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Reoptimization is a framework that was introduced by Schäffter [4] to
study dynamic algorithms for NP-hard optimization problems. In classical
reoptimization problems, one is given an optimal solution to a problem in-
stance and a local modification of the instance. The goal is to obtain a
solution for the modified instance. Usually, the reoptimization version of an
NP-hard problem is still NP-hard: if for the problem at hand we have a poly-
nomial time algorithm that transforms an easy to solve instance to arbitrary
valid instances using polynomially many local modifications, a polynomial
time reoptimization algorithm would imply the original problem to be in P.

Instead of aiming for an optimal solution, we therefore want to compute
an approximate solution. The additional information about the instance
provided by the given solution plays a central role: we aim to use that
information in order to obtain better solutions than we are able to compute
from scratch.

For the application of reoptimization, the main obstacle is the strong ini-
tial requirement that given the solution is optimal. In particular, we cannot
guarantee to maintain optimality, which limits the possibility to apply re-
optimization iteratively. In this talk, we address the optimality requirement
by presenting the notion of robust reoptimization which was introduced by
Goyal and Mömke [3]. Instead of assuming that we are provided an optimal
solution, we relax the assumption to the more realistic scenario where we
are given an approximate solution with an upper bound on its performance
guarantee. Formally, let Sol be a solution to the given optimization prob-
lem. Let us assume that c(Sol) is a (1 + ε) factor larger than the cost of
an optimal solution. Then we say that a reoptimization algorithm is ro-
bust, if it is an approximation algorithm and its performance guarantee is
α · (1 + O(ε)), where α is its performance guarantee when ε = 0. Intuitive,
this definition ensures that for ε→ 0, the performance guarantee converges
smoothly towards α, independent of the given instance. We consider ro-
bustness of reoptimization algorithms to be a crucial feature, since in real
world applications close to optimal solutions are much more frequent than
optimal solutions.
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We illustrate the effect by considering reoptimization of the Steiner tree
problem [3, 1] and reoptimization of a TSP variant, the Latency problem [2].
We show that for Steiner tree reoptimization there is a clear separation be-
tween local modifications where optimality is crucial for obtaining improved
approximations and those modifications where approximate solutions are
acceptable starting points. For some of the local modifications that have
been considered in previous research, we show that for every fixed ε > 0,
approximating the reoptimization problem with respect to a given (1 + ε)-
approximation is as hard as approximating the Steiner tree problem itself
(whereas with a given optimal solution to the original problem it is known
that one can obtain considerably improved results).
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