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Abstract

Loosely speaking, an obfuscation O of a function f should satisfy two requirements: �rstly,
using O, it should be possible to evaluate f ; secondly, O should not reveal anything about f
that cannot be learnt from oracle access to f alone. Several de�nitions for obfuscation exist.
However, most of them are very hard to satisfy, even when focusing on speci�c applications such
as obfuscating a point function (e.g., for authentication purposes).

In this work, we propose and investigate two new variants of obfuscation de�nitions. Our
de�nitions are simulation-based (i.e., require the existence of a simulator that can e�ciently
generate fake obfuscations) and demand only security on average (over the choice of the obfus-
cated function). We stress that our notions are not free from generic impossibilities: there exist
natural classes of function families that cannot be securely obfuscated. Hence we cannot hope
for a general-purpose obfuscator with respect to our de�nition. However, we prove that there
also exist several natural classes of functions for which our de�nitions yield interesting results.

Speci�cally, we show that our de�nitions have the following properties:
Usefulness: Securely obfuscating (the encryption function of) a secure private-key encryption

scheme yields a secure public-key encryption scheme.
Achievability: There exist obfuscatable private-key encryption schemes. Also, a point function

chosen uniformly at random can easily be obfuscated with respect to the weaker one (but
not the stronger one) of our de�nitions. (Previous work focused on obfuscating point
functions from arbitrary distributions.)

Generic impossibilities: There exist unobfuscatable private-key encryption schemes. Further-
more, pseudorandom functions cannot be obfuscated with respect to our de�nitions.

Our results show that, while it is hard to avoid generic impossibilities, useful and reasonable
obfuscation de�nitions are possible when considering speci�c tasks (i.e., function families).
Keywords: obfuscation, point functions.

1 Introduction

Suppose a software vendor wants to sell its products without giving away internal know-how used in
the code. In other words, the software should provide the intended functionality, yet hide internal
implementation details completely, even from a curious party that can see and analyze the (compiled)
program code. Although there are hardware-based alternatives, the obvious way to achieve this is
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to obfuscate the code, i.e., to make it incomprehensible. Intuitively, the obfuscation of a piece of
code (or of a function) should provide nothing more than the possibility of evaluating that function.
A little more technically, from an obfuscation of a function one should not be able to learn more
than one can learn from oracle access to that function. Here we restrict ourselves to learning in a
computationally restricted sense.

As another use case of obfuscation techniques, consider a password query during a user login
onto a computer terminal. Veri�cation that a user correctly entered his or her password can be
done of course by storing all user passwords in the clear on that machine. This works, but an
adversary who breaks into that machine can learn all user passwords with just read-only access. We
can do much better by storing only hashes (or, images of the password under a one-way function)
H(p) for every user password p. Veri�cation of a user-entered password p′ with p is then done by
comparing H(p) and H(p′). One-wayness of H guarantees that p (or any other �good� password p′

with H(p) = H(p′)) is not found even when H(p) becomes known.
Abstracting here, the functionality of this password authentication is that of evaluating a point

function. (A point function is a function Px with Px(x′) = 1 if x = x′, and Px(x′) = 0 else.)
Informally, hence, the veri�cation procedure that uses H(p) can be considered a useful obfuscation
of a point function. Namely, it provides the desired functionality,1 but in a way such that releasing
the implementation, here H(p), does not enable an adversary to learn p.

Focus. The focus of this work is the technical de�nition of a secure obfuscation suitable for
cryptographic purposes. Before we detail our own contribution and our results, we give a survey of
previous work.

History and survey of related work. Practical yet informal approaches to code obfuscation
were considered by Jaeschke [23] and Linn and Debray [25]. Goldreich and Ostrovsky [13] show
how to use a low-memory secure hardware component to obfuscate general programs. A crucial
ingredient in their construction is oblivious memory access (i.e., they consider machines whose
memory access behavior does not depend on the input). Another early theoretical contribution
to obfuscate functions was made by Hada [19]. He gave a simulation-based security de�nition for
obfuscation and related it to zero-knowledge proof systems.

In their seminal paper, Barak et al. [3] de�ne a hierarchy of obfuscation de�nitions, the weakest
of which is predicate-based, and the strongest of which is simulation-based. They show that there are
function families that cannot be obfuscated, even under the weakest de�nition that they proposed.
Speci�cally, they show that there are (contrived) sets of functions, such that no single obfuscation
algorithm can work for all of them (and output secure obfuscations of the given function). Hence,
Barak et al. rule out the possibility of generic obfuscation. (And, jumping ahead, we stress that the
proof argument they give also applies to our notion.) Yet, Barak et al. leave room for the possibility
of obfuscators for speci�c families of functions.

Goldwasser and Kalai [16] present obfuscation de�nitions that model several types of auxiliary
information available to an adversary. Their de�nitions are predicate-based. One of them, in
contrast to the main de�nitions of Barak et al., models a random choice of the function to be
obfuscated. They show general impossibility results for these de�nitions using �ltered functions

(functions whose output is forced to ⊥ if the input is not �certi�ed� by a witness). In particular, with
respect to obfuscation with dependent input, they show the following. Either common cryptographic
primitives (such as encryption, signing and pseudorandom functions) cannot be obfuscated, or a

1Technically, in fact, perfect functionality is only provided if H is a one-way permutation. Otherwise, there might
be x′ 6= x with H(x′) = H(x), so that x′ passes the veri�cation although it should not.
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large class of �ltered functions based on NP-complete problems cannot be obfuscated (or both).
(The latter would imply that no NP-complete language has a hard-core predicate.) They also show
that with respect to their de�nitions, an obfuscation of a point function is secure against adversaries
without auxiliary information if and only if it is secure against adversaries with (point-)independent
auxiliary information.

Even before a precise de�nition of obfuscation was formulated, positive obfuscation results were
given implicitly and in a di�erent context for a special class of functions. Namely, Canetti [8] and
Canetti et al. [10] essentially obfuscate point functions. The construction from Canetti [8] works
for (almost) arbitrary function distributions and hence requires a very strong computational as-
sumption. On the other hand, one construction from Canetti et al. [10] requires only a standard
computational assumption, but is also proven only for a uniform point function distribution. An-
other construction of [10] works for arbitrary distributions, but assumes the existence of a speci�c
type of hash function.

Positive results for the predicate-based de�nition of Barak et al. [3] were demonstrated by Lynn
et al. [26]. They show how to employ a random oracle to obfuscate access control functions e�ciently.
This includes point functions. A generalization of point functions can be found in the work of Dodis
and Smith [12] who show how to obfuscate a proximity function.

Subsequently Wee [34] showed how to obfuscate point functions in the standard model (still
predicate-based). Yet he only does this under very strong computational assumptions and for a very
weak de�nition of obfuscation. Wee also shows that, at least under one of the original obfuscation
de�nitions of Barak et al., strong computational assumptions are necessary for obfuscating point
functions.

Recently (and concurrently to the conference version [21] of this paper), relaxed de�nitions of
obfuscation have been considered by Goldwasser and Rothblum [18], and Hohenberger et al. [22].
Goldwasser and Rothblum allow an obfuscation to leak as much information as any implementation
of the function of a speci�c size would. Potentially this reveals more information than can be
obtained in a black-box way from the function. They show that this leads to a strictly weaker
but still meaningful de�nition. On the other hand, [22] demands only average-case security for
probabilistic functions (very similar to our de�nition). They also show how to obfuscate the task of
re-encrypting ciphertexts.

Also related is the recent work on public key obfuscation by Ostrovsky and Skeith III [31]
and later by Adida and Wikström [1]. In this setting, obfuscating a function means that one
obfuscates the composition of that function followed by encryption. (Thus, querying the obfuscated
function results in encrypted function values.) Correctness (or functionality) is de�ned relative
to the decryption. Security is based on the notion of indistinguishability under chosen plaintext
attacks. Here the adversary gets to pick two functions, and he gets a randomly chosen public key
obfuscation of one of them. The adversary has to guess of which one it is. Public key obfuscation
does not seem to �t cleanly within any of the other de�nitional models.

Finally, Narayanan and Shmatikov [30] investigated to what extent point function obfuscations
can be used to bootstrap other obfuscations. They did this under a de�nition of obfuscation in
which adversaries are bounded only in their number of oracle queries, but not in the number of
their computation steps. With respect to this de�nition, Narayanan and Shmatikov show that
there are circuits which can be obfuscated with a random oracle, but not with just an oracle to
a point function. Narayanan and Shmatikov [30] also improve an upper bound on the concurrent
self-composability (i.e., security preservation if several obfuscated instances of the same function
are available) of Wee's construction for point function obfuscation.
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Our results. Our own contribution is two-fold:
De�nitional contribution. We consider two speci�c variants of simulation-based obfuscation def-

initions. Our weaker de�nition could be called our �main� de�nition, because most of our
results are formulated with respect to it. However, we also present a stronger de�nition. Our
stronger de�nition is harder to achieve, and indeed our examples on how to achieve it are less
interesting. However, the stronger de�nition behaves more nicely in larger contexts. Specif-
ically, an obfuscation that satis�es the stronger de�nition can be simulated even in contexts
in which (partial or full) information about the obfuscated input is used.
Note that we call these variants �our de�nitions� since they have not been considered before
in the literature. However, technically they merely combine a number of known de�nitional
ingredients in a new way. We compare and relate our de�nitions to a number of known
de�nitions, and investigate how known (impossibility) results carry over to our de�nitions.

Results for our new de�nitions. We show that our de�nitions are useful cryptographic de�ni-
tions in the following sense:
Useful building block. Our de�nitions serve as a useful building block in a larger crypto-

graphic system. Speci�cally, secure obfuscators in our sense can be used to turn private-
key cryptography into public-key cryptography. For instance, a private-key encryption
scheme can be transformed into a public-key encryption scheme by obfuscating the en-
cryption algorithm. If the obfuscation satis�es our weaker obfuscation de�nition, then
this transformation preserves the passive (IND-CPA) security of the encryption scheme.
Our stronger notion even preserves active (IND-CCA) security. In that sense, our de�-
nitions are �not too weak.�

Achievable. Our de�nitions can be achieved for a number of interesting function classes
under standard computational assumptions. In particular, we show that our weaker
obfuscation de�nition can be achieved for point functions (with respect to a uniform
distribution on the point function). Furthermore, we exemplify that the encryption
algorithm of certain private-key encryption schemes is obfuscatable with respect to both
our weaker and our stronger de�nition. (Although arguably, this merely constitutes a
proof of concept.) In that sense, our de�nitions are �not too strong.� However, we stress
that there are also natural classes of functions which cannot be obfuscated according to
our de�nitions. Examples of such function classes are, e.g., pseudorandom functions.

We give a more detailed explanation of our results below.

Our new de�nitions. More concretely, we introduce variants of the simulation-based de�nition of
Barak et al. [3]. Roughly, a simulation-based obfuscation de�nition requires that there is a simulator
that, using oracle access to the obfuscated function only, e�ciently produces fake obfuscations which
are indistinguishable from real obfuscations. We deviate from [3] in the following respects:
Security on average. We randomly choose the function to be obfuscated according to a distribu-

tion and demand only �good obfuscations on average.� Here �good� refers to simulatability.
This is unlike the main de�nitions of [3], which demand good obfuscations for every function
in a given set. Our de�nitional choice follows from the intuition that in many applications, the
function in question is initially sampled from its function class in an honest way. For instance,
in a private-key encryption scheme, we can assume that the key itself (which determines the
corresponding encryption function) is honestly and uniformly chosen. (If the key is sampled
by an adversarial entity, then we cannot guarantee any reasonable form of security anyway.)
Technically, our de�nition follows Canetti's �oracle hashing� de�nition [8], Hada's security
de�nition [19], and Goldwasser and Kalai [16]. These notions also demand security on average
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in the same way as we do.2

Access to the obfuscated function. When it comes to distinguishing real from fake obfusca-
tions, the distinguisher should have some information about what function has been obfus-
cated (in particular given that the function is sampled from a distribution, as described above).
Barak et al. [3] demand security for every function in a given set, so that, implicitly, the distin-
guisher gets the function description itself as input. Other de�nitions provide the distinguisher
with an independently generated obfuscation of the same function [19], with auxiliary infor-
mation about the function [16],3 or with oracle access to the function [22]. Our two new
de�nitions di�er in the information the distinguisher receives about the obfuscated function.
Concretely, our weaker de�nition grants the distinguisher oracle access only to the obfuscated
function. The stronger de�nition gives the function description itself to the distinguisher.

Obfuscation of probabilistic functions. We consider probabilistic functions. That is, we con-
sider functions whose output on a given input is a distribution of output values as opposed
to a single output value. This is a minor technical change that can easily be applied to
previous de�nitions. (And to some extent this is already considered in the �sampling algo-
rithms� section of [3].) However, this change is essential, as it enables the obfuscation of for
instance encryption algorithms that necessarily behave probabilistically. Furthermore, allow-
ing probabilistic functions for obfuscation opens another door, as follows. A simulation-based
obfuscation de�nition (such as ours or that of Hada [19]) is very restrictive. Namely, following
Hada [19] and Wee [34], we remark that any family of deterministic functions must be ap-
proximately learnable to be obfuscatable. For probabilistic functions, this level of learnability
is not required and one can hope to obfuscate more interesting classes of functions. Indeed,
this hope is shown justi�ed in the concurrent work of Hohenberger et al. [22].

For a detailed comparison of existing de�nitions to ours, see Section 4.3.

Negative results for our de�nitions. As a �rst observation, we stress that the generic impossi-
bility results from [3] also carry over to our notions in a meaningful way (see also [3, Discussion after
Theorem 4.5]). That means that also for (both of) our notions, there can be no general-purpose
obfuscators. Indeed, recall that deterministic functions must be approximately learnable in order
to be obfuscatable (in a simulation-based way). As a consequence, we can prove that in particular
it is not possible to obfuscate pseudorandom functions (PRFs) under our de�nition. Barak et al.
already consider the obfuscation of PRFs ([3, Theorem 4.12 of full version]). They show that speci�c
(contrived) PRFs exist such that any obfuscation would leak the PRF's key. In contrast to that, we
show that no PRF can be obfuscated. This impossibility however applies only to simulation-based
obfuscation de�nitions such as ours.

Positive results for our de�nitions. We show how our de�nitions can be a useful cryptographic
building block. Namely, we show that obfuscations secure according to our de�nitions can be
used to turn private-key cryptography into public-key cryptography. For instance, obfuscating the
encryption function of a secure private-key encryption scheme should (intuitively) yield a secure
public-key encryption scheme. We show that this intuition holds true when using our obfuscation
de�nitions. Interestingly, the degree of preserved security depends on which of our obfuscation

2When demanding security on average, it is reasonable to ask whether the obfuscator itself gains from being
probabilistic. For example, one might hope to extract su�ciently good random coins for the obfuscation algorithm
itself from its input; after all, the input itself is chosen randomly and contains a certain min-entropy. We will comment
below, after the actual security de�nition, further on this.

3Since the de�nitions of [16] are predicate-based, there is actually no distinguisher in their setting; there, adversary
(and simulator) get auxiliary information about the function.
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de�nitions is used. Namely, the stronger de�nition preserves active (IND-CCA) security of the
encryption scheme, while the weaker de�nition only preserves passive (IND-CPA) security (and,
in general, not IND-CCA security). Hence, our de�nitions are useful in the sense that secure
obfuscations can be used in a meaningful way in larger constructions.

On the other hand, our de�nitions are achievable. For instance, there exist (contrived) private-
key encryption schemes whose encryption function is obfuscatable according to our de�nitions.
Concretely, any public-key encryption scheme can be modi�ed into an obfuscatable private-key
encryption scheme: the obfuscation is the public key. Of course, this construction is not very
interesting, but it does show that our notion is in principle achievable, even for the non-trivial class
of encryption functions. In particular, it rules out general impossibility results in this direction and
leaves hope for more meaningful obfuscations.

We show similar statements for authentication schemes, although in that case there are some
serious caveats, as follows. Namely, the analogue of passive security for signature schemes is a trivial
security notion. Hence, our weaker security notion is not very useful in that context. Our stronger
security notion preserves security against active attacks. However, in case of signature schemes, our
stronger notion is not achievable in the standard model.

Also, we prove that point functions can be obfuscated very easily with respect to the weaker
(but not the stronger) of our de�nitions. To obfuscate a point function Px, publish Π(x) for a
one-way permutation Π. This closely mimics the way password checks are implemented in practice
(as sketched above). However, note that we can prove security only under the assumption that
the password is chosen from the uniform distribution. In practice, it may seem more reasonable to
model passwords as coming from a low-entropy distribution.

General composability of obfuscations. However, note that the simple point function obfus-
cation just described is considerably weaker than previous point function obfuscations: security
is lost when the point function is not chosen randomly, or when auxiliary information about the
point x is published. In particular, security may be lost when the obfuscation is used in larger
settings in which x is used in several places. We use this observation as a motivation to investi-
gate when the security of obfuscation is preserved in larger contexts. Concretely, we show that our
stronger obfuscation de�nition does remain secure in larger contexts. Technically, we give a formu-
lation of a secure obfuscation in the indi�erentiability framework [27] which provides general secure
composition. (That is, any security statement automatically also holds under composition in the
indi�erentiability framework, similarly to the universal composability [9] and reactive simulatability
[2] models.) We prove that our stronger de�nition, along with a suitable correctness requirement,
is equivalent to indi�erentiable obfuscation, and hence behaves well in larger contexts.

Additionally, we prove that our stronger obfuscation notion behaves well under self-composition.
That is, we show that several (di�erent) obfuscations of the same function can be used concurrently
without sacri�cing security.

2 Notation

Throughout the paper, k ∈ N denotes a security parameter. With growing k, attacks should be-
come harder, but we also allow schemes to be of complexity which is polynomial in k. A PPT
algorithm/Turing machine is a probabilistic algorithm/Turing machine which runs in time polyno-
mial in k. All algorithms implicitly receive the security parameter as input, so we write A(ε) for
algorithms without further input (where ε denotes the empty bitstring). If A is a PPT algorithm,
then Y ← A(X) denotes that Y is the random variable obtained by running A with uniformly
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distributed random coins and on input X. If X is a distribution, then X ← X denotes that X is

sampled according to X . If X is a set, then X
$← X means that X is sampled according to the

uniform distribution over X . For a random variable X the expected value of X is denoted by EV[X].
For random variables X1, X2 their statistical distance 1

2

∑
x |Pr [X1 = x] − Pr [X2 = x] | is denoted

by ∆(X1 ; X2). A function ν : N → R is negligible i� for all c > 0, we have that |ν(k)| < k−c

for su�ciently large k. For two functions f, g : N → R we write f
c
≈ g i� their di�erence f − g is

negligible.

3 Previous Obfuscation De�nitions

Intuition and worst-case obfuscation. We recall the obfuscation de�nitions from Barak et al.
[3]. As mentioned in the introduction, intuitively an obfuscation O of a function f should provide
nothing more than the possibility to evaluate that function. Now it does not make sense to speak
about a single, isolated function f here. If f is agreed upon, there is no need for an obfuscation in
the �rst place. Hence we consider a family F = (Fk)k∈N with Fk = (f) of functions. Henceforth it is
understood that all functions f ∈ Fk can be represented in polynomial space allowing evaluation in
polynomial time (in k). Whenever we input f to an algorithm, we implicitly refer to its description.
(And consequently, the particular representation of the function could make a di�erence.)

Syntactically, an obfuscator O for F takes as input the description of a function f ∈ F and
outputs an obfuscation O = O(f). Formally, both the function and the obfuscation are represented
as a circuit. The de�nitions of Barak et al. require that for every f ∈ F , the obfuscation O(f)
should be secure, in a sense to be de�ned. Because security is required for all f , we will call Barak
et al.'s de�nitions worst-case.

De�nition 3.1 (Worst-case obfuscation [3] (generic)). Let F = (Fk), where each Fk is a family of

functions associated with security parameter k. Let O be a PPT algorithm which maps (descriptions

of) functions f to circuits O(f). We say that O is a worst-case obfuscator for F i� the following

holds.

Functionality: For all k ∈ N, all f ∈ Fk, and all possible O = O(f), we have that O computes

the same function as f .

Virtual black-box (informal): For all f ∈ Fk ⊆ F , given access to the obfuscation O = O(f),
an adversary cannot learn anything about the original function f that it could not have learnt

from oracle access to f .

Barak et al. also mention a third requirement, namely polynomial slowdown. This means that
the time it takes to evaluate the obfuscated function is polynomially bounded by the runtime of the
original. Since we require O to be PPT and to output a circuit, polynomial slowdown is ful�lled
automatically.

We stress that the functionality requirement can be relaxed in meaningful ways. For instance, one
might require �approximate functionality� in the sense that O evaluates f , except with negligible
probability over the random coins of O. Our results are not a�ected by such a relaxation. For
probabilistic functions f , the functionality requirement is to be understood such that O gives rise
to the same output distribution as f . (Appendix A is dedicated to a more detailed discussion of
the functionality requirement for probabilistic functions.)

The virtual black-box requirement can be formalized in di�erent ways. For instance, one could
require that no adversary can approximate a non-trivial predicate on (the description of) f . Al-
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ternatively, one could demand that there exists a simulator that produces fake obfuscations, using
oracle access to f only.

We now elaborate on these variants of the virtual black-box requirement.

Predicate-based worst-case obfuscation. This variant of the virtual black-box requirement
is based on computing a predicate on the description of f . Concretely, the task of an adversary A
given the obfuscation O(f) is to compute a boolean predicate π on the description of f . Of course,
there are always predicates, such as constant predicates, which can be easily computed. Hence, we
want that O(f) does not help in approximating π(f). That is, for any adversary A and any boolean
predicate π, the probability that an adversary computes π(f) given O(f) is not signi�cantly greater
than the probability that a suitable simulator S, given only oracle access to f , computes π(f). This
notion is formally de�ned by a slightly simpler, but equivalent, notion:

De�nition 3.2 (Predicate-based worst-case virtual black-box [3]). Let F ,O be as in De�nition 3.1.

Then O satis�es the predicate-based worst-case black-box property i� for all PPT algorithms A,
there exist a PPT algorithm S and a negligible function ν such that for all k ∈ N and f ∈ Fk, we

have

Pr [A(O(f)) = 1]− Pr
[
Sf(·)(ε) = 1

]
≤ ν(k).

De�nition 3.2 is the main notion of security used in the impossibility result of Barak et al. [3].
(However, their result holds for a number of other de�nitional variants, including all the de�nitions
discussed in this work.)

Simulation-based obfuscation This secrecy requirement is based on computational indistin-

guishability. Under this formulation one does not restrict the nature of what an adversary must
compute. Concretely, we require that it is possible to produce, from oracle access to f only, �fake
obfuscations.� These fake obfuscations should be computationally indistinguishable from the real
obfuscations O(f). Hence also every (e�cient) function computed on O(f) can be approximated
using oracle access to f . Obfuscators satisfying De�nition 3.3 can easily be seen to satisfy De�ni-
tion 3.2 as well.

De�nition 3.3 (Simulation-based worst-case virtual black-box [3], formulation due to [34]). Let F
and O be as in De�nition 3.1. Then O satis�es the simulation-based worst-case black-box property
i� there exists a PPT simulator S such that for every PPT distinguisher D, some negligible function

ν, all k ∈ N and all f ∈ Fk, we have

Pr [D(O(f)) = 1]− Pr
[
D(Sf(·)(ε)) = 1

]
≤ ν(k).

Connection to learnability. The following has been noticed already by Hada [19] and for-
mally shown by Wee [34], Proposition 5.2. Namely, simulation-based worst-case obfuscation can be
achieved for (deterministic) functions f precisely when f is e�ciently and exactly learnable through
oracle access. For instance, in case the function is learnable, the obfuscation can return the learned
function. However, Wee's result uses that the function in question is deterministic, so we can hope
to avoid the strict requirement of learnability when considering probabilistic functions.

4 Our De�nition

We �rst present our own de�nition (which is a variant of simulation-based obfuscation), and then
justify the main design choices we made. In fact, we will present two de�nitions, which are syntac-
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tically very similar, but di�er substantially in their properties (we will explore the properties of our
de�nitions in Section 5 and Section 6). The �rst, weaker de�nition can be seen as our �main� de�-
nition, since most of our results hold with respect to this de�nition. However, the second, stronger
de�nition will turn out to have a number of nice properties that make up for some of the weaker
de�nition's drawbacks. After our de�nitions have been presented and discussed, we will compare
them to a number of existing de�nitions.

4.1 The De�nitions

As noted, our de�nitions are simulation-based, but we do not call them �worst-case,� since we only
require security on average (over f):

De�nition 4.1 (Simulation-based average-case virtual black-box property). Let F = (Fk), where
each Fk is a family of probabilistic functions associated with security parameter k. Let O be a

PPT algorithm which maps (descriptions of) functions f to circuits O(f). We say that O has the

simulation-based average-case virtual black-box property i� for every PPT distinguisher D, there

is a PPT simulator S, such that

Advsbvbb
F ,O,D,S(k) := Pr

[
f

$← Fk : Df(·)(O(f)) = 1
]
− Pr

[
f

$← Fk : Df(·)(Sf(·)(ε)) = 1
]

(1)

is negligible in k.

We stress that oracles in this de�nition (in particular,D's f(·) oracle) may use randomness that is
independent and hidden fromD. In particular,D does not get to choose or even see the random coins
used to evaluate f . In case of probabilistic functions f , this opens a door to sidestep impossibility
results (see, e.g., Hohenberger et al. [22], Section 2 for an example and further discussion).

We also introduce a stronger variant, which features a di�erent order of quanti�ers and gives
the distinguisher D access to the full description of the function f :

De�nition 4.2 (Strong simulation-based average-case virtual black-box property). Let F = (Fk),
where each Fk is a family of probabilistic functions associated with security parameter k. Let O be

a PPT algorithm which maps (descriptions of) functions f to circuits O(f). We say that O has

the strong simulation-based average-case virtual black-box property i� there is a PPT simulator S,
such that for every PPT distinguisher D, we have that

Advssbvbb
F ,O,D,S(k) := Pr

[
f

$← Fk : D(f,O(f)) = 1
]
− Pr

[
f

$← Fk : D(f, Sf(·)(ε)) = 1
]

(2)

is negligible in k.

The following lemma is trivial from the de�nitions:

Lemma 4.3 (Strong average-case implies average-case). Whenever an obfuscator satis�es the strong

simulation-based average-case virtual black-box property (De�nition 4.2), it satis�es the simulation-

based average-case virtual black-box property (De�nition 4.1).

4.2 Motivation of Design Choices

Based on simulation. Our de�nitions require the existence of a simulator that is able to generate
�fake obfuscations� that are indistinguishable from real obfuscations. This design choice makes our
de�nition easy to use in larger constructions. For instance, in a game-based security proof of a
cryptographic system, one substitutes components of the real system one by one with di�erent, but
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indistinguishable components, until one ends up with an ideal system which is trivially secure. The
obfuscation O(f) and the simulated obfuscation Sf (ε) can be seen as such indistinguishable and
hence interchangeable components. We demonstrate this concept in a number of proofs in Section 5,
where we show how to use our de�nitions. We stress that predicate-based obfuscation de�nitions do
not support game-based proofs in a similar way. Indeed, while a predicate-based de�nition states
that an obfuscation leaks no given (non-trivial) predicate bit about f , it is unclear how this could
be used as an intermediate step in a game-based proof. (Usually it is not a priori clear how the
obfuscation is used by an adversary to achieve his overall attack goal. Hence it is not clear what
predicate of f the adversary crucially uses.)

We summarize that using a simulation-based de�nition is the key to the usability of our de�nition.

Probabilistic functions. In contrast to earlier works, we consider probabilistic functions. First,
this obviously makes it easier to express, say, the (necessarily probabilistic) encryption algorithm
of a secure encryption scheme as a suitable function family F . But we gain much more than just
syntactic compatibility. More importantly, probabilistic functions avoid the necessity for f to be
learnable in order to be obfuscatable. (Recall that for deterministic functions f , learnability and
simulation-based obfuscatability are equivalent.)

Concurrently to our work, also Hohenberger et al. [22] use probabilistic functions instead of
deterministic ones in order to prove their positive result. Furthermore, probabilistic functions have
been implicitly used in the context of obfuscation by Adida and Wikström [1], Ostrovsky and Skeith
III [31] in the setting of encryption.

Hence, we gain expressiveness and achievability by using probabilistic functions.

Average-case security. We do not require security for all functions f , but instead we require
security on average, over a uniform choice of f ∈ Fk. This relaxation of Barak et al.'s de�nition will
be the key to the achievability of our de�nition. Namely, a random choice of f enables reducing the
security of an obfuscator to standard cryptographic assumptions. In such standard assumptions,
usually also a random choice of an underlying secret is crucial. For instance, Theorem 5.4 reduces
the security of an obfuscator for point functions to the security of a one-way permutation. Now
in the proof, the point function Px, or rather the secret point x, can be directly mapped to the
preimage of the one-way permutation, since both are distributed uniformly. This enables a very
simple security proof. The two security experiments (obfuscation and underlying primitive) are
�compatible.�

We stress that, with similar arguments, the idea of average-case obfuscation has already been
considered in a number of works, e.g., by Hada [19], Goldwasser and Kalai [16]. Also, concurrently
to our work, Hohenberger et al. [22] use and achieve (for a non-trivial and natural class of functions)
an average-case de�nition quite similar to ours.

We summarize that average-case security is the key to the achievability of our de�nition.

On the necessity of a probabilistic obfuscator. We consider a distribution on the obfuscated
functions f , and in particular f is chosen after the distinguisher D. Hence, the obfuscator O
essentially gets two types of random inputs, both independent of D: a randomly selected f ∈ F ,
and O's own random coins. The question arises whether O can do without its random coins, and
derive all needed randomness from its input f .4 In other words: is it feasible without loss of
generality to assume that O is deterministic?

4Such techniques have been successfully applied in the encryption setting, see Bellare et al. [7].
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We contend that the answer is no. To explain, consider the stronger De�nition 4.2 in case of a
deterministic obfuscator O. Hence, the obfuscation O(f) follows deterministically from the input
function f . Speci�cally, since the distinguisher D in De�nition 4.2 gets f as input, D can always
compute O(f) on its own and compare the result to its second input O. When D's second input
really is an obfuscation, then O = O(f). A successful (in the sense of De�nition 4.2) simulator must
hence achieve that its output matches O(f) with overwhelming probability.

Thus, to achieve De�nition 4.2 in case of deterministic obfuscators, there must exist a simulator
S that �nds the (unique) real obfuscation O(f) except with negligible probability. Because we
require perfect functionality, O(f) evaluates f everywhere. This means that a successful S has to
learn f e�ciently and exactly from oracle access only. (Note that this holds even if f is a prob-
abilistic function, since S has to outputs the same function O(f) with overwhelming probability.)
Consequently, while we do not have a natural example of a function family that can only be ob-
fuscated with a probabilistic obfuscator, it seems that we gain generality by the obfuscator to be
probabilistic.

The di�erence between our two de�nitions. Our De�nitions 4.1 and 4.2 di�er in two aspects.
Namely, �rst, the order of quanti�ers (∀D∃S vs. ∃S∀D), and second, how D may access f (oracle
access to f vs. getting f as input). De�nition 4.2 is the stricter de�nition in both respects. This
leads to a more versatile but also harder to achieve de�nition. Most of our results hold with respect
to the weaker De�nition 4.1, hence De�nition 4.1 can be called our main (or standard) de�nition.
However, we include De�nition 4.2 because it shows how to circumvent some of the shortcomings
of De�nition 4.1.

In particular, De�nition 4.1 cannot generally be used in larger contexts in which the function f
is itself is used. As an example, consider the obfuscation of the encryption algorithm of a private-key
encryption scheme. It is reasonable to assume that in a larger context, the decryption algorithm
is used (with respect to the same private key). In such a context, obfuscations that satisfy Def-
inition 4.1 may not remain secure. (In a nutshell, this holds because De�nition 4.1 considers an
isolated obfuscation of f , while, say, a decryption oracle uses information related to f . For details,
Section 5.3.)

De�nition 4.2 provides a more useful de�nition in such settings. Particularly, De�nition 4.2
guarantees that the obfuscation of (the encryption algorithm of) a private-key encryption scheme
remains secure in the presence of a decryption oracle. More generally, we will show that De�nition 4.2
can be used in a large class of contexts (see Section 6). However, at the same time, De�nition 4.2
appears to be extremely strict. In fact, we can only show that De�nition 4.2 is achievable for toy
examples (such as in Theorem 5.15).

Auxiliary input and composability. Goldwasser and Kalai [16] distinguish in their obfusca-
tion de�nitions two types of auxiliary information that an adversary might possess: (f -)dependent
auxiliary information and (f -)independent auxiliary information. (Their de�nitions are reproduced
below in De�nition 4.4 and De�nition 4.5.) At �rst glance, our de�nitions do not feature any kind
of auxiliary information, and it might seem surprising that we can derive any compositional guar-
antees without auxiliary information. (Usually, auxiliary information is a technical tool to derive
security guarantees in larger contexts: the auxiliary information given to the adversary incorporates
all information that an adversary could obtain from the context �surrounding� the obfuscation.)

However, at a closer inspection, in particular De�nition 4.2 grants the adversary a very speci�c
(f -dependent) auxiliary information about f : namely, f itself. (And consequently, the adversary can
derive any information that can be e�ciently computed from f .) This is the key to our compositional
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guarantees we can provide for De�nition 4.2 (cf. Section 6). The auxiliary information provided
to the adversary in De�nition 4.1 is much weaker: here, it consists of oracle access to f . (And
consequently, De�nition 4.1 fails to provide strong compositional guarantees, cf. the discussion in
Section 5.1.)

We stress that the technical way that auxiliary information is incorporated into the de�nitions by
Goldwasser and Kalai (see also De�nition 4.4) di�ers from ours. Namely, Goldwasser and Kalai hand
the auxiliary information to both adversary and simulator. (In their case, there is no distinguisher.)
In our case, the simulator does not get any form of auxiliary information, not even in our stronger
De�nition 4.2. This technical di�erence makes relating their de�nitions to ours even harder.

On the other hand, adding independent auxiliary input to our de�nitions (similarly to Hohen-
berger et al. [22]) does not alter our results. All reductions and proofs derived still hold, only that
the respective computational assumptions must hold against non-uniform adversaries.

4.3 Comparison with Other De�nitions

The relationship with predicate-based de�nitions. The main de�nition of Barak et al. is a
predicate based de�nition (see also De�nition 3.2). It was later modi�ed by Goldwasser and Kalai
[16], who demand security in the presence of auxiliary information on the key. More speci�cally, one
of the de�nitions by Goldwasser and Kalai [16] models security in presence of auxiliary information
that depends on the particular function to be obfuscated. The other de�nition from Goldwasser
and Kalai [16] models security in the presence of auxiliary information that is independent of the
obfuscated function.

To ease a comparison, we recast their de�nitions in our notation. This results in a minor change
in the de�nition due to their emphasis on circuits, whereas we consider more general function
families.

De�nition 4.4 (Goldwasser and Kalai's obfuscation w.r.t. dependent auxiliary input [16, De�-
nition 3]). An obfuscator O for a function family F = (Fk) is secure with respect to dependent
auxiliary input i� for every PPT adversary A, there exist a PPT simulator S and a negligible

function ν such that for all k, all f ∈ Fk, all auxiliary inputs z, and all predicates π, we have

Pr [A(O(f), z) = π(f, z)]− Pr
[
Sf(·)(z) = π(f, z)

]
≤ ν(k).

De�nition 4.5 (Goldwasser and Kalai's Obfuscation w.r.t. independent auxiliary input [16, De�-
nition 4]). An obfuscator O for a function family F = (Fk) is secure with respect to independent
auxiliary input if for every PPT adversary A, there exist a PPT simulator S and a negligible function

ν such that for all k, all auxiliary inputs z, and all predicates π, we have

Pr [A(O(f), z) = π(f, z)]− Pr
[
Sf(·)(z) = π(f, z)

]
≤ ν(k),

where the probability is over f
$← Fk and the internal coins of A and S.

Firstly, our de�nitions require security w.r.t. a randomly chosen key from a given set, whereas [3,
De�nition 2.1] and [16, De�nition 3] demand security for every key in that set. In that sense, our
de�nitions are a relaxation (although this does not protect our de�nitions from impossibility results
for general-purpose obfuscation; see below). On the other hand, our de�nitions require a multi-bit
output from the simulator, whereas [3, De�nition 2.1] and [16, De�nition 3] restrict adversary and
simulator to a one-bit output. In that sense our de�nitions are harder to satisfy and obfuscations
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satisfying [16, De�nition 3] (which is stronger than [3, De�nition 2.1]) do not necessarily satisfy our
de�nitions.

Of more interest to us is a comparison with [16, De�nition 4], which is also relaxed in the sense
that it only requires security for a random function chosen from some distribution.5 Nonetheless, we
will show a simple example of a predicate-leaking obfuscation secure in the sense of De�nition 4.1,
so it seems the two de�nitions are incomparable.

Secondly, the de�nitions from [16] give adversary as well as simulator auxiliary information.
One of the motivations of [16] to incorporate auxiliary input in their de�nitions is composability;
Although we do not explicitly model such auxiliary information in our de�nitions, we do consider
the composability for De�nition 4.2 (in Section 6 we show De�nition 4.2 implies obfuscation in the
indi�erentiability framework, which in turn implies a certain form of composability). (See also the
discussion after De�nition 4.2 for the role of auxiliary information in our de�nitions.)

The de�nition of Hohenberger et al. De�nition 2 of Hohenberger et al. [22] also introduces
average-case secure obfuscation, dealing with probabilistic functionalities as well. This de�nition is
very similar, but subtly stronger than ours. Since Hohenberger et al. give a positive result of an
obfuscation, a stronger de�nition is more desirable than a weaker one.

For ease of comparison, let us �rst recast [22, De�nition 2] in our notation. For the moment
we ignore the functionality requirements. (This is done for simplicity; a discussion is deferred
to Appendix A.) We give a slightly di�erent but equivalent formulation (polynomial slowdown is
implicit, the adversary in [22] is super�uous):

De�nition 4.6 (Hohenberger et al.'s average-case secure obfuscation [22, De�nition 2]). An obfus-

cator O for a function family F = (Fk) is average-case secure i� there exists a PPT simulator S
such that for every PPT distinguisher D and all auxiliary inputs z, we have that

Pr
[
f

$← Fk : Df(·)(O(f), z) = 1
]
− Pr

[
f

$← Fk : Df(·)(Sf(·)(z), z) = 1
]

is negligible as a function in k.

From our reformulation, it is already clear that the virtual black box requirements (ours and
theirs) are surprisingly similar. Compared to De�nition 4.1, there are only two di�erences. Firstly,
our weaker De�nition 4.1 uses a di�erent order of quanti�ers. Namely, whereas Hohenberger et al.
require a universal simulator that works for all distinguishers, we use the more relaxed quanti�cation
of allowing the simulator to depend on the distinguisher. (The simple point function obfuscation,
Section 5.1, we give for De�nition 4.1 actually does come with a universal simulator.)

Secondly we do not take into account auxiliary information (although of course it is easy to
change our de�nition so it does). As mentioned before, the main advantage of including auxiliary
information in the de�nition is that it makes the obfuscation more robust in case of composition of
the obfuscation with other protocols. We will come back to the issue of composability and the role
our stronger De�nition 4.2 plays in it in more detail in Section 6.

Perfectly one-way hashing and point functions. We note that a distribution on the function
to obfuscate was already considered in other de�nitions, such as in the security de�nition for perfect
one-way hashing (that is actually an obfuscation of a point function) from Canetti [8]. In that

5 The relaxation is necessary to obtain independence of the auxiliary information; Goldwasser and Kalai justify it
by the observation that in most cryptographic applications, an adversary is confronted with such a randomly chosen
(obfuscated) function. This motivation is similar to ours.
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case security could be achieved as long as the distribution on the functions is well-spread, which
basically means that a brute-force search for the function has only negligible success. Our results
from Section 5.1 (that also concern an obfuscation of a point function) are formulated with a uniform
distribution on the functions. (We note that, of course, also perfect one-way hashing can and has
been considered with respect to a uniform input distribution, in which case interesting results can
be derived from weaker assumptions, see Canetti et al. [10].)

In contrast to the analysis from [8, 10], the analysis of our construction is quite straightforward.
Our obfuscation of a point function Px is Π(x) for a one-way permutation Π. Also, the obfuscation
security experiment for P and the one-wayness experiment of Π can be related in a very direct
manner. However, there can be well-spread distributions (di�erent from the uniform one) for which
our point function obfuscation becomes insecure. (Imagine a one-way permutation that leaks the
upper half of the preimage, and a distribution that keeps the lower half of the preimage constant.)
In other words, the price to pay for the simplicity of our analysis is the dependency on a uniform

distribution of the function.
Also, the constructions from [8, 10] are �semantically secure� in the sense that any predicate on

the hashed value (i.e., the key of the point function to be obfuscated) is hidden. Our construction
from Section 5.1 does not guarantee this. Just like the one-way permutation that is employed, our
construction only hides the key in its entirety. In some applications this might not be su�cient,
and in particular not a meaningful �idealization� of a point function. However, in other settings,
this may be exactly the idealization one is interested in.

Example: point functions/password queries. With respect to obfuscating point functions in
view of implementing a password query (see Section 1 for motivation on this), Canetti's de�nition
and our de�nition can hence be nicely compared:

• Canetti demands that as long as there is some uncertainty about the password, no predicate
on the password can be guessed from its obfuscation alone. In particular, the password
itself cannot be guessed. Formally, as long as the password has signi�cant min-entropy, no
predicate of the password can be guessed from its obfuscation signi�cantly better than without
the obfuscation.

• The variation of Canetti's de�nition with respect to uniform distributions (as used in one
result of [10]) requires that if there is no a-priori information about the password, then no
predicate of the password can be guessed. Formally, if the password has full min-entropy,
no predicate on the password can be guessed from its obfuscation signi�cantly better than
without the obfuscation.

• We demand that if there is no a-priori information about the password, then it cannot be
guessed from its obfuscation alone. Formally, if the password has full min-entropy, its obfus-
cation looks like that of any other password.

This shows that, of course, our notion is considerably weaker than Canetti's (even when considered
for uniform input distribution).

Other similar de�nitions. Technically, our De�nition 4.1 is quite similar to Hada [19], De�ni-
tion 10 (the latter de�nition which is also formulated with a distribution on the keys). Essentially,
the only di�erence is that [19, De�nition 10] equips the distinguisher with an extra copy of the
obfuscation instead of oracle access to the function. As argued by Hada [19], this leads to a very
strong de�nition (that is in particular strictly more restrictive than ours).
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Finally, the de�nitions from Wee [34], Section 5.2 are technically similar to ours, in that they are
simulation-based. His de�nitions su�er from strong impossibility results (in particular, a function
must be exactly learnable for obfuscation). This is partly due to the fact that these de�nitions
demand security for all keys in a given set. In our case, a function must be approximately learnable
for obfuscation, and this enables, e.g., the obfuscation of point functions (see Section 5.1).

4.4 Speci�c vs. General-Purpose Obfuscation

Impossibility of general-purpose obfuscation. As already indicated our de�nitions still su�er
from certain impossibility results. First, the argument of Barak et al. [3], Section 3 works also for
the case of a randomized key distribution, and hence there are certain (albeit constructed) examples
of unobfuscatable function families. There are even less constructed examples, as we will show in
Section 5. In other words: there can be no general-purpose obfuscation.6

Speci�c obfuscators. What we advocate here is to consider speci�c obfuscators for speci�c func-
tion families. For example, we will show (in Section 5.3) that obfuscating the encryption algorithm
of a private-key encryption scheme yields a public-key encryption scheme, and that such obfusca-
tions (in principle at least) exist. However, our example that such obfuscations exist assumes a
public-key encryption scheme in the �rst place. Plugging this example into the private-key→public-
key transformation gives (nearly) the same public-key encryption scheme one started with. So the
following question arises:

What is gained? Firstly, the private-key→public-key transformation can be seen, similarly to
Di�e and Hellman [11], as a technical paradigm to realize public-key encryption in the �rst place.
In that context, a formalization of obfuscation can provide an interface and a technical guideline of
what to aim for.

Secondly, the mentioned impossibility results do not exclude that a sensible formulation of what
can be obfuscated exists. In other words, there may be a large and easily characterizable class of
functions which can be obfuscated. Universal, general-purpose obfuscators for this class may exist
and provide solutions for applications which correspond to functions inside this class.

5 Results for Our De�nitions

Overview. Here we investigate the usefulness of our obfuscation de�nitions, where we concentrate
mainly on the weaker of the two, De�nition 4.1. Concretely, we show that this de�nition is:
• weak enough to be achieved with simple constructions: point functions can be easily obfus-
cated according to our de�nition (Section 5.1);
• strong enough to be used as a useful building block: secure obfuscations according to
our de�nition can be used to transform private-key encryption into public-key encryption
(Section 5.3).

In the process, we will encounter a number of concrete and natural examples of obfuscatable and
unobfuscatable function families:
• obfuscatable according to our de�nition are point functions, certain private-key encryption
schemes, and certain message authentication codes, whereas
• unobfuscatable according to our de�nition are pseudorandom functions, certain private-key
encryption schemes, and certain message authentication codes.

6It is actually worse: as in [3], there exist function families that cannot be obfuscated with any obfuscator.
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Our interpretation of these results is that one should not strive for all-purpose obfuscators, since
they may not exist (even for restricted tasks such as private-key encryption schemes). Instead,
obfuscating very speci�c function families may often be possible and may prove useful for larger
constructions.

5.1 Achievability: Obfuscating Point Functions

De�nition 5.1 (Point function). For k ∈ N and x ∈ {0, 1}k, we de�ne the point function Px :
{0, 1}k → {0, 1} by Px(x′) := 1 i� x′ = x. Furthermore, we de�ne the families of point functions

Pk := (Px)x∈{0,1}k and P := (Pk)k∈N.

Our goal is to obfuscate the function family P according to De�nition 4.1. That is, we want to
obfuscate the evaluation of a point function Px sampled uniformly from Pk for k being the security
parameter. As it turns out, Π(x) is a secure obfuscation of Px whenever Π is a one-way permutation.
Hence, we make the following de�nitions:

De�nition 5.2 (One-way permutation). Let Π : {0, 1}∗ → {0, 1}∗ be length-preserving and bijective

(i.e., Π({0, 1}k) = {0, 1}k for all k ∈ N). We say that Π is a one-way permutation i� for all PPT

adversaries A, the function Advow
Π,A(k) is negligible in k, where

Advow
Π,A(k) := Pr

[
x

$← {0, 1}k : A(Π(x)) = x
]
.

Construction 5.3 (Point function obfuscator). Let P = (Pk)k∈N be the family of point functions
from De�nition 5.1, and let Π be a one-way permutation as in De�nition 5.2. For Px ∈ Pk, de�ne
the obfuscation O(Px) := Π(x), with the semantics that (O(Px)) (x′) = 1 i� Π(x′) = O(Px).

The actual proof that O securely obfuscates P is quite simple:

Theorem 5.4 (Security of Construction 5.3). O from Construction 5.3 securely obfuscates the point

function family P from De�nition 5.1 in the sense of De�nition 4.1.

Proof. Let an arbitrary PPT distinguisher D as in De�nition 4.1 be given. We de�ne a PPT
simulator S as follows: S uniformly samples x′ ∈ {0, 1}k and outputs Π(x′). We have to show that

Advsbvbb
P,O,D,S(k) = Pr

[
x

$← {0, 1}k : DPx(·)(Π(x)) = 1
]
− Pr

[
x, x′

$← {0, 1}k : DPx(·)(Π(x′)) = 1
]

is negligible in k. We use a game-based proof technique for clarity.
So let Game 0 denote the execution of DPx(·)(Π(x)) for uniformly chosen x ∈ {0, 1}k. By

de�nition,

Pr [out0 = 1] = Pr
[
x

$← {0, 1}k : DPx(·)(Π(x)) = 1
]

with out0 being D's output in Game 0.
In Game 1, we change D's oracle Px to the all-zero oracle that outputs 0 on every input. We

claim that
|Pr [out1 = 1]− Pr [out0 = 1]| ≤ Advow

Π,A(k) (3)

for a suitable PPT adversary A on Π's one-way property and the output out1 of D in Game 1.
To show (3), let bad denote the event that D queries its oracle Px on input x. Clearly, unless bad
occurs, Game 0 and Game 1 proceed identically (in particular, the probability for bad in Game 0
and Game 1 is identical). On the other hand, we have that

Pr [bad] ≤ Advow
Π,A(k) (4)
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for the following adversary A: On input Π(x) it simulates DPx(·)(Π(x)), implementing the Px-oracle
using Π(x). Concretely, a Px-query x

′ is answered with 1 i� Π(x′) = Π(x). If bad occurs (i.e., if D
queries Px with x), then A outputs x. By de�nition, this adversary establishes (4) and hence (3).

In Game 2, we substitute D's all-zero oracle from Game 1 with an oracle that evaluates the
point function Px′ for a uniformly and independently chosen x′ ∈ {0, 1}k. Game 1 and Game 2
di�er only if D queries x′. Since x′ is independently chosen and information-theoretically hidden
from D, we have that

|Pr [out2 = 1]− Pr [out1 = 1]| ≤ q(k)/2k,

where q = q(k) is a polynomial upper bound on the number of D's oracle queries, and out2 denotes
D's output in Game 2.

Now observe that

Pr [out2 = 1] = Pr
[
x, x′

$← {0, 1}k : DPx′ (·)(Π(x)) = 1
]

= Pr
[
x, x′

$← {0, 1}k : DPx(·)(Π(x′)) = 1
]
.

Taking things together proves that

Advsbvbb
P,O,D,S(k) ≤ Advow

Π,A(k) + q(k)/2k

is negligible as desired.

We note that it is easy to see that Construction 5.3 does not strongly obfuscate P (in the sense of
De�nition 4.2). Moreover, with a little tweak we can also show that Construction 5.3 does not imply
the predicate-based De�nition 4.5 (even when not taking auxiliary information into consideration).
Given a one-way permutation Π de�ne the related permutation Π′ by Π′(b||x) = b||Π(x) (where b a
bit). Then Π′ is one-way i� Π is, yet the point function obfuscation using Π′ clearly leaks the �rst
bit of its input (hence a predicate).

On the weakness of our construction. Construction 5.3 provides signi�cantly weaker secrecy
guarantees than previous constructions for point function obfuscations (such as [8, 10, 34]). For
instance, our obfuscation O(Px) = Π(x) might well leak, say, the �rst half of the bits of the secret
point x. The only guarantee we provide is that the whole point x cannot be reconstructed from
O(Px). In strong contrast to that, e.g., Canetti [8] (and similarly [10, 34]) aims at an �all-or-nothing�
property, even for arbitrary distributions of x, and in presence of arbitrary auxiliary information
about x. Namely, either the whole secret point x can already be guessed without the obfuscation (in
which case the obfuscation of Px merely provides a con�rmation of x), or the obfuscation leaks no
additional information about x. And even when assuming a uniform distribution on x (as, e.g., for
one construction in [10]), Canetti's de�nition requires that not even a predicate (such as a bit of x)
can be approximated from an obfuscation. This is essentially the secrecy guarantee a random oracle
would provide in place of Π in Construction 5.3; and in fact, the main goal of [8] is to provide a
computational instantiation of (the secrecy properties of) a random oracle. These extremely strong
secrecy guarantees are bought at a certain price: the construction of [8] requires a much stronger
and nonstandard computational assumption. (We note that one construction of [10], that provides
security only for the uniform distribution on x, makes only standard computational assumptions;
however, their construction is comparatively involved.)

So in a nutshell, Construction 5.3 does not provide security in the presence of auxiliary infor-
mation (about x), in contrast to previous constructions. As a consequence, Construction 5.3 should
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only be used in contexts in which no auxiliary information about x is used. This e�ect illustrates
the general composability limitations of De�nition 4.1 and an alternative based on De�nition 4.2
will be discussed in detail in Section 6.

5.2 A Natural Example of an Unobfuscatable Function Family

Despite our good start with point functions, we can show that our obfuscation notion is not free
from impossibility results, not even for speci�c (and natural) classes of function families. Concretely,
we will prove that pseudorandom functions cannot be obfuscated under our obfuscation de�nitions.
Intuitively, this is not at all surprising, independently of the used obfuscation notion: obfuscating
a pseudorandom function essentially yields a random oracle.

The upcoming de�nition follows Goldreich et al. [14].

De�nition 5.5 (Family of pseudorandom functions). Let F = (Fk)k∈N, Fk = (fs)s∈{0,1}k with

fs : {0, 1}|s| → {0, 1}|s| be given. Let R = (Rk)k∈N, where Rk denotes the set of all functions

{0, 1}k → {0, 1}k. Then F is called a family of pseudorandom functions i� for every PPT A, the

function Advprf
F ,A(k) is negligible in k. Here,

Advprf
F ,A(k) := Pr

[
s

$← {0, 1}k : Afs(·)(ε) = 1
]
− Pr

[
R

$← Rk : AR(·)(ε) = 1
]
.

Theorem 5.6 (Pseudorandom function families cannot be obfuscated). Let F be a family of pseu-

dorandom functions as in De�nition 5.5. Then F cannot be obfuscated in the sense of De�nition 4.1,

and with perfect functionality.

Proof. Let O be an obfuscator of F in the sense of De�nition 4.1, and with perfect functionality.
Consider the distinguisher D that, upon input O and with oracle access to fs, proceeds as follows.
D uniformly chooses x ∈ {0, 1}k and outputs 1 i� O(x) = fs(x). Clearly,

Pr
[
Dfs(·)(O(fs)) = 1

]
= 1

by functionality of the obfuscation. Now �x any PPT simulator S in the sense of De�nition 4.1.
We have that

Pr
[
Dfs(·)(Sfs(·)(ε)) = 1

]
c
≈ Pr

[
DR(·)(SR(·)(ε)) = 1

]
for a truly random functionR as in De�nition 5.5. Furthermore, Pr

[
DR(·)(SR(·)(ε)) = 1

]
is negligible

by the statistical properties of R. To see this, note that unless S queries R(x) for the point x ∈
{0, 1}k chosen by D, we have that S's view is independent of R(x). Furthermore, since x ∈ {0, 1}k
is chosen independently by D, we have that S queries R(x) only with negligible probability. Hence,
S produces an output O with O(x) = R(x) only with negligible probability. Thus,

Pr
[
Dfs(·)(Sfs(·)(ε)) = 1

]
c
≈ Pr

[
DR(·)(SR(·)(ε)) = 1

]
c
≈ 0,

which shows that Advsbvbb
F ,O,D,S(k) is non-negligible, overwhelming even, and so O does not obfuscate

F .

5.3 How to Use Our De�nition: Transforming Private-Key Encryption into

Public-Key Encryption

We now exemplify that our obfuscation de�nition is strong enough to be useful as a building block.
Concretely, we take up the motivation of Di�e and Hellman [11], who suggested that one way to
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produce a public-key encryption scheme was to obfuscate a private-key scheme. This application
of obfuscation was also suggested by Barak et al. [3]. Speci�cally, say we obfuscate the encryption
algorithm (with hardwired private key) of a private-key encryption scheme, and call the result the
public key. Intuitively, the public key then allows encrypting messages, but nothing more. We will
investigate below when this transformation actually yields a secure public-key encryption scheme.

Encryption schemes. We start by recalling some standard de�nitions, starting with the de�ni-
tion of a private-key encryption scheme:

De�nition 5.7 (Private-key encryption scheme). A private-key encryption scheme SKE = (K,E,
D) consists of three PPT algorithms with the following semantics:

• The key generation algorithm K samples a key K. We write K ← K(ε) and let Kk denote the

set of all keys K in the range of K(ε) on security parameter k.
• The encryption algorithm E encrypts a message M ∈ {0, 1}∗ and produces a ciphertext C.
We write C ← E(K,M).
• The decryption algorithm D decrypts a ciphertext C to a messageM . We writeM ← D(K,C).

We require perfect correctness of the scheme, i.e., that D(K,E(K,M)) = M for all M ∈ {0, 1}∗
and all possible K ← K(ε).

To ease presentation, and to maintain compatibility with our de�nitional choices for obfuscation,
we will assume (without loss of generality) that K samples keys uniformly from Kk.

The de�nition of a public-key encryption scheme is identical, except that encryption is performed
with a public key, and decryption is performed with a private key :

De�nition 5.8 (Public-key encryption scheme). A public-key encryption scheme PKE = (Gen,Enc,
Dec) consists of three PPT algorithms with the following semantics:

• The key generation algorithm Gen samples a keypair (pk , sk) consisting of a public key pk
along with a private key sk . We write (pk , sk)← Gen(ε).
• The encryption algorithm Enc encrypts a message M ∈ {0, 1}∗ and produces a ciphertext C.
We write C ← Enc(pk ,M).
• The decryption algorithm Dec decrypts a ciphertext C to a message M . We write M ←

Dec(sk , C).
We require perfect correctness of the scheme, i.e., that Dec(sk ,Enc(pk ,M)) = M for allM ∈ {0, 1}∗
and all possible (pk , sk)← Gen(ε).

We stress that we model encryption schemes which encrypt arbitrary messages M ∈ {0, 1}∗ (as
opposed to, say, messages M ∈ G from a cyclic group). This de�nitional choice has been made only
to ease presentation.7

Security of encryption schemes. To capture the security of a (private-key or public-key) en-
cryption scheme, we require indistinguishability of ciphertexts (Goldwasser and Micali [17], Naor
and Yung [29], Racko� and Simon [32]). The following de�nition captures active attacks (aka
chosen-ciphertext attacks, in which an adversary has access to a decryption oracle). A straight-
forward variant models passive attacks (in which an adversary only gets to observe a ciphertext).

7Strictly speaking an in�nite message space is not compatible with our computational model where all algorithms
are required to run in time polynomial in the security parameter.

19



De�nition 5.9 (Security of an encryption scheme). Let SKE = (K,E,D) be a private-key encryption
scheme, and let A = (A1, A2) be a pair of PPT algorithms we call adversary. We de�ne

Advind-cca
SKE,A (k) := Pr

[
Expind-cca

SKE,A (k) = 1
]
− 1/2,

where Expind-cca
SKE,A (k) is the following experiment:

Experiment Expind-cca
SKE,A (k)

Choose uniformly b ∈ {0, 1}
K ← K(ε)
(M0,M1, s)← A

E(K,·),D(K,·)
1 (ε)

C∗ ← E(K,Mb)
b′ ← A

E(K,·),D(K,·)
2 (C∗, s)

Return b⊕ b′

A1 is restricted to always output equal-length messages M0,M1, and A2 is restricted not to query its

decryption oracle D(K, ·) on the challenge ciphertext C∗. SKE is indistinguishable against chosen-
ciphertext attacks (IND-CCA) if the advantage function Advind-cca

SKE,A (k) is negligible in k for all A.
De�ne further

Advind-cpa
SKE,A (k) := Pr

[
Expind-cpa

SKE,A (k) = 1
]
− 1/2,

where Expind-cpa
SKE,A (k) is de�ned like Expind-cca

SKE,A (k), with the di�erence that A1 and A2 do not get access

to a decryption oracle D(K, ·). SKE is indistinguishable against chosen-plaintext attacks (IND-CPA)

if the advantage function Advind-cpa
SKE,A (k) is negligible in k for all A.

For a public-key encryption scheme PKE = (Gen,Enc,Dec), de�ne the experiments Expind-cca
PKE,A(k)

and Expind-cpa
PKE,A (k) as above, with the di�erence that A does not get access to an encryption oracle

Enc(pk , ·), but instead, A1 gets the public key pk as input. PKE is IND-CCA (resp., IND-CPA) if

Advind-cca
PKE,A(k) (resp., Advind-cpa

PKE,A (k)) is negligible for all A.

The transformation. We are now ready to formally de�ne what we mean by obfuscating the
encryption algorithm of a private-key encryption scheme.

De�nition 5.10 ((Strongly) obfuscatable private-key encryption). Let SKE = (K,E,D) be a private-
key encryption scheme as in De�nition 5.7. Then, de�ne EK(·) := E(K, ·) as the encryption algo-

rithm of SKE with hardwired private key K. Let Ek := (EK)K∈Kk
and E := (Ek)k∈N. Suppose that O

is an obfuscator for the family E, such that O satis�es De�nition 4.1 and has perfect functionality.

Then we say that O obfuscates SKE. If O even satis�es De�nition 4.2, then we say that O strongly
obfuscates SKE. If an O exists that (strongly) obfuscates SKE, then we say that SKE is (strongly)
obfuscatable.

Construction 5.11 (Obfuscating private-key encryption). Let SKE = (K,E,D) and O as in De�-
nition 5.10, such that O obfuscates SKE. Then, de�ne the following public key encryption scheme
PKE = (Gen,Enc,Dec) as follows:
• Gen(ε) samples K ← K(ε), sets pk ← O(EK) and sk ← K, and outputs the keypair (pk , sk).
• Enc(pk ,M) interprets pk as an algorithm, computes C ← pk(M), and returns C.
• Dec(sk , C) computes M ← D(sk , C) and returns M .

Since we require perfect functionality from an obfuscation, it is clear that the scheme PKE from
Construction 5.11 ful�ls the correctness requirement from De�nition 5.8. However, for the analysis
of PKE, the following questions are much more interesting:
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• Is PKE secure (in the sense of De�nition 5.9) if SKE is?
• Is it realistic to assume that one can obfuscate the encryption of SKE in the �rst place?

In the following, we will try to answer these questions. Concretely, we will show that PKE is
IND-CPA secure if SKE is; however, we will also illustrate that this does not hold in general for
IND-CCA security, unless O strongly obfuscates SKE. We will also show that there exist private-
key encryption schemes with (strongly) obfuscatable encryption algorithm; however, there also exist
encryption schemes which are not obfuscatable.

What security properties our transformation preserves. We start by showing that our
transformation preserves IND-CPA security.

Theorem 5.12 (Obfuscating private-key encryption preserves IND-CPA). Let SKE, O, and PKE
be as in Construction 5.11. Then the transformed public-key encryption scheme PKE is IND-CPA

secure whenever SKE is.

Proof. Let A = (A1, A2) be an adversary on PKE's IND-CPA property as in De�nition 5.9. We

need to show that Advind-cpa
PKE,A(k) is negligible in k. We proceed in games.

Let Game 0 denote Expind-cpa
PKE,A(k). We have

Pr [out0 = 1] = Pr
[
Expind-cpa

PKE,A(k) = 1
]

if we let out0 denote the experiment output in Game 0.
In Game 1, we change the generation of the challenge ciphertext C∗. Recall that in Game 0,

C∗ = Enc(pk ,Mb) = (O(EK)) (Mb). We now set C∗ = EK(Mb) = E(K,Mb). Since the obfuscator
O satis�es perfect functionality, we have (O(EK)) (Mb) = EK(Mb) always, and so

Pr [out1 = 1] = Pr [out0 = 1]

for the experiment output out1 in Game 1.
To de�ne Game 2, we interpret Game 1 as a PPT distinguisher D as in De�nition 4.1. Con-

cretely, D has oracle access to EK(·) = E(K, ·), gets as input pk = O(EK), and internally simulates
Game 1. Observe that D does not need explicit knowledge about K, but instead can pass its input
pk to A1 and use its oracle EK(·) to generate C∗ = EK(Mb). Finally, D outputs the experiment
output out1. De�nition 4.1 guarantees the existence of a PPT simulator S such that

Pr [out1 = 1] = Pr
[
DEK(·)(O(EK)) = 1

]
c
≈ Pr

[
DEK(·)(SEK(·)(ε)) = 1

]
.

Using S, we de�ne Game 2 as a modi�cation of Game 1 as follows: in Game 2, we now generate pk
as pk := SEK(·)(ε); the remaining execution is as in Game 1. We have

Pr [out2 = 1] = Pr
[
DEK(·)(SEK(·)(ε)) = 1

]
for the experiment output out2 in Game 2, and so Pr [out2]

c
≈ Pr [out1].

Finally, observe that in Game 2, the public key pk = SEK(·)(ε) can be generated from oracle
access to EK(·) = E(K, ·) alone. Hence, we can modify A1 into A′1 such that A′1 no longer expects
a public key as input, but instead requires only oracle access to E(K, ·) to generate pk on its own.
Furthermore, recall that we generate C∗ using E directly. Hence, we can interpret A′ := (A′1, A2)
as a PPT adversary on SKE's IND-CPA security, and we get

Pr
[
Expind-cpa

SKE,A′(k) = 1
]

= Pr [out2 = 1] .
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Since SKE is IND-CPA secure by assumption, we have that

Pr
[
Expind-cpa

PKE,A(k) = 1
]

= Pr [out0] = Pr [out1]
c
≈ Pr [out2] = Pr

[
Expind-cpa

SKE,A′(k) = 1
]

c
≈ 1/2,

which proves that Advind-cpa
PKE,A(k) is negligible as desired.

If we assume that O strongly obfuscates SKE, we can even show that IND-CCA security is
preserved:

Theorem 5.13 (Strongly obfuscating private-key encryption preserves IND-CCA). Let SKE, O,
and PKE as in Construction 5.11, and such that O strongly obfuscates SKE. Assume here that the

description of EK allows to extract the key K.8 Then, the transformed public-key encryption scheme

PKE is IND-CCA secure whenever SKE is.

Proof. The proof is identical to the proof of Theorem 5.12, except that D now needs to simulate
an IND-CCA experiment instead of an IND-CPA experiment. Since we assumed that O strongly
obfuscates SKE, D can do so with using its input EK , which by assumptions allows to extract the
(encryption and decryption) key K. The rest of the proof remains unchanged.

What security properties our transformation does not preserve. Unfortunately IND-
CCA security of SKE is not necessarily preserved by Construction 5.11 in case O does not strongly
obfuscate SKE. The intuitive reason is the following. Assume an obfuscator O in the sense of
De�nition 4.1 for the probabilistic functions EK(·) = E(K, ·). In De�nition 4.1, the distinguisher D
gets an encryption oracle (namely, an oracle for evaluating the obfuscated function EK(·)), but no
means of decrypting ciphertexts. (This is in contrast to our stronger De�nition 4.2 which grants D
the full key K.) It is now conceivable that the obfuscation loses its security only in the presence of a
decryption oracle. In particular, in the IND-CCA security experiment with a transformed encryption
scheme PKE constructed from SKE and O, the adversary does have access to a decryption oracle,
and security of the obfuscation can no longer be guaranteed. Hence, we cannot apply the reasoning
of Theorem 5.12 to show that PKE inherits SKE's IND-CCA security when the obfuscator O does
not strongly obfuscate SKE. More generally, we can construct the following counterexample:

Theorem 5.14 ((Not strongly) obfuscating private-key encryption does not preserve IND-CCA).
Assume that obfuscatable IND-CCA secure private-key encryption schemes exist. Then there exists

an IND-CCA secure private-key encryption scheme SKE and an obfuscator O such that the following

holds:

• O obfuscates (but not strongly) SKE's encryption algorithm as in Construction 5.11.

• The public-key encryption scheme PKE obtained by Construction 5.11 is not IND-CCA.

Proof. Assume an IND-CCA secure private-key encryption scheme SKE′ that is obfuscatable in the
sense of De�nition 5.10. Say that O′ obfuscates SKE′. We modify SKE′ = (K′,E′,D′) into a scheme
SKE = (K,E,D) as follows:
• K samples K ′ ← K′, chooses uniformly R ∈ {0, 1}k and outputs K = (K ′, R).
• E(K,M) parses K = (K ′, R), generates a ciphertext C ′ ← E′(K ′,M) and outputs C = (C ′, ε).
• D(K,C) parses K = (K ′, R) and C = (C ′, T ) and determines its output M as follows:

� If T = ε, then M ← D′(K ′, C ′).
� If T = R, then M = K.
� Otherwise, M = ⊥.

8We stress that this is a (natural) assumption about the representation of EK , not the encryption algorithm itself.

22



Assume an adversary A = (A1, A2) on SKE's IND-CCA property. We construct an adversary
A′ = (A′1, A

′
2) on SKE′'s IND-CCA property, such that

Advind-cca
SKE,A (k)

c
≈ Advind-cca

SKE′,A′(k). (5)

Now A′ proceeds like A, translating A's E(K, ·)- and D(K, ·)-queries into E′(K ′, ·)- and D′(K ′, ·)-
queries for A′'s own oracles as follows:
• E(K,M)-queries are answered with (E′(K ′,M), ε).
• D(K, (C ′, T ))-queries are answered with D′(K ′, C ′) if T = ε, and with ⊥ otherwise.

Let bad denote the event that A asks for a decryption of some C = (C ′, T ) with T = R. It is clear
that A′'s emulation of oracles E(K, ·) and D(K, ·) is perfect unless bad occurs. On the other hand,
the probability that bad occurs is at most q(k)/2k for some polynomial q, since R is information-
theoretically hidden from A′ and thus A. Hence, (5) follows and so SKE achieves IND-CCA security.

By assumption, O′ obfuscates SKE′. We construct an obfuscator O for SKE's encryption algo-
rithm EK(·) = E(K, ·) as follows: O(EK) parses K = (K ′, R) and internally runs O′ ← O′(E′K′).
O then outputs an obfuscation (O,R), where O is obtained from O′ by adding a second ciphertext
component T = ε to each encryption. We claim that O obfuscates SKE. Indeed, assume a PPT
distinguisher D on O's virtual black-box property. Using trivial syntactic modi�cations, we can
construct from D a distinguisher D′ on O′'s virtual black-box property, so that

Pr
[
DEK(·)(O(EK)) = 1

]
= Pr

[
D′

E′
K′ (·)(O′(E′K′)) = 1

]
c
≈ Pr

[
D′

E′
K′ (·)(S′E

′
K′ (·)(ε)) = 1

]
. (6)

Here, S′ is a PPT simulator whose existence follows from our assumption that O′ obfuscates SKE′.
From S′, we can construct a PPT simulator S that runs O′ ← S′(ε) and outputs a simulated
obfuscation (O,R). Here, R ∈ {0, 1}k is uniformly chosen by S and O is obtained from O′ as above,
by adding a second ciphertext component T = ε. Now by de�nition, D's encryption oracle EK is
independent of the actual value of R, so inventing R achieves

Pr
[
DEK(·)(SEK(·)(ε)) = 1

]
= Pr

[
D′

E′
K′ (·)(S′E

′
K′ (·)(ε)) = 1

]
. (7)

Taking (6) and (7) together shows that

Advsbvbb
E,O,D,S(k) = Pr

[
DEK(·)(O(EK)) = 1

]
− Pr

[
DEK(·)(SEK(·)(ε)) = 1

]
is negligible. Hence, O obfuscates SKE.

It remains to show that the public-key encryption scheme PKE, as obtained from SKE and
O using Construction 5.11, is not IND-CCA secure. To this end, consider the following trivial
adversary A = (A1, A2) on PKE's IND-CCA property. A1 gets as input pk = O(EK) = (O,R) and
then queries its decryption oracle Dec(sk , ·) on input C = (ε,R). By de�nition, Dec(sk , C) outputs
D(sk , (ε,R)) = K, which can be used to decrypt any challenge ciphertext. Hence, Advind-cca

PKE,A(k) =
1/2, and so PKE is not IND-CCA secure.

Can private-key encryption be obfuscated? We now show that there exist private-key en-
cryption schemes which can be obfuscated, even strongly; however, we also show that there exist
schemes which cannot be obfuscated. But before we explain our own results, we discuss a connected
result.
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On a negative result due to Barak et al. Barak et al. [3], Theorem 4.12 in the full version, give
a transformation that turns any private-key encryption scheme into an equally secure unobfuscatable
private-key encryption scheme SKE. The de�nition of unobfuscatability employed here implies that
any obfuscation of SKE's encryption algorithm allows extracting the private key K. This also
rules out obfuscation with respect to our de�nitions for private-key encryption schemes meeting
any reasonable security standard. (Essentially a simulator should be able to construct a decryption
algorithm using a polynomial number of encryption queries: this breaks IND-CPA security.) To
achieve their strong result, Barak et al. employ a sophisticated modular construction based on
�totally unobfuscatable one-way functions.� Our construction of an unobfuscatable private-key
encryption scheme below is conceptually much easier, but only works for our security de�nitions.

(Strongly) obfuscatable private-key encryption schemes exist. Given the preceding dis-
cussion, the most pressing question is whether there exist private-key encryption schemes which can
be obfuscated according to our de�nition. Trivially, the answer is yes as already observed by Barak
et al. [3], since any public-key encryption scheme can be turned into an obfuscatable private-key
scheme. Essentially, the obfuscation is the public key. Formally:

Theorem 5.15 ((Strongly) obfuscatable private-key encryption schemes exist). Assume that IND-

CPA (resp., IND-CCA) secure public-key encryption schemes exist. Then there exist IND-CPA

(resp., IND-CCA) secure private-key encryption schemes which are strongly obfuscatable.

Proof. Let PKE = (Gen,Enc,Dec) be an IND-CPA (resp., IND-CCA) secure private-key encryption
scheme. Without loss of generality, we assume that Gen always uses p(k) random coins for a
polynomial p. Then, we interpret PKE as a private-key encryption scheme SKE = (K,E,D) as
follows:
• K(ε) outputs a uniformly chosen K ∈ {0, 1}p(k).
• E(K,M) uses K as random coins for Gen to deterministically obtain a keypair (pk , sk). Then,

E returns9 C ← (pk ,Enc(pk ,M)).
• D(K,C) uses K as random coins for Gen to deterministically obtain a keypair (pk , sk), and
parses C = (pk ′, C ′). If pk = pk ′, then D returns M ← Dec(sk , C); else, D returns ⊥.

Using a merely syntactic reduction, it is clear that SKE is IND-CPA (resp., IND-CCA) whenever
PKE is. To show that SKE is obfuscatable, consider the obfuscator O with O(EK) = pk for the
public key pk obtained by running Gen with random coins K. Now a PPT simulator S in the sense
of De�nition 4.2 can simply obtain pk by its own encryption oracle EK(·) and perfectly simulate an
obfuscation. Hence, O strongly obfuscates SKE.

We stress that Theorem 5.15 is not very useful in conjunction with Construction 5.11. Namely,
Theorem 5.15 shows that any public-key encryption scheme can be interpreted as an obfuscatable
private-key encryption scheme; Construction 5.11 states that any obfuscatable private-key encryp-
tion scheme gives rise to a public-key encryption scheme. Even worse, plugging any public-key
encryption scheme into Theorem 5.15 and then into Construction 5.11, one ends up with essen-
tially the original scheme. However, the point of Theorem 5.15 is a structural one: it shows that
some private-key encryption schemes can be obfuscated, and in particular, there can be no generic
impossibilities for obfuscating private-key encryption schemes according to our de�nition.

Unobfuscatable private-key encryption schemes exist. Unfortunately, also private-key en-
cryption schemes which are unobfuscatable exist. We stress that by unobfuscatable, we mean �not

9The trick to include pk in each ciphertext to achieve trivial obfuscatability was suggested by a TCC referee.
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obfuscatable� in the sense of De�nition 5.10. We do not mean �totally unobfuscatable� as in Barak
et al. [3] (cf. also the discussion about their negative result above).

The idea to construct unobfuscatable private-key encryption schemes is simple: sign each cipher-
text with a digital signature scheme, and include the signature veri�cation key in each ciphertext.
This way, the encryption is authenticated, in a publicly veri�able way. In particular, any obfusca-
tion of the encryption algorithm can be used to generate fresh signatures for new ciphertexts. In
the setting of De�nition 4.1 this means that a simulator S has to essentially forge signatures for
fresh encryptions. (Since D has direct oracle access to the encryption algorithm, it can obtain the
�right� veri�cation key independently of S's output.) This contradicts the security of the signature
scheme. Formally:

Theorem 5.16 (Unobfuscatable private-key encryption schemes exist). Assume that one-way func-

tions exist. Then an IND-CCA secure private-key encryption exists which is not obfuscatable in the

sense of De�nition 5.10.

Proof. Let SKE′ = (K′,E′,D′) be an IND-CPA secure private-key encryption scheme, and let
SIG = (Gen,Sig,Ver) be an EUF-CMA secure digital signature scheme (see De�nition 5.19). These
ingredients can be constructed from one-way functions (see, e.g., Bellare et al. [6] and Rompel [33]).
We construct a private-key encryption scheme SKE = (K,E,D) which cannot be obfuscated:
• K(ε) runs K ′ ← K′(ε) and (verkey , sigkey)← Gen(ε), and outputs K = (K ′, verkey , sigkey).
• E(K,M) parses K = (K ′, verkey , sigkey), computes C ′ = E′(K ′,M), signs C ′ via σ ←

Sig(sigkey , C ′), and outputs C = (C ′, σ, verkey).
• D(K,C) parses K = (K ′, verkey , sigkey) and C = (C ′, σ, verkey). If verkey = verkey and

Ver(verkey , σ, C ′) = 1, then D outputs D′(K ′, C ′); otherwise, D outputs ⊥.
It is easy to see that SKE constitutes an authenticated encryption scheme, and consequently achieves
IND-CCA security (see, e.g., Bellare and Namprempre [5], Katz and Yung [24]). Now consider an
arbitrary obfuscator O for SKE. Furthermore, consider the following distinguisher D in the sense
of De�nition 4.1:

1. First, D uses its oracle EK to encryptM0 = 0 and so obtain a ciphertext C0 = (C ′0, σ0, verkey).
2. Then, D interprets its input O as an (encryption) algorithm and obtains a ciphertext C1 =

(C ′1, σ1, verkey ′) as an encryption of M1 = 1.
3. D outputs 1 i� Ver(verkey , σ1, C

′
1) = 1 and C ′1 6= C ′0.

By construction, DEK(·)(O(EK)) always outputs 1, since C ′0 6= C ′1 by correctness of the encryption
scheme. On the other hand, for any �xed PPT simulator S, we have that

Pr
[
DEK(·)(SEK(·)(ε)) = 1

]
≤ Adveuf-cma

SIG,A (k) (8)

for the adversary A on SIG that proceeds as follows. Namely, A internally runs DEK(·)(SEK(·)(ε))
and implements the EK oracles on its own, choosing a key K ′ for SKE′ on its own, and using its
own challenge veri�cation key and signature oracle to sign ciphertexts. If D outputs 1, this means
that it has constructed a valid signature σ1 for a fresh message C ′1. The given bound (8) follows.

But since Adveuf-cma
SIG,A (k) is negligible by assumption on SIG, we obtain that Advsbvbb

E,O,D,S(k) is
overwhelming, so that O does not obfuscate SKE. The claim follows.

5.4 Another Example: From Message Authentication to Digital Signatures

Message authentication codes (MACs) are the private-key analogue to digital signature schemes.
While veri�cation of signatures is public in a digital signature scheme, the veri�cation algorithm of a
MAC requires a private key. In particular in view of the results of Section 5.3, it is now tempting to
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convert a MAC into a signature scheme by obfuscating the veri�cation algorithm (with hardwired
key). It will turn out that this does not work as easily as in the encryption case, due to two
circumstances. Firstly, the authentication analogue of IND-CPA security is not very meaningful;10

hence we omit it. Secondly, the interface of the veri�cation algorithm is very restricted: veri�cation
only outputs a bit, and only outputs 1 in case of a valid signature.

Consequently, our results concerning MACs and digital signatures are mainly negative. Con-
cretely, we show that
• the situation is non-trivial, i.e., there exist obfuscatable as well as unobfuscatable MACs
(Theorem 5.25 and Theorem 5.26; here, �obfuscatable� means that the veri�cation algorithm
can be obfuscated),
• a strongly (in the sense of De�nition 4.2) obfuscatable MAC would give rise to a secure digital
signature scheme (Theorem 5.22), while an obfuscatable MAC is not enough (Theorem 5.22),
• however, there exist no strongly obfuscatable MACs (at least in the standard model; see
Theorem 5.24).

Summarizing, our results suggest that MACs cannot be turned into signatures schemes as smoothly
as private-key into public-key encryption schemes. While our results do not imply that such a
transformation is impossible, they suggest that both De�nition 4.1 and De�nition 4.2 are unsuitable
as technical tools for such a transformation. Namely, De�nition 4.1 is too weak to guarantee security
of the obtained digital signature scheme in general, whereas De�nition 4.2 cannot be achieved in
case of MACs.11 We believe that a de�nition suitable for this transformation would have to be
case-tailored (e.g., incorporating black-box access to a signature oracle).

Message authentication codes. Again, we start by recalling some standard de�nitions.

De�nition 5.17 (Message authentication code (MAC)). A message authentication code (MAC)
MAC = (K,S,V) consists of three PPT algorithms with the following semantics:

• The key generation algorithm K samples a key K. We write K ← K(ε), where Kk denotes the

set of all keys K in the range of K(ε) on security parameter k.
• The signature algorithm S signs a message M ∈ {0, 1}∗ and produces a signature σ. We write

σ ← S(K,M).
• The veri�cation algorithm V veri�es a signature σ for a message M . We write ver ←

V(K,σ,M), where ver ∈ {0, 1}.
We require perfect correctness, namely that V(K,S(K,M),M) = 1 for all M ∈ {0, 1}∗ and all

possible K ← K(ε).

Again, we assume for simplicity that K samples its keys K uniformly from Kk.

Digital signature schemes. The de�nition of a digital signature scheme is almost identical:

De�nition 5.18 (Digital signature scheme). A digital signature scheme SIG = (Gen,Sig,Ver) con-

sists of three PPT algorithms with the following semantics:

• The key generation algorithm Gen samples a keypair (verkey , sigkey) consisting of a veri�ca-

tion key verkey along with a signing key sigkey. We write (verkey , sigkey)← Gen(ε).
• The signature algorithm Sig signs a message M ∈ {0, 1}∗ and produces a signature σ. We

write σ ← Sig(sigkey ,M).
10We would like to thank Salil Vadhan for pointing this out to us.
11At least in the standard model; it is conceivable that strongly obfuscatable MACs exist, e.g., in the random oracle

model.
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• The veri�cation algorithm Ver veri�es a signature σ for a message M . We write ver ←
Ver(verkey , σ,M), where ver ∈ {0, 1}.

We require perfect correctness of the scheme, i.e., that Ver(verkey ,Sig(sigkey ,M),M) = 1 for all

M ∈ {0, 1}∗ and all possible (verkey , sigkey)← Gen(ε).

Security of signatures. We demand that, even with access to a signing oracle, one cannot forge
signatures of new messages.

De�nition 5.19 (Security of a MAC/signature scheme). Let MAC = (K, S,V) be a message au-

thentication code, and let A be a PPT algorithm we call adversary. We de�ne

Adveuf-cma
MAC,A (k) := Pr

[
Expeuf-cma

MAC,A (k) = 1
]
,

where Expeuf-cma
MAC,A (k) is the following experiment:

Experiment Expeuf-cma
MAC,A (k)

K ← K(ε)
(σ,M)← AS(K,·),V(K,·,·)(ε)
Return V(K,σ,M)

A is restricted to never return a message M for which it has requested a signature from S(sigkey , ·).
We call MAC existentially unforgeable under chosen-message attacks (EUF-CMA) if Adveuf-cma

MAC,A (k)
is negligible in k for all A.

For a digital signature scheme SIG = (Gen,Sig,Ver), de�ne the experiment Expeuf-cma
SIG,A (k) as

above, with the di�erence that A does not get access to a veri�cation oracle Ver(verkey , ·, ·), but
instead gets the veri�cation key verkey as input. SIG is EUF-CMA if Adveuf-cma

SIG,A (k) is negligible for

all A.

The transformation. We now de�ne what we mean by obfuscating the veri�cation algorithm of
a message authentication code:

De�nition 5.20 ((Strongly) obfuscatable MAC). Let MAC = (K,S,V) be a message authentication

code as in De�nition 5.17. Then, de�ne VK(·, ·) := V(K, ·, ·) as the veri�cation algorithm of SIG
with hardwired private key K. Let Vk := (VK)K∈Kk

and V := (Vk)k∈N. Suppose that O is an

obfuscator for the family V, such that O satis�es De�nition 4.1 and has perfect functionality. Then

we say that O obfuscates MAC. If O even satis�es De�nition 4.2, then we say that O strongly
obfuscates MAC. If an O exists that (strongly) obfuscates MAC, then we say that MAC is (strongly)
obfuscatable.

Construction 5.21 (Obfuscating a MAC). Let MAC = (K,S,V) and O as in De�nition 5.20, such
that O obfuscates MAC. Then, de�ne the following digital signature scheme SIG = (Gen,Sig,Ver)
as follows:
• Gen(ε) samples K ← Gen(ε), sets verkey ← O(VK) and sigkey ← K, and outputs the keypair

(verkey , sigkey).
• Sig(sigkey ,M) computes σ ← S(sigkey ,M) and returns σ.
• Ver(verkey , σ,M) interprets verkey as an algorithm, computes ver ← verkey(σ,M), and re-
turns ver .

Since we require perfect functionality from an obfuscation, it is clear that SIG ful�ls the correct-
ness requirement from De�nition 5.18.
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When obfuscating a MAC preserves EUF-CMA security. The proof of the following the-
orem is analogous to the proof of Theorem 5.12, resp. Theorem 5.13, so we omit it.

Theorem 5.22 (Strongly obfuscating a MAC preserves EUF-CMA). Let MAC, O, and SIG as

in Construction 5.21, and such that O strongly obfuscates MAC. Then, the transformed digital

signature scheme SIG is EUF-CMA secure whenever MAC is.

Analogously to Theorem 5.14 (and with a similar proof), it can be shown that obfuscation in
the sense of De�nition 4.1 is not enough:

Theorem 5.23 ((Not strongly) obfuscating a MAC does not preserve EUF-CMA). Assume that

obfuscatable EUF-CMA secure MAC exists. Then there exists an EUF-CMA secure MAC MAC and

an obfuscator O such that the following holds:

• O obfuscates (but not strongly) MAC's veri�cation algorithm as in Construction 5.21.

• The digital signature scheme SIG obtained by Construction 5.21 is not EUF-CMA.

Strongly obfuscatable MACs do not exist. Intuition says that any digital signature scheme
is, when interpreted as a message authentication code, obfuscatable. (The obfuscation is simply
the veri�cation key.) However, there is a crucial di�erence to the encryption setting: there, we
modi�ed encryption so as to include the public encryption key. A simulator could then obtain this
public key through oracle access to the encryption function, and output the public key as a perfect
obfuscation. In the authentication case, there is no way to include the public veri�cation key as part
of the veri�cation output: the veri�cation algorithm outputs only bits, and a 1-output means that
a signature is valid. Hence, if veri�cation outputs 1 too carelessly, the scheme becomes forgeable.
In fact, the EUF-CMA security of the scheme implies that the simulator essentially always receives
0-answers from its veri�cation oracle. Hence, the veri�cation oracle is useless to the simulator,
and the simulated obfuscation does not depend on the used signing key. So if the distinguisher can
generate valid signatures, it can distinguish a real from a simulated obfuscation.12 We formalize this
in Theorem 5.24 below. As an aside, the same proof can be used to show impossibility according to
a weaker version of De�nition 4.2, where the simulator is allowed to depend on the distinguisher.

Theorem 5.24 (Strongly obfuscatable MACs do not exist). Let MAC = (K, S,V) be an EUF-CMA

secure message authentication code. Let VK(·, ·) := V(K, ·, ·) be the veri�cation algorithm of MAC
with hardwired private key K. Let Vk := (VK)K∈Kk

and V := (Vk)k∈N. Then no obfuscator O for

V achieves De�nition 4.2.

Proof. Fix any PPT simulator S as in De�nition 4.2. Consider the following PPT distinguisher D,
that gets as input the description of a function VK (which includes the key K), and an obfuscation
O (which is either produced as O ← O(VK) or as O ← SVK(·,·)(ε)).

1. D independently chooses another key K ′
$← Kk.

2. D signs a message M = 0 according to K and K ′ via σ ← S(K, 0) and σ′ ← S(K ′, 0).
3. D uses its second input O to check both signatures via ver ← O(σ, 0) and ver ′ ← O(σ′, 0).
4. D outputs 1 i� ver = 1 and ver ′ = 0.

Our �rst claim about D is that D outputs 1 with overwhelming probability when O ← O(VK).
Indeed, when O ← O(VK), then the functionality of O and the correctness of MAC guarantee that
ver = 1. Furthermore, ver ′ = 1 implies that D produced a signature σ′ using an independent key
K ′, but σ′ turned out to be valid for key K. Hence, D essentially forged a signature, and so

Pr
[
ver ′ = 1

]
≤ Adveuf-cma

MAC,A (k)

12The idea to distinguish real from simulated obfuscations using honestly generated signatures was also remarked
by a Journal of Cryptology referee.
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is negligible by assumption about MAC, where A is an adversary that chooses independently a key
K ′ and outputs a signature σ′ ← S(K ′, 0) for 0. Summarizing,

Pr [D(VK ,O(VK)) = 1] = 1− Pr
[
ver ′ = 1

]
is overwhelming.

Conversely, assume O ← SVK(·,·)(ε). Let bad denote the event that S queries its veri�cation
oracle VK with a signature σ and a message M such that VK(σ,M) returns 1. Clearly, bad implies
that S forged a signature from oracle access to the veri�cation algorithm only, so that

Pr [bad] ≤ Adveuf-cma
MAC,S (k)

is negligible by assumption about MAC. In case bad does not occur, however, S only receives 0s as
oracle answers from VK , and so its output O must be independent of K. Hence, for the signatures
σ and σ′ produced as above, O(σ, 0) and O(σ′, 0) are identically independently distributed with

Pr [O(σ, 0) = 1 | ¬bad] = Pr
[
O(σ′, 0) = 1 | ¬bad

]
so that

Pr
[
D(VK , S

VK(·,·)(ε)) = 1
]
≤ Pr [O(σ, 0) = 1 | ¬bad] (1− Pr

[
O(σ′, 0) = 1 | ¬bad

]
) + Pr [bad]

≤ 1/4 + Pr [bad] .

This shows that D successfully distinguishes real from fake obfuscations, and so O does not achieve
De�nition 4.2.

Obfuscatable and unobfuscatable MACs exist. The proof of Theorem 5.24 utilizes that D
has access to the key K and can produce signatures under key K. In De�nition 4.1, the weaker
one of our de�nitions, a similar argument is not possible, since D only gets oracle access to the
veri�cation algorithm VK . (And if MAC is secure, then oracle access to the veri�cation algorithm
alone does not allow to produce signatures.)

To construct obfuscatable MACs (in the sense of De�nition 4.1), our escape is to let the simulator
output a di�erent, freshly sampled veri�cation key as obfuscation. Since a distinguisher in the sense
of De�nition 4.1 only has oracle access to the veri�cation algorithm, it cannot produce a signature
for which the veri�cation oracle outputs 1. Hence, the distinguisher's views with a real obfuscation
and the simulator's output are identical except with negligible probability. Formally:

Theorem 5.25 (Obfuscatable MACs exist). Assume that EUF-CMA secure signature schemes ex-

ist. Then there exist EUF-CMA secure MACs which are obfuscatable in the sense of De�nition 5.20.

Proof. Let SIG = (Gen,Sig,Ver) be an EUF-CMA secure signature scheme. Without loss of gener-
ality, we assume that Gen always uses p(k) random coins for a polynomial p. Then, we interpret
SIG as a MAC MAC = (K,S,V) as follows:
• K(ε) outputs a uniformly chosen K ∈ {0, 1}p(k).
• S(K,M) usesK as random coins for Gen to deterministically obtain a keypair (verkey , sigkey),
and returns σ ← Sig(sigkey ,M).
• V(K,σ,M) uses K as random coins for Gen to deterministically obtain a pair (verkey , sigkey),
and returns ver ← Ver(verkey , σ,M).
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Using a merely syntactic reduction to SIG's EUF-CMA security, it is clear that MAC is EUF-CMA
secure. To show that SKE is obfuscatable, consider the obfuscator O with O(VK) = verkey for
the veri�cation key verkey obtained by running K with random coins K. Consider furthermore
the PPT simulator S that outputs a freshly sampled veri�cation key verkey ′ obtained through
(verkey ′, sigkey ′) ← Gen(ε). Fix any PPT distinguisher D in the sense of De�nition 4.1. Let bad
denote the event that D, on input O(VK) = verkey and with oracle access to VK , queries VK with
a signature σ and a message M such that VK(σ,M) returns 1. Since bad implies that D forged a
signature using a veri�cation key verkey only, we have that

Pr [bad] ≤ Adveuf-cma
SIG,A (k)

is negligible. Here, A denotes an adversary that internally simulates D and answers D's veri�cation
oracle queries using its own veri�cation key verkey . Note also that when D gets as input a fake
obfuscation SVK(·,·)(ε) = verkey ′ instead of a real one, the probability for bad does not change.
Formally, unless bad occurs, D's oracle calls are all answered with 0, and hence D's view with a
real and a fake obfuscation is identical. We get

Pr
[
DVK(·,·)(O(VK)) = 1 | ¬bad

]
= Pr

[
DVK(·,·)(SVK(·,·)(ε)) = 1 | ¬bad

]
,

so that∣∣∣Pr
[
DVK(·,·)(O(VK)) = 1

]
− Pr

[
DVK(·,·)(SVK(·,·)(ε)) = 1

]∣∣∣ ≤ Pr [bad] ≤ Adveuf-cma
SIG,A (k)

is negligible as desired.

We now try to construct a MAC which is unobfuscatable (even according to our weaker obfus-
cation notion De�nition 4.1). Recall that Theorem 5.16 constructs an unobfuscatable private-key
encryption scheme by authenticating ciphertexts. This way, a simulator in the sense of De�nition 4.1
has to forge signatures to generate valid ciphertexts. In the authentication setting, a simulator only
has to simulate a veri�cation algorithm which outputs bits (instead of bitstrings), hence we must
�nd a di�erent strategy. Also, we must take care that our modi�cations of the veri�cation algorithm
do not damage the unforgeability of our MAC. Facing these di�culties, we resort to non-black-box
techniques very similar to those from Barak et al. [3], Section 3. Formally:

Theorem 5.26 (Unobfuscatable MACs exist). Assume that EUF-CMA secure MACs exist. Then

an EUF-CMA secure MAC exists which is not obfuscatable in the sense of De�nition 5.20.

Proof. Let MAC′ = (K′,S′,V′) be an EUF-CMA secure MAC. We construct a MAC MAC = (K,S,V)
that cannot be obfuscated:
• K(ε) runs K ′ ← K′(ε), uniformly samples α ∈ {0, 1}k and β = (β1, . . . , βk) ∈ {0, 1}k, and
returns K ← (K ′, α, β).
• S(K,M) parses K = (K ′, α, β), computes σ′ ← S′(K ′,M) and returns σ ← (0, σ′).
• V(K,σ,M) parses K = (K ′, α, β) and σ = (i, σ′), and determines its output ver as follows:

� If i = 0, then ver ← V′(K ′, σ′,M).
� If 1 ≤ i ≤ k and σ′ = α, then ver ← βi = �the i-th bit of β�.
� If i = k + 1 and σ′(α) = β (where σ′ is interpreted as an algorithm), then ver ← 1.
� In all other cases, set ver ← 0.

It is clear that MAC satis�es the correctness requirement of De�nition 5.17. Furthermore, for any
PPT adversary A, we have

Adveuf-cma
MAC,A ≤ Adveuf-cma

MAC′,A′ + Pr [bad] ,
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where A′ is the MAC′-adversary canonically obtained from A by rejecting all signatures of the form
(i, σ′) with i 6= 0, and bad denotes the event that A submits a veri�cation query (σ,M) = ((i, σ′),M)
with i 6= 0 but V(K,σ,M) = 1. However, Pr [bad] is negligible since α and β are information-
theoretically hidden from A. Hence, MAC is EUF-CMA secure.

Now consider an arbitrary obfuscator O for MAC. Furthermore, consider the following distin-
guisher D in the sense of De�nition 4.1:

1. D constructs algorithm O′ by concatening k copies of O with some of its inputs already �xed.
More precisely, O′ will compute the following function

O′(x) = (O((1, x), 0), . . . , O((k, x), 0)),

where the range of O′ is {0, 1}k.
2. D queries its oracle VK on input ((k + 1, O′), 0) and outputs the result.

Now �rst consider what happens when D receives as input an obfuscation O = O(VK) of MAC's
veri�cation algorithm. Then, by construction,

O′(α) = (O((i, α), 0)k
i=1 = (V(K, (i, α), 0))k

i=1 = (βi)k
i=1 = β,

so that VK((k + 1, O′), 0) = V(K, (k + 1, O′), 0) = 1. This implies that DVK(·)(O(VK)) always
outputs 1. On the other hand, for any �xed PPT simulator S, we have that

Pr
[
DVK(·)(SVK(·)(ε)) = 1

]
≤ Adveuf-cma

MAC,A (k)

for the adversary A on MAC that internally simulates D and S by relaying its veri�cation only.
Since Adveuf-cma

MAC,A (k) is negligible as argued before, Advsbvbb
V,O,D,S(k) is overwhelming, so that O does

not obfuscate MAC. The claim follows.

6 Composable Obfuscators

In Section 5.1, we already noticed the composability defects of our virtual black-box property from
De�nition 4.1: secure obfuscations may lose their security in larger contexts. Intuitively, our strong
virtual black-box property from De�nition 4.2 should guarantee more: since the distinguisher D gets
the to-be-obfuscated function f itself as input, a secure obfuscation stays secure even if auxiliary
information about f (e�ciently computable from f) is leaked in a larger context.

In this section, we will investigate the compositional properties of De�nition 4.2 more closely.
It will turn out that De�nition 4.2 guarantees indi�erentiability (a simulation-based generic notion
of security similar to universal composability or reactive simulatability). Indi�erentiability provides
clean interfaces for the modular design of larger systems that use obfuscation as a tool. In particular,
the indi�erentiability framework comes with a composition theorem that allows a modular security
analysis.

6.1 Indi�erentiability

The indi�erentiability framework of Maurer et al. [27] follows a simulation-based approach (cf. [2, 4,
9, 15, 17, 28]) to de�ne security. Concretely, a cryptographic system is compared to an idealization
of the respective protocol task (usually a trusted host that performs the task in an ideal and
incorruptible manner). If every attack on the real system has a counterpart attack in the ideal
system such that both systems and attacks are indistinguishable, then we say that the real system
is secure.
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Formally, a (real or ideal) system S = (pubS , privS) consists of a public interface pubS and a
private interface privS . The private interface privS is the input/output interface for honest parties.
For instance, in a system for secure message transmission, a private input could be �send message
X to Bob,� and a private output could be �received message Y from Bob.� Conversely, the pub-
lic interface pubS interfaces an adversary with the network. For example, in the secure message
transmission example, the adversary would receive a ciphertext over the public interface.

To capture the security of a real system, we compare it to a suitable ideal system:

De�nition 6.1 (Indi�erentiability of systems, sketch). A system R = (pubR, privR) is indi�eren-
tiable from another system I = (pubI , privI) i� there exists a PPT simulator S such that for all

PPT distinguishers D, the advantage Advindiff
R,I,S,D(k) is negligible in k. Here,

Advindiff
R,I,S,D(k) := Pr [D(privR, pubR) = 1]− Pr [D(privI , S(pubI)) = 1] ,

where

• D(privR, pubR) denotes the execution of D with access to the interfaces privR and pubR, and

• D(privI , S(pubI)) denotes the execution of D with access to the interface privI and to S, where
S has access to interface pubI .

The situation is illustrated in Figure 1. For a more comprehensive introduction to indi�erentia-
bility, we refer to Maurer et al. [27].

users adversary

private
interface

public
interface

Generic system

(a) Generic system

distinguisher D

Real system

(b) Real setting

distinguisher D

Ideal system

S

(c) Ideal setting

Figure 1: Systems in the indi�erentiability framework.

On the order of quanti�ers. De�nition 6.1 deviates from the original security de�nition in [27]
with respect to the order of quanti�ers: we demand existence of a universal simulator S that works
for all D, whereas [27, De�nition 3] only requires the existence of an S for every given D. We chose
the stronger order of quanti�ers for two reasons:
Stronger composability: Whereas the stronger order of quanti�ers (∃S∀D) provides secure uni-

versal composition ([9]), the weaker order of quanti�ers (∀D∃S) does not provide concurrent
composability ([20]).13

Decomposition of obfuscation de�nition: Jumping ahead, the stronger order of quanti�ers al-
lows us to express the indi�erentiable obfuscation de�nition as a combination of a functionality
and a virtual black-box requirement.

13The cited works prove composability statements in the frameworks of universal composability and reactive sim-
ulatability. However, they do not rely on model speci�cs and are applicable to indi�erentiability as well.
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6.2 Our Indi�erentiable Obfuscation De�nition

To capture obfuscation through indi�erentiability, we need to specify a real and an ideal system.
The real system should re�ect what really happens when using an obfuscator, whereas the ideal
system should specify what should happen. Hence,
the real private interface contains oracle access to an obfuscation O(f) (since real honest users

use the obfuscation only as a black box), as well as a description of the function f itself (so
information about f can be used in some other place as well);

the real public interface contains the obfuscation O(f) (since the obfuscation is public);
the ideal private interface contains oracle access to f (since this is the function that should be

evaluated), as well as f itself (so that again, f can be used elsewhere);
the ideal public interface contains only oracle access to f (since ideally this is all that should

be leaked).
The real and ideal systems for obfuscation are depicted in Figure 2.

D

OO(·), f O

f
$← Fk, O ← O(f)

(a) Real

D

Of(·), f Of(·)

f
$← Fk

S

(b) Ideal

Figure 2: The real and ideal systems for indi�erentiable obfuscation, running with a distinguisher
D and a simulator S. Here Oh(·) denotes oracle access to a function h.

Hence, we get the following de�nition as a special case of De�nition 6.1:

De�nition 6.2 (Indi�erentiable obfuscation). Let F = (Fk)k∈N be a family of functions. Then O
is an indi�erentiable obfuscator for F i� the following holds: there exists a PPT simulator S such

that for every PPT distinguisher D, the function Advind-obf
F ,O,S,D(k) is negligible in k. Here,

Advind-obf
F ,O,S,D(k) := Pr

[
f

$← Fk, O ← O(f) : DO(·)(f,O) = 1
]
−Pr

[
f

$← Fk : Df(·)(f, Sf(·)(ε)) = 1
]
.

On the choice of f . Note that in our ideal obfuscation system, f is chosen at random by

the system itself (and not, e.g., by a user of the system). This design choice has a number of
consequences for the use of the ideal system: it means that a user cannot obfuscate arbitrary
functions; instead, the obfuscated function is chosen by the system (but of course made available
to the user via the private interface). Hence, we can only model larger systems in which the
obfuscated functions (if there is more than one obfuscation) are independently chosen. However,
while we restrict the choice of f , we do not restrict its usage: f can be re-used in several places in a
larger system, since it is provided to a user as part of the private interface. Any such larger system
can then be analyzed modularly, taking advantage of the composition theorem [27, Theorem 1].
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As part of this philosophy, it is best (but not necessary) if the description of f given to the
distinguisher is as forthright as possible�think the random coins used to sample from Fk�and no
hidden secret about f is known or used elsewhere.

What type of composability is implied (and what type is not). Indi�erentiability (in the
sense of De�nition 6.2) implies that one obfuscation can be used in arbitrary larger contexts. (As
explained above, these contexts may even make direct use of f .) Using the composition theorem [27,
Theorem 1], we can deduce that any constant number of obfuscations can be used concurrently.14

However, recall that in our formulation, the obfuscated function is selected randomly by the sys-
tem. Hence, the composition theorem only implies that several di�erent and independently selected

obfuscations can be used concurrently. It makes no claim about several di�erent obfuscations re-
lated functions. However, if the same function is obfuscated several times, we can at least say the
following:

Theorem 6.3 (Composability of indi�erentiable obfuscations of the same function). Let F =
(Fk)k∈N be a family of functions, let O be an indi�erentiable obfuscator for F , and let p be a

polynomial. Then there exists a PPT simulator Sp, such that for every PPT distinguisher Dp, the

function

Advind-obf-mult
F ,O,Sp,Dp,p(k) := Pr

[
f

$← Fk, O1 ← O(f), . . . , Op(k) ← O(f) : DO(·)
p (f,O1, . . . , Op(k)) = 1

]
− Pr

[
f

$← Fk : Df(·)
p (f, Sf(·)

p (ε)) = 1
]

is negligible.

Proof. Let S be the PPT simulator that is guaranteed by De�nition 6.2. We de�ne Sp as the PPT
simulator that runs p(k) independent copies of S. Finally, Sp outputs (O′1, . . . , O

′
p(k)), where O

′
i

denotes the output of the i-th simulation of S. A simple hybrid argument (that uses the assumption
that O is an indi�erentiable obfuscator for F) shows

Advind-obf-mult
F ,O,Sp,Dp,p(k) ≤ p(k) · Advind-obf

F ,O,S,D(k)

for any given PPT D.

Hence, we can use several obfuscations of the same function concurrently. However, note that
the function is still chosen from the uniform distribution by the subsystem.

6.3 Basic Properties of Our Indi�erentiable De�nition

Technically, the only di�erence between De�nition 6.2 and De�nition 4.2 (our strong virtual black-
box de�nition) is the following: in De�nition 4.2, D always gets oracle access to f , whereas in
De�nition 6.2, D gets oracle access to O(f) in the real setting, and oracle access to f in the ideal
setting. But when we assume perfect functionality of the obfuscation, we have that O(f) evaluates
f everywhere, so that oracle access to O(f) and oracle access to f are interchangeable. We get:

14[27, Theorem 1] only proves composability for a constant number of subsystems (in our case obfuscations).
However, it seems that techniques from Canetti [9] can be used to prove composability for any polynomial number
of subsystems, given that we use the stronger order of quanti�ers (see the comment in Section 6.1).
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Theorem 6.4 (De�nition 4.2 ⇔ De�nition 6.2 for obfuscations with perfect functionality). Let

F = (Fk)k∈N be a family of functions, and let O be an obfuscator for F that achieves perfect

functionality (i.e., (O(f)) (x) = f(x) for all k, f ∈ Fk, and x). Then O satis�es De�nition 4.2 if

and only if O satis�es De�nition 6.2.

On the other hand, De�nition 6.2 already implies a certain form of functionality: if no D can
distinguish the real from the ideal setting, then no e�cient algorithm can distinguish between oracle
access to O(f) and oracle access to f . This gives rise to the following functionality requirement for
obfuscations:

De�nition 6.5 (Computational functionality). Let F = (Fk)k∈N a family of functions. Then O
achieves computational functionality for F i� the following holds: for every PPT distinguisher D,

the function Advcomp-func
F ,O,D (k) is negligible in k. Here,

Advcomp-func
F ,O,D (k) := Pr

[
DO(·)(f,O) = 1

]
− Pr

[
Df(·)(f,O) = 1

]
where the probability is taken over f

$← Fk, O ← O(f)

We obtain the following connection between our de�nitions:

Theorem 6.6 (Indi�erentiability is equivalent to computational functionality plus strong virtual
black-box). Let F = (Fk)k∈N a family of functions, and let O be an obfuscator for F . Then O
satis�es indi�erentiable obfuscation (De�nition 6.2) if and only if O satis�es the strong virtual

black-box property (De�nition 4.2) and computational functionality (De�nition 6.5).

Proof. The de�nitions can be summarized as:

De�nition 6.5: ∀ PPT D : DO(·)(f,O)
c
≈ Df(·)(f,O) (9)

De�nition 4.2: ∃ PPT S ∀ PPT D : D(f,O)
c
≈ D(f, Sf(·)(ε)) (10)

De�nition 6.2: ∃ PPT S ∀ PPT D : DO(·)(f,O)
c
≈ Df(·)(f, Sf(·)(ε)), (11)

where we write X
c
≈ Y for Pr [X = 1]

c
≈ Pr [Y = 1], and we silently assume f

$← Fk and O ← O(f)
in all probabilities. We have to show that (11) is equivalent to the combination of (9) and (10).

First assume (11). Fix the S from (11) and assume an arbitrary D as in (9). De�ne D1 such that

D
h(·)
1 (f,O) := Df(·)(f,O) (i.e., D1 simulates D but answers oracle queries using its �rst argument

f). Then using (11) twice (once for D and once for D1) yields

DO(·)(f,O)
(11)

c
≈ Df(·)(f, Sf(·)(ε)) = D

f(·)
1 (f, Sf(·)(ε))

(11)
c
≈ D

O(·)
1 (f,O) = Df(·)(f,O),

which shows (9). Now consider a D as in (10). Note that D does not have any oracle access, but
we can interpret D as a distinguisher in the sense of (11) that does not use its oracle. We get:

D(f,O) = DO(·)(f,O)
(11)

c
≈ Df(·)(f, Sf(·)(ε)) = D(f, Sf(·)(ε)),

which shows (10).
Conversely, assume (10) and (9). Fix the S from (10) and assume an arbitrary D as in (11).

De�ne D2 such that D2(f,O) := Df(·)(f,O), similar to D1 above. We get

DO(·)(f,O)
(9)
c
≈ Df(·)(f,O) = D2(f,O)

(10)
c
≈ D2(f, Sf(·)(ε)) = Df(·)(f, Sf(·)(ε)),

which shows (11) as desired.
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We note that the functionality requirement from De�nition 6.5 is signi�cantly weaker than
perfect functionality or the approximate functionality by Hohenberger et al. [22]. For completeness
we include a discussion involving the latter in Appendix A.

7 Conclusion

We have presented a simulation-based de�nition that, on the one hand, allows for obfuscating
point functions, yet at the same time is strong enough for converting private-key cryptography into
public-key cryptography.

We would like to stress again that we do not rule out unobfuscatability results. In fact, we
have shown certain scenarios in which obfuscation is not possible. On the other hand, our positive
results (in particular the simplicity of our point function obfuscation) leave hope that obfuscations
in interesting cryptographic scenarios are possible. We have given a toy example for the case of
private-key encryption.

As it turns out, our relaxed simulation-based de�nition does not behave well under composition.
Hence, we have given another, stronger de�nition that has a built-in composability property. We
have shown that this de�nition naturally splits up into a functionality (correctness) and a virtual
black-box (secrecy) requirement. Even though our composable de�nition does not allow for obfus-
cating point functions in the standard model, it is an interesting question which positive results are
possible here, in the random oracle model for example.
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A A Comparison of Approximate Functionality Requirements

In the main body of our paper we have concentrated on the security of obfuscation by presenting
and analyzing several de�nitions for behaving like a virtual black box. For simplicity, we assumed
the obfuscation to have perfect functionality, that is for any function f ∈ F and any input x, we
require, with probability 1, that (O(f))(x) = f(x) (when f is probabilistic, the equality refers to
the output distribution).

We have already given a very relaxed de�nition of computational approximate functionality
(De�nition 6.5). A more natural analogue of the �approximate functionality� requirement from
De�nition 3.1 for the case of function distributions would be the following. For a random function
f and its obfuscation O, for all inputs x the distributions f(x) and O(x) are close. If we only allow
�nite domains15 for f and O this can be formalized as follows.

De�nition A.1 (Approximate functionality). An obfuscator O satis�es the approximate function-
ality requirement for a family of functions F = (Fk)k∈N i� there exists a negligible function ν such

that for all k, we have:

εfun
O,F (k) := EV

f←Fk,O←O(f)

[
max

x
{∆(f(x) ; O(x))}

]
≤ ν(k).

(Henceforth we will use εfun as shorthand for εfun
O,F (k).)

For deterministic functions, the requirement reduces to the statement that, with overwhelming
probability over the choice of f and the obfuscator O, f and O(f) should be the same functions.
This is similar to the approximate functionality of the worst-case de�nition [3, De�nition 4.3], with
the caveat that we take our probability over f as well.

The relation with the composable functionality de�nition. With some work one can show
that De�nition A.1 implies De�nition 6.5. what is more surprising perhaps is that De�nition A.1 is
equivalent to a statistical version of De�nition 6.5 where D is computationally unrestricted, but is
restricted to only polynomially many queries. For completeness, we �rst explicitly state the relevant
de�nition, before stating the theorem detailing equivalence and its proof.

15The assumption that f ∈ Fk can be computed in PPT in the security parameter already implies that the domain
of f ∈ Fk is polynomially bounded (in k) and hence �nite.
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De�nition A.2 (Statistical functionality). Let F = (Fk)k∈N be a family of functions. Then O
achieves statistical functionality for F i� the following holds: for every (computationally unbounded)

distinguisher D making only polynomially many queries to its oracle, the function

Pr
[
f

$← Fk, O ← O(f) : DO(·)(f,O) = 1
]
− Pr

[
f

$← Fk, O ← O(f) : Df(·)(f,O)) = 1
]
.

is negligible in k.

Theorem A.3. Let F = (Fk)k∈N be a family of functions. Then O satis�es De�nition A.2 if and

only if it satis�es De�nition A.1.

Proof (sketch). We show that for all distinguishers according to De�nition A.2, their advantage is
upper bounded by a polynomial (in k) multiple of εfun . Hence if εfun is negligible according to
De�nition A.1, so should any distinguisher's advantage according to De�nition A.2. Furthermore
we exhibit a distinguisher that has advantage εfun , so if all distinguishers have a negligible advantage
(De�nition A.2) it follows that εfun is negligible, ful�lling De�nition A.1.

Recall the de�nition of εfun and consider a computationally unbounded distinguisher with poly-
nomially many queries. For any single query x, it is well known that the advantage of a distinguisher
is at most ∆(f(x) ; O(x)). The best the distinguisher can do given f and O = O(f) is to determine
the x that maximizes the statistical distance ∆(f(x) ; O(x)) (as in εfun) and query the function
on that point. Each new query will add at most εfun to the distinguisher's advantage, so with
polynomially many queries, the total advantage will still be a polynomial multiple of the maximum
statistical distance. Hence we can upper bound the advantage of D in terms of properties of f and

O, where we still need to average out over f
$← Fk and O ← O(f).

On the other hand, there exists a distinguisher that achieves the advantage governed by the
statistical di�erence. The key observation is that determining the value x for which the maximum
maxx ∆(f(x) ; O(x)) is achieved can be done by a computationally unbounded distinguisher given
f and O without using its oracle (in fact, it can even be done in polynomial space). The main point
here is that f and O can be computed in probabilistic polynomial time, so in particular there is
polynomial bound on the amount of random coins each uses. Consequently for each x we have that
∆(f(x) ; O(x)) can be computed (in �nite time). The maximum can be computed exploiting that
f (and hence O) have a �nite domain. Now consider the distinguisher that, on input f and O, �rst
determines the x that maximizes ∆(f(x) ; O(x)) and queries x to its oracle. When it gets a response
s that would have been more likely to have originated from f , or Pr [f(x) = s] > Pr [O(x) = s] it
outputs 1, when O(x) was more likely to have caused s it outputs 0; when both were equally likely
it �ips a coin. In this case the advantage is equal to εfun .

The connection with Hohenberger et al.'s functionality requirement. A relaxed func-
tionality requirement for probabilistic functions was given by Hohenberger et al. [22]. Adapted to
our notation, it is reproduced below in De�nition A.4.

De�nition A.4 ([22]-approximate functionality). An obfuscator O satis�es the [22]-approximate
functionality requirement for a family of functions F = (Fk)k∈N i� there exists a negligible function

ν such that for all k and all f ∈ Fk

Pr [O ← O(f) : ∃x ∆(f(x) ; O(x)) ≥ ν(k)] ≤ ν(k) .

On quick inspection, this functionality requirement looks quite di�erent from previous ones. Let
us concentrate on a comparison with De�nition A.1. An obvious di�erence is that Hohenberger
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et al. quantify universally over f ∈ Fk, whereas we randomize over f
$← Fk. It turns out that

if we would account for this (either by using a universal quanti�er over f in De�nition A.1 or by
randomizing over f in De�nition A.4), the two seemingly di�erent looking de�nitions are in fact
equivalent, as demonstrated by the following lemma.

Lemma A.5. Let O be an obfuscator for a class of functions F . Then the following two statements

are equivalent:

1. There exists a negligible function ν such that for all k and all f ∈ Fk,

EV
O←O(f)

[
max

x
∆(f(x) ; O(x))

]
≤ ν(k).

2. There exists a negligible function ν such that for all k and all f ∈ Fk

Pr [O ← O(f) : ∃x ∆(f(x) ; O(x)) ≥ ν(k)] ≤ ν(k) .

Proof. Write σ(x) = ∆(f(x) ; O(x)) (where f and O should be clear from the context).
We �rst show that the second statement implies the �rst. We notice that the event ∃xσ(x) ≥ ν(k)

occurs i� maxx σ(x) ≥ ν(k). Thus

Pr [O ← O(f) : ∃xσ(x) ≥ ν(k)] = Pr
[
O ← O(f) : max

x
σ(x) ≥ ν(k)

]
.

We can now split the expectancy in two and use that any statistical distance, so in particular σ(x),
is always upper bounded by 1:

EV
O←O(f)

[max
x

σ(x)] ≤ Pr
[
max

x
σ(x) ≥ ν(k)

]
· 1 + Pr

[
max

x
σ(x) < ν(k)

]
ν(k) ≤ 2ν(k) ,

where the probabilities are over the choice of the obfuscation O ← O(f). Since 2ν(k) is negligible
if ν(k) is, this concludes the �rst implication.

Conversely, Pr [O ← O(f) : maxx σ(x) ≥ ν(k)] > ν(k) implies that

EV
O←O(f)

[max
x

σ(x)] ≥ Pr
[
O ← O(f) : max

x
σ(x) ≥ ν(k)

]
ν(k) > (ν(k))2 .

Therefore, if EVO←O(f)[maxx σ(x)] ≤ ν(k) for some negligible function ν, it follows that for the

negligible function ν ′(k) =
√
ν(k) it holds that Pr [O ← O(f) : maxx σ(x) ≥ ν ′(k)] ≤ ν ′(k).
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