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Abstract. In the Universal Composability framework many cryptographic
tasks cannot be built from scratch. Additional “helping” functionalities are

needed to realise zero-knowledge or bit commitment. However, all the ad-

ditional functionalities presented in the literature so far have to be specially
designed as a “helping” functionality and cannot directly serve any other pur-

pose without endangering the universal composability.

In this work, we introduce the concept of catalysts. Informally a function-
ality C is a catalyst for a functionality F if F can be implemented given the

primitive C and the functionality C can still directly be used by other applica-

tions without any additional precautions.
We prove that catalysts exist for zero-knowledge and bit commitment. And,

what is more, we show that a signature card, which is in accordance with the
German law [Bun01] can be used as such a catalyst.

1. Introduction and Related Work

The framework of universal composability (UC) allows the modular design of
cryptographic protocols. A cryptographic application may be constructed from
ideal functionalities which are secure by assumption. These ideal functionalities can
later be replaced by real protocols which securely implement the ideal functionalities
in question [Can01].

However universal composability is a very strict notion of security and the cryp-
tographic tasks of zero-knowledge arguments as well as bit commitment schemes
cannot be built from scratch in such a framework [CF01, CKL03]. To implement
these tasks, additional “helping” functionalities are needed. One functionality pro-
posed for implementing zero-knowledge protocols and bit commitment is a publicly
known random string [CF01, DN02], a so called common reference string (CRS).
Drawbacks of the CRS approach [Pas03, BCNP04, HMQ04] led to protocols using
different “helping” functionalities, namely random oracles [HMQ04], a public key
infrastructure (PKI), or a key registration authority [BCNP04].

However all these helping functionalities have to be specially designed as a “help-
ing” functionality and cannot directly serve any other purpose without endangering
the universal composability. There exist protocols which can individually be im-
plemented with a CRS, but they cannot together be implemented with one single
CRS. A PKI set up to allow bit commitments can in general not be used as a PKI
by other applications.

In this work, we introduce the concept of catalysts. Informally a functionality C
is a catalyst for a functionality F if F can be implemented given the primitive C
and the functionality C can still directly be used by other applications. The concept
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of catalysts differs from that of a reusable CRS [CF01] or a protocol to stretch one
CRS into multiple independent CRS [CR03]. A catalyst C for F can be used to
implement F while still allowing arbitrary other applications to access that same
instance of C without any additional precautions. This property of a catalyst is
captured more formally by giving the environment machine direct access to the
catalyst.

Definition 1.1. Let π be a protocol realising the functionalities F and C using C.
We say that C is used as a catalyst if π realises C by just relaying all requests and
the respective answers directly to the functionality C.

¿From this definition it is clear that a common reference string is not a catalyst in
the protocols found in the literature. There the common reference string is usually
present only in the real model, whereas in the ideal model this CRS may be chosen
by the simulator to give him an advantage over the real adversary. This advantage
makes the simulation possible: The simulator chooses the common reference string
together with some trapdoor information allowing him e.g. extractability from zero-
knowledge proofs without rewinding, which must be impossible in the real model.
If the CRS is used as a catalyst then this CRS would be chosen by the ideal
functionality C even in the ideal model. Furthermore, the environment has relayed
access to the CRS in the ideal model, which makes it impossible for the simulator
to present a fake CRS.

In this work we prove that catalysts exist for zero-knowledge and bit commitment
(and following [CLOS02] for all well formed functionalities). And, what is more, we
show that a signature card, which is in accordance with the German law [Bun01] can
be used as such a catalyst. This is of practical importance, as an infrastructure of
signature cards is about to be set up in several nations of the EU. Our work proves
that this infrastructure can be used to securely implement additional applications
without negative side effects.

2. Signature Cards

A signature card is a tamperproof device which can be used to digitally sign doc-
uments with an existentially unforgeable signature scheme and which ensures that
the secret key cannot be extracted from the card. These properties are demanded
e.g. by the German signature law [Bun01].

The signature cards are issued by a registration authority which also keeps a
register of the signature verification keys associated to the protocol participants.
Therefore the ideal functionality FS

SigCard representing signature cards and the reg-
istration authority can be queried for the public keys of protocol participants.

Furthermore, we assume that a signature card can be used by only one applica-
tion (subparty) at a time. In the functionality FS

SigCard this is ensured by commands
to change the possession.

For a given signature scheme S with a key generation algorithm, a signing algo-
rithm and a signature verification algorithm, the functionality FS

SigCard is specified
as follows:

3. Zero-Knowledge Arguments based on Signature Cards

In this work we will give a protocol SC-ZK implementing the functionality FZK.
In the following protocol we will make use of witness indistinguishable arguments
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Functionality FS
SigCard

For a signature scheme S, FS
SigCard proceeds as follows, running with parties

P1, . . . , Pn and an adversary S.
Initialisation: For each party Pi, use the key generation algorithm of S to
generate a public-/secret-key pair (pk i, sk i) and set possessor i := ⊥.
Get public key: When receiving a message (getkey,sid,j) from some sub-
party P , send the public key pkj to P . Before delivering the key, ask the adversary
(non-immediate delivery).
Signature Generation: Upon receiving a message (sign,sid,m) from some
subparty P of Pi, if P = possessori, generate a signature σ using ski, store the
tuple (i,m,σ), and send (signature,sid,m,σ) to Pi.
Signature Verification: Upon receiving a message (verify,sid,Pi,m,σ)
from Pj do: If a tuple (i,m,σ) is stored set f = 1 else set f = 0. Then if
the public key of Pi was already delivered to Pj in some prior “Get public key”
step, send (verified,sid,m,f) to Pj .
Possession: Upon receiving a message (seize,sid) from subparty P (where P
is a subparty of Pi or P = S), if possessor i = ⊥, set possessor i := P and send
(seized,sid) to subparty P . Otherwise send (occupied,sid) to subparty P .
Dispossession: Upon receiving a message (release,sid) from subparty P
(where P is a subparty of Pi or P = S), if possessor i = P , set possessor i := ⊥.

Figure 1. The signature functionality FS
SigCard

Functionality FZK

FZK proceeds as follows, running with a prover P , a verifier V and an adversary S.
• Upon receipt of an input (prove,sid,p,w) with p(w) = true from party
P , send (prove,sid,|p|) to S. As soon as S allows the delivery, send
(proven,sid,p) to V . (Only the first prove-request is heeded, subse-
quent ones are ignored.)

Figure 2. The zero-knowledge proof functionality FZK

of knowledge (WIAOK). These arguments enjoy three important properties: First,
arguments are computationally convincing proofs, i.e., a computationally limited
prover can make the verifier accept with only a negligibe probability. Second,
they are arguments of knowledge, which means that from a prover which is giving
convincing arguments a witness can be extracted (usually via rewinding) [BG93].
Third, the arguments of knowledge are witness indistinguishable: The protocol runs
are (computationally) indistinguishable for different witnesses [Gol01, Chap. 4.6].
Such WIAOK exist under the assumption that one-way functions exist.

• All communication is done through a secure channel that only leaks the
length of the messages.1

• The environment may access the functionality FS
SigCard through other sub-

parties than the prover and verifier subparty.

1These again can be implemented e.g., using authenticated channels and a composable key-
exchange.
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• When receiving an input (prove,sid,p,w), where p is a predicate such
that p(w) is true, the prover P sends p to the verifier V .
• The verifier V seizes its signature card. If it cannot seize the card, it

terminates.
• The verifier generates a random nonce N of k bit length (where k is the

security parameter). This nonce is sent via a secure channel to the prover P .
• The prover P requests the public key pkV and pkP of V and P from
FS

SigCard. Then it seizes its signature card, signs w, and releases its signature
card. Then it proves to the verifier that there exists a triple (w, sw, sN ),
such that verifypkP

(1k, sw, w)∧ p(w)∨ verifypkV
(1k, sN , N) using a witness

indistinguishable argument of knowledge (WIAOK).
• If the verifier accepts the argument of knowledge, it terminates with output
(proven,sid,p). Additionally, it releases its signature card in any case.

We further require that the length of the messages transmitted during the
WIAOK only depends on the length of the predicate p. Given any WIAOK, this can
easily be achieved by padding the messages.

Possible variants of this protocol might include the use of timeouts, so that an
unresponsive prover does not lead to an eternally locked card of the verifier. Or
several proofs could be done in parallel, sharing one locked signature card. Note
that the possibility of locking a signature card implies that the protocol SC-ZK can
terminate unsuccessfully if some other application seizes the card. Therefore the
definition of the property of non-triviality [CLOS02, BHMQU05] has to be changed.
Non-triviality for protocols in this work demands that the protocol terminates suc-
cessfully if no party is corrupted, no message is blocked, and the signature card is
not seized by any other application.

Theorem 3.1 (Security of SC-ZK, informal statement). If S is an existentially
unforgeable signature scheme2, protocol SC-ZK using the functionality FS

SigCard se-
curely implements the functionalities FZK and FS

SigCard with respect to static adver-
saries. Here FS

SigCard is used as a catalyst.

The basic idea of the proof is as follows: If the verifier is corrupted, the simulator
has to generate a realistic proof only knowing the predicate. However, the simulator
has access to the corrupted verifier’s signature card, so it can generate a valid verifier
signature sN for N and thus prove verifypkP

(1k, sw, w)∧p(w)∨verifypkV
(1k, sN , N)

for arbitrary w and sw.
If the prover is corrupted, the simulator has to extract a valid witness for p.

Note, that P can not possibly learn a valid verifier signature sN for N before the
end of the WIAOK (since the verifier’s signature card is possessed by the verifier
between generation of N and the end of the proof). So it must know a witness
w with p(w) and a signature sw for w. It can only learn such a sw by using the
signature card. Since the simulator learns all accesses by corrupted parties to the
signature card, it also learns w.
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Functionality FCOM

FCOM proceeds as follows, running with a sender S, a receiver R and an adver-
sary S.

(1) Upon receiving an input (commit,sid,m) from sender S, send the value
(receipt,sid) to the adversary. As soon as the adversary permits, send
(receipt,sid) to R.

(2) Upon receiving an input (unveil,sid) from S, send (unveil,sid) to
the adversary. As soon as the adversary permits, send (unveil,sid,m)
to the receiver.

All but the first commit and unveil messages are ignored.

Figure 3. The commitment functionality FCOM

4. Commitments based on Signature Cards

We present the protocol SK-COM-ZK for commitments. It turns a computa-
tionally binding and computationally hiding non-oblivious3 commitment scheme
COM 0 into a universally composable commitment scheme. To ensure extractabil-
ity a technique introduced in [HMQ04] is used.

There are general constructions to obtain a universally composable commitment
from universally composable zero-knowledge schemes. However, the protocol given
below is especially efficient as no invocations of FZK are necessary in the commit
phase. This is of interest for applications using many commitments most of which
are never unveiled.

Commit phase:
• All communication is done through a secure channel that only leaks the

length of the messages.
• The environment may access the functionality FS

SigCard through other sub-
parties than the sender and verifier subparty.
• Upon input (commit,sid,m) the sender S sends a message (start,sid) to

the receiver R.
• The receiver R generates a random nonce N of k bit length (where k is

the security parameter). This nonce is sent via a secure channel to the
sender S.
• The sender S generates a signature σm for (N,m) and commits to (N,m, σm)

using randomness r, and a signature σr for (N, r) and commits to (N, r, σr)
using randomness r′ (thereby temporarily seizing the signature card, and
terminating if this is not possible). (By “commits”, we mean that the
sender runs the commitment protocol COM 0 with the receiver.)
• The receiver outputs (receipt,sid).

Unveil phase:

2With deterministic verification function
3A non-oblivious commitment scheme is one where the sender of the commitment always knows

the value it commits to. In other words, by rewinding the sender, one can extract the committed

value (analogous to the definition of proofs and arguments of knowledge). Non-oblivious com-
mitment schemes exist if one-way functions exist. See [Gol01, Section 4.9.2.1] for definitions and

constructions.
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• Upon input (unveil,sid), the sender sends m to the receiver through the
secure channel, and then using FZK proves: There exist r, r′, σm, and σr,
s.t. verifypkS

(1k, σm, (N,m)) and verifypkS
(1k, σr, (N, r)) evaluate to true,

and that committing to (N,m, σm) and (N, r, σr) using randomness r and
r′ resp. results in the commitments transmitted in the commit phase.
• When the receiver gets the information from FZK that the statement from

the preceding step is true, it outputs (unveil,sid,m).

Similar to the case of FZK, we require that the length of all messages depends
only on the length, but not on the content of m, which can be enforced by a suitable
padding.

The same variations (timeouts, parallel executions) as in the case of commitments
are possible here, too.

Theorem 4.1 (Security of SC-COM-ZK using FZK, informal statement). If S is an
existentially unforgeable signature scheme4, protocol SC-COM using the functional-
ities FS

SigCard and FZK securely implements the functionalities FCOM and FS
SigCard

with respect to static adversaries. Here FS
SigCard is used as a catalyst.

Proof idea: If the receiver is corrupted, the simulator only has to generate com-
mitments to random data (of appropriate length) in the commit phase. In the unveil
phase, since we use FZK, no actual proof is received by the receiver, so the simu-
lator does not have to fake a proof. If the sender is corrupted, the simulator must
extract the message m. But since the sender has to sign both (N,m) and the ran-
domness r used for the first commitment using the card during the commit phase,5

these are learned by the simulator. Therefore the simulator knows candidates for
(N,m, σm) and r and can check which of them opens the first commitment, thus
finally learning m.

Now we can replace all calls to FZK in SC-COM-ZK by SC-ZK, getting a protocol
SC-COM. Using the composition theorem, which preserves the property of being a
catalyst, and Theorem 3.1 we get

Corollary 4.2 (Security of SC-COM, informal statement). If S is an existentially
unforgeable signature scheme6, protocol SC-COM using the functionality FS

SigCard

securely implements the functionalities FCOM and FS
SigCard with respect to static

adversaries. Here FS
SigCard is used as a catalyst.

4With deterministic verification function
5Here we use the fact, that the commitment is non-oblivious. Then, when the sender commits

successfully to (N,m, σm) or (N, r, σr) one can use a knowledge-extractor to get σm and σr. If

the sender succeeds in unveiling without signing in the commit phase, the knowledge-extractor
would output σm and σr that it did not sign and thus contradict the existential unforgeability
of S.

In fact, using a commitment scheme that is not non-oblivious, the protocol would in general

be insecure: Assume that S is deterministic in the sense that for each public key and each
message there is at most one valid signature. Construct a commitment scheme C′ from a normal

commitment scheme C as follows: To commit to v, one commits using C to a formula ϕ that is
satisfied only by v and to a proof π that ϕ has only one satisfying assignment. To unveil, one
sends v and unveils ϕ and π. This scheme C′ is still a commitment scheme, but one can commit to
(N,m, σm) and (N, r, σr) by simply describing σm and σr as the unique signature of m wrt. public

key pk . Only for the unveil phase the knowledge of the signatures is actually needed.
6With deterministic verification function
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4.1. On the functionalities FZK and FCOM. The functionalities FZK and FCOM

differ from those given in [Can01]. This has several reasons: First, for simpler
presentation, we have restricted to the case where sender and recipient (resp., prover
and verifier) are fixed. Further, we consider secret functionalities, i.e., the adversary
does not learn the unveiled commitment or the predicate, respectively. Finally, due
to changes in the scheduling in the current version of [Can05], the adversary is
explicitly asked when to deliver. In [Can01] this was implicitly ensured by the
scheduling.

Finally, the more complex definition of FCOM used in [HMQ04] is not necessary
here, since we only consider static corruption.

5. Non-Transferability

Cryptographic mechanisms can themselves lead to a certain type of insecurity.
For example, a signed message m sent from a party A to another party B can also
convince a third party C of the fact that A signed m. This is undesirable when B
is the only one that A wants to send m to. (Imagine m=“Yes, my dear friend B,
I really fancy C’s wife.” — If B gets angry with A now, he may blackmail A with
A’s signature to m.) Therefore, it is sometimes preferable to have zero-knowledge
proofs and commitments which cannot be transferred together with a proof.

An additional advantage of the protocol proposed in this work over protocols
based on a public CRS is this property of non-transferability. For the protocols
proposed here it is even in the real model possible to generate fake zero-knowledge
arguments or fake commitments which look valid to any third party. This allows a
party to deny having generated a zero-knowledge proof or a commitment. Hence
the real protocol generates no evidence which could be used against an uncorrupted
initiator of a zero-knowledge argument or a commitment.

Theorem 5.1 (informal statement). Protocol SC-ZK (which implements FZK) and
protocol SC-COM (which implements FCOM) are non-transferable.

Acknowledgements. We thank the referee for pointing out a that the hiding and
binding (but not non-oblivious) commitments are not sufficient for Theorem 4.1,
cf. footnote 5.
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