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Abstract. The selective decommitment problem can be described as fol-
lows: assume an adversary receives a number of commitments and then
may request openings of, say, half of them. Do the unopened commit-
ments remain secure? Although this question arose more than twenty
years ago, no satisfactory answer could be presented so far. We answer
the question in several ways:
1. If simulation-based security is desired (i.e., if we demand that the

adversary's output can be simulated by a machine that does not
see the unopened commitments), then security is not provable for
non-interactive or perfectly binding commitment schemes via black-
box reductions to standard cryptographic assumptions. However, we
show how to achieve security in this sense with interaction and a
non-black-box reduction to one-way permutations.

2. If only indistinguishability of the unopened commitments from ran-
dom commitments is desired, then security is not provable for (in-
teractive or non-interactive) perfectly binding commitment schemes,
via black-box reductions to standard cryptographic assumptions.
However, any statistically hiding scheme does achieve security in
this sense.

Our results give an almost complete picture when and how security under
selective openings can be achieved. Applications of our results include:
� Essentially, an encryption scheme must be non-committing in order

to achieve provable security against an adaptive adversary.
� When implemented with our secure commitment scheme, the inter-

active proof for graph 3-coloring due to Goldreich et al. becomes
zero-knowledge under parallel composition.

On the technical side, we develop a technique to show very general im-
possibility results for black-box proofs.
Keywords: commitments, zero-knowledge, black-box separations.

1 Introduction

Consider an adversary A that observes ciphertexts sent among parties in a multi-
party cryptographic protocol. At some point, A may decide, based on the in-
formation he already observed, to corrupt, say, half of the parties. By this, A
learns the secret keys of these parties, which allows him to open some of the
observed ciphertexts. The question is: do the unopened ciphertexts remain se-
cure? Since most encryption schemes actually constitute commitments to the



respective messages, we can rephrase the question as what is known as the selec-
tive decommitment problem: assume A receives a number of commitments and
then may request openings of half of them. Do the unopened commitments re-
main secure? According to Dwork et al. [22], this question arose already more
than twenty years ago in the context of Byzantine agreement, but it is still rela-
tively poorly understood. In particular, standard cryptographic techniques (e.g.,
guessing which commitments are opened, or hybrid arguments) fail to show that
�ordinary� commitment security against a static adversary guarantees security
under selective openings.1 Even worse: no commitment scheme is known to be
secure under selective openings.

Previous work. The selective decommitment problem arises in particular in
the encryption situation described above, and hence was recognized and men-
tioned in a number of works before (e.g., [11, 4, 12, 18, 14]). However, these works
solved the problem by using (and, in fact, inventing) non-committing encryption,
which circumvents the underlying commitment problem. In the zero-knowledge
setting, Gennaro and Micali [25] notice a selective decommitment problem and
circumvent it by adapting the distribution of the messages committed to. Sim-
ilarly, a number of works (e.g., Dolev et al. [21], Prabhakaran et al. [40] in the
context of zero-knowledge) use �cut-and-choose� techniques on committed val-
ues, which is a speci�c form of selective opening. These works can prove security
by using speci�c properties of the distributions of the committed values (e.g.,
the fact that the unopened values, conditioned on the opened values, are still
uniformly distributed).

Dwork et al. [22] is, to the best of our knowledge, the only previous work
that explicitly studies the selective decommitment problem. They prove that a
commitment scheme which is secure under selective openings would have inter-
esting applications. In particular, they show that a (non-interactive) commit-
ment scheme that is secure under selective openings gives rise to a 3-round zero-
knowledge proof system for NP with negligible soundness error. They proceed
to give positive results for substantially relaxed selective decommitment prob-
lems (essentially, they prove security when standard techniques can be applied,
i.e., when the set of opened commitments can be guessed, or when the messages
are independent). However, they leave open the question whether commitment
schemes secure under (general) selective openings exist.

From Goldreich and Krawczyk [27], it is known that 3-round black-box zero-
knowledge proof systems exist only for languages in BPP. Let us denote a com-
mitment scheme that, when plugged into the construction of [22], gives rise to
a black-box zero-knowledge proof system, as ZK-black-box. Note that a non-in-
teractive ZK-black-box commitment scheme gives rise to a 3-round black-box
zero-knowledge proof system. Thus, combining the results of [27] and [22] shows
that no non-interactive ZK-black-box commitment schemes exist (or NP⊆BPP).
That is, [27, 22] essentially show that no non-interactive commitment scheme

1 For instance, the probability to correctly guess an n/2-sized subset of n commitments
is too small, and a hybrid argument would require some independence among the
commitments, which we cannot assume in general.
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exists that is secure under selective openings and for which the simulator is con-
structed in a black-box way from the adversary (on the commitment security).
Jumping ahead, one of our results shows that no non-interactive commitment
scheme that is secure under selective openings and uses the computational as-
sumption in a black-box way exists. These are both negative, but orthogonal
statements. Indeed, it is conceivable that a security reduction uses speci�c, non-
black-box properties of the adversary (e.g., it is common in reductions to ex-
plicitly make use of the adversary's complexity bounds), but neither scheme nor
reduction use speci�cs (like the code) of the underlying primitive.

Black-box impossibility results from generic assumptions have been derived
by Dodis et al. [20]. They show that the security of full-domain hash signatures
([5]) cannot be proved using a black-box reduction to any hardness assumption
that is satis�ed by a random permutation. Concurrently to and independently
from our work, Haitner and Holenstein [29] developed a framework to prove im-
possibility of black-box reductions from any computational assumption. While
their formalism is very similar to ours (e.g., their de�nition of a �cryptographic
game� matches our de�nition of a �security property�), they apply it to an en-
tirely di�erent problem. Namely, [29] prove black-box impossibility of encryption
schemes secure in the presence of key-dependent messages.

Our work. We answer the selective decommitment problem in several ways.
First, we consider what happens if �security of the unopened commitments�
means that we require the existence of a simulator S, such that S essentially
achieves what A does, only without seeing the unopened commitments in the
�rst place. We call a commitment scheme that is secure in this sense simulatable
under selective openings. We show that no non-interactive or perfectly binding
commitment scheme can be proved simulatable under selective openings using
black-box reductions to standard assumptions. However, we also show how to
construct commitment schemes that are simulatable under selective openings,
under the assumption that one-way permutations exist. Our construction uses
non-black-box techniques (i.e., zero-knowledge proofs) as well as interaction to
circumvent our impossibility results. This solves an important open problem
from Dwork et al. [22]: our schemes are the �rst commitment schemes provably
secure under selective openings.

We proceed to consider what happens if �security� means that A cannot
distinguish the messages inside the unopened commitments from independent
messages (where �independent� can of course only mean �independent, condi-
tioned on the already opened messages�). We call a commitment scheme that is
secure in this sense indistinguishable under selective openings. We show that no
perfectly binding commitment scheme (interactive or not) can be proved indis-
tinguishable under selective openings, via black-box reductions from standard
assumptions. However, we also show that all statistically hiding commitment
schemes are indistinguishable under selective openings.

Technically, we derive black-box impossibility results in the style of Impagli-
azzo and Rudich [35], but we can derive stronger claims, similar to Dodis et al.
[20]. Concretely, we prove impossibility via ∀∃semi-black-box proofs from any
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computational assumption that can be formalized as an oracle X and a corre-
sponding security property P which the oracle satis�es. For instance, to model
one-way permutations, X could be a truly random permutation and P could be
the one-way game in which a PPT adversary tries to invert a random image. We
emphasize that, somewhat surprisingly, our impossibility claim holds even if P
models security under selective openings. In that case, however, a reduction will
necessarily be non-black-box, see Section A for a discussion.

Applications. We apply our results to the adaptively secure encryption exam-
ple mentioned in the beginning, and to a special class of interactive proof sys-
tems. First, we comment that an adaptively secure encryption scheme must be
non-committing, or rely on non-standard techniques. Namely, whenever a com-
mitting (i.e., ciphertexts commit to messages) encryption scheme is adaptively
secure, then it also is, interpreted as a (non-interactive) commitment scheme,
simulatable under selective openings. Our impossibility results show that hence,
a committing encryption scheme cannot be proved adaptively secure via black-
box reductions from standard assumptions.

Second, we apply our results to �commit-choose-open� (CCO) style interac-
tive proof systems such as the graph 3-coloring protocol G3C from Goldreich
et al. [28]. Re�ning the techniques of Dwork et al. [22], we prove that any CCO
protocol becomes zero-knowledge under parallel composition, when implemented
with a commitment scheme which is simulatable under selective openings. In
particular, our (interactive, but constant-round) commitment scheme enables
the parallel composability of G3C. We also show that a CCO protocol becomes
witness-indistinguishable, even under parallel composition, when implemented
with a commitment scheme which is indistinguishable under selective openings.
This shows the usefulness of our indistinguishability-based security de�nition as
a reasonable fallback.

Organization. After �xing some notation in Section 2, we present in Section 3
our possibility and impossibility results for the simulation-based security de�ni-
tion of Dwork et al. [22]. We give an indistinguishability-based security de�nition,
along with possibility and impossibility results in Section 4. In Sections 5 and
6, we consider applications of our results to encryption and interactive proof
systems. In Section A, we discuss the role of the computational assumption in
our impossibility results.

Publication note and follow-up work. This work constitutes the full version
of one part of the Eurocrypt 2009 paper �Possibility and impossibility results for
encryption and commitment secure under selective opening� by Bellare et al. [7].
The paper [7] is the merge of two Eurocrypt submissions on the topic of security
under selective openings. One submission (by Bellare and Yilek) treated the
encryption case, while the other (by Hofheinz) treated the commitment case.
The present work is the full version of the latter submission.

Very recently, Hemenway and Ostrovsky [32] have used and improved on
the results of [7]. Hemenway and Ostrovsky provide e�cient encryption schemes
secure under selective openings, along with a generic construction to achieve
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security even under chosen-ciphertext attacks. They also show that a special
type of randomized one-way functions give rise to non-interactive commitment
schemes that are secure under selective openings. Their results do not contradict
our impossibility results since they consider a trusted set-up of public parame-
ters. (In other words, commitments are performed and checked relative to ideally
chosen public parameters.) A more detailed discussion of the ideas of [7, 32], as
well as of our impossibility results in the context of trusted set-up information
can be found in Section 5.

2 Preliminaries

Notation. Throughout the paper, k ∈ N denotes a security parameter. With
growing k, attacks should be become harder, but we also allow schemes to be of
complexity which is polynomial in k. A PPT algorithm/machine is a probabilistic
algorithm/machine which runs in time polynomial in k. While an algorithm is
stateless, a machine maintains a state across activations. A function f = f(k)
is called negligible if it vanishes faster than the inverse of any polynomial. That
is, f is negligible i� ∀c∃k0 ∀k > k0 : |f(k)| < k−c. If f is not negligible, we call
f non-negligible. We say that f is overwhelming i� 1− f is negligible. We write
[n] := {1, . . . , n}. If M = (Mi)i is an indexed set, then we write MI := (Mi)i∈I .
We denote the empty (bit-)string by ε.

Commitment schemes.

De�nition 1 (Commitment scheme). For a pair of PPT machines Com =
(S,R) and a machine A, consider the following experiments:

Experiment Expbinding
Com,A

run 〈R(recv), A(com)〉
M ′0 ← 〈R(open), A(open, 0)〉
rewind A and R back to after step 1
M ′1 ← 〈R(open), A(open, 1)〉
return 1 i� ⊥ 6= M ′0 6= M ′1 6= ⊥

Experiment Exphiding-b
Com,A

(M0,M1)← A(choose)
return 〈A(recv),S(com,Mb)〉

In this, 〈A,S〉 denotes the output of A after interacting with S, and 〈R, A〉 denotes
the output of R after interacting with A. We say that Com is a commitment
scheme i� the following holds:
Syntax. For any M ∈ {0, 1}k, S(com,M) �rst interacts with R(recv). We call

this the commit phase. After that, S(open) interacts again with R(open),
and R �nally outputs a value M ′ ∈ {0, 1}k ∪ {⊥}. We call this the opening
phase.

Correctness. We have M ′ = M always and for all M .
Hiding. For a PPT machine A, let

Advhiding
Com,A := Pr

[
Exphiding-0

Com,A = 1
]
− Pr

[
Exphiding-1

Com,A = 1
]
,
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where Exphiding-b
Com,A is depicted below. For Com to be hiding, we demand that

Advhiding
Com,A is negligible for all PPT A that satisfy M0,M1 ∈ {0, 1}k always.

Binding. For a machine A, consider the experiment Expbinding
Com,A below. For Com

to be binding, we require that Advbinding
Com,A = Pr

[
Expbinding

Com,A = 1
]
is negligible for

all PPT A.
Further, we say that Com is perfectly binding i� Advbinding

Com,A = 0 for all A. We say

that Com is statistically hiding i� Advhiding
Com,A is negligible for all (not necessarily

PPT) A.

De�nition 2 (Non-interactive commitment scheme). A non-interactive
commitment scheme is a commitment scheme Com = (S,R) in which both com-
mit and opening phase consist of only one message sent from S to R. We can
treat a non-interactive commitment scheme as a pair of algorithms rather than
machines. Namely, we write (com, dec)← S(M) shorthand for the commit mes-
sage com and opening message dec sent by S on input M . We also denote by
M ′ ← R(com, dec) the �nal output of R upon receiving com in the commit phase
and dec in the opening phase.

Note that perfectly binding implies that any commitment can only be opened to
at most one value M . Perfectly binding (non-interactive) commitment schemes
can be achieved from any one-way permutation (e.g., Blum [8]). On the other
hand, statistically hiding implies that for any M0,M1 ∈ {0, 1}k, the statistical
distance between the respective views of the receiver in the commit phase is
negligible. One-way functions su�ce to implement statistically hiding (interac-
tive) commitment schemes (Haitner and Reingold [30]), but there are certain
lower bounds for the communication complexity of such constructions (Wee
[45], Haitner et al. [31]). However, if we assume the existence of (families of)
collision-resistant hash functions, then even constant-round statistically hiding
commitment schemes exist (Damgård et al. [19], Naor and Yung [38]).

Interactive argument systems and zero-knowledge. We recall some basic
de�nitions concerning interactive argument systems, mostly following Goldreich
[26].

De�nition 3 (Interactive proof/argument system). An interactive proof
system for a language L with witness relation R is a pair of PPT machines
IP = (P,V) such that the following holds:
Completeness. For every family (xk, wk)k∈N such that R(xk, wk) for all k and
|xk| is polynomial in k, we have that the probability for V(xk) to output 1
after interacting with P(xk, wk) is at least 2/3.

Soundness. For every machine P ∗ and every family (xk, zk)k∈N such that
|xk| = k and xk 6∈ L for all k, we have that the probability for V(xk) to
output 1 after interacting with P ∗(xk, zk) is at most 1/3.

If the soundness condition holds for all PPT machines P ∗ (but not necessarily
for all unbounded P ∗), then IP is an interactive argument system. We say that IP
enjoys perfect completeness if V always outputs 1 in the completeness condition.
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Furthermore, IP has negligible soundness error if V outputs 1 only with negligible
probability in the soundness condition.

De�nition 4 (Zero-knowledge). Let IP = (P,V) be an interactive proof or
argument system for language L with witness relation R. IP is zero-knowledge
if for every PPT machine V ∗, there exists a PPT machine S∗ such that for all
sequences (x,w) = (xk, wk)k∈N with R(xk, wk) for all k and |xk| polynomial in k,
for all PPT machines D, and all auxiliary inputs zV ∗ = (zV ∗

k )k∈N ∈ ({0, 1}∗)N
and zD = (zD

k )k∈N ∈ ({0, 1}∗)N, we have that

AdvZK
V ∗,S∗,(x,w),D,zV ∗ ,zD := Pr

[
D(xk, z

D
k , 〈P(xk, wk), V ∗(xk, z

V ∗

k )〉) = 1
]

− Pr
[
D(xk, z

D
k , S

∗(xk, z
V ∗

k )) = 1
]

is negligible in k. Here 〈P(xk, wk), V ∗(xk, z
V ∗

k )〉 denotes the transcript of the
interaction between the prover P and V ∗.

Most known interactive proof system achieve perfect completeness. Con-
versely, most systems do not enjoy a negligible soundness error �by nature�;
their soundness has to be ampli�ed via repetition, e.g., via sequential or concur-
rent composition. Thus, it is important to consider the concurrent composition
of an interactive argument system:

De�nition 5 (Concurrent zero-knowledge). Let IP = (P,V) be an inter-
active proof or argument system for language L with witness relation R. IP is
zero-knowledge under concurrent composition i� for every polynomial n = n(k)
and PPT machine V ∗, there exists a PPT machine S∗ such that for all sequences
(x,w) = (xi,k, wi,k)k∈N,i∈[n] with R(xi,k, wi,k) for all i, k and |xi,k| polynomial

in k, for all PPT machines D, and all auxiliary inputs zV ∗ = (zV ∗

k )k∈N ∈
({0, 1}∗)N and zD = (zD

k )k∈N ∈ ({0, 1}∗)N, we have that

AdvcZK
V ∗,S∗,(x,w),D,zV ∗ ,zD :=

Pr
[
D((xi,k)i∈[n], z

D
k , 〈P((xi,k, wi,k)i∈[n]), V ∗((xi,k)i∈[n], z

V ∗

k )〉) = 1
]

− Pr
[
D((xi,k)i∈[n], z

D
k , S

∗((xi,k)i∈[n], z
V ∗

k )) = 1
]

is negligible in k. Here 〈P((xi,k, wi,k)i∈[n]), V ∗((xi,k)i∈[n], z
V ∗

k )〉 denotes the tran-
script of the interaction between n copies of the prover P (with the respective
inputs (xi,k, wi,k) for i = 1, . . . , n) on the one hand, and V ∗ on the other hand.

There exist interactive proof systems (with perfect completeness and negligible
soundness error) that achieve De�nition 5 for arbitrary NP-languages if one-way
permutations exist (e.g., Richardson and Kilian [42]; see also [36, 13, 1, 23, 3]
for similar results in related settings). If we assume the existence of (families
of) collision-resistant hash functions, then there even exist constant-round in-
teractive proof systems that achieve a bounded version of De�nition 5 in which
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the number of concurrent instances is �xed in advance (Barak [1], Barak and
Goldreich [2]).2

Black-box reductions. Reingold et al. [41] give an excellent overview and
classi�cation of black-box reductions. We recall some of their de�nitions which
are important for our case. A primitive P = (FP, RP) is a set FP of functions
f : {0, 1}∗ → {0, 1}∗ along with a relation R over pairs (f,A), where f ∈ FP, and
A is a machine. We say that f is an implementation of P i� f ∈ FP. Furthermore,
f is an e�cient implementation of P i� f ∈ FP and f can be computed by a
PPT machine. A machine A P-breaks f ∈ FP i� RP(f,A). A primitive P exists if
there is an e�cient implementation f ∈ FP such that no PPT machine P-breaks
f . A primitive P exists relative to an oracle B i� there exists an implementation
f ∈ FP which is computable by a PPT machine with access to B, such that no
PPT machine with access to B P-breaks f .

De�nition 6 (Relativizing reduction). There exists a relativizing reduction
from a primitive P = (FP, RP) to a primitive Q = (FQ, RQ) i� for every oracle
B, the following holds: if Q exists relative to B, then so does P.

De�nition 7 (∀∃semi-black-box reduction). There exists a ∀∃semi-black-
box reduction from a primitive P = (FP, RP) to a primitive Q = (FQ, RQ) i� for
every implementation f ∈ FQ, there exists a PPT machine G such that Gf ∈ FP,
and the following holds: if there exists a PPT machine A such that Af P-breaks
Gf , then there exists a PPT machine S such that Sf Q-breaks f .

It can be seen that if a relativizing reduction exists, then so does a ∀∃semi-black-
box reduction. The converse is true when Q �allows embedding,� which essentially
means that additional oracles can be embedded into Q without destroying its
functionality (see Reingold et al. [41], De�nition 3.4 and Theorem 3.5 and Simon
[44]). Below we will prove impossibility of relativizing reductions between certain
primitives, which also proves impossibility of ∀∃semi-black-box reductions, since
the corresponding primitives Q allow embedding.

3 A simulation-based de�nition

Consider the following real security game: adversary A gets, say, n commitments,
and then may ask for openings of some of them. The security notion of Dwork
et al. [22] requires that for any such A, there exists a simulator S that can
approximate A's output. More concretely, for any relation R, we require that
R(M, outA) holds about as often as R(M, outS), where M = (Mi)i∈[n] are the
messages in the commitments, outA is A's output, and outS is S's output. For-
mally, we get the following de�nition (where henceforth, I will denote the set of
�allowed� opening sets):

2 It is common to allow the simulator S∗ to be expected polynomial-time. In fact, the
positive results [42, 36] (but not [1]) construct an expected PPT S∗. We will neglect
this issue in the following, since our results do not depend the complexity of S∗ (as
long as S∗ is not able to break an underlying computational assumption).
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De�nition 8 (Simulatable under selective openings). Assume n = n(k) >
0 is polynomially bounded, and let I = (In)n be a family of sets such that each
In is a set of subsets of [n]. A commitment scheme Com = (S,R) is simulatable
under selective openings (short SIM-SO-COM secure) i� for every PPT n-
message distributionM, every PPT relation R, and every PPT machine A (the
adversary), there is a PPT machine S (the simulator), such that Advsim-so

Com,M,A,S,R

is negligible. Here

Advsim-so
Com,M,A,S,R := Pr

[
Expsim-so-real

Com,M,A,R = 1
]
− Pr

[
Expsim-so-ideal
M,S,R = 1

]
,

where the experiments Expsim-so-real
Com,M,A,R and Expsim-so-ideal

M,S,R are de�ned as follows:

Experiment Expsim-so-real
Com,M,A,R

M = (Mi)i∈[n] ←M
I ← 〈A(recv), (Si(com,Mi))i∈[n]〉
outA ← 〈A(open), (Si(open))i∈I〉
return R(M, outA)

Experiment Expsim-so-ideal
M,S,R

M = (Mi)i∈[n] ←M
I ← S(choose)
outS ← S((Mi)i∈I)
return R(M, outS)

In this, we require from A that I ∈ Ik,
3 and we denote by 〈A, (Si)i〉 the output

of A after interacting concurrently with instances Si of S.

Discussion of the de�nitional choices. While De�nition 8 essentially is the
selective decommitment de�nition Dwork et al. [22], De�nition 7.1, there are a
number of de�nitional choices we would like to highlight (the following discussion
applies equally to the upcoming De�nition 10):
� Unlike [22, De�nition 7.1], neither adversary A nor relationR get an auxiliary
input. Such an auxiliary input is common in cryptographic de�nitions to
ensure some form of composability.

� We do not explicitly hand the chosen set I to the relation R. Handing I to
R potentially makes the de�nition more useful in larger contexts in which I
is public.

� One could think of letting R determine the message vector M.4 (Equiva-
lently, we can viewM as part of R and letM forward its random coins�or
a short seed�to R in a message part Mi which is guaranteed not to be
opened, e.g., when i 6∈ I for all I ∈ In.)

� The order of quanti�ers (∀M, R,A∃S) is the weakest one possible. In par-
ticular, we do not mandate that S is constructed from A in a black-box
way.

3 that is, we actually only quantify over those A for which I ∈ Ik
4 This de�nition is closer to a universally composable de�nition (cf. Canetti [9]) in the
sense that R (almost) takes the role of a UC-environment: R selects all inputs and
reads the outputs (in particular the output of A). However, we stress that R may not
actively interfere in the commitment protocol. Note that we cannot hope for fully
UC-secure commitments for reasons not connected to the selective decommitment
problem, cf. Canetti and Fischlin [10].
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In all of the cases, we chose the weaker de�nitional variant for simplicity, which
makes our negative results only stronger. We stress, however, that our positive
results (Theorem 2 and Theorem 4) hold also for all of the stronger de�nitional
variants.

3.1 Impossibility from black-box reductions

Formalization of computational assumptions. Our �rst result states that
SIM-SO-COM security cannot be achieved via black-box reductions from stan-
dard assumptions. We want to consider such standard assumptions in a general
way that allows to make statements even in the presence of �relativizing� oracles.
Thus we make the following de�nition, which is a special case of the de�nition
of a primitive from Reingold et al. [41] (cf. also Section 2).

De�nition 9 ((Security) property of an oracle). Let X be an oracle. Then
a security property (or simply property) P of X is a (not necessarily PPT)
machine that, after interacting with X and another machine A, �nally outputs
a bit b. For an adversary A (that may interact with X and P), we de�ne A's
advantage against P as

Advprop
P,X ,A := Pr [P outputs b = 1 after interacting with A and X ]− 1/2.

Now X is said to satisfy security property P i� for all PPT adversaries A, we
have that Advprop

P,X ,A is negligible.

In terms of Reingold et al. [41], the corresponding primitive is P = (FP, RP),
where FP = {X}, and RP(X , A) i� Advprop

P,X ,A is non-negligible. Our de�nition
is also similar in spirit to �hard games� as used by Dodis et al. [20], but more
general.

We emphasize that P can only interact with X and A, but not with possible
additional oracles. (See Section A for further discussion of properties of oracles,
in particular their role in our proofs.) Intuitively, P acts as a challenger in the
sense of a cryptographic security experiment. That is, P tests whether adversary
A can �break� X in the intended way. We give an example, where �breaking�
means �breaking X 's one-way property�.

Finally, note that a security property as above does not allow to capture
statistical properties such as the bijection property of a function, or the (per-
fect/statistical) correctness property of an encryption scheme. In what follows,
we will always consider a �xed oracle X . Its statistical properties will be clear
by de�nition, and in particular they will not change depending on the setting
we consider X in. However, the security properties (such as one-wayness) may
change, depending on auxiliary oracles that may help to �break� X .

Example. If X is a random permutation of {0, 1}k, then the following P models
X 's one-way property: P acts as a challenger that challenges A to invert a
randomly chosen X -image. Concretely, P initially chooses a random Y ∈ {0, 1}k
and sends Y to A. Upon receiving a guess X ∈ {0, 1}k from A, P checks if
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X (X) = Y . If yes, then P terminates with output b = 1. If X (X) 6= Y , then P
tosses an unbiased coin b′ ∈ {0, 1} and terminates with output b = b′.

We stress that we only gain generality by demanding that Pr [P outputs 1]
is close to 1/2 (and not, say, negligible). In fact, this way indistinguishability-
based games (such as, e.g., the indistinguishability of ciphertexts of an ideal
encryption scheme X ) can be formalized very conveniently. On the other hand,
cryptographic games like the one-way game above can be formulated in this
framework as well, by letting the challenger output b = 1 with probability 1/2
when A fails.

On the role of property P. Our upcoming results state the impossibility of
(black-box) security reductions, from essentially any computational assumption
(i.e., security property) P. The obvious question is: what if the assumption
already is an idealized commitment scheme secure under selective openings?
The short answer is: �then the security proof will not be black-box.� We give a
detailed explanation of what is going on in Section A.

Stateless breaking oracles. In our impossibility results, we will describe a
computational world with a number of oracles. For instance, there will be a
�breaking oracle� B, such that B aids in breaking the SIM-SO-COM security of
any given commitment scheme, and in nothing more. To this end, B takes the role
of the adversary in the SIM-SO-COM experiment. Namely, B expects to receive a
number of commitments, then chooses a subset of these commitments, and then
expects openings of the commitments in this subset. This is an interactive pro-
cess which would usually require B to hold a state across invocations. However,
stateful oracles are not very useful for establishing black-box separations, so we
will have to give a stateless formulation of B. Concretely, suppose that the inves-
tigated commitment scheme is non-interactive. Then B answers deterministically
upon queries and expects each query to be pre�xed with the history of that query.
For instance, B �nally expects to receive openings dec = (deci)i∈I along with the
corresponding previous commitments com = (comi)i∈[n] and previously selected
set I. If I is not the set that B would have selected when receiving com alone,
then B ignores the query. This way, B is stateless (but randomized, similarly to
a random oracle). Furthermore, for non-interactive commitment schemes, this
makes sure that any machine interacting with B can open commitments to B
only in one way. Hence this formalization preserves the binding property of a
commitment scheme, something which we will need in our proofs.

We stress, however, that this method does not necessarily work for interac-
tive commitment schemes. Namely, any machine interacting with such a stateless
B can essentially �rewind� B during an interactive commitment phase, since B
formalizes a next-message function. Now if the commitment scheme is still bind-
ing if the receiver of the commitment can be rewound (e.g., this holds trivially
for non-interactive commitment schemes, and also for perfectly binding commit-
ment schemes), then our formalization of B preserves binding, and our upcoming
proof works. If, however, the commitment scheme loses its binding property if
the receiver can be rewound, then the following theorem cannot be applied.

We are now ready to state our result.
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Theorem 1 (Black-box impossibility of non-interactive or perf. bind-
ing SIM-SO-COM, most general formulation). Let n = n(k) = 2k, and
let I = (In)n with In = {I ⊆ [n] | |I| = n/2} denote the set of all n/2-sized
subsets of [n].5 Let X be an oracle that satis�es property P. Then there is a set
of oracles relative to which X still satis�es property P, but there exists no non-
interactive or perfectly binding commitment scheme which is simulatable under
selective openings.

Proof strategy. We will use a random oracle RO that, for any given non-
interactive commitment scheme Com∗, induces a message distribution M∗ =
{(RO(Com∗, i,X∗))i∈[n]}X∗∈{0,1}k/3 . Here, RO(Com∗) denotes the hash of the
description of Com∗, and X∗ is a short �seed� that ties the values RO(Com∗, i,
X∗) (with the same X∗ but di�erent i) together. Furthermore, we will specify
an oracle B that will help to break Com∗ with respect toM∗. Concretely, B �rst
expects n Com∗-commitments, and then requests openings of a random subset
of them. If all openings are valid, B returns a value X∗ consistent (according to
M∗) with all opened messages (if such an X∗ exists). A suitable SIM-SO-COM
adversary A can use B simply by relaying its challenge to obtain X∗ and hence
the whole message vector in its SIM-SO-COM experiment.

However, we will prove that B is useless to any simulator S that gets only
a message subset MI : if S uses B before requesting its own message subset MI ,
then B's answer will not be correlated with the SIM-SO-COM challenge message
vector M. (This also holds if S �rst sends commitments to B and immediately
afterwards requests MI from the SIM-SO-COM experiment; in that case, S
has to break the binding property of Com∗ to get an answer from B which is
correlated with M.) But if S uses B after obtaining MI , then with very high
probability, S will have to open at least one commitment to B whose message is
not contained inMI . By de�nition ofM∗, this opening of S will not be consistent
with the other values of MI (except with small probability), and B's answer will
again not be correlated with M.

Since S cannot e�ciently extract the seed X∗ from its message subset MI

alone (that would require a brute-force search over exponentially many values),
this shows that Com∗ is not SIM-SO-COM secure. Consequently, because Com∗

was arbitrary (only the message distributionM∗ is speci�c to Com∗), there exist
no SIM-SO-COM secure commitment schemes relative to RO and B. Finally,
it is easy to see that relative to RO and B, primitive X still satis�es property
P. Concretely, observe that B does not break any commitment (note that B's
answer depends only on the opened commitments), but only inverts a message
distribution (or, rather, RO). Hence, any adversary attacking property P of X
can use e�cient internal simulations of RO and B instead of the original oracles.
Since X satis�es property P with respect to adversaries without (additional)
oracle access, the claim follows.

We commence with the full proof.

5 We stress that the proofs of Theorem 1 and Theorem 3 hold literally also for the
�cut-and-choose� In = {I ⊆ [n] | ∀i ∈ [k] : either 2i− 1 ∈ I or 2i ∈ I}.
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Proof (of Theorem 1). First, let RO be a random oracle (i.e., a random function
{0, 1}∗ → {0, 1}k). When writing RO(x1, . . . , x`), we assume that RO's input
x1, . . . , x` is encoded in a pre�x-free way, such that all individual xi can be
e�ciently reconstructed from RO's input. Furthermore, to derive our second
oracle B, �rst consider the following machine B:

1. On input Com, interpret Com as the description of two machines (S,R) as
in De�nition 1. Then, concurrently receive n Com-commitments, indexed by
i ∈ [n].

2. When all commitments are received, output a uniformly chosen I ∈ I.
3. Engage in |I| concurrent opening phases for the Com-instances with i ∈ I. If

all openings are valid (i.e., every receiver instance with i ∈ I outputs some
Mi 6= ⊥), return the set of all X ∈ {0, 1}k/3 such that Mi = RO(Com, i,X)
for all i ∈ I.

Unfortunately, we cannot use B directly in our proof, since B is stateful, and
black-box separations require stateless oracles. So let B be the oracle that eval-
uates B's next-message function. Formally, B expects queries of the form h =
(hi)i∈[`]. Upon each such query, B invokes a fresh copy of B, and feeds it input
messages h1 up to h` successively, ignoring the respective answers of B. Finally,
B outputs B's answer to the last input h`. The random coins used for B in a
given activation are supplied by B as a random (but deterministic) function of
the previous message history of B. This way, B itself is randomized but stateless,
and can be used to emulate interactions with B. (In fact, B models a B which
can be rewound.)

We now comment on the description of Com that B receives. Com describes
two machines S and R, which may make arbitrary oracle calls (even recursive
B-queries6). We make no requirement that Com describes a hiding, binding, or
correct commitment scheme. However, we do require that S and R are PPT
whenever the description Com is generated by a PPT algorithm. We achieve this
with a suitable padding: We require that all B-queries h are pre�xed with 1`,
where ` bounds B's running time on input h. Here, we count any oracle query
with input x as |x| computational steps, and the �nal computation of all X as
one step. This way, not even recursive B-queries consume more than overall `
steps (not measuring the time needed to parse `), while any PPT commitment
scheme Com can still be encoded e�ciently.

For a query h = (hi)i∈[`], let I
h ∈ I and Mh

Ih = (Mh
i)i∈Ih denote the

variables from the corresponding interaction with B. For a commitment scheme
Com and a machine A, we say that A breaks Com∗ in B i� A manages to output
two queries h = (hi)i∈[`] and h

′ = (h′i)i∈[`′] such that the following holds.

6 Recursive B-queries can be circumvented using the �two-oracle�-technique of Hsiao
and Reyzin [34]. Adapted to our setting, we would only have to consider commitment
schemes Com which are formulated independently of the breaking oracle B, so we can
assume that Com itself does not query B. This would directly prove fully-black-box
reductions impossible. However, at the cost of a little additional care in the mere
encoding of our queries (so as to avoid unbounded recursions), we can even show
impossibility of relativizing and hence of ∀∃semi-black-box reductions.
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� hi = h′i for all i ≤ iI , where iI is the (unique) index for which B((hi)i∈[iI ])
outputs Ih ∈ I.

� There is an index j ∈ [n] such that ⊥ 6= Mh
j 6= Mh′

j 6= ⊥.
In other words, this holds if A manages to produce interactions with B in which
the same commitment is opened in di�erent ways.

From here on, �x a (hiding and binding) commitment scheme Com∗ =
(S∗,R∗), such that Com∗ is non-interactive or perfectly binding (or both). We
�rst show that our modeling of B preserves the binding property of Com∗.

Lemma 1. No PPT adversary A breaks Com∗ in B with non-negligible proba-
bility.

Proof. If Com∗ is perfectly binding, there never exists a commitment for which
two di�erent openings are possible (as long as the receiver acts honestly). Hence
there simply are no h and h′ as required to break the binding property of Com∗

in B. On the other hand, if Com∗ is non-interactive, then A must �nd a non-
interactive commitment com along with two non-interactive openings dec1 and
dec2 in order to break Com∗ in B. The (ordinary) binding property of Com∗

implies that this is not e�ciently possible.

Now consider the distribution M∗ = {(RO(Com∗, i,X∗))i∈[n]}X∗∈{0,1}k/3

of message vectors (i.e., M∗ chooses X∗ ∈ {0, 1}k/3 uniformly and then sets
M∗i = RO(Com∗, i,X∗) for all i).

Lemma 2. There is an adversary A that outputs outA = M∗ with overwhelm-
ing probability in the real SIM-SO-COM experiment Expsim-so-real

Com∗,M,A,R. Here M∗

denotes the full message vector sampled fromM∗ by the experiment.

Proof. Let A be the SIM-SO-COM adversary on Com∗ that relays between its
interface to the SIM-SO-COM experiment and B as follows. We silently assume
that A pre�xes queries to B with the respective message history, and applies a
padding as described above.
1. Initially, send Com∗ to B.
2. Relay the n commitments from the SIM-SO-COM experiment to B.
3. Upon receiving I∗ ∈ I from B, send I∗ to the SIM-SO-COM experiment.
4. Upon receiving |I∗| openings from the experiment, relay these openings to B.
5. Upon receiving a set {X∗} from B, return outA = (RO(Com∗, i,X∗))i∈[n].

If B returns a set of larger size, return outA = ⊥.
By construction ofM∗ and B, it is clear that outA = M∗ unless B returns multi-
ple X (which happens only with negligible probability by a counting argument).

Lemma 3. Any given PPT simulator S will output outS = M∗ in the ideal
SIM-SO-COM experiment Expsim-so-ideal

M,S,R only with negligible probability.

Proof. Fix a PPT S. We claim that in the ideal SIM-SO-COM experiment,
S has a view that is almost statistically independent of X∗, and hence will
output outS = M∗ only with negligible probability. To show the claim, denote
by I∗ the subset that S submits to the SIM-SO-COM experiment, and by M∗I∗
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the messages that S receives back. Denote by Comj , Ij ,M j
Ij the corresponding

values used in S's j-th query hj = (hj
i )i∈[`j ] to B. Here and in the following, we

consider recursive B-queries made by B during the veri�cation of openings as
made by S. We �rst de�ne and bound a number of �bad� events:

� badcoll occurs i� S reveals a messageM j
i to B for which there are two distinct

X1, X2 ∈ {0, 1}k/3 with RO(Comj , i,X1) = M j
i = RO(Comj , i,X2).

� badimg occurs i� S reveals a message M j
i to B for which an X with M j

i =
RO(Comj , i,X) exists, but M j

i has not been obtained through an explicit
RO-query (by either S or the SIM-SO-COM experiment).

� badbind occurs i� (Comj , Ij ,M j
Ij ) = (Com∗, I∗,M∗I∗) for some j.

� bad := badcoll ∨ badimg ∨ badbind.

These events occur only with negligible probability: informally, badcoll implies a
collision among 2k/3 uniformly distributed k-bit values, which is ruled out by a
birthday bound. badimg means that S guessed an element of a very sparse set.
Finally, badbind means that S broke Com∗'s binding property (or, rather, S broke
Com∗ in B). A detailed proof can be found in Lemma 4 below.

Now consider the following machine B′ which is almost identical to B (the
di�erence to B is emphasized):

1. On input Com, interpret Com as the description of two machines (S,R) as
in De�nition 1. Then, concurrently receive n Com-commitments, indexed by
i ∈ [n].

2. When all commitments are received, output a uniformly chosen I ∈ I.
3. Engage in |I| concurrent opening phases for the Com-instances with i ∈ I. If

all openings are valid (i.e., every receiver instance with i ∈ I outputs some
Mi 6= ⊥), proceed as follows. If every Mi is the result of an RO(Com, i,X)-
query of S (for the same and unique X ∈ {0, 1}k/3), then output {X}.
Otherwise, output ∅.

Denote by B′ the oracle that evaluates B′'s next-message function. We �rst
remark that B′ can be e�ciently simulated inside S: B′ running time is (roughly)
the same as B's running time, if we count oracle queries and the �nal computation
of the X as above. Furthermore, by de�nition, the output of B and B′ can di�er
only if

� there are multiple X with Mi = RO(Com, i,X) for some i ∈ I, or
� for some i ∈ I, Mi is not the result of an explicit RO-query of S, but there
exists an X with Mi = RO(Com, i,X) for all i ∈ I.

Suppose bad does not occur. Then ¬badcoll ensures that no multiple X with
Mi = RO(Com, i,X) exist, and ¬badimg ensures that allMi have been explicitly
queried as Mi = RO(Com, i,X) by either S or the SIM-SO-COM experiment.
Now since the SIM-SO-COM experiment makes only queries of the form M∗i =
RO(Com∗, i,X∗), this means that B and B′ can only di�er if Com = Com∗, and
if MI contains some Mi from M∗I∗ . On the other hand, ¬badbind implies that
then, MI must also contain some Mi′ not contained in M∗I∗ . By ¬badimg, then
Mi′ must have been explicitly queried by S through Mi′ = RO(Com∗, i′, X∗),
for the same X∗ as chosen by the SIM-SO-COM experiment to generate M∗i =
RO(Com∗, i,X∗).
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In other words, assuming ¬bad, in order to detect a di�erence between B and
B′, S must already have guessed the hidden X∗ used in the SIM-SO-COM exper-
iment. In particular, since up to that point, oracles B and B′ behave identically,
and S can simulate B′ internally, S can either extract the hidden X∗ from the
SIM-SO-COM experiment with oracles RO and X alone, or not at all. However,
since we de�ned RO independently and after X , these oracles are independent.
Hence, using RO and X alone, the view of S is independent of X∗ unless S
explicitly makes a RO-query involving X∗. Since X∗ ∈ {0, 1}k/3 is uniformly
chosen from a suitably large domain, and bad occurs with negligible probability,
we get that S's view is almost statistically independent of X∗. Consequently,
S's view is almost statistically independent of all M∗i with i 6∈ I∗. Hence, S can
produce outS = M∗ only with negligible probability.

It remains to prove that bad occurs only negligibly often.

Lemma 4. Event bad occurs only with negligible probability.

Proof. We show that any of the events badcoll, badimg, badbind occurs only with
negligible probability for any �xed i, j. The full claim then can be derived by
a union bound over i, j, and the individual events. So �rst �x i, j, and note
that the functions RO(Comj , i, ·) and RO(Com, i′, ·) are independent as soon
as Comj 6= Com or i 6= i′. Hence, for all of the events, we can ignore RO- and
B-queries with a di�erent Com or i, and assume that RO′(·) := RO(Comj , i, ·)
is a fresh random oracle.
badcoll: Using a birthday bound, we get

Pr
[
∃X1, X2 ∈ {0, 1}k/3, X1 6= X2 : RO′(X1) = RO′(X2)

]
≤ (2k/3)2

2k
,

which implies that there simply exists no M j
i which could raise badcoll,

except with probability at most 2−k/3,.
badimg: We show that S's chance to output Mi with Mi = RO′(s) for some s ∈
{0, 1}k/3, and such that X has not been queried to RO′-query, is negligible.
Now S's access to the B-oracle can be emulated using an oracle B′ that, upon
input Y , outputs the set of all X ∈ {0, 1}k/3 with RO′(X) = Y . Without
loss of generality, we may further assume that S never queries B′ with a Y
which has been obtained through an explicit RO′(X)-query. (Namely, unless
badcoll occurs, which happens only with negligible probability, B′'s answer
will then be {X}.)
Hence, whenever S receives an answer 6= ∅ from B′, it has already succeeded
in producing an Mi with RO′(X) = Mi for some X, and without querying
RO′(X). So without loss of generality, we can assume that S never queries
B′, and hence only produces such an Mi using access to RO and X alone.
Clearly, X does not help S, since X and RO are independent. But since
the set of all Y for which RO′(X) = Y for some X ∈ {0, 1}k/3 is sparse
in the set of all Y ∈ {0, 1}k, and S can only make a polynomial number of
RO-queries, S's success in producing such an Mi is negligible.
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badbind: Let i
I be the (unique) index for which B((hj

i )i∈[iI ]) outputs Ij . With-
out loss of generality, assume that S sets I∗ after B �rst outputs Ij =
B((hj

i )i∈[iI ]). (Otherwise, Ij = I∗ occurs only with probability 1/|I|, since
Ij is chosen uniformly and then independent of I∗.) We can also assume
that Comj = Com∗, since otherwise badbind cannot happen by de�nition.
Hence, S �rst generates a commit transcript (hj

i )i∈[iI ], then receives Ij and
sends I∗ = Ij to the SIM-SO-COM experiment, and only then receives mes-
sagesM∗I∗ . To achieve badbind in this situation, S must �nd a full transcript
hj such that M j

Ij = M∗I∗ . In particular, there is an i ∈ Ij such that S
opens the i-th commitment in hj to a value M∗i which S only sees after the
transcript of the commit phase is �xed.
Hence, if S achieves badbind with non-negligible probability, we can construct
the following PPT machine A. A �rst simulates S to extract h = hj , and
then rewinds S back to the point before it receivedM∗I∗ . Restarting S with
di�erent messages M∗I∗ then yields a transcript h′ that opens the same
commitments as in h to di�erent messages. This contradicts Lemma 1.

Taking things together, this shows that Advsim-so
Com∗,M∗,A,S,R is overwhelming

for the relation R(x, y) :⇔ x = y, the described A, and any PPT S. Hence
Com∗ is not SIM-SO-COM secure. It remains to argue that in the described
computational world, X still satis�es property P.

Lemma 5. X satis�es P.

Proof. Assume a PPT adversary A on X 's property P. Since X and P do not
query B or RO, A can do without external oracles RO and B, and use internal
simulations of RO and B instead. Using lazy sampling for RO, both simulations
can even be made PPT. (This includes B's inversion of RO, since we simulate
both B and RO. We omit the details.)

So without loss of generality, we can assume that A only uses X -queries when
interacting with P. Since we assumed that P holds in the standard model (i.e.,
without any auxiliary oracles), A's advantage Advprop

P,X ,A must be negligible.

This concludes the proof of Theorem 1.

The following corollary provides an instantiation of Theorem 1 for a number
of standard cryptographic primitives.

Corollary 1 (Black-box impossibility of non-interactive or perf. bind-
ing SIM-SO-COM). Let n and I as in Theorem 1. Then no non-interactive
or perfectly binding commitment scheme in the plain model (i.e., without trusted
set-up) can be proved simulatable under selective openings via a ∀∃semi-black-
box reduction to one or more of the following primitives: one-way functions,
one-way permutations, trapdoor one-way permutations, IND-CCA secure public
key encryption, homomorphic public key encryption.

The corollary is a special case of Theorem 1. For instance, to show Corollary 1
for one-way permutations, one can use the example X and P from above: X is a
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random permutation of {0, 1}k, and P models the one-way experiment with X .
Clearly, X satis�es P, and so we can apply Corollary 1. This yields impossibility
of relativizing proofs for SIM-SO-COM security from one-way permutations. We
get impossibility for ∀∃semi-black-box reductions since one-way permutations al-
low embedding, cf. Simon [44], Reingold et al. [41]. The other cases are similar.
Note that while it is generally not easy to even give a candidate for a crypto-
graphic primitive in the standard model, it is easy to construct an idealized, say,
encryption scheme in oracle form.

Of course, it will not be possible to �nd a real implementation with all the
properties of, say, an ideal one-way permutation. For instance, loosely speak-
ing, an ideal one-way permutation contains an exponential amount of entropy.
Conversely, the entropy contained in any real one-way permutation is upper
bounded by the size of its key. For any e�cient implementation of a one-way
permutation in the usual sense, this key will be of polynomial size. (A similar
argument holds for one-way functions.) Intuitively, this shows the limitations of
black-box impossibility results in the style of Corollary 1. In particular, we do
not exclude commitment schemes whose security is built on the fact that the
used one-way permutation contains only a polynomial amount of entropy. The
essence of Corollary 1 hence is: we exclude only constructions that solely build
on the, say, one-way property of the employed permutation, but not in any way
on how this one-wayness is achieved. We only show that security proofs do not
exist which work for any, possibly not e�ciently realizable, black box that has
the assumed one-way property.

We stress that Corollary 1 makes no assumptions about the nature of the
simulation (in the sense of De�nition 8). In particular, the simulator may freely
use, e.g., the code of the adversary; the only restriction is black-box access to
the underlying primitive. As discussed in the introduction, this is quite di�erent
from the result one gets upon combining Goldreich and Krawczyk [27] and Dwork
et al. [22]: essentially, combining [27, 22] shows impossibility of constructing S
in a black-box way from A (i.e., such that S only gets black-box access to A's
next-message function).

Finally, we emphasize that our results do not necessarily hold when assuming
a model with trusted set-up information. In fact, it is possible to construct non-
interactive SIM-SO-COM secure commitment schemes relative to a common
reference string. See Section 5 for a detailed explanation.

Generalizations. First, Corollary 1 constitutes merely an example instanti-
ation of the much more general Theorem 1. Second, the proof also holds for
a relaxation of SIM-SO-COM security considered by Dwork et al. [22], De�ni-
tion 7.3, where adversary and simulator approximate a function of the message
vector.

3.2 Possibility using non-black-box techniques

Non-black-box techniques vs. interaction. Theorem 1 essentially shows
that SIM-SO-COM security cannot be achieved unless one uses non-black-box
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techniques or interaction. In this section, we will investigate the power of non-
black-box techniques to achieve SIM-SO-COM security. As it turns out, for our
purposes a concurrently composable zero-knowledge argument system is a suit-
able non-black-box tool.7 We stress that the use of this zero-knowledge argument
makes our scheme necessarily interactive, and so actually circumvents Theorem 1
in two ways: by non-black-box techniques and by interaction. However, from a
conceptual point of view, our scheme is �non-interactive up to the zero-knowledge
argument.� In particular, our proof does not use the fact that the zero-knowledge
argument is interactive. (That is, if we used a concurrently composable non-in-
teractive zero-knowledge argument in, say, the common reference string model,
our proof would still work. See also the discussion in Section 5 on how this relates
to our impossibility results.)

The scheme. For our non-black-box scheme, we need an interactive argument
system IP with perfect completeness and negligible soundness error, such that IP
is zero-knowledge under concurrent composition. We also need a perfectly bind-
ing non-interactive commitment scheme Comb. Both these ingredients can be
constructed from one-way permutations. To ease presentation, we only describe
a bit commitment scheme, which is easily extended (along with the proof) to the
multi-bit case. In a nutshell, the sender SZK commits twice (using Comb) to the
the same bit and proves in zero-knowledge (using IP) that the committed bits are
the same.8 In the opening phase, the sender opens one (randomly selected) com-
mitment. Note that this overall commitment scheme is binding, since IP ensures
that both commitments contain the same bits, and the underlying commitment
Comb is binding. For a SIM-SO-COM simulation, we generate inconsistent overall
commitments which can later be opened arbitrarily by choosing which individual
Comb-commitment is opened. We can use the simulator of IP to generate fake
consistency proofs for these inconsistent commitments. (Since we consider many
concurrent commitment instances in our SIM-SO-COM experiment, we require
concurrent composability from IP for that.)

Scheme 1 (Non-black-box commitment scheme ZKCom). Let Comb =
(Sb,Rb) be a perfectly binding non-interactive commitment scheme. Let IP =
(P,V) be an interactive argument system for NP which enjoys perfect complete-
ness, has negligible soundness error, and which is zero-knowledge under concur-

7 We require concurrent composability since the SIM-SO-COM de�nition considers
multiple, concurrent sessions of the commitment scheme.

8 We note that a FOCS referee, reviewing an earlier version of this paper without
ZKCom, also suggested to employ zero-knowledge to prove consistency of a given
commitment. This suggestion was independent of the eprint version of this paper
which at that time already contained our scheme ZKCom. Furthermore, a Eurocrypt
referee, reviewing a version of the paper with ZKCom, remarked that alternative
constructions of a SIM-SO-COM secure commitment scheme are possible. A more
generic construction could be along the lines of �commit using a perfectly binding
commitment, then prove consistency of commitment or opening using concurrent
zero-knowledge.�
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rent composition. De�ne ZKCom = (SZK,RZK) for the following machines SZK

and RZK:
� Commitment to bit b:

1. SZK computes (comj , decj) ← Sb(b) for j ∈ {0, 1}, and then sends
(com0, com1) to RZK.

2. SZK uses IP to prove to RZK that com0 and com1 commit to the same
bit.9

� Opening:
1. SZK uniformly chooses j ∈ {0, 1} and sends (j, decj) to RZK.

The security of ZKCom. It is straightforward to prove that ZKCom is a hid-
ing and binding commitment scheme. (We stress, however, that Comb's perfect
binding property is needed to prove that ZKCom is binding; otherwise, the zero-
knowledge argument may become meaningless.) More interestingly, we can also
show that ZKCom is SIM-SO-COM secure:

Theorem 2 (Non-black-box possibility of SIM-SO-COM). Fix n and I
as in De�nition 8. Then ZKCom is simulatable under selective openings in the
sense of De�nition 8.

Proof outline. We start with the real SIM-SO-COM experiment with an ar-
bitrary adversary A. As a �rst step, we substitute the proofs generated during
the commitments by simulated proofs. Concretely, we hand to A proofs for the
consistency of the commitments that are generated by a suitable simulator S∗.
By the concurrent zero-knowledge property of IP, such an S∗ exists and yields
indistinguishable experiment outputs. Note that S∗ does not need witnesses to
generate valid-looking proofs, but instead uses (possibly rewinding or even non-
black-box) access to A. Hence, we can substitute all ZKCom-commitments with
inconsistent commitments of the form (com0, com1), where com0 and com1 are
Comb-commitments to di�erent bits. Such a ZKCom-commitment can later be
opened arbitrarily. By the computational hiding property of Comb (and since we
do not need witnesses to generate consistency proofs anymore), this step does
not change the output distribution of the experiment signi�cantly. But note that
now, the initial generation of the commitments does not need knowledge of the
actual messages. In fact, only the messages MI of the actually opened commit-
ments need to be known at opening time. Hence, at this point, the modi�ed
experiment is a valid simulator in the sense of the ideal SIM-SO-COM exper-
iment. Since the experiment output has only been changed negligibly by our
modi�cations, we have thus constructed a successful simulator in the sense of
De�nition 8.

A full proof is given now.

Proof (of Theorem 2). Assume arbitrary n, I,M, R, and A as in De�nition 8.
We proceed in games.

9 Formally, the corresponding language L for IP consists of statements x = (com0,
com1) and witnesses w = (dec0, dec1) such that R(x,w) i� Rb(com0, dec0) =
Rb(com1, dec1) ∈ {0, 1}.
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Game 0 is the real SIM-SO-COM experiment Expsim-so-real
ZKCom,M,A,R for ZKCom.

De�ne the random variable out0 as the output of the experiment, so that

Pr
[
Expsim-so-real

ZKCom,M,A,R = 1
]

= Pr [out0 = 1] .

In Game 1, we interpret the �rst stage of the experiment as a veri�er V ∗ in
the sense of De�nition 5. To this end, we constructively de�ne random variables
xi,k, wi,k, z

D
k , z

V ∗

k as follows:
1. sample M = (Mi)i∈[n] ∈ {0, 1}n fromM,
2. uniformly and independently choose n bits j1, . . . , jn,
3. for all i ∈ [n] and j ∈ {0, 1}, compute (comj

i, decj
i)← Sb(Mi),

4. de�ne xi,k = (com0
i, com1

i), wi,k = (dec0
i, dec1

i), zV ∗

k = ε and zD
k =

(M, (ji, decji
i)i∈[n]).

Using this notation, the commitment stage of Expsim-so-real
ZKCom,M,A,R can be ex-

pressed as an interaction of n concurrent instances of prover P with a suitable
veri�er V ∗ as in De�nition 5.10 Concretely, we de�ne a veri�er V ∗ that, on input
(xi,k)i∈[n] = (com0

i, com1
i)i∈[n], internally simulates Expsim-so-real

ZKCom,M,A,R up to the
point where A outputs I. The interactive arguments which show that com0

i and
com1

i commit to the same bit are performed concurrently with (n instances of)
a prover P that gets xi,k = (com0

i, com1
i) and wi,k = (dec0

i, dec1
i) as input.

Finally, V ∗ outputs outV ∗ = I, so that I will be part of the transcript

TP,V ∗ = 〈P((xi,k, wi,k)i∈[n]), V ∗((xi,k)i∈[n], z
V ∗

k )〉.

We outsource the second stage of the attack into a suitable distinguisher D.
Concretely, we de�ne D such that, given zD

k = (M, (ji, decji
i)i∈[n]) and a tran-

script TP,V ∗ (which contains outV ∗ = I), D computes outA ← A((ji, decji
i)i∈I)

and outputs out1 = R(M, outA).
This setting is merely a reformulation of Expsim-so-real

ZKCom,M,A,R as a concurrent
zero-knowledge argument, so we have that

Pr [out1 = 1] = Pr [out0 = 1] .

InGame 2, we use IP's concurrent zero-knowledge property. That is, Game 1
already speci�es a PPT veri�er V ∗ and a PPT distinguisherD, as well as random
variables (x,w), zV ∗ , and zD, as in De�nition 5. Hence our assumption on IP
guarantees the existence of a PPT simulator S∗ such that AdvcZK

V ∗,S∗,(x,w),D,zV ∗ ,zD

is negligible. We substitute V ∗ (along with all instances of P) from Game 1 with
that simulator S∗ in Game 2. Note that now, the execution of Game 2 does not
require wi,k = (dec0

i, dec1
i) anymore, but instead only one opening decji

i for
each argument session. If we let out2 denote D's output (on input zD

k and outS∗)
in this setting, we get that

Pr [out1 = 1]− Pr [out2 = 1] = AdvcZK
V ∗,S∗,(x,w),D,zV ∗ ,zD

10 Note that De�nition 5 trivially implies security for all distributions on (x,w), zV ∗ and
zD. Also recall that De�nition 5 models two di�erent auxiliary inputs zV ∗ (for V ∗

and S∗) and zD (for D). We emphasize again that this is without loss of generality,
cf. the discussion after De�nition 4.
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is negligible.
In Game 3, we use Comb's hiding property. Namely, we now change the

generation of the xi,k = (com0
i, com1

i). While we still generate comji
i as a

commitment to Mi, we now de�ne com1−ji
i as a commitment to 1−Mi, so that

com0
i and com1

i are commitments to di�erent bits. Since dec1−ji
i is never used

in Game 2, this does not result in a detectable change in D's output. Concretely,
we have that

Pr [out3 = 1]− Pr [out2 = 1] = Advhiding
Comb,A′

for a suitable adversary A′ on Comb's hiding property, so that Pr [out3 = 1] −
Pr [out2 = 1] is negligible.

To constructGame 4, observe that in Game 3, distinguisherD only needs the
openings decji

i for i ∈ I from its input zD
k = (M, (decji

i)i∈[n]). We can exploit
this fact as follows. We now generate the commitments xi,k = (com0

i, com1
i) and

openings decji
i, as well as the ji ∈ {0, 1} slightly di�erently. Concretely, for each

message bit Mi, we �rst choose a random bit bi and compute (com0
i, dec0

i) ←
Sb(bi) and (com1

i, dec1
i) ← Sb(1 − bi). This modi�cation does not change S∗'s

view. When D requires an opening decji
i (for i ∈ I), we de�ne ji = bi ⊕Mi, so

that decji
i opens the �right� message Mi. This does not change the view of S∗

or D, so that we have

Pr [out4 = 1] = Pr [out3 = 1] .

The crucial conceptual di�erence to Game 3 is that now the execution of D
requires only knowledge about the message parts (Mi)i∈I selected by S∗ and
not the full message vector M.

We can now reformulate Game 4 as an ideal SIM-SO-COM experiment. First,
we de�ne a simulator S as follows: �rst, S prepares bits bi and commitments
(com0

i, com1
i) as in Game 4 and then runs an internal simulation of S∗ on

these commitments. Upon obtaining I from S∗, S outputs I. Then, upon input
(Mi)i∈I , S runs an internal simulation of A on input (ji, decji

i)i∈I for ji =
bi ⊕Mi as in Game 4. Finally, S outputs outS = outA. By construction, the
ideal SIM-SO-COM experiment Expsim-so-ideal

M,S,R with this S is only a reformulation
of Game 4, so that

Pr
[
Expsim-so-ideal
M,S,R = 1

]
= Pr [out4 = 1] .

Putting things together, we get that

Advsim-so
ZKCom,M,A,S,R = Pr

[
Expsim-so-real

ZKCom,M,A,R = 1
]
− Pr

[
Expsim-so-ideal
M,S,R = 1

]
is negligible, which proves the theorem.

Where is the non-black-box component? Interestingly, the used argument
system IP itself can well be black-box zero-knowledge (where black-box zero-
knowledge means that the simulator S∗ from De�nition 5 has only black-box
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access to the next-message function of V ∗). The essential fact that allows us
to circumvent our negative result Theorem 1 is the way we employ IP. Namely,
ZKCom uses IP to prove a statement about two given commitments (com0, com1).
This proof (or, rather, argument) uses an explicit and non-black-box description
of the employed commitment scheme Comb. It is this argument that cannot even
be expressed when Comb makes use of, say, a one-way function given in oracle
form.

The role of the commitment randomness. Observe that the opening of a
ZKCom-commitment does not release all randomness used for constructing the
commitment. In fact, it is easy to see that our proof would not hold if SZK opened
both commitments com0 and com1 in the opening phase. Hence, ZKCom is not
suitable for settings in which an opening corresponds to a corruption of a party
(e.g., in a multi-party computation setting), and when one cannot assume no
trusted erasures.

Generalizations. First, ZKCom can be straightforwardly extended to a multi-
bit commitment scheme, e.g., by running several sessions of ZKCom in parallel.
Second, ZKCom is SIM-SO-COM secure also against adversaries with auxiliary
input z: our proof holds literally, where of course we also require security of
Comb against non-uniform adversaries.

4 An indistinguishability-based de�nition

Motivated by the impossibility result from the previous section, we now relax
De�nition 8 as follows:

De�nition 10 (Indistinguishable under selective openings). Let n =
n(k) > 0 be polynomially bounded, and let I = (In)n be a family of sets such
that each In is a set of subsets of [n]. A commitment scheme Com = (S,R) is
indistinguishable under selective openings (short IND-SO-COM secure) i� for
every PPT n-message distribution M, and every PPT adversary A, we have
that Advind-so

Com,M,A is negligible. Here

Advind-so
Com,M,A := Pr

[
Expind-so-real

Com,M,A = 1
]
− Pr

[
Expind-so-ideal

Com,M,A = 1
]
,

where the experiments Expind-so-real
Com,M,A and Expind-so-ideal

Com,M,A are de�ned as follows:

Experiment Expind-so-real
Com,M,A

M = (Mi)i∈[n] ←M
I ← 〈A(recv), (Si(com,Mi))i∈[n]〉
outA ← 〈A(open), (Si(open))i∈I〉

return A(guess,M)

Experiment Expind-so-ideal
Com,M,A

M = (Mi)i∈[n] ←M
I ← 〈A(recv), (Si(com,Mi))i∈[n]〉
outA ← 〈A(open), (Si(open))i∈I〉
M′ ←M |MI

return A(guess,M′)

Again, we require from A that I ∈ Ik, and we denote by 〈A, (Si)i〉 the output of
A after interacting concurrently with instances Si of S. Furthermore, M | MI

denotes the message distributionM conditioned on the values of MI .
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On the conditioned distributionM |MI . We stress that, depending onM,
it may be computationally hard to sample M′ ← M | MI , even if (the uncon-
ditioned) M is PPT. This might seem strange at �rst and inconvenient when
applying the de�nition in some larger reduction proof. However, there simply
seems to be no other way to capture indistinguishability, since the set of opened
commitments depends on the commitments themselves. In particular, in general
we cannot predict which commitments the adversary wants opened, and then,
say, substitute the not-to-be-opened commitments with random commitments.
What we chose to do instead is to give the adversary either the full message
vector, or an independent message vector which �could be� the full message vec-
tor, given the opened commitments. We believe that this is the canonical way
to capture secrecy of the unopened commitments under selective openings. We
should also stress that it is this de�nition that turns out to be useful in the
context of interactive argument systems, see Section 6.

The relation between SIM-SO-COM and IND-SO-COM security. Un-
fortunately, we (currently) cannot prove that SIM-SO-COM security implies
IND-SO-COM security (although this seems plausible, since usually simulation-
based de�nitions imply their indistinguishability-based counterparts). Techni-
cally, the reason why we are unable to prove an implication is the conditioned
distribution M | MI in the ideal IND-SO-COM experiment, which cannot be
sampled from during an (e�cient) reduction.

A relaxation. Alternatively, we could let the adversary predict a predicate
π of the whole message vector, and consider him successful if Pr [b = π(M)]
and Pr [b = π(M′)] for the alternative message vector M′ ←M |MI di�er non-
negligibly. We stress that our upcoming negative result (as well as the application
in Section 6) also applies to this relaxed notion.

4.1 Impossibility from black-box reductions

Theorem 3 (Black-box impossibility of perf. binding IND-SO-COM,
most general formulation). Let n = n(k) = 2k, and let I = (In)n with
In = {I ⊆ [n] | |I| = n/2} denote the set of all n/2-sized subsets of [n]. Let
X be an oracle that satis�es a property P even in presence of an EXPSPACE-
oracle. We also assume that X is computable in EXPSPACE.11 Then, there
exists a set of oracles relative to which X still satis�es P, but no perfectly binding
commitment scheme is indistinguishable under selective openings.

Proof outline. Similarly to Theorem 1, we specify an oracle RO which induces
a message distribution M∗. This time, however, RO maps En/2+1-elements to
message vectors in En, where E = {0, 1}k is the domain of each individual
message. Hence, n/2 messages usually do not �x the whole message vector, but
more messages do. Now �x any perfectly binding commitment scheme Com∗. We

11 Examples of such X are random oracles or ideal ciphers. It will become clearer how
we use the EXPSPACE requirement in the proof.

24



de�ne a breaking oracle B that, like the B from Theorem 1, asks for n Com∗-
commitments and subsequent openings of a random subset I ∈ In of these
commitments. If all openings are valid, B extracts the whole message vector
in the commitments (note that this is possible since Com∗ is perfectly binding),
and returns a �close� (with respect to Hamming distance) element in the message
distributionM∗ if there is a su�ciently close one.

It is easy to see that an adversary can use B to obtain the whole message
vector M in the real IND-SO-COM experiment. But a message vector freshly
sampled fromM∗, conditioned on the opened messages MI , will most likely be
di�erent from M. Hence, our adversary easily distinguishes the real from the
ideal IND-SO-COM experiment.

The main part of the proof shows that oracle B is useless to an adversary
attacking X 's property P. Assume �rst that the commitment scheme Com with
respect to which an adversary A on X queries B is perfectly binding. In that
case, a somewhat technical but straightforward combinatorial argument shows
that A's successfully opened messages MI , together with A's queries to RO,
determine B's answer (except with small probability). Hence A can use internal
simulations of B and RO instead of the original oracles, and hence property
P of X is not damaged by the presence of B. To ensure that B is only useful
for perfectly binding commitment schemes Com, we let B test whether Com is
perfectly binding. Since we demand that Com is perfectly binding, this test is
independent of the random coins used by X . Indeed, B needs to check that
for all syntactically possible commitments and decommitments, and all possible
random coins used by X , the opened message is unique. Hence, by assumption
about X , this test can also be performed by A using an EXPSPACE-oracle, and
the above proof idea applies.

A full proof follows.

Proof (of Theorem 3). Let E = {0, 1}k and ε := .01. Let EXPSPACE be an
EXPSPACE-oracle. We stress that EXPSPACE can be used to perform ine�-
cient computations, but EXPSPACE itself never makes oracle queries (e.g., to
X or the oracles RO and B presented below). Let RO be a random function
from En/2+1 to En. We write M ∈ RO when M ∈ En lies in the range of RO.
For M,M′ ∈ En and ε > 0, we write M ≡ε M′ i� M and M′ coincide in at
least d(1− ε)ne components (i.e., i� there exists R ⊆ [n], |R| ≥ d(1− ε)ne, with
MR = M ′R). To construct our last oracle B, let B be the machine that proceeds
as follows.

1. Upon receiving Com as input, check that Com describes a perfectly binding
(but not necessarily hiding) commitment scheme (see the discussion after the
description of B). If not, reject with output ⊥. If yes, concurrently receive n
Com-commitments, indexed by i ∈ [n].

2. When all commitments are received, output a uniformly chosen I ∈ I.
3. Engage in |I| concurrent opening phases for the Com-instances with i ∈ I.

If all openings are valid (i.e., every Com-receiver instance with i ∈ I outputs
some Mi 6= ⊥), then extract the whole message vector M = (Mi)i∈[n] ∈
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E
n from the commitments (this is possible uniquely since Com is perfectly

binding). Output the set of all M′ ∈ RO with M ′I = MI and M′ ≡ε M.
We should comment on B's check whether Com is perfectly binding. We want
that, for all possible values of RO and states of X , and for all syntactically
allowed commitments, there is at most one message Mi to which a commitment
can be opened in the sense of Com. Note that by assumption about X , this condi-
tion can be checked using EXPSPACE . Concretely, we let EXPSPACE iterate
internally over all possible internal states of X and B, and over all possible ran-
dom tapes of an honest veri�er. EXPSPACE then checks whether a syntactically
possible commitment along with two openings to di�erent messages exists. At
this point, our requirement on X should become clear: We require that X uses
only an exponentially large random tape; furthermore, X 's computation should
be simulatable by EXPSPACE for any �xed random tape. We completely ignore
whether or not Com is hiding.

Again, we cannot use B directly, sinceB is stateful, and black-box separations
require stateless oracles. So let B be the oracle that evaluates B's next-message
function, suitably padded as in the proof of Theorem 1. We note that, similarly
to Lemma 1, we can derive that the perfect binding property of a perfectly
binding commitment scheme is preserved by the rewindable formalization in B.
In particular, (the transcript of) a commitment phase uniquely determines the
only possible opening message.

Lemma 6. Let Com∗ be a perfectly binding commitment scheme (that may use
all of the described oracles in its algorithms). Then, Com∗ is not indistinguishable
under selective openings.

Proof. Consider the n-message distributionM∗ that samples random elements
in the range of RO. (I.e., M∗ outputs RO(X) for a uniformly sampled X ∈
E

n/2+1.) Consider the following adversary A that relays between the real or
ideal IND-SO-COM experiment and oracle B. (Again, we silently assume that
A pre�xes queries to B with the respective message history.)
1. Initially, send Com∗ to B.
2. Relay the n commitments from the IND-SO-COM experiment to B.
3. Upon receiving I∗ ∈ I from B, send I∗ to the IND-SO-COM experiment.
4. Upon receiving |I∗| openings from the experiment, relay these openings to B.
5. Upon receiving a challenge message M from the experiment, and a set S ⊆
E

n from B, output outA = 1 i� S = {M}.
First, we claim that the probability for S = {M∗} is overwhelming, where
M∗ denotes the message vector sampled by the IND-SO-COM experiment. By
construction of B, we have M∗ ∈ S. Furthermore, for any M′ ∈ S, it must
hold that M′ ≡ε M∗. But for any distinct X1, X2 ∈ En/2+1, we have that
RO(X1) ≡ε RO(X2) with probability

(
n

d(1−ε)ne
)
/|E|d(1−ε)ne. A union bound

over all M′ ∈ RO shows that the probability that there exists an M′ ∈ S,
M′ 6= M∗ is negligible. Hence S = {M∗} with overwhelming probability.

Thus, A outputs 1 in the real IND-SO-COM experiment with overwhelm-
ing probability, since then M = M∗. However, in the ideal IND-SO-COM ex-
periment, M 6= M∗ with overwhelming probability (since for uniformly chosen

26



M∗ ∈ RO, the expected number of M ∈ RO withMI = M∗I is about |E| = 2k).
Consequently, A outputs 1 in the ideal IND-SO-COM experiment only with neg-
ligible probability. We get that Advind-so

Com∗,M∗,A is overwhelming, which proves the
lemma.

Lemma 7. X satis�es P.

Proof. Consider a PPT adversary A on X 's property P. Note that A may use
RO, B, and EXPSPACE freely. We proceed in games to show that Advprop

P,X ,A is
negligible.

Let Game 0 by the original security experiment in which A attacks X 's
property P. We say that a B-query is a commit query (resp. open query) if it
�nishes the commitment (resp. opening) phase in the corresponding interaction
with B, such that B responds with an I ∈ I (resp. a set of M′ ∈ RO). In the
following, we count a recursive B-query made by B in the role of R as made by
A. Without loss of generality, we may assume that A always makes precisely
p(k) open queries for a �xed polynomial p, and never makes a query twice. We
also assume that for any of A's open queries, A made a corresponding commit
query �rst.12 Let out0 denote P's output in Game 0. By de�nition, we have

Pr [out0 = 1]− 1/2 = Advprop
P,X ,A.

In Game i (for 0 < i ≤ p(k)), we use an oracle Bi instead of oracle B. Here,
Bi behaves like B, except that Bi answers each of A's �rst i opening queries as
follows. Here, MI denotes the opened messages, as before.
� If all openings are valid, then return the set of all M′ ∈ RO which have
been explicitly obtained through RO-queries by A (or Bi, in the role of a
receiver), and for which M ′I = MI .

We stress that oracle Bi does not break a commitment or use internal access
to RO until the (i + 1)-th open query. Let out i denote P's output in Game i.
To show that out i is not signi�cantly a�ected by our changes, �x an i. Let h
denote A's i-th open query in Game i. Let S = Bi(h) denote the answer A gets
in Game i, and let S′ = Bi−1(h) denote the answer that A would have received
in Game i− 1. We show in Lemma 8 below that S = S′ except with probability
asymptotically smaller than 2−3εk, so that

Pr [out i = 1]− Pr [out i−1 = 1] ≤ 2−(ε/2)k

for su�ciently large k and all i ∈ [p(k)].
Observe that in Game p(k), Bp(k) and RO can both be simulated e�ciently

inside A. Indeed, Bp(k) only needs knowledge about A's RO-queries, as well as
access to EXPSPACE to check whether a given commitment scheme is perfectly
binding. Hence,

Advprop
P,X ,A′ = Pr

[
outp(k) = 1

]
− 1/2

12 In order to violate this assumption, A would have to guess an I ∈ I as chosen by B
upon the corresponding commit query. Since |I| is large, we ignore this possibility.
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for a suitable PPT adversary A′ that internally simulates A, RO, and Bp(k),
and only needs access to EXPSPACE . By assumption about X , Advprop

P,X ,A′ is

negligible, and hence so must be Advprop
P,X ,A.

It remains to prove that, in the situation of Lemma 7, S = S′ with high proba-
bility.

Lemma 8. In the situation of Lemma 7, Pr [S 6= S′] ≤ 2−(ε/2)k for su�ciently
large k.

Combining Lemmas 9, 10, 11, and 12 below shows Lemma 8.

Lemma 9. In the situation of Lemma 7, |S| ≤ 1 except with probability at most
q(k)2−k for some polynomial q.

Proof. We interpret the whole Game i (including A, P, X , Bi, and EXPSPACE)
as a machine A′ interacting with RO. Note that A′ may be computationally un-
bounded, but only makes a polynomial number of RO-queries, at least until A's
i-th open query. LetQRO denote the set ofRO-queries of A′. Now |S| > 1 implies
that there are X1, X2 ∈ QRO with X1 6= X2, such that RO(X1),RO(X2) ∈ S,
and so RO(X1)I = RO(X2)I . However, the statistical properties of RO imply
that for any X1, X2 ∈ QRO, RO(X1) and RO(X2) match in at least one com-
ponent with probability at most n2−k. A union bound over all such pairs shows
the claim.

Lemma 10. In the situation of Lemma 7, |S′| ≤ 1 except with probability at
most q(k)2−k for some polynomial q.

Proof. As in Lemma 9, we interpret Game i as a machine A′ interacting with
RO. Again, let QRO denote the set of RO-queries of A′. Now let X be the set of
all X ∈ En/2+1 \QRO with RO(X)I = MI . Using, e.g., Chebyshev's inequality,
we get |X| < 2|E|, except with probability at most 2−k. Furthermore, QRO
contains at most one query X with RO(X)I = MI except with probability at
most q1(k)2−k for some polynomial q1 (with similar reasoning as in Lemma 9).
Let X′ := X ∪ {X} for that X ∈ QRO, or X′ := X if no such X exists. By the
preceding discussion, |X′| ≤ 2E except with probability (q1(k) + 1)2−k.

Now |S′| > 1 implies that X1, X2 ∈ X′ exist, such that X1 6= X2 but
RO(X1) ≡ε M ≡ε RO(X2), so RO(X1) ≡2ε RO(X2). Observe that the val-
ues RO(X) for X ∈ X′ are independent, conditioned only on RO(X)I = MI .
For any �xed X1, X2 ∈ X′ with X1 6= X2, the probability that RO(X1) ≡2ε

RO(X2) is
(

n/2
d(1/2−2ε)ne

)
/|E|d(1/2−2ε)ne, which is less than 2−3k−2 for su�ciently

large k. Assuming that |X′| ≤ 2|E| = 2k+1, a union bound yields that no such
X1, X2 exist, and hence |S′| ≤ 1, except with probability 2−k. Summing up
shows the claim.

Lemma 11. In the situation of Lemma 7, we have S = ∅ and |S′| = 1 simulta-
neously with probability at most q(k)2−k/2 for some polynomial q.
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Proof. Let bad denote the event that S = ∅ but S′ = {M′} for some M′,
and let badj denote the event that bad occurs and A's i-th open query refers
to A's j-th commit query. Since A makes only polynomially many Bi-queries,
there is a polynomial q1 = q1(k) and a function j = j(k) such that Pr [badj ] ≥
Pr [bad] /q1(k).

Consider the machine A′ that simulates Game i and interacts externally
only with oracle RO. Call I1 ∈ I the answer of Bi to A's j-th commit query.
After A submits its i-th open query, A′ rewinds the simulation back to A's j-th
commit query, and then restarts with a freshly sampled I2 ∈ I as Bi's answer to
A's j-th commit query. By badj,1, resp. badj,2, we denote the events that badj

occurs before, resp. after the rewinding. It is clear that Pr [badj,1] = Pr [badj,2] =
Pr [badj ], but unfortunately, the events badj,1 and badj,2 may be dependent.
We have to work to establish that badj,1 and badj,2 occur simultaneously with
su�ciently large probability. Consider a pre�x Ej of A

′'s execution until A's j-th
commit query. Given any such Ej and a �xed oracle RO, the events badj,1 and
badj,2 are independent and occur with the same probability, so that

Pr [badj,1 ∧ badj,2] =
∑

Ej ,RO
Pr [badj,1 ∧ badj,2 | Ej ,RO] · Pr [Ej ,RO]

=
∑

Ej ,RO
Pr [badj,1 | Ej ,RO]2 · Pr [Ej ,RO]

(∗)
≥

 ∑
Ej ,RO

Pr [badj,1 | Ej ,RO] · Pr [Ej ,RO]

2

= Pr [badj,1]
2 = Pr [badj ]

2 ≥ Pr [bad]2 /q1(k)2,

where (∗) uses that
∑

i cix
2
i ≥ (

∑
i cixi)2 for ci, xi ≥ 0 with

∑
i ci = 1 by

Jensen's inequality.
Let QRO,1 denote the set of A′'s RO-queries before the rewinding, and let

QRO,2 denote the set of A
′'s RO-queries after the rewinding and before A's j-th

commit query. The rationale here is that QRO,1 are A's queries in the run related
to I1, and QRO,2 are A's queries in the run related to I2. Note that QRO,1 and
QRO,2 share A's queries before the j-th commitment. We write RO(QRO,i) for
the set of all RO(X) for X ∈ QRO,i.

Now badj,1 ∧ badj,2 implies that A opens two subsets MI1 and MI2 message
vector M inside the j-th commit query, such that there exist M1,M2 ∈ RO
with the following properties:
� M1

I1 = MI1 and M2
I2 = MI2 ,

� M1 ≡ε M ≡ε M2 and hence M1 ≡2ε M2,
� M1 6∈ RO(QRO,1) and M2 6∈ RO(QRO,2).

We claim that M1 = M2 with high probability. To see this, let M be set of all
M′ ∈ RO \ RO(QRO,1) which satisfy M ′I1∩I2 = MI1∩I2 . A simple calculation
shows that m := |I1 ∩ I2| ≥ n/10 except with probability at most 2−k for
su�ciently large k. Now |M|'s expected value is, depending on |QRO,1|, at most
|E|n/2+1−m. A Chebyshev bound as in Lemma 10 yields that |M| ≤ |E|n/2−m+2
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except with probability at most q2(k)2−k for some polynomial q2. So assume
|I1 ∩ I2| ≥ n/10 and |M| ≤ |E|n/2−m+2. Then, for any two M1,M2 ∈ M with
M1 6= M2, we have M1 ≡2ε M2 with probability at most

(
n−m
b2εnc

)
/|E|n−m−b2εnc.

A simple calculation and a union bound over all M1,M2 ∈M yield that there do
not exist M1,M2 ∈M with M1 ≡2ε M2 yet M1 6= M2, except with probability
at most q3(k)2−k for some polynomial q3. So for the M1,M2 guaranteed by
badj,1 ∧ badj,2, either M1 = M2, or M2 6∈M with high probability.

Now M2 6∈ M implies M2 = RO(X) for some X ∈ QRO,1, and badj,2 even
dictates X ∈ QRO,1 \QRO,2. Put di�erently, M2 6∈M implies that in the execu-
tion after the rewinding,MI2 = M2

I2 contains a component of anRO-image M2

obtained (independently, since M2 6∈ QRO,2) before the rewinding. By symme-
try, the probability that this happens equals the probability that MI1 contains
a component of an RO-image M1 queried after the rewinding. However, this
essentially means that A′ has guessed a component of the result of an upcoming
RO-query, which can happen with probability at most q4(k)2−k for some poly-
nomial q4 by the statistical properties of RO. We conclude that hence, M2 ∈M
and so M1 = M2 except with probability at most q5(k)2−k for a polynomial q5.

Finally, a counting argument shows that |I1 ∪ I2| < n/2 + 2 happens with
probability less than 2−k for large enough k. Summarizing, badglue := badj,1 ∧
badj,2 ∧ (M1 = M2) ∧ (|I1 ∪ I2| ≥ n/2 + 2) happens with probability at least

Pr [bad]2−q6(k)2−k for some polynomial q6. But badglue implies that A′ has found
J := I1∪I2 with |J | ≥ n/2+2, such that there exists an M′ := M1 = M2 ∈ RO
with M ′J = MJ , and A′ has not obtained M′ through an explicit RO-query.
Another Chebyshev bound shows that no such M′ exists, except with probability
(over the images RO \ RO(QRO,1 ∪ QRO,2) not queried by A′) at most 2−k.
Hence, Pr [badglue] ≤ 2−k, so that we �nally have Pr [bad] ≤ q(k)2k/2 for some
polynomial q.

Lemma 12. In the situation of Lemma 7, we have |S| = 1 and S′ = ∅ simulta-
neously with probability at most 2−(ε/2)k for large enough k.

Proof. Again, we interpret the whole Game i (except for RO) as a machine A′

interacting with RO. As in Lemma 11, A′ waits for A's i-th open query MI ,
and then rewinds the whole game back to A's j-th commit query. Again, A′ re-
samples an I ← I as a fresh answer to A's j-th commit query, in the hope that
A opens MI in the i-th open query. However, this time A′ repeats this process
p(k) times for a suitable number p(k) to be determined later. Let S` and I`

denote the values of I and S from the `-th rewinding.

Now �x random tapes for all machines simulated inside A′, and �x an RO.
This means that the only randomness during the execution of A′ comes from
the choice of the I`. Let bad denote the event that |S| = 1 but S′ = ∅, and
let badj denote the event that bad occurs and A's i-th open query refers to A's
j-th commit query. Since A makes only polynomially many Bi-queries, there is a
polynomial q = q(k) and a function j = j(k) such that Pr [badj ] ≥ Pr [bad] /q(k),
where the probability is only over I ∈ I.
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Suppose that Pr [bad] > 2−(ε/2)k for contradiction, so that Pr [badj ] > 2−εk

for large enough k. Let I ′ ⊆ I be the set of all I such that badj occurs when A
receives I upon the j-th commit query. Note that I ′ is well-de�ned, since we �xed
all randomness except for I. Assume �rst that there exists a subset B ⊆ [n] of size
|B| > bεnc with Pr [I ∈ I ′ ∧ i ∈ I] < 2−2εk for all i ∈ B, where the probability
is over I ∈ I. We have Pr [I ∩B = ∅] =

(d(1−ε)ne
n/2

)
/
(

n
n/2

)
≤ 2−εn = 2−2εk, so

2−εk − 2−2εk ≤ Pr [I ∈ I ′]− Pr [I ∩B = ∅] ≤ Pr [I ∈ I ′ ∧ I ∩B 6= ∅]

≤
∑
i∈B

Pr [I ∈ I ′ ∧ i ∈ I] < n · 2−2εk

creates a contradiction for su�ciently large k. Hence, no such B exists, so there
must be a subset R ⊆ [n] of size |R| ≥ d(1− ε)ne such that Pr [I ∈ I ′ ∧ i ∈ I] ≥
2−2εk for all i ∈ R.

Our goal is now to use A′ to extract MR with high probability. To this
end, we �rst �nish our description of A′. Let L denote the set of all ` ∈ [p(k)]
for which badj occurs in the `-th rewinding. After p(k) := 28εk rewindings, A′

outputs MJ , where J =
⋃

`∈L I
` is the union of all successfully extracted partial

message subsets. For ` ∈ L, we have |S`| = 1 by de�nition of badj , so say
S` = {M`}. By de�nition, M` has been obtained by A′ through an explicit RO-
query, and we haveM `

I` = MI` for the message vector M inside A's j-th commit
query. Similar to Lemma 9, all components of all RO-images obtained by A′ are
pairwise distinct, except with probability at most 2−k/2 for large enough k. As
in Lemma 11, we can show that all the RO-images M` are identical, except with
probability 2−k/2 for su�ciently large k. Thus, there exists one single M′ ∈ RO
with M ′J = MJ . Now note that the I` are independent. Hence, a Chebyshev
bound shows that for each �xed i ∈ R, there is an I` ∈ L ⊆ I ′ with i ∈ I`,
except with probability at most 2−6εk. A union bound over all i ∈ R yields
R ⊆ J except with probability at most 2−5εk for large enough k. So, except with
probability 2−6εk + 2k/2 < Pr [bad], A′ shows the existence of an M′ ∈ RO with
M ′J = MJ for |J | ≥ d(1− ε)ne, such that M′ ≡ε M. Since M ′I` = MI` for any
I` ∈ L, this contradicts badj and thus bad. Hence, our assumption on Pr [bad]
must have been incorrect, and we have proved the lemma.

Combining Lemma 6 and Lemma 7 shows Theorem 3.

On the requirement on X . We require that X is secure even in the presence
of an EXPSPACE-oracle, but can be simulated by an EXPSPACE-oracle as
well. This means that in any polynomial interaction with black-box access to
X , it is computationally infeasible to break X , even with exponential computing
powers. At the same time, X itself should be implementable in exponential time.
We stress that this requirement on X is a rather mild one. For instance, random
oracles are one-way even against computationally unbounded adversaries, as long
as the adversary makes only a polynomial number of oracle queries. Hence, an
EXPSPACE-oracle (which itself does not perform oracle queries) is not helpful
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in breaking a random oracle. This even holds when the random oracle uses lazy
sampling (and hence is polynomial-time in any polynomial context), or when the
random oracle is actually only a t-wise independent hash function for slightly
superpolynomial t (say, t(k) = k log k). It is also noteworthy that the choice of
EXPSPACE was rather arbitrary; any oracle that is su�cient to simulate X ,
and at the same time not su�cient to break X will do in place of EXPSPACE .

So similarly to Corollary 1, we get for concrete choices of X and P:

Corollary 2 (Black-box impossibility of perf. binding IND-SO-COM).
Let n and I as in Theorem 3. Then no perfectly binding commitment scheme
in the plain model (i.e., without trusted set-up) can be proved indistinguishable
under selective openings via a ∀∃semi-black-box reduction to one or more of the
following primitives: one-way functions, one-way permutations, trapdoor one-
way permutations, IND-CCA secure public key encryption, homomorphic public
key encryption.

Generalizations. Again, Corollary 2 constitutes merely an example instantia-
tion of the much more general Theorem 3. We stress, however, that the proof for
Theorem 3 does not apply to �almost-perfectly binding� commitment schemes
such as the one from Naor [37]. (For instance, for such schemes, B's check that
the supplied commitment scheme is binding might tell something about X .)

4.2 Statistically hiding schemes are secure

Fortunately, things look di�erent for statistically hiding commitment schemes:

Theorem 4 (Statistically hiding schemes are IND-SO-COM secure).
Fix arbitrary n and I as in De�nition 10, and let Com = (S,R) be a statisti-
cally hiding commitment scheme. Then Com is indistinguishable under selective
openings in the sense of De�nition 10.

Proof outline. Intuitively, the claim holds since an adversary A's views in
the real, resp. ideal IND-SO-COM experiment are statistically close (and hence
so must be A's outputs). However, the fact that A's views are indeed statisti-
cally close is less obvious than it may seem at �rst glance. Our proof proceeds
in games and starts with the real IND-SO-COM experiment with A. As a �rst
modi�cation, we change the opening phase of the experiment, so that the open-
ing of each selected commitment is produced solely from the commitment itself
and the �target message� Mi to which it should be opened (but not from open-
ing information previously generated alongside the commitment). Note that this
change is merely conceptual and does not alter A's view at all. This makes the
opening phase ine�cient, but since we are dealing with statistically hiding com-
mitment schemes, we need not worry about that. Indeed, by the statistical hiding
property, we can now substitute all commitments (in a hybrid argument) with
commitments to a �xed value (say, 0k) without a�ecting the experiment output.
We can reduce this step to the hiding property of the commitment scheme since
the experiment only needs commitments as input, and produces all openings on
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its own. At this point, all commitments that A gets are independent of M, and
so the whole view of A is independent of the unopened values M[n]\I . Hence A's
output is (almost) independent of M[n]\I in the real IND-SO-COM experiment
and, with similar reasoning, also in the ideal IND-SO-COM experiment. This
shows the claim.

We proceed to the full proof.

Proof (of Theorem 4). Fix an n-message distributionM and a PPT adversary
A on the SIM-SO-COM security of Com. We proceed in games.

Game −1 is the real IND-SO-COM experiment Expind-so-real
Com,M,A. Let out−1 de-

note the output of the experiment, so that we have

Pr
[
Expind-so-real

Com,M,A = 1
]

= Pr [out−1 = 1] .

Game 0 constitutes our �rst modi�cation of Expind-so-real
Com,M,A, and proceeds as

follows (emphasized steps are di�erent from Expind-so-real
Com,M,A):

1. sample messages M = (Mi)i∈[n] ←M,
2. let A(recv) interact with n concurrent instances (Si(com,Mi))i∈[n] of S,
3. let I ∈ I be A's output after interacting with the Si,
4. for i ∈ I, set Si's state to the output of procedure AltDec(Hi,Mi) (described

below), where Hi denotes the exchanged messages during the commit phase
of the i-th Com instance,

5. let A(open) interact concurrently with the |I| instances (Si(open))i∈I of S,
6. send the full message vector M to A,
7. output A's �nal output b.
The (in general ine�cient) procedure AltDec takes as input a history Hi of
exchanged messages in the commit phase and a message Mi. We call a random
tape t for S consistent with Hi and Mi i� S(com,Mi) (with random tape t)
produces the sender's messages in Hi when receiving the respective receiver's
replies in Hi. Let THi,Mi

denote the set of all random tapes t for S which are
consistent with Hi and Mi. Now AltDec(Hi,Mi) samples uniformly a random
tape t from THi,Mi and returns the state of S with random tape t and after an
interaction according to Hi. If THi,Mi = ∅, then AltDec returns ⊥ (and Game
0 aborts with output 0). In other words, AltDec returns the state of a sender S
with initial input Mi, conditioned on the transcript Ti of the commit phase.

In Game 0, AltDec will never return ⊥ (since AltDec is invoked with a tran-
script Hi that has actually been produced as a commit phase to Mi). Moreover,
the view of the adversary is not altered by re-sampling the internal state of the
sender, conditioned on all previous actions, as AltDec does. Hence, we have

Pr [out0 = 1] = Pr [out−1 = 1]

for the output out0 of the experiment in Game 0.
We describe Game j (for j ∈ [n]). Game j is identical to Game 0, except for

step 2:
2∗. let A(recv) interact with n concurrent instances (Si(com,M∗i))i∈[n] of S,

where we set M∗i = 0k for i ≤ j and M∗i = Mi for j > i,
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Obviously, for j = 0 we would get Game 0. Note that only di�erence between
Game j−1 and Game j is the commitment toMj . In fact, we can now construct
an adversary A′ on Com's statistical hiding property. A′ �rst uniformly chooses
j ∈ [n], then simulates Game j − 1, but picks Mj and 0k as challenge messages

for its own experiment Exphiding-b
Com,A′ . The j-th commitment (to either Mj or 0k)

is performed through the experiment. Exphiding-0
Com,A′ is then a perfect simulation of

Game j−1, and Exphiding-1
Com,A′ perfectly simulates Game j. (However, we stress that

A′ is inherently unbounded: A′ must run procedure AltDec.) We get that

Pr [outn = 1]− Pr [out0 = 1] = n · Advhiding
Com,A′

must be negligible, which proves that

Pr
[
Expind-so-real

Com,M,A = 1
]
− Pr [outn = 1]

is negligible.
We can apply the same reasoning for the ideal IND-SO-COM experiment

Expind-so-real
Com,M,A: we �rst construct the openings using the commit transcripts Hi

and the target messages Mi alone as in Game 0 above. Then we change the
actual commitments to commitments to 0k, as in Game 1 up to Game n above.
At this point, the modi�ed ideal experiment �rst samples M ← M and then
M′ ←M | MI , but never uses M. Hence we can sample M′ ←M in the �rst
place without changing A's view. But this is then exactly Game n from above,
so that we get that

Pr
[
Expind-so-ideal

Com,M,A = 1
]
− Pr [outn = 1]

is negligible. Hence Advind-so
Com,M,A is negligible as well, which shows the theorem.

We stress that the proof of Theorem 4 also holds (literally) in case A and/or
M gets an additional auxiliary input z.

5 Application to adaptively secure encryption

Motivation and setting. Taking up the motivation of Damgård [17], we
consider the setting of an adversary A that may corrupt, in an adaptive manner,
a subset of a set of parties P1, . . . , Pn. Assume that for all i, the public encryption
key pk i with which party Pi encrypts outgoing messages, is publicly known.
Suppose further that A may corrupt parties based on all public keys and all
so far received ciphertexts. When A corrupts Pi, A learns Pi's internal state
and history, in particular A learns the randomness used for all of that party's
encryptions, and its secret key sk i. We assume the following:
1. The number of parties is n = 2k for the security parameter k,
2. It is allowed for A to choose at some point a subset I ⊆ [n] of size n/2 and

to corrupt all these Pi (i ∈ I).
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3. We can interpret the used encryption scheme as a (non-interactive, hid-
ing and binding) commitment scheme Com = (S,R) in the following sense:
S(M) generates a fresh public key pk and outputs a commitment com =
(pk ,Enc(pk ,M; r)) and an opening dec = (M, r). Here Enc denotes the en-
cryption algorithm of the encryption scheme, and r denotes the randomness
used while encrypting M. Veri�cation of (com, dec) = (pk ,C ,M, r) checks
that Enc(pk ,M; r) = C .

Note that the third assumption does not follow from the scheme's correctness.
Indeed, correctness implies only that honestly generated (pk ,M) are commit-
ting. However, there are schemes for which it is easy to come up with fake
public keys and ciphertexts (i.e., fake commitments) which are computationally
indistinguishable from honestly generated commitments, but can be opened in
arbitrary ways. Prominent examples of such schemes are non-committing en-
cryption schemes [11, 4, 12, 18, 14], which however generally involve periodical
interaction and are comparatively ine�cient.

Application of our impossibility results. Attacks in this setting cannot
be simulated in a black-box way in the sense of, e.g., Canetti et al. [11]: such
a simulator would in particular be able to simulate openings (in the sense of
Com, i.e., openings of ciphertexts). Hence, this would imply a simulator for Com
in the sense of SIM-SO-COM security (De�nition 8). Now from Corollary 1 we
know that the construction and security analysis of such a simulator requires
either a very strong computational assumption, or fundamentally non-black-box
techniques. Even worse: if Com is perfectly binding13, then Corollary 2 shows
that not even secrecy in the sense of De�nition 1014 can be proved in a black-box
way. On top of that, we cannot hope to use our (non-black-box) SIM-SO-COM
secure scheme ZKCom to construct an encryption scheme in a non-black-box
way, since ZKCom's commitment phase is inherently interactive.

We stress that these negative results only apply if encryption really con-
stitutes a (binding) commitment scheme in the above sense. In fact, e.g., [11]
construct a sophisticated non-committing (i.e., non-binding) encryption scheme
and prove simulatability for their scheme. Our results show that such a non-
committing property is to a certain extent necessary.15

Relation to the works of Bellare et al. and Hemenway and Ostrovsky.
Bellare et al. [7] and Hemenway and Ostrovsky [32] construct encryption schemes
that are secure under selective openings. Their schemes achieve a security notion
that is comparable to our SIM-SO-COM and IND-SO-COM de�nitions, only

13 in the presence of non-uniform adversaries, this is already implied by the fact that
the scheme is non-interactive and computationally binding

14 in the context of encryption, De�nition 10 would translate to a variant of indistin-
guishability of ciphertexts

15 �To a certain extent necessary� means that our results imply (black-box) impossi-
bility of adaptively secure committing encryption. Of course, there is a gap between
�not committing� (in the sense that public keys and encryptions do not commit to
plaintexts) and �non-committing� (as de�ned in [11]), and our arguments do not
apply to schemes in that gap.
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for encryption schemes instead of commitments. There is no contradiction to
our impossibility results because their encryption schemes do not constitute
commitment schemes. In fact, they employ �lossy encryption,� which allows for
the following idea to prove (encryption) security under selective openings. Start
with the real attack game. Then, substitute all public keys with �lossy public
keys� (i.e., public keys that yield ciphertexts that contain no information about
the message). Openings for the adversary are prepared �on the �y,� where we
assume that a lossy ciphertext can be e�ciently opened to any given message.
This modi�ed game essentially is a simulated attack game in which the adversary
does not get any (real) encryptions, but only lossy encryptions, which can be
prepared independently of the true message vector.

In view of our impossibility results about commitment schemes, it is notewor-
thy that [7, 32] crucially use that honestly generated tuples (pk ,Enc(pk ,M; r))
are computationally indistinguishable from tuples (pk ′,C ′) for lossy public keys
pk ′ and lossy ciphertexts C ′. The proof of selective opening security of their
encryption schemes shows furthermore that such �lossy tuples� do not at all
commit to a particular message. Hence, their schemes do not constitute commit-
ment schemes in the above sense.

Sender corruptions vs. receiver corruptions. Note that the schemes of
[7, 32] build on the fact that only �sender corruptions� are considered. (With
�sender corruptions,� an opening of a ciphertext does not reveal the secret key,
but only the encryption randomness.) In case of �receiver corruptions� (in which
an opening reveals the secret key), Nielsen [39] argues that every encryption
scheme is �eventually committing.� Here, �eventually committing� means that,
after encrypting suitably many messages, there is only one secret key that de-
crypts all of these ciphertexts back to their original messages.16 In that sense,
suitably many encryptions of known messages commit to (the functionality of)
the secret key. Hence, using our results, no encryption scheme can be proved
secure under selective openings against receiver corruptions with a black-box
reduction to standard cryptographic assumptions.

Commitment schemes with trusted set-up. Our impossibility results are
formulated in the plain model, i.e., in a model without trusted set-up (such as a
common reference string). We remark that a trusted set-up actually does allow
to circumvent our impossibility result. For instance, when assuming a trusted
set-up of (honestly generated) public keys, any public key encryption scheme
constitutes a (non-interactive) commitment scheme in the above sense. Namely,
the trusted set-up of the encryption public key and correctness of the scheme
(for honestly generated public keys) guarantee that an encryption can only be
opened one way. Moreover, if an encryption scheme is secure under selective
openings, then so it is when viewed as a commitment scheme. In particular, the

16 Technically, this is not entirely true, since there are schemes like that of Cramer
and Shoup [16], in which the secret key is never completely determined by (honest)
encryptions. However, our point here is that the functionality of the secret key (i.e.,
its action on honest encryptions) is uniquely determined.
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schemes of [7, 32] constitute non-interactive SIM-SO-COM secure commitment
schemes, assuming a trusted set-up.

In a similar vein, it should be noted that [32] also build non-interactive
IND-SO-COM secure commitment schemes from a special type of randomized
one-way functions, tightly related to homomorphic encryption. The security
(both secrecy and binding) of this commitment scheme relies on the ideal choice
of a set of public parameters. Since our impossibility results do not take into
account an ideal parameter set-up, there is no contradiction.

As another example, recall our SIM-SO-COM secure commitment scheme
ZKCom from Section 3.2. This scheme actually becomes non-interactive when
using a non-interactive zero-knowledge (NIZK) proof system IP (see, e.g., Gol-
dreich [26], Section 4.10). There is no contradiction to our impossibility results
because the resulting scheme still uses non-black-box techniques, and because
NIZK proof systems do not exist in the plain model (i.e., without set-up or
other additional assumptions). However, when assuming a trusted set-up, one
can at least implement NIZK proof systems, and thus build non-interactive
SIM-SO-COM secure commitment schemes.

(Non-)programmable trusted set-up. So we can summarize that relative
to a trusted set-up, our impossibility results do not necessarily hold. Now it
may be interesting to see where exactly things go wrong in the proof of, e.g.,
Theorem 1, with a trusted set-up. To this end, we can distinguish two kinds of
security proofs in trusted set-up settings:

(a) proofs during which the trusted set-up is �re-programmed,� and
(b) proofs that take the trusted set-up as a given.

Let us explain: type-(a) proofs actively modify the generation and/or distribu-
tion of the trusted set-up. For instance, assume an honestly generated public
key for the schemes of [7, 32] as a trusted set-up. As outlined above, we can
then view encryptions as commitments, and the resulting commitment scheme
is secure under selective openings. However, the proof of, e.g., SIM-SO-COM
security constructs a simulator S that tweaks the distribution of the set-up.
(Namely, S expects to work with lossy keys instead of honestly generated public
keys.) Similarly, during the security proof of NIZK proof systems in the common
reference string (CRS) model, the NIZK simulator S∗ expects to actively choose
the CRS, so that it knows a certain CRS trapdoor.

So abstractly, type-(a) proofs �re-program� the set-up information and con-
sider settings in which the set-up may lose its guarantees. All discussed proofs
for selective opening secure commitment schemes in the trusted set-up model
are type-(a) proofs. Similarly, proofs in the programmable random oracle model
(such as the proof of the non-committing encryption scheme of Nielsen [39]) can
be seen as type-(a) proofs.

On the other hand, a type-(b) simulator uses an externally given trusted
set-up. Many protocols that use a public key infrastructure, or protocols in the
generalized universal composability model have type-(b) proofs (e.g., [33, 15]).
Also, proofs in the non-programmable random oracle model (such as the proof
of OAEP [6, 43]) can be seen as type-(b) proofs.
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Applicability of our impossibility proofs. Roughly, Theorem 1 says that no
relativizing (and thus no black-box) reductions for the SIM-SO-COM security of
certain commitment schemes exist. In fact, going through the proof shows that
this covers type-(b) reductions as above. Technically, a type-(b) reduction simply
assumes another oracle that models the trusted set-up information available to
all parties. This oracle can be viewed as part of the computational assumption,
which is already modeled as an oracle in the proof of Theorem 1.

However, things lie di�erently for type-(a) reductions. In a type-(a) reduc-
tion, the simulator S expects to actively modify the set-up information. As a
consequence, S may violate the binding property of the considered commitment
scheme. (In fact, this is precisely what the simulators for the SIM-SO-COM se-
cure commitments with trusted set-up sketched above would do in order to put
up a successful simulation.) On the other hand, our proof of Theorem 1 uses that
the commitment scheme is binding even to S. (More concretely, this is used in
the proof of Lemma 3, when event badcoll is shown to occur only with negligible
probability.) Hence the proof of Theorem 1 fails relative to a trusted set-up and
type-(a) simulators.

6 Application to zero-knowledge proof systems

6.1 Graph 3-coloring is composable in parallel

Overview. Dwork et al. [22] have considered the applications of SIM-SO-COM
secure commitment schemes to zero-knowledge protocols, in particular to the
graph 3-coloring interactive proof system G3C of Goldreich et al. [28]. Concretely,
[22, Theorem 7.6] states that G3C, when instantiated with a SIM-SO-COM
secure commitment scheme, retains a relaxed zero-knowledge property called
�S(V, T,D) zero-knowledge� under parallel composition. S(V, T,D) zero-knowl-
edge is a variant of zero-knowledge in which the simulator S may depend on the
veri�er V , on the distinguisher T between real and simulated transcript, and
on the considered message distribution D. Unfortunately, [22] could not give a
SIM-SO-COM secure commitment scheme to implement their theorem.

Using our scheme ZKCom, we can instantiate and in fact generalize [22, Theo-
rem 7.6]. Concretely, using a re�ned analysis and the speci�c structure of ZKCom,
we show that G3C, when implemented with ZKCom, is zero-knowledge under
parallel composition. This result does not contradict the negative composabil-
ity results of Goldreich and Krawczyk [27], Canetti et al. [13]. Namely, on the
one hand, we use non-black-box techniques, similar to Barak [1]. On the other
hand, our construction of ZKCom already assumes a concurrently composable
zero-knowledge proof system. Hence, while our result does not immediately yield
an e�cient instantiation of G3C, it shows that there is hope for realizing G3C in
a composable way.

A detailed technical treatment follows.
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Commit-choose-open protocols. We can actually prove parallel composabil-
ity of a larger class of �commit-choose-open� style interactive argument systems:

De�nition 11 (Commit-choose-open (CCO) protocol). Let IP = (P,V) be
an interactive argument system for an NP-language L with witness relation R.
Let n = n(k) > 0 be polynomially bounded, and let I = (In)n be a family of sets
such that each In is a set of subsets of [n]. We say that IP is a commit-choose-
open (CCO) protocol (that uses commitment scheme Com) if the following holds.
First, we require that IP is of the following form:

1. P, upon input (x,w) with x ∈ L and R(x,w), selects n messages (Mi)i∈[n],
2. P engages in n instances of Com to commit to the Mi at R,
3. V, upon input x, chooses a subset I ∈ In and sends I to P,
4. P opens all Com-commitments to Mi with i ∈ I,
5. V accepts if the openings are valid and if the opened values satisfy some �xed

relation speci�ed by the protocol.

Second, we require that the messagesMI opened by P in the third step are uniform
and independent values over their respective domain. (In particular, MI can be
e�ciently sampled without knowing a witness w.)

It is easy to verify that the mentioned graph 3-coloring protocol G3C [28] is a
CCO protocol. Also, trivially, the parallel composition of many instances of a
CCO protocol is again a CCO protocol. In particular, in the following, we will
for simplicity only talk about a single CCO protocol, while one should actually
have the parallel composition of, e.g., G3C in mind.

Auxiliary-input SIM-SO-COM security. We will prove that any CCO
protocol, when using a commitment scheme which is simulatable under selec-
tive openings, is black-box zero-knowledge. To this end, we need a re�nement of
SIM-SO-COM security, which captures auxiliary input and an order of quanti-
�ers as in the zero-knowledge de�nition.

De�nition 12 (AI-SIM-SO-COM). In the situation of De�nition 8, we say
that Com is AI-SIM-SO-COM secure, i� for every PPT adversary A, there ex-
ists a PPT simulator S, such that for every PPT relation R, every PPT n-
message distribution M, and all auxiliary inputs zM = (zMk )k∈N ∈ ({0, 1}∗)N,
zA = (zA

k )k∈N ∈ ({0, 1}∗)N, and zR = (zR
k )k∈N ∈ ({0, 1}∗)N, we have that the

advantage Advsim-so
Com,M,A,S,R,zM,zA,zR is negligible. Here, Advsim-so

Com,M,A,S,R,zM,zA,zR

is de�ned as Advsim-so
Com,M,A,S,R, with the following di�erences:

� M gets additional input zM,
� A and S get additional input zA, and
� R gets additional input zR.

We claim that our scheme ZKCom from Section 3.2 satis�es De�nition 12. To
see this, recall that the simulator S constructed in the proof of Theorem 2 works
also in the presence of auxiliary input. Furthermore, S does not depend on M
and R. However, since M, S, A, and R all receive an auxiliary input in the
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AI-SIM-SO-COM experiment, we must demand that the commitment schemes
Comb and Comh against non-uniform adversaries. We get:

Theorem 5 (ZKCom is AI-SIM-SO-COM). Suppose that there exist one-
way permutations secure against non-uniform adversaries. Then the commitment
scheme ZKCom from Section 3.2 can be instantiated such that ZKCom achieves
AI-SIM-SO-COM security for arbitrary n, I.

The following theorem is a generalization of Dwork et al. [22], Theorem 7.6:

Theorem 6 (AI-SIM-SO-COM implies zero-knowledge). Let IP = (P,V)
be a CCO protocol that uses a commitment scheme Com that is AI-SIM-SO-COM
secure for n and I as used in IP. Then IP is zero-knowledge in the sense of
De�nition 4.

Proof. Assume V ∗, (x,w), D, zV ∗ , and zD as in De�nition 4. We will construct
a suitable PPT simulator S∗. Since IP is a CCO protocol, we can immediately
use the AI-SIM-SO-COM security of Com. To this end, we de�ne an adversary
A, a message distribution M, a relation R, and auxiliary inputs zA and zR as
in De�nition 12.

Concretely, de�ne zM = (x,w) and letM be the PPT n-message distribution
that is induced by P on input (x,w). Furthermore, let zA = (xk, z

V ∗) and let
A = V ∗, except that A �nally outputs a transcript of its conversation. We hence
have outA = 〈P(xk, wk), V ∗(xk, z

V ∗

k )〉. Finally, set zR = zD and R(M, out , zR) =
D(out , zR), such that R outputs exactly what D outputs on real transcripts as
in De�nition 4. Now De�nition 12 guarantees that there exists a PPT machine
S such that

Pr
[
R(M, outA, z

R) = 1
]
− Pr

[
R(M, outS , z

R) = 1
]

= Pr
[
D(〈P(xk, wk), V ∗(xk, z

V ∗

k )〉, zD) = 1
]
− Pr

[
D(outS , z

D) = 1
]

is negligible, where outS is the �nal output of S in the ideal AI-SIM-SO-COM
experiment. Note that outS is still obtained through an interactive experiment
that in particular requires knowledge about M and hence the witness w. How-
ever, the only information S actually receives about the message vector M is
the subset MI . Since IP is a CCO protocol in the sense of De�nition 11, MI

is statistically independent of (x,w). Hence we can construct the following ma-
chine S∗ which has oracle access to A = V ∗. Namely, S∗ internally simulates
S (and relays to S∗ its own oracle access to A). As soon as S outputs a set I,
S∗ answers with a uniformly and independently sampled set MI . Note that S

∗

no longer takes part in a AI-SIM-SO-COM experiment, but instead works with
input zA = (xk, z

V ∗) and oracle access to V ∗ alone. By the CCO property of IP,
we obtain

Pr
[
D(outS , z

D) = 1
]

= Pr
[
D(S∗(xk, z

V ∗ , zD) = 1
]
,

and hence, putting things together shows that AdvZK
V ∗,S∗,(x,w),D,zV ∗ ,zD is indeed

negligible.
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Observing that the mentioned graph 3-coloring protocol G3C from Goldreich
et al. [28] is a CCO protocol, and that the set of CCO protocols are closed under
parallel composition we get:

Corollary 3 (G3C is composable in parallel). The graph 3-coloring pro-
tocol G3C, when implemented with our commitment scheme ZKCom, is zero-
knowledge, even under parallel composition.

6.2 IND-SO-COM security and witness indistinguishability

Overview. A natural question is whether IND-SO-COM security, our relax-
ation of SIM-SO-COM security, provides a reasonable fallback for SIM-SO-COM
security. Now �rst, our results show that even when using IND-SO-COM secure
schemes, we cannot rely on perfectly binding commitment schemes because of
Theorem 3. For many interesting interactive proofs (and in particular the men-
tioned graph 3-coloring protocol G3C), this unfortunately means that the proof
system degrades to an argument system. But, assuming we are willing to pay
this price, what do we get from IND-SO-COM security?

The answer is �essentially witness indistinguishability.� Namely, any commit-
ment scheme which satis�es (a slight variation of) IND-SO-COM security can be
used to implement commit-choose-open style interactive argument systems. The
resulting argument system will be witness-indistinguishable, and the security re-
duction is tight. (In particular, the security reduction does not lose a factor of
|I|, where |I| is the number of possible challenges sent by the veri�er.)

We stress that, since the set of commit-choose-open protocols is closed un-
der parallel composition, we get composability �for free.� Now witness indistin-
guishable argument systems already enjoy a composition theorem (see Feige and
Shamir [24] or Goldreich [26], Lemma 4.6.6), so the compositionality claim is not
surprising. However, we believe that our results demonstrate that the security
notion of IND-SO-COM secure commitments itself is a reasonable fallback to
SIM-SO-COM security.

We proceed to provide details.

Witness indistinguishability. We �rst recall the de�nition of witness in-
distinguishability (a relaxation of zero-knowledge) from Feige and Shamir [24],
where we chose a slightly di�erent but equivalent formulation:

De�nition 13 (Witness indistinguishability). Let IP = (P,V) be an inter-
active proof or argument system for language L with witness relation R. IP is
witness indistinguishable i� for every PPT machines V ∗ and D, all sequences
x = (xk)k∈N, w

0 = (w0
k)k∈N, and w

1 = (w1
k)k∈N with R(xk, w

0
k) and R(xk, w

1
k)

for all k and |xk| polynomial in k, and all auxiliary inputs z = (zk)k∈N ∈
({0, 1}∗)N, we have that

AdvWI
x,w0,w1,V ∗,D,z := Pr

[
D(xk, zk, 〈P(xk, w

0
k), V ∗(xk, zk)〉) = 1

]
− Pr

[
D(xk, zk, 〈P(xk, w

1
k), V ∗(xk, zk)〉) = 1

]
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is negligible in k. Here, 〈P(x,w), V ∗(x)〉 denotes a transcript of the interaction
between P and V ∗.

Auxiliary-input IND-SO-COM security. Since the standard de�nition of
witness indistinguishability (see De�nition 13) involves an auxiliary input z given
to the veri�er/adversary V ∗, we also consider a variation of De�nition 10 that
involves auxiliary input. Namely,

De�nition 14 (AI-IND-SO-COM). In the situation of De�nition 10, we say
that Com is AI-IND-SO-COM secure i� Advind-so

Com,M,A,z is negligible for all PPT

M and A and all auxiliary inputs z = (zk)k∈N ∈ ({0, 1}∗)N, where bothM and
A are invoked with additional auxiliary input zk.

We stress that the proof of Theorem 4 shows AI-IND-SO-COM security, once
the investigated commitment scheme is statistically hiding against non-uniform
adversaries.

Now we are ready to prove the following connection between witness indis-
tinguishability and AI-IND-SO-COM:

Theorem 7 (AI-IND-SO-COM implies witness indistinguishability).
Assume a CCO protocol IP with parameters n′ and I ′ that uses commitment
scheme Com as in De�nition 11. If Com is AI-IND-SO-COM for parameters
n = n′ + 1 and I = I ′, then IP is witness indistinguishable. The security reduc-
tion loses only a factor of 2.

Proof. Assume arbitrary x,w0, w1, V ∗, D, z as in De�nition 13. We construct a
message distributionM, an adversary A, and a z′ such that

Advind-so
Com,M,A,z = Pr

[
Expind-so-real

Com,M,A,z = 1
]
− Pr

[
Expind-so-ideal

Com,M,A,z = 1
]

=
1
2
AdvWI

x,w0,w1,V ∗,D,z.

First, de�ne z′k = (xk, w
0
k, w

1
k, zk), so thatM and A are both invoked with both

witnesses and zk. Then, letM be the following PPT algorithm:
1. upon input z′k = (xk, w

0
k, w

1
k, zk), toss a coin b ∈ {0, 1},

2. sample messages (Mi)i∈[n′] by running P on input (xk, w
b
k),

3. de�ne Mn′+1 := b,
4. return the (n′ + 1)-message vector (Mi)i∈[n′+1].
Now adversary A, running in the IND-SO-COM experiment, proceeds as follows:
1. upon input z′k = (xk, w

0
k, w

1
k, zk), start an internal simulation of V ∗ on input

(xk, zk),
2. upon receiving n = n′+1 Com-commitments from the experiment, relay the

�rst n′ of these commitments to V ∗, and receive the (n′+1)-th commitment,
3. when V ∗ chooses a set I ⊆ [n′], relay this set (interpreted as a subset of

[n] = [n′ + 1]) to the experiment,
4. upon receiving openings (for i ∈ I) from the experiment, relay these openings

to V ∗,

42



5. when the interaction between experiment and machine V ∗ �nishes, run
b′ ← D(xk, zk, T ) to obtain a bit b′, where T denotes the transcript of the
interaction between the experiment and V ∗,

6. upon receiving a message vector M∗ = (M∗i)i∈[n] from the experiment,
output b′ ⊕M∗n′+1.
Now in the real IND-SO-COM experiment Expind-so-real

Com,M,A,z, the following hap-
pens: ifM chose b = 0, then an interaction of P(xk, w

0
k) and V ∗(xk, zk) is per-

fectly simulated. Since M∗n′+1 = b = 0, consequently A and also Expind-so-real
Com,M,A,z

outputD(xk, zk, 〈P(xk, w
0
k), V ∗(xk, zk)〉). Conversely, if b = 1, then Expind-so-real

Com,M,A,z

outputs 1−D(xk, zk, 〈P(xk, w
1
k), V ∗(xk, zk)〉) because M∗n′+1 = b = 1 then. We

get that

Pr
[
Expind-so-real

Com,M,A,z = 1
]

=
1
2

(
Pr
[
D(xk, zk, 〈P(xk, w

0
k), V ∗(xk, zk)〉) = 1

]
+ 1− Pr

[
D(xk, zk, 〈P(xk, w

0
k), V ∗(xk, zk)〉) = 1

] )
=

1
2
AdvWI

x,w0,w1,V ∗,D,z +
1
2
.

On the other hand, in the ideal IND-SO-COM experiment, the message M∗n′+1

that A receives from the experiment results from a resampling ofM, conditioned
onM∗I = MI . Since IP is a CCO protocol,MI is independent of the used witness.
Hence MI is also independent of b, and so M∗n′+1 will be a freshly tossed coin.
We get

Pr
[
Expind-so-ideal

Com,M,A,z = 1
]

=
1
2
.

Putting things together proves the theorem.

Tightness in the reduction and composition. We stress that we only lose a
factor of 2 in our security reduction, which contrasts the loss of a factor of about
n′2 in the proof of Goldreich et al. [28]. Their proof works also for perfectly bind-
ing commitment schemes (thus achieving an interactive proof system), which we
(almost) cannot hope to satisfy AI-IND-SO-COM security, according to Theo-
rem 3. However, since we can instantiate AI-IND-SO-COM secure schemes for
arbitrary parameters n and I, we can hope to apply Theorem 7 even to protocols
where |In| is super-polynomial.17 In particular, we can apply our theorem to a
parallel composition of a CCO protocol (which is again a CCO protocol). This
gives a composition theorem for the witness indistinguishability of CCO proto-
cols (implemented with AI-IND-SO-COM secure commitments) at virtually no
extra cost.

What our positive results do not imply (and what our negative results
do imply). We emphasize as well that our results do not imply that there
are no, in the terminology of [22], �magic functions.� In order to prove non-
existence of magic functions with [22, Theorem 5.1], one would have to �nd a

17 Of course, it is possibly to directly prove, say, witness indistinguishability for the case
of super-polynomial |In| from statistically hiding commitment schemes. However,
our point here is to illustrate the usefulness of our de�nition.

43



non-interactive SIM-SO-COM secure commitment scheme. Our negative result
Theorem 1 states that this will not be possible with black-box reductions to
standard assumptions.
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A On the role of property P

The intuitive contradiction. The formulations of Theorem 1 and Theo-
rem 3 seem intuitively much too general: essentially they claim impossibility of
black-box proofs from any computational assumption which is formulated as
a property P of an oracle X . Why can't we choose X to be an ideally secure
commitment scheme, and P a property that models precisely what we want to
achieve, e.g., De�nition 10 (i.e., IND-SO-COM security)? After all, De�nition 10
can be rephrased as a property P by letting A choose a message distribution
M and send this distribution (as a description of a PPT algorithm M) to P.
Then, P could perform the Expind-so-real

Com,M,A or the Expind-so-ideal
Com,M,A experiment with A,

depending on an internal coin toss (the output of P will then depend on A's
output and on that coin toss). This P models De�nition 10, in the sense that

Advind-so
Com,M,A = 2Advprop

P,X ,A.

Also, using a truly random permutation as a basis, it is natural to assume that we
can construct an ideal (i.e., as an oracle) perfectly binding commitment scheme
X that satis�es P. (Note that although X is perfectly binding, A's view may still
be almost statistically independent of the unopened messages, since the scheme
X is given in oracle form.)

Hence, if the assumption essentially is already IND-SO-COM security, we can
certainly achieve IND-SO-COM security (in particular, using a trivial reduction),
and this seems to contradict Theorem 3. So where is the problem?

Resolving the situation. The problem in the above argument is that P-
security (our assumption) implies IND-SO-COM security (our goal) in a fun-
damentally non-black-box way. Namely, the proof converts an IND-SO-COM
adversary A and a message distributionM into a P-adversary A′ that sends a
description of M to P. This very step makes use of an explicit representation
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of the message distribution M, and this is what makes the whole proof non-
black-box. In other words, this way of achieving IND-SO-COM security cannot
be black-box, and there is no contradiction to our results.

Viewed from a di�erent angle, the essence of our impossibility proofs is:
build a very speci�c message distribution, based on oracles (RO, resp. C), such
that another �breaking oracle� B �breaks� this message distribution if and only
if the adversary can prove that he can open commitments. This step relies on
the fact that we can specify message distributions which depend on oracles.
Relative to such oracles, property P still holds (as we prove), but may not
re�ect IND-SO-COM security anymore. Namely, since P itself cannot access
additional oracles18, P is also not able to sample a message space that depends
on additional (i.e., on top of X ) oracles. So in our reduction, although A itself
can, both in the IND-SO-COM experiment and when interacting with P, access
all oracles, it will not be able to communicate a message distribution M that
depends on additional oracles (on top of X ) to P. On the other hand, any PPT
algorithmM, as formalized in De�nition 10, can access all available oracles.

So for the above modeling of IND-SO-COM as a property P in the sense of
De�nition 9, our impossibility results still hold, but become meaningless (since
basically using property P makes the proof non-black-box). In a certain sense,
this comes from the fact that the modeling of IND-SO-COM as a property P is
inherently non-black-box. A similar argument holds for the message distribution
in the SIM-SO-COM experiment; there, however, we face the additional problem
of modeling the existence of a simulator in a property.

What computational assumptions can be formalized as properties in
a �black-box� way? Fortunately, most standard computational assumptions
can be modeled in a black-box way as a property P. Besides the mentioned
one-way property (and its variants), in particular, e.g., the IND-CCA security
game for encryption schemes can be modeled. Observe that in this game, we
can let the IND-CCA adversary himself sample challenge messages M0, M1 for
the IND-CCA experiment from his favorite distribution; no PPT algorithm has
to be transported to the security game. In fact, the only properties which do
not allow for black-box proofs are those that involve an explicit transmission
of code (i.e., a description of a circuit or a Turing machine). In that sense, the
formulation of Theorem 1 and Theorem 3 is very general and useful.

(Non-)programmable random oracles. We stress that the black-box re-
quirement for random oracles (when used in the role of X ) corresponds to �non-
programmable random oracles� (as used by, e.g., Bellare and Rogaway [6]) as op-
posed to �programmable random oracles� (as used by, e.g., Nielsen [39]). Roughly,
a proof in the programmable random oracle model translates an attack on a
cryptographic scheme into an attack on a simulated random oracle (that is, an
oracle completely under control of simulator). Naturally, such a reduction is not
black-box. And indeed, with programmable random oracles, even non-interactive

18 by De�nition 9, P must be speci�ed independently of additional oracles; if we did
allow P to access additional oracles, this would break our impossibility proofs
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SIM-SO-COM secure commitment schemes can be built relatively painless. As
an example, [39] proves a simple encryption scheme (which can be interpreted
as a non-interactive commitment scheme) secure under selective openings.

What if we change the de�nition of IND-SO-COM? One referee raised
the natural question of what would happen if we changed the IND-SO-COM def-
inition such that it is the property-based de�nition discussed above. (In other
words, in the modi�ed IND-SO-COM de�nition, we do not quantify over all
M; instead, A initially transmits a description of M to the security experi-
ment.) Let us call this de�nition IND-SO-COM′. It is clear that there is a trivial
black-box reduction of IND-SO-COM′ security to the property P that models
IND-SO-COM security. Correspondingly, the proof of Theorem 1 would cease to
hold for IND-SO-COM′, since we could not express message distributions that
depend on auxiliary oracles (such as the oracle RO from that proof). However,
a trivial reduction shows that IND-SO-COM′ security implies IND-SO-COM
security in the sense of De�nition 10.

However, now even a (technically) fully black-box reduction that shows or
employs IND-SO-COM′ security might use the code of the message distribu-
tionM (simply because that code is transmitted in the clear). Speci�cally, the
straightforward reduction of IND-SO-COM security to IND-SO-COM′ security
makes use of the code of M. Hence, we can say that our impossibility results
implicitly refer to reductions that are black-box with respect to the message dis-
tribution. In fact, one could hope for a, say, IND-SO-COM secure commitment
scheme whose proof circumvents Theorem 3 merely by using the code of the
message distribution. However, as soon as a black-box proof of IND-SO-COM′

security only makes black-box use of M, it gives rise to a black-box proof of
IND-SO-COM security, and Theorem 3 applies.
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