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Vertex Cover (VC) asks, given an undirected graph G and an integer k ≥ 0, whether at most k
vertices can be deleted from G such that the remaining graph contains no edge. VC is NP-hard and
a formative problem of algorithmics and combinatorial optimization. We study a time-dependent,
“multistage” version, namely a variant of VC on temporal graphs. A temporal graph G is a tu-
ple (V, E , τ) consisting of a set V of vertices, a discrete time-horizon τ , and a set of temporal
edges E ⊆ (V

2
) × {1, . . . , τ}. Equivalently, a temporal graph G can be seen as a vector (G1, . . . , Gτ)

of static graphs (layers) over the same vertex set V . Then, our specific goal is to find a small vertex
cover Si for each layer Gi such that the sizes of the symmetric differences Si △ Si+1 between the
vertex covers Si and Si+1 of every two consecutive layers Gi and Gi+1 are small. Formally, we thus
introduce and study the following problem.

Multistage Vertex Cover (MSVC)
Input: A temporal graph G = (V, E , τ) and two integers k ∈ N, ` ∈ N0.
Question: Is there a sequence S = (S1, . . . , Sτ) such that

(i) for all i ∈ {1, . . . , τ}, the set Si ⊆ V is a size-at-most-k vertex cover for Gi, and
(ii) for all i ∈ {1, . . . , τ − 1}, it holds that ∣Si△ Si+1∣ ≤ `?

In our model, we follow the recently proposed multistage [4, 5, 9] view on classical optimization
problems on temporal graphs. In general, the motivation behind a multistage variant of a classical
problem such as Vertex cover is that the environment changes over time (here reflected by the
changing edge sets in the temporal graph) and a corresponding adaptation of the current solution
comes with a cost. In this spirit, the parameter ` in the definition of MSVC allows to model that
only moderate changes concerning the solution vertex set may be wanted when moving from one
layer to the subsequent one. Indeed, in this sense ` can be interpreted as a parameter measuring
the degree of (non-)conservation [1, 10].

Related Work. The literature on vertex covering is extremely rich, even when focusing on
parameterized complexity studies. Indeed, Vertex Cover (VC) can be seen as “drosophila” of
parameterized algorithmics. Thus, we only consider VC studies closely related to our setting. First,
we mention in passing that VC is studied in dynamic graphs [3, 12] and graph stream models [6].

∗An extended version of this abstract will appear at IPEC 19 and a full version is available on arXiv [7].
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Table 1: Overview on our results. The column headings describe the restrictions on the input
and each row corresponds to a parameter. p-NP-hard, PK, and NoPK, abbreviate para-NP-hard,
polynomial problem kernel, and no problem kernel of polynomial size unless coNP ⊆ NP/poly.

general layers tree layers one-edge layers
1 ≤ ` < 2k ` ≥ 2k 1 ≤ ` < 2k 1 ≤ ` < 2

NP-hard NP-hard NP-hard

τ p-NP-hard p-NP-hard FPT, PK
k XP, W[1]-h., FPT, NoPK XP, W[1]-h. open, NoPK

k + τ FPT, PK FPT, PK FPT, PK

More importantly for us, Akrida et al. [2] studied a variant of VC on temporal graphs. Their
model significantly differs from ours: They want an edge to be covered at least once over every
time window of some given size ∆. Hence, they do not take into account the symmetric difference
between two vertex covers for two consecutive layers.

A second related line of research, not directly referring to temporal graphs though, studies
reconfiguration problems which arise when we wish to find a step-by-step transformation between
two feasible solutions of a problem such that all intermediate results are feasible solutions as well[8,
11]. Mouawad et al. [14, 15] studied, among other reconfiguration problems, Vertex Cover
Reconfiguration which takes as input a graph G, two vertex covers S and T of size at most k
each, and an integer τ . The goal is to determine whether there is a sequence (S = S1, . . . , Sτ = T )
such that each St is a vertex cover of size at most k. The essential difference to our model is
that from one “sequence element” to the next only one vertex may be changed and that the input
graph does not change over time. Indeed, there is an easy reduction of this model to ours while the
opposite direction is unlikely to hold. This is substantiated by the fact that Mouawad et al. [14]
showed that Vertex Cover Reconfiguration is fixed-parameter tractable when parameterized
by vertex cover size k while we show W[1]-hardness for the corresponding case of MSVC.

Finally, there is also a close relation to the research on dynamic parameterized problems [1, 13].
Krithika et al. [13] studied Dynamic Vertex Cover where one is given two graphs on the same
vertex set and a vertex cover for one of them together with the guarantee that the cardinality of
the symmetric difference between the two edge sets is upper-bounded by a parameter d. The task
then is to find a vertex cover for the second graph that is “close enough” (measured by a second
parameter) to the vertex cover of the first graph. They show fixed-parameter tractability and a
linear kernel with respect to d.

Our Contributions. Our results, focusing on the three perhaps most natural parameters,
are summarized in Table 1. We highlight a few specific results. Multistage Vertex Cover
remains NP-hard even if every layer consists of only one edge; clearly, the corresponding hardness
reduction then exploits an unbounded number τ of time layers. If one only has two layers, however,
one of them being a tree and the other being a path, then again Multistage Vertex Cover
already becomes NP-hard. MSVC parameterized by solution size k is fixed-parameter tractable
if ` ≥ 2k, but becomes W[1]-hard if ` < 2k. Considering the tractability results for Dynamic
Vertex Cover [13] and Vertex Cover Reconfiguration [14], this seems to be surprising
and is our most technical result.
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