend the b component of the KEM ciphertext to have length exactly (d + 1)m, by padding it
with uniformly random and independent elements of Zq. (The decapsulation algorithm simply ignores the
padding.) Anonymity then follows immediately from the pseudorandomness of the LWE distribution.

Security under chosen-ciphertext attack also follows directly by a transformation of [BCHK07], from
ind-cpa-secure HIBE for depth d+ 1 to ind-cca-secure HIBE for depth d.

5.3 Full Security in the Random Oracle Model

Here we construct a fully (i.e., aid-ind-cpa) secure HIBE in the random oracle model. (It is also selec-
tively secure under a tighter security reduction.) The scheme can be seen as a generalization of the GPV
IBE [GPV08] to hierarchical identities. Essentially, we hash (via a random oracle H) the components of
an identity tuple id = (id1, . . . , id`) to dimension-m matrices Ai,id, which are then concatenated to obtain
a KEM public key Aid for the user. In the security proof, the main technical difficulty is that we have to
embed a given KEM challenge public key as the user public key Aid∗ of the eventual challenge identity id∗,
while at the same time being able to simulate user secret keys for all identities on which Extract is queried.
The problem is that the simulator does not know the challenge identity id∗ in advance when answering
random oracle queries. Therefore, our simulator “guesses” id∗ (by guessing in which H-query it appears),
and “programs” H’s outputs on the fly, so that it returns parts of the KEM challenge when queried on the
corresponding parts of id∗, and returns controlled matrices with known trapdoors on all other queries. This
allows for a straightforward simulation, provided that we guess id∗ correctly, but needs a programmable
random oracle. We remark that due to this guessing strategy, the security reduction loses a factor of roughly
QdH in its advantage, where QH is the number of random oracle queries and d is the depth of the hierarchy.
(In a selective-identity attack, of course, the simulator knows exactly at which query it should embed the
KEM challenge, which leads to a tight reduction.)

We remark that to obtain a fully secure HIBE in the random oracle model, it is also possible to use a
generic transformation of Boneh and Boyen [BB04a], which starts from a selectively secure HIBE and applies
hash functions to the identities. (We give a standard-model selectively secure HIBE in Section 5.4.1 below.)
Compared to this generic transformation, our specific construction is more efficient, mainly because using
the random oracle we can directly encode each identity component as a matrix of dimension m, instead of
dimension k ·m where k is the output length of the random oracle. Overall, then, the dimension of the lattice
associated to an identity id at depth ` is `m, instead of (`+ 1)km when using the generic transformation.
(We also remark that in the generic transformation, the security reduction also loses a factor of roughly QdH
in advantage, relative to the selectively secure system.)
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Definition of ROHIBE. Our random-oracle scheme ROHIBE is an instantiation of GENHIBE from Sec-
tion 5.2, so we need only specify the Setup algorithm and define how an identity id maps to a KEM public
key Aid‖yid. Let H : {0, 1}∗ → Zn×mq and G : {0, 1}∗ → Znq be hash functions modelled as random
oracles.

• Setup(1d): Generate (A0,S0) ← GenBasis(1n, 1m, q), where A0 ∈ Zn×mq is negligibly far from
uniform, and S0 is a basis of Λ⊥(A0) with ‖S̃‖ ≤ L̃0. Output mpk = (A0, d) and msk = S0.

For an identity vector id = (id1, . . . , idt) ∈ ({0, 1}∗)t of length t ≤ d, the KEM public key pkid =
Aid‖yid for id is defined using mpk and the hash functions H , G as:

Aid = A0‖A1‖ · · · ‖At ∈ Zn×(t+1)m
q , yid = G(id) ∈ Znq ,

where Ai = H(id1, . . . , idi) ∈ Zn×mq .
For technical reasons related to the proof, we also need to modify the Extract algorithm (from GENHIBE)

so that the same xid′ is returned every time identity id′ is queries. This means that the actual algorithm should
either be made stateful, or should use a PRF in the standard way to get repeatable randomness. Alternatively,
xid′ can itself be computed using Sid′ , at the expense of using a slightly larger parameter in the SampleD

algorithm, i.e., by running xid′ ← SampleD(Sid′ ,Aid′ ,yid′ , ‖S̃id′‖ · ω(
√

log n)).

Instantiating the parameters. In this instantiation of GENHIBE, the lattice dimension for an identity at
depth t is mt = (t + 1) · m, and the initial Gram-Schmidt bound L̃0 = O(

√
n log q). Using the bound

m = O(n log q), we can therefore set the parameters q, α using Equations (5.1) and (5.2) so that

log q = Õ(d) and 1/α =
√
dn · Õ(d

√
n)d.

Theorem 5.2 (Security of ROHIBE). There exists a PPT oracle algorithm (a reduction) S attacking KEM
(instantiated with dimension dm and q, α as above) such that, for any adversary A mounting an aid-ind-cpa
attack on ROHIBE making QH queries to the random oracle H and QG queries to the random oracle G,

AdvKEM(SA) ≥ Advaid-ind-cpa
ROHIBE (A)/(dQd−1

H QG)− negl(n).

Proof. Let A be an adversary mounting an aid-ind-cpa-attack on ROHIBE. We construct a reduction S
attacking KEM. It is given a uniformly random public key pk = A‖y ∈ Zn×dmq × Znq , an encapsulation
b‖b′ ∈ Zdmq × Zq, and a bit κ which either is encapsulated by b‖b′ or is uniform and independent of
everything else; the goal of S is to determine which is the case.

Let QG and QH be the numbers of queries that A issues to H and G, respectively. In our analysis, we
will actually be more generous and let the adversary issue at most d ·QH total queries, where it is allowed
QH queries to H for each length of the input tuple. To simplify the analysis, we also assume without loss of
generality that (1) whenever A queries H(id1, . . . , idi), it has already issued the queries H(id1, . . . , idj) for
j < i, and (2) that when A asks for skid, it has already queried H(id) and G(id).
S simulates the attack game on ROHIBE to A as follows. First, S produces a master public key mpk,

encapsulated key, and some secret internal state as follows:

• Guess length of challenge identity and random oracle queries. Choose t∗ ← [d], a guess for the
length of the challenge identity. Choose a vector j∗ = (j∗1 , . . . , j

∗
t∗−1) ← {1, . . . , QH}t

∗−1 and an
index j∗ ← {1, . . . , QG}. (These guesses means that S hopes that the j∗i -th distinct query of length
1 ≤ i ≤ t∗ − 1 to H(·) is a prefix of the challenge identity and that the j∗-th distinct query to G(·) is
the challenge identity.)
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• Parse the KEM inputs. Parse A as A = A0‖A1‖ · · · ‖Ad−1 ∈ Zn×dmq for A0 ∈ Zn×mq and Ai ∈
Zn×mq for all i ∈ [d− 1]. Similarly, truncate b to b∗ ∈ Zt∗mq .

S gives to A the master public key mpk = (A0, d). To simulate the attack game for A, S must simulate
answers to oracle queries to H and G, queries for user secret keys, and it must also generate the challenge
encapsulation. To do this, it maintains two lists, denotedH and G, which are initialized to be empty and will
store tuples of values. S processes queries as follows.

Queries to H . OnA’s ji-th distinct query (idji,1, . . . , idji,i) of length i toH(·), do the following: if i ≤ t∗−1
and ji = j∗i , then return Ai (i.e., this branch undergoes undirected growth). Otherwise, if i ≥ t∗ or
ji 6= j∗i , run GenBasis(1n, 1m, q) to generate Ai,ji ∈ Zn×mq with corresponding short basis Si,ji (i.e.,
this branch undergoes controlled growth). Store the tuple ((idji,1, . . . , idji,i),Ai,ji ,Si,ji) in list H,
and return Ai,ji .

Queries to G. On A’s j-th distinct query idj to G(·), do the following: if j = j∗ then return y. (Recall that
y was obtained from the KEM input.) Otherwise for j 6= j∗, sample xj ← DZm,st (where t is the
depth of idj) and set yj := A(idj,1,...,idj,t−1) · xj ∈ Znq . (Recall that we assumed A has already made
all relevant queries to H that in particular define A(idj,1,...,idj,t−1) = H(idj,1, . . . , idj,t−1).) Return yj
and store (idj ,yj ,xj) in list G.

Queries to Extract. When A asks for a user secret key for id = (id1, . . . , idt), we again assume that A
has already made all relevant queries to G and H that define yid and Aid. If, for some i ∈ [t − 1],
Aidi = H(id1, . . . , idi) is contained in listH, then S can compute a properly distributed short basis
Sid for Aid by running RandBasis(ExtBasis(Si,idi ,Aid), st), where Si,idi is obtained from H. If
yid is contained in list G, then S can retrieve a properly distributed vector xid from G satisfying
A(id1,...,idt−1)xid = yid. If the generation of skid = (Sid,xid) was successful, then S returns skid. In
all other cases, S aborts (and returns a random bit).

Challenge query for id∗. Let t be the depth of id∗. If t 6= t∗, or G(id∗) 6= y, or H(id∗1, . . . , id
∗
i ) 6= Ai (for

one 1 ≤ i ≤ t∗ − 1), then abort. Otherwise, return the encapsulation b∗‖b′ and the key bit κ.

S runs until A halts, and it outputs whatever bit A outputs.
It remains to analyze the reduction. The master public key given to A is negligibly far from uniform by

the construction of KEM and Proposition 3.1. By the same proposition, we have that oracle queries to H
are properly simulated, up to negligible statistical distance. Oracle responses for G are negligibly far from
uniform by Item 4 of Lemma 2.4. Due to the truncation property of KEM, the challenge encapsulation is
properly distributed, conditioned on the event that S does not abort. Thus all that remains to check is the
probability that S does not abort; this is at least 1/(dQGQ

d−1
H )− negl(n), because its choice of t∗, j∗, and j∗

are perfectly hidden conditioned on the view of A (up to the negl(n) statistical error of S’s simulation).

5.4 Standard-Model Constructions

Here we give HIBE constructions in the standard model that are secure under both selective and fully adaptive
attacks. In Section 5.4.1 we describe a binary tree encryption (BTE) system which is at the heart of all our
various HIBE constructions, and prove its selective security in Section 5.4.2. In Section 5.4.3 and beyond we
extend our HIBE to full adaptive security.
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5.4.1 Binary Tree Encryption

Here we instantiate GENHIBE to obtain a standard-model HIBE for a restricted identity hierarchy in the
form of a binary tree, i.e., with identity alphabet ID = {0, 1}. This is essentially the notion of “binary tree
encryption” (BTE) from [CHK03]. Later on we realize selectively and adaptively secure HIBE schemes for
large identity alphabets ID, by mapping them onto a binary tree.

Definition of BTE. We need only define the Setup algorithm and specify how it defines a public mapping
from identities in ID≤d = {0, 1}≤d to KEM public keys.

• Setup(d): Generate (A0,S0) ← GenBasis(1n, 1m, q) (see Proposition 3.1), where A0 ∈ Zn×mq is
negligibly close to uniform and S0 is a basis of Λ⊥(A0) with ‖S̃0‖ ≤ L̃0.

For each (b, j) ∈ {0, 1} × [d], generate uniform and independent A(b)
j ∈ Zn×mq . Choose y ∈ Znq

uniformly at random, and choose xε ← SampleD(S0,A0,y, s0). Output mpk = (A0, {A(b)
j },y, d)

and skε = (S0,xε).

For an identity id = (id1, . . . , idt) ∈ {0, 1}t of length t = |id| ≤ d, the KEM public key pkid = Aid‖yid
for id is defined relative to mpk as

Aid = A0‖A(id1)
1 ‖ · · · ‖A(idt)

t ∈ Zn×(t+1)m
q , yid = y.

Instantiating the parameters. For this instantiation of GENHIBE, the lattice dimension for an identity
at depth t is mt = (t + 1)m, and the initial Gram-Schmidt bound L̃0 = O(

√
n log q). As in Section 5.2,

suppose that BTE is used in a setting where Extract is called only on identities of length divisible by some
integer k. Then letting d′ = bd/kc and using the bound m = O(n log q), using Equations (5.1) and (5.2) we
can set the parameters q, α so that

log q = Õ(d′) and 1/α =
√
d′n · Õ

(
d′
√
kn
)d′

.

HIBE from BTE. We recall from [CHK03] how to obtain HIBE for any identity space ID from any BTE.
The HIBE master public key is simply a BTE public key, plus a hash function h : ID → {0, 1}k drawn
at random from a family of universal one-way (or collision resistant) hash functions. Each HIBE identity
id = (id1, . . . , id`) = ID≤d is mapped to the BTE identity (h(id1), . . . , h(id`)) ∈ ({0, 1}k)`. Therefore,
to emulate a HIBE hierarchy of depth d′ requires a BTE hierarchy of depth d = d′k, and Extract in the BTE
is only ever called on identities of length divisible by k. It is easy to verify that if the BTE is selectively
(sid-ind-cpa) secure, then so is the resulting HIBE.

5.4.2 Selective Security of BTE

Recall that in a selective-identity (sid-ind-cpa) attack, the adversary first has to declare its challenge identity
before receiving the master public key mpk. In the security proof, the simulator can therefore set up mpk to
depend on the challenge identity. In our simulation, all matrices inmpk will either be undirected, or controlled
by the simulator. As we have seen, a matrix A = A1‖ . . . ‖A` is undirected if all Ai are undirected, while A
is controlled if and only if at least one Ai is controlled. In the simulation, A0 will be undirected, so a user
secret key for identity id can be constructed if and only if at least one of the A

(idi)
i is controlled. We will set
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up these matrices so that: (1) for all id that can appear in Extract queries (i.e., those which differ from id∗ in
at least one position), Aid is controlled, and (2) for the challenge identity id∗, Aid∗ is undirected.

Theorem 5.3 (Security of BTE). There exists a PPT oracle algorithm (a reduction) S attacking KEM
(instantiated with dimension (d + 1)m and q, α as above) such that, for any adversary A mounting a
sid-ind-cpa attack on BTE,

AdvKEM(SA) ≥ Advsid-ind-cpa
BTE (A)− negl(n).

Proof. We construct a reduction S attacking KEM, which has oracle access to an adversary A mounting
a sid-ind-cpa attack on BTE. The reduction is given a uniformly random KEM public key pk = A‖y ∈
Zn×(d+1)m
q × Znq , an encapsulation b‖b′ ∈ Z(d+1)m

q × Zq, and a bit κ which either is encapsulated by b‖b′
or is uniform and independent of everything else; the goal of S is to determine which is the case.
S simulates the (selective-identity) attack on BTE to A as follows. First, S invokes A on 1d and receives

its challenge identity id∗ of length t∗ = |id∗| ∈ [d]. Then S produces a master public keympk, encapsulation,
and some secret internal state as follows:

• Parsing the KEM inputs. Parse A as A = A0‖A1‖ · · · ‖Ad ∈ Zn×(d+1)m
q for Ai ∈ Zn×mq for all

i ∈ {0, . . . , d}. Similarly, truncate b to b∗ ∈ Z(t∗+1)m
q .

• Undirected growth. For each i ∈ [t∗], let A(id∗i )
i = Ai.

• Controlled growth. For each i ∈ [t∗], generate A
(1−id∗i )
i ∈ Zn×mq and basis Si by invoking

GenBasis(1n, 1m, q). If t∗ < d, then for each b ∈ {0, 1} generate A
(b)
t∗+1 and basis S

(b)
t∗+1 by two

independent invocations of GenBasis(1n, 1m, q). For each i > t∗ + 1 (if any) and b ∈ {0, 1}, generate
A

(b)
i ∈ Zn×mq uniformly at random.

S gives to A the master public key mpk = (A0, {A(b)
j },y, d), the encapsulation b∗‖b′, and the key bit κ.

Then S answers each Extract query on an identity id that is not a prefix of (or equal to) id∗ as follows:

• If t = |id| ≤ t∗, then let i ≥ 1 be the first position at which idi 6= id∗i . Answer the query with
(Sid,xid), which are computed by

Sid ← RandBasis(ExtBasis(Si,Aid), st)

xid ← SampleD(ExtBasis(Si,Aid),Aid,yid, st).

• If t = |id| > t∗, answer the query with (Sid,xid), which are computed by

Sid ← RandBasis(ExtBasis(S
(idt∗+1)
t∗+1 ,Aid), st)

xid ← SampleD(ExtBasis(S
(idt∗+1)
t∗+1 ,Aid),Aid,yid, st).

Finally, S outputs whatever bit A outputs.
We now analyze the reduction. First, observe that the master public key given to A is negligibly close to

uniform (hence properly distributed), by hypothesis on KEM and by Proposition 3.1. Next, the answers to
Extract queries are negligibly close to those in the real attack, by Lemma 3.3; note that the Gram-Schmidt
vectors of each basis Si,S

(b)
t∗+1 are sufficiently short to invoke RandBasis and SampleD as above. Finally,

the encapsulation b∗‖b′ (for identity id∗) and key bit κ are distributed as in the real attack, by the truncation
property of KEM. Therefore, S’s overall advantage is within negl(n) of A’s advantage, as desired.
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5.4.3 Fully Secure HIBE

Our fully secure HIBE is essentially our BTE scheme, with identity components mapped to binary strings
via a suitable kind of hash function (not just a UOWHF, which was sufficient for selectively secure HIBE).
An identity id = (id1, . . . , id`) ∈ ID≤d maps to a BTE identity (H1(id1), . . . ,H`(id`)) ∈ ({0, 1}λ)` for
suitable hash functions Hi specified in the public key.

As before, we need the simulator to embed an undirected KEM challenge into the master public key
so that it corresponds to the public key Aid∗ of the target identity, while also having enough controlled
matrices to allow for answering Extract queries. In a fully adaptive attack, the adversary may choose the
challenge identity id∗ dynamically and adaptively, making this a difficult balance to strike. To overcome this
obstacle, we employ a probabilistic argument along the lines of the one in [BB04a]. Concretely, we set up
the master public key such that each Aid is totally undirected with a certain probability. A sophisticated
construction of the hash functions Hi will ensure that the corresponding events are sufficiently independent.
That is, even an adversary that adaptively asks for user secret keys cannot manage to produce an identity
id for which Aid is guaranteed to be either undirected or controlled. By setting the probabilities in the
right way (depending on the adversary’s complexity), we can ensure that with significant probability, all
Aid associated with Extract queries are controlled, while Aid∗ is undirected. In this event, a successful
simulation will be possible. Of course, we will have to take care that the event of a successful simulation is
(at least approximately) independent of the adversary’s view. To achieve this independence, we will employ
an “artificial abort” strategy similar to the one from [Wat05].

Definition of SMHIBE. Let H = (Hn)n be a family of hash functions H : {0, 1}n → {0, 1}λ, whose
properties are described below in Section 5.4.4.

Our standard-model HIBE scheme SMHIBE is just the BTE scheme from Section 5.4.1, implemented
with a suitable mapping from HIBE to BTE identities. Concretely, to obtain a HIBE scheme that supports
identities id = (id1, . . . , id`) ∈ ({0, 1}n)` of up to d levels, we will add to BTE’s master public key d hash
functions H1, . . . ,Hd. A HIBE identity (id1, . . . , id`) then maps to the binary string (i.e., BTE identity)

(H1(id1), . . . ,H`(id`)) ∈ {0, 1}λ·`.

For convenience, we restate the entire modified Setup algorithm; we also slightly modify the notation so it is
easier to see how the pieces of mpk are assembled to generate user public keys.

• Setup(1d): Using Proposition 3.1, generate A0 ∈ Zn×mq and a corresponding short basis S0 ∈ Zm×m

with ‖S̃0‖ ≤ L̃0. Also sample uniformly random and independent matrices Bi,u,b ∈ Zn×mq for i ∈ [d],
u ∈ [λ], b ∈ {0, 1}, and a vector y ∈ Znq . Finally, choose H1, . . . ,Hd ← Hn. Output

mpk = (A0,y, {Bi,u,b}(i,u,b)∈[d]×[λ]×{0,1}, {Hi}i∈[d]) and msk = (mpk,S0).

For a HIBE identity id = (id1, . . . , id`) ∈ ({0, 1}n)`, we define

Aid := A0‖A1,id1‖ . . . ‖A`,id` ∈ Zn×(λ`+1)m
q

where Ai,idi := Bi,1,t1‖ . . . ‖Bi,λ,tλ ∈ Zn×λmq ,
(5.3)

where (t1, . . . , tλ) := Hi(idi) ∈ {0, 1}λ. Note that the user secret key for an identity id therefore consists of
a basis part Sid for Λ⊥(Aid) and a decapsultion key xid satisfying Aidxid = y. For brevity, we will write
id|` := (id1, . . . , id`) for ` ≤ |id|.
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Instantiating the parameters. In our scheme SMHIBE, each resulting BTE identity component idi is a
λ-bit string, and thus leads to k = λ matrices of dimension m, which are appended to form Aid. Furthermore,
the root matrix Aε is of dimension m. With a maximal depth of d, each individual KEM public key matrix
Aid is therefore of dimension at most (dλ+ 1)m. In particular, we can use parameters as in Section 5.4.1,
with k = λ.

5.4.4 Admissible hash functions

Definition. To achieve full security, we will require a hash function (mapping identities to bit strings)
with certain special properties. Concretely, we use a variant of the admissible hash functions from [BB04b].
Let H = {Hn} be a collection of distributions of functions H : Cn → Dn = {0, 1}λ. For H ∈ Hn,
K ∈ {0, 1,⊥}λ, and x ∈ Cn, define

FK,H(x) =

{
CO if ∃u ∈ {1, . . . , λ} : tu = Ku

UN if ∀u ∈ {1, . . . , λ} : tu 6= Ku

for (t1, . . . , tλ) = H(x).

For µ ∈ {0, . . . , λ}, denote by Kµ the uniform distribution on all keys K ∈ {0, 1,⊥}λ having exactly µ
non-⊥ components. For a function ∆ : N2 → R, we say thatH is ∆-admissible if for every polynomially
bounded Q = Q(n), there exists an efficiently computable function µ = µ(n), and efficiently recognizable
sets badH ⊆ (Cn)∗ (H ∈ Hn), so that the following holds:

• For every PPT algorithm C that, on input a function H ∈ Hn, outputs a vector x ∈ CQ+1
n , the function

Advadm
H (C) := Pr[x ∈ badH | H ← Hn ; x← C(H)]

is negligible in n.

• For every H ∈ Hn and every x = (x0, . . . , xQ) ∈ CQ+1
n \ badH , we have that

Pr[FK,H(x0) = UN ∧ FK,H(x1) = · · · = FK,H(xQ) = CO] ≥ ∆(n,Q),

where the probability is over uniform K ∈ Kµ(n,Q).

We say that H is admissible if H is admissible for some ∆ = ∆(n,Q) which is significant for every
polynomial Q = Q(n).

Intuition. We will eventually use H on input an identity component id ∈ Cn. The output t = H(id) ∈
{0, 1}λ will determine a selection B1,t1 , . . . ,Bλ,tλ out of 2λ matrices Bu,b (for (u, b) ∈ [λ]× {0, 1}). The
vector K ∈ {0, 1,⊥}λ indicates for which Bu,b we know a trapdoor during our security proof. (Concretely,
we will know a trapdoor for Bu,Ku ; if Ku = ⊥, then we will not know a trapdoor for either Bu,0 or Bu,1.)
Using this setup, FK,H(id) = CO means that we know a trapdoor for at least one of the matrices Bu,tu

appearing in
B := B1,t1‖ . . . ‖Bλ,tλ ,

where t = H(id). Hence, we can derive a trapdoor for B using Lemma 3.2, and we can say that B is
controlled. If FK,H(id) = UN, then we can hope to embed an undirected KEM challenge into this matrix.
(This also explains the notation of F -images.)

In the definition of admissibility, we consider adversarially chosen identities x0, . . . , xQ, where x0 is the
challenge identity, and the xi (for i ≥ 1) are identities from user secret key queries. We will be interested in

27



the case that x0 is mapped to an undirected matrix (i.e., FK,H(x0) = UN), while the other xi are mapped to
controlled matrices (i.e., FK,H(xi) = CO). The second condition of admissibility requires that the probability
that this happens is at least ∆ for a suitable choice of keys K and “good” query vectors x. The first condition
states that it is computationally infeasible to find “bad” query vectors. (In the concrete construction mentioned
below, “bad” query vectors correspond to collisions of an underlying cryptographic hash function.) Note that
the first condition (“bad” vectors are infeasible to find) is computational, while the second condition is purely
statistical.

Taken together, admissibility ofH hence simply means that with significant probability, (1) all user secret
key queries of an adversary attacking SMHIBE refer to controlled matrices B, while (2) the (adversarially
selected) challenge identity is mapped to an undirected matrix B.

We stress that while the security reduction depends on the parameter ∆ (and thus on the number Q of
user secret key queries), the hash function itself does not. In particular, the resulting HIBE scheme does not
make any assumptions about Q (except, of course, that Q is bounded by some a-priori unknown polynomial).

Difference from the definition of [BB04b]. Note that our definition of admissibility is conceptually
different from that of [BB04b]. The reason for the change is that our definition is better suited for our
purposes. Concretely, their definition is based upon indistinguishability from a (biased) random function.
However, their construction only achieves asymptotic indistinguishability (i.e., negligible distinguishing
advantage) when the “target” random function is constant. (In their notation, this corresponds to the case
when γ is negligible, so that Pr[FK,H(x) = 1] = 1 − negl(n).) Such a function is not very useful for
aymptotic purposes. In an asymptotic sense, their construction becomes useful only with parameters that
cause the distinguishing advantage to become non-negligible (but still smaller than the inverse of a given
polynomial). With that parameter choice, our definition allows for a conceptually simpler analysis. Namely,
it separates certain negligible error probabilities (of x ∈ badH ) from significant, by purely combinatorial
bounds on the probability of the ‘simulation-enabling’ event

good := [FK,H(x0) = UN ∧ FK,H(x1) = · · · = FK,H(xQ) = CO].

Specifically, we can bound Pr[good] for every x 6∈ badH , which simplifies the artificial abort step below.
Note that while the original analysis from [BB04b] does not incorporate an artificial abort step, this actually
would have been necessary to guarantee sufficient independence in (their version of) the event good. This
becomes an issue in [BB04b, Claim 2], when the success probability of an adversary conditioned on good is
related to its original (unconditioned) success probability.

Constructions. In [BB04b] it is shown how to construct admissible hash functions from a given collision-
resistant hash function family. And since collision-resistant hash functions can be built from the SIS problem
(which is no easier than the LWE problem), this does not entail extra assumptions in the encryption context.
While the construction from [BB04b] is proved to satisfy the definition of admissibility from that work, the
proof actually transfers directly to our definition as well. For parameter choices as in [BB04b, Section 5.3],
we get a single hash function with output length λ = O(n2+ε) (for arbitrary ε > 0) that is ∆-admissible with
∆ = Θ(1/Q2).5

5In the notation of [BB04b], we replace the output length βH of the original hash function with k, and bound the number Q of
hash function queries by 2k

ε/2

. Note that Q will later correspond to the number of (online) user secret key queries, so we bound Q
by a comparatively small exponential function.
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5.4.5 Full security of SMHIBE

If the hash function familyH is admissible, then we can prove full security. Unfortunately, we only know
constructions of admissible hash functions that require λ = O(n2+ε), so the resulting scheme is not very
practical. We base the security of SMHIBE on that of the KEM scheme of Section 5.1 (with q′ = q, n′ = n,
and m′ = 2dλm).

Theorem 5.4. Let A be an adversary mounting an aid-ind-cpa attack on SMHIBE that makes at most Q(n)
Extract queries. Then for every polynomial S = S(n), there exists an adversary SA on KEM’s ind-cpa
security, and an adversary C onH’s admissibility such that

Advaid-ind-cpa
SMHIBE (A) ≤ d ·Advadm

H (C) +
Advind-cpa

KEM (SA)

∆(n,Q)d
+

1

S(n)
+ negl(n). (5.4)

The running time of C is roughly that of the aid-ind-cpa experiment with A, and the running time of SA is
roughly that of the aid-ind-cpa experiment with A, plus O(n2QS/∆d) steps.

Note that for the admissible hash function from [BB04b], ∆(n,Q)d = Θ(1/Q2d) is inverse polynomial
for any fixed d. Since S in Theorem 5.4 is arbitrary, we obtain:

Corollary 5.5. IfH is admissible, and if KEM is ind-cpa secure, then SMHIBE is aid-ind-cpa-secure.

5.4.6 Proof of Theorem 5.4

We proceed in games, with Game 0 being the original aid-ind-cpa experiment with adversary A. We
assume without loss of generality that A always makes exactly Q = Q(n) user secret key queries. We
denote these queries by idj = (idj1, . . . , id

j
`j

) (for 1 ≤ j ≤ Q), and the challenge identity chosen by A as
id∗ = (id∗1, . . . , id

∗
`∗). By out i, we denote the experiment’s output in Game i. By definition,

|Pr[out0 = 1]− 1/2| = Adv
aid-ind-cpa
SMHIBE (A). (5.5)

In the following, for every i ∈ [d], let IDQi :=
⋃
j{id

j
i} be the set of all level-i identities contained in

user secret key queries. Let ID∗i := {id∗i } be the level-i challenge identity (or the empty set if `∗ < i). Note
that 1 ≤ |IDQi | ≤ Q and 0 ≤ |ID∗i | ≤ 1. For our upcoming probabilistic argument we need actually identity
sets of a fixed size, so we pad all IDQi and ID∗i in some canonical (but arbitrary) way with unused identities.

Concretely, for all i, let IDUN
i ⊇ ID∗i and IDCO

i ⊇ ID
Q
i \ ID

∗
i be disjoint, and such that |IDUN

i | = 1
and |IDCO

i | = Q. Intuitively, the (singleton) sets IDUN
i contain those identities which we need to map to

undirected matrices, while the IDCO
i should map to controlled matrices.

Furthermore, let
−−→
IDi ∈ ({0, 1}n)Q+1 be the vector whose first component is the (unique) element of

IDUN
i , and whose remaining Q components are the elements of IDCO

i (in some canonical order). Intuitively,
−−→
IDi ∈ ({0, 1}n)Q+1 plays the role of the input vector x in the definition of admissibility. (That is, we will be
interested in the case that its first component is mapped to an undirected matrix, while the other components
are mapped to controlled matrices.)

In Game 1, we eliminate the “bad H-queries.” Namely, Game 1 aborts (and outputs a uniform bit)
whenever

−−→
IDi ∈ badHi for some i. Here, badHi denotes the set of “bad H-queries” that comes with the

admissibility ofH. In the concrete admissible hash function mentioned above, e.g., the set badHi corresponds
to collisions of an underlying cryptographic hash function. A straightforward reduction shows

|Pr[out1 = 1]− Pr[out0 = 1]| ≤ d ·Advadm
H (C).
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for a suitable adversary C onH’s admissibility. The factor of d comes from the fact that we are actually using
d different admissible hash functions, one for each level.

In Game 2, after the adversary has terminated, we let an event good2 occur independently with probability
∆d. (That is, we independently toss a coin with bias ∆d, and let good2 be the event that the coin comes out
1.) We abort the experiment (and output a uniformly random bit) if ¬good2 occurs. We get

Pr[out2 = 1]− 1/2 = Pr[good2] (Pr[out1 = 1]− 1/2) = ∆d (Pr[out1 = 1]− 1/2) .

Intuitively, this seemingly meaningless and unforced artificial abort step paves the way for our later refine-
ments. In particular, we will later on have to deal with a (forced) abort event which can happen with a
probability up to (but not necessarily exactly) ∆d. However, the adversary’s output distribution should be (at
least approximately) independent of the abort event. Hence, we will fix the probability for an abort to ∆d

already at this point, and later on take care that the abort always happens with (roughly) the same probability.
In Game 3, we change the abort policy. Namely, after the adversary has terminated, we first attach labels

to the identities in all
−−→
IDi. To this end, let

Fi(id) = FKi,Hi(id) =

{
CO if ∃u ∈ {1, . . . , λ} : tu = Ki

u

UN if ∀u ∈ {1, . . . , λ} : tu 6= Ki
u

for (t1, . . . , tλ) = Hi(id). Here, for every i, Ki = (Ki
1, . . . ,K

i
λ) ∈ {0, 1,⊥}λ is initially chosen by the

experiment uniformly among all K ∈ {0, 1,⊥}λ with exactly µ non-⊥ components. If Fi(id) = CO, then
id is controlled, and if Fi(id) = UN, then id is undirected. Later on, controlled identities will correspond to
controlled matrices, while undirected identities will correspond to undirected matrices.

Let Ei denote the event that in Game 3, Fi(id) = CO for all id ∈ IDCO
i and Fi(id) = UN for all

id ∈ IDUN
i . Let E :=

∧d
i=1Ei. By assumption aboutH, we know that Pr[E] ≥ ∆d.

Ideally, we would like to replace event good2 from Game 2 with event E. Unfortunately, however, E
might not be independent ofA’s view, so we cannot (directly) proceed that way. Instead, we use artificial abort
techniques. That is, given the identities in all

−−→
IDi, we approximate pE := Pr

[
E | (

−−→
IDi)i

]
by sufficiently

often sampling values of K and attaching colors. Hoeffding’s inequality yields that with dnS/∆de samples,
we can obtain an approximation p̃E ≥ ∆d of pE that satisfies

Pr

[
|pE − p̃E | ≥

∆d

S

]
≤ 1

2n
.

Now we finally abort if E does not occur. But even if E occurs (which might be with probability pE > ∆d),
we artificially enforce an abort with probability 1−∆d/p̃E . Call good3 the event that we do not abort. We
always have

Pr[good3] = pE ·
∆d

p̃E
= ∆d pE

p̃E
.

Hence, except with probability 1/2n,

|Pr[good3]− Pr[good2]| =
∣∣∣∣∆d −∆d pE

p̃E

∣∣∣∣ = ∆d

∣∣∣∣ p̃E − pEp̃E

∣∣∣∣ ≤ ∆d ∆d

Sp̃E
≤ ∆d

S
. (5.6)

Since (5.6) holds for arbitrary
−−→
IDi except with probability 1/2n, we obtain that the statistical distance

between the output of Game 2 and Game 3 is bounded by ∆d/S + 2−n. Hence,

|Pr[out3 = 1]− Pr[out2 = 1]| ≤ ∆d

S
+

1

2n
. (5.7)
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In Game 4, we set up the public key differently. We call matrices that are chosen uniformly undirected,
and matrices that are chosen along with a short basis (using Proposition 3.1) controlled. Now in Game 4, we
will set up the public key as follows:

• A0 as controlled (as in the earlier games),

• Bi,u,b as controlled if Ki
u = b (and as undirected if Ki

u 6= b).

By Proposition 3.1, this change affects the distribution of the public key only negligibly. (Note that bases for
the controlled Bi,u,b are generated, but never used in Game 4.) We obtain

|Pr[out4 = 1]− Pr[out3 = 1]| = negl(n). (5.8)

In Game 5, we make the following conceptual change regarding user secret key queries. Namely, upon
receiving a user secret key request for id = (id1, . . . , id`), the experiment immediately aborts (with uniform
output) if Fi(idi) = UN for all i. This change is purely conceptual: since id is not a prefix of the challenge
identity id∗, there is an i with idi ∈ IDCO

i ⊇ ID
Q
i \ ID

∗
i . But since Fi(idi) = UN for this i, there is a partial

identity idi ∈ IDCO which should map to a controlled matrix but does not (since actually Fi(idi) = UN).
This implies ¬Ei according to the definition of Ei in Game 3, and thus ¬E. But ¬E implies that we would
have aborted anyway, so our additional abort criterion from Game 5 is purely conceptual. We get

Pr[out5 = 1] = Pr[out4 = 1]. (5.9)

In Game 6, we change the way user secret keys queries id = (id1, . . . , id`) are answered. By the change
from Game 5, we may assume that Fi(idi) = CO for some i. Hence, tu = Ki

u for (t1, . . . , tλ) = Hi(idi)
and some u. Thus, the matrix Bi,u,tu that appears in the decomposition of Aid (see (5.3)) is controlled
by our public key setup. To generate a user secret key, we have to find a short basis for Aid. In Game 4,
this is achieved by algorithms ExtBasis and RandBasis, using the short basis of the first matrix A0 in the
decomposition of Aid. In Game 6, we instead use the short basis of Bi,u,tu that we have initially generated.
By Lemma 3.3, this results in the same distribution of bases usk id = (Sid,xid), up to negligible statistical
distance. Hence

|Pr[out6 = 1]− Pr[out5 = 1]| = negl(n). (5.10)

In Game 7, we set up A0 as undirected instead of controlled. (Note that since Game 6, we do not need a
short basis of A0 anymore to generate user secret keys.) Again, by Proposition 3.1, this change affects the
distribution of the public key only negligibly. We get

|Pr[out7 = 1]− Pr[out6 = 1]| = negl(n). (5.11)

We finally claim that
Pr[out7 = 1]− 1/2 = Adv

ind-cpa
KEM (SA) (5.12)

for our LWE-based KEM KEM with parameters of q′ = q, n′ = n, and m′ = (2dλ+ 1)m, and the following
adversary SA. Recall that SA is given a KEM public key pk, which it parses as

pk = A‖y = A0‖B1,1,0‖ . . . ‖Bd,λ,1‖y ∈ Zn×(2dλ+1)m+1
q

with A0,Bi,u,b ∈ Zn×mq and y ∈ Zmq . Furthermore, SA receives an encapsulation σ∗ = b∗‖b′ with
b∗0

b∗1,1,0
...

b∗d,λ,1

 := b∗ ← Noisyχ


A0

t
s

B1,1,0
t
s

...
Bd,λ,1

t
s

 , b′ ← Noisyχ(ys + κ∗ · bq/2c) (5.13)
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for a uniformly chosen KEM key κ∗ ∈ {0, 1}. Finally, SA receives a challenge κ, which is either equal to κ∗,
or an independently and uniformly random bit.

Now SA sets up an environment for A as in Game 7. First, SA prepares an SMHIBE master public
key mpk. In this, SA embeds its own challenge matrices A0 and Bi,u,b as the undirected matrices of mpk.
Concretely, SA sets A0 := A0, and Bi,u,b := Bi,u,b whenever b 6= Ki

u. For b = Ki
u, SA chooses Bi,u,b

controlled as in Game 7. With this setup, SA can perfectly play Game 7 with A; in particular, SA can answer
all of A’s user secret key queries (or abort if necessary as in Game 7).

It remains to embed SA’s own challenge σ∗ into the SMHIBE challenge encapsulation σ∗ = b∗‖b′ for
identity id∗ = (id∗1, . . . , id

∗
`∗). Since otherwise Game 7 aborts with uniform output, we may assume that E

occurs. Hence, for all i, for (ti1, . . . , t
i
λ) = Hi(id

∗
i ), and all u, we have Ki

u 6= tiu. Thus, we can write

Aid∗ = A0‖B1,1,t11
‖ . . . ‖B`∗,λ,t`

∗
λ

= A0‖B1,1,t11
‖ . . . ‖B`∗,λ,t`

∗
λ

as a concatenation undirected matrices that are part of A. This allows to construct σ∗ from σ∗ (as given by
(5.13)) through b′ := b′ and

b∗ :=


b∗0

b∗
1,1,t11

...
b∗
`∗,λ,t`

∗
λ

.


Observe that this makes σ∗ an SMHIBE encapsulation of κ∗ (from (5.13)). Hence, we have a direct

correspondence between SMHIBE and KEM challenges. Thus, we can set the SMHIBE challenge key as
κ := κ, and let SA output whatever A eventually outputs. This finally yields (5.12).

Taking (5.5-5.12) together shows (5.4).

Doing without artificial abort. The reason why we needed an artificial abort step in Game 3 is that a
certain event E (that determines whether we can carry through the simulation) is not independent of A’s
view. In Game 3, we changed the abort policy to make good3 (the event that we do not abort) sufficiently
independent. (This strategy resembles Waters’ strategy from [Wat05].) Unfortunately, this results in a
rather large computational overhead, since we need to approximate the probability pE = Pr

[
E | (

−−→
IDi)i

]
on the fly. Observe that if we had better (i.e., tight lower and upper) bounds on pE in the first place (e.g.,
|pE −∆d| < ∆d/S always), we would not need this approximation/abort step at all, since (5.6) and hence
(5.7) followed directly by these better bounds. The good news is that the analysis of H from [BB04b]
provides such better bounds for Pr[E], resp. pE . The bad news is that this comes at a price: using the analysis
of [BB04b], |pE −∆d|/∆d depends in an inversely polynomial way on Q, the number of user secret key
queries. Hence, to achieve |pE − ∆d| < ∆d/S, we would need to choose fixed H parameters that work
for arbitrary polynomial values of Q. Of course, in an asymptotic sense, we already do consider arbitrary
polynomial values of Q, because A may make up to Q user secret key queries. However, in a concrete
sense, the number of (online) user secret key queries will typically be much lower than the inverse of A’s
distinguishing advantage. Hence, when considering concrete parameters, we can work with much smallerH
parameters when implementing our artificial abort step, at the price of a slower reduction. This is why we
decided for an artificial abort step.
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