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C omputers allow us to automate many tasks of everyday life. There is, however, a
strict limit as to what kind of work can be automated. The aim of this lecture
is to study these limits. In 1936, Alan Turing showed that there are well-defined

problems that cannot be solved by computers (more specifically, by algorithms); this does
not address a lack of computational power in the sense of stating that today’s computers are
too slow, but as computers get faster, we may hope to solve these problems eventually. The
inability to solve these problems will prevail, no matter how the performance of computers
will improve. It is noteworthy that the modern computers were not present in Turing’s
time. Following his footsteps, we ask “Which problems can be solved automatically and
which cannot?” In order to do this, we introduce a formalization of the term “algorithm.”
We start with a restricted class, the finite automata, which we then extend by making
the underlying model more and more powerful, eventually arriving at the Turing machine
model.

We then prove the existence of problems that cannot be solved by Turing machines.
The proof uses arguments similar to proving that there are more real numbers than natural
numbers and to Gödel’s incompleteness theorem. One of the most famous such problems
is the halting problem, e.g., to decide for a given Turing machine whether it finishes its
work on a given input within finite time or runs forever. Rice’s theorem even states that
most questions about the semantics of Turing machines cannot be decided in general. As a
consequence of the Church-Turing thesis, there are no algorithms for semantic problems
about computer programs as well.

After that, we will solely focus on decidable problems, i.e., on problems for which we
can design Turing machines that solve them. We then ask with how much effort this can
be done; in particular, we are interested in the time that needs to be spent. We will classify
problems into tractable and intractable problems, thereby discussing the P vs. NP problem.
Proving Cook’s theorem, we show the existence of an NP-complete problem; and using
reductions, we prove that there is a large number of such problems, for which neither
nontrivial lower bounds nor efficient algorithms are known.
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1 Regular Languages
In order to study problems and algorithms designed to solve them, we first need to define
the terms “problem” and “algorithm” formally; in this chapter, we start by looking at
particular subclasses of both. While the kind of problems we define is a lot more general
than it seems to be on first sight, the algorithms considered in the following are indeed very
limited. However, they make up an important building block for the more general models
we will consider later.

1.1 Formal Languages
First, we need to define the notion of an alphabet, which is simply any finite nonempty
set. Alphabets are usually denoted by the Greek letter Σ; let us give a few examples.

• Σbin = {0, 1} is the binary alphabet,

• Σdec = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the alphabet of decimal digits,

• Σeng = {a, b, . . . , z} is the lower-case English alphabet,

• Σgreek = {α, β, . . . , ω} is the lower-case Greek alphabet, and

• Σsym = {�,4, } is some alphabet of three symbols.

The elements of an alphabet are called letters, characters, or simply symbols. Next,
we need the notion of a word, which we also call a string; words are defined with respect to
a given alphabet. A word is any sequence that can be obtained by concatenating any finite
number of letters of this alphabet. We say that, e.g., 011 is a word “over” the alphabet Σbin.
A special word is the empty word, which we denote by ε, and which consists of no letter at
all. The length of a word w, denoted by |w|, is the number of positions in w, e.g., |011| = 3.
The empty word has length zero, thus |ε| = 0, and it is the only word of this length.

A language “over” an alphabet Σ is any (finite or infinite) set that contains words over
Σ only. Since languages are sets, we have the usual operations L1 ∪L2, L1 ∩L2, and L1 \L2
defined on any two languages L1 and L2. Furthermore, we have the relations L1 ( L2,
L1 ⊆ L2, L1 = L2, and L1 6= L2.

Furthermore, for a given alphabet Σ, we define the following languages.

• For any k ∈ N, Σk is the language that contains all words over Σ that have length
exactly k; here and anywhere subsequently, we define N to contain 0.

• Σ1 = Σ is the language that contains all words that each have exactly one letter;
strictly formally speaking, Σ1 and Σ are two different things since the former contains
words and the latter contains letters, but this can be ignored.

• Σ0 = {ε} is the language that only contains the empty word (observe that {ε} 6= ∅).

• Σ∗ = Σ0∪Σ1∪Σ2∪ . . . is the Kleene closure (or simply the Kleene star) of Σ and
contains all words over Σ, i.e., all words that are obtained by concatenating letters
from Σ in any way.
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• Σ+ = Σ∗ \ Σ0 = Σ1 ∪ Σ2 ∪ . . . contains all nonempty words over Σ.

We observe that any language L over an alphabet Σ is a subset of Σ∗, i.e., L ⊆ Σ∗;
by L{ = Σ∗ \ L we denote the complement of L. It is important to keep in mind that
alphabets are always finite, while languages may have an infinite size; in particular, Σ∗ and
Σ+ are infinite for every Σ (recall that alphabets are never empty).

By concatenating languages, we can obtain new languages as follows.

• For two languages L1 and L2 with L1, L2 ⊆ Σ∗, we define the concatenation of L1
and L2 as L1 ◦ L2 = L1L2 = {vw | v ∈ L1 and w ∈ L2}.

• The kth power of a language L is defined inductively by L0 = {ε}, L1 = L,
and, for any k ∈ N, Lk+1 = LkL. In other words, Lk+1 contains all words that are
obtained by concatenating any k + 1 words from L. It is important to observe that
εw = w = wε for every word w. Also note that, for every k ≥ 1,

ε ∈ Lk ⇐⇒ ε ∈ L .

• The Kleene closure of a language L is defined by L∗ = L0 ∪ L1 ∪ L2 ∪ . . . .

• Similarly to alphabets, we define L+ = L1 ∪ L2 ∪ . . . .

Now we have all we need to define the special class of problems we are interested in,
and which are called decision problems. In essence, a decision problem is to determine
whether a given word is contained in a given language.

Definition 1.1 (Decision Problem). A decision problem is given by a language L
over some alphabet Σ. A valid input is any word w ∈ Σ∗, and the task is to “decide”
whether w ∈ L or w /∈ L.

Although Definition 1.1 may seem rather artificial and restricted, it is actually quite
general, as we can model many intuitive problems as decision problems. Consider, e.g., the
task to check whether a given number is prime. We can simply define

LPRIME = {w ∈ Σ∗dec | w is the decimal representation of a prime number} ,

and checking whether a given number x is prime is then nothing else but interpreting x as
a word over Σdec and deciding whether

x ∈ LPRIME or x /∈ LPRIME .

Alternatively, we can also define

LPRIME = {w ∈ Σ∗bin | w is the binary representation of a prime number} ,

which simply means that we use a different encoding of the inputs.
As another example, consider the famous Hamiltonian cycle problem, HC for short.

Here, the task is to find a cycle in a given graph that visits every vertex exactly once.
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v1

v2

v3
v4

v5

v6

(a)



0 1 1 0 0 0
1 0 1 1 0 1
1 1 0 0 1 0
0 1 0 0 1 1
0 0 1 1 0 0
0 1 0 1 0 0



(b)
Figure 1.

We know that we can encode a graph using its adjacency matrix. Consider, e.g., the
graph in Figure 1a; its adjacency matrix (Figure 1b) can be encoded over the alphabet
Σgraph = {0, 1,#} by the word

x = 011000#101101#110010#010011#001100#010100 ,

and checking whether it contains a Hamiltonian cycle can be formalized by deciding whether
x is contained in the language

LHC = {w ∈ Σ∗graph | w encodes a graph with a Hamiltonian cycle} .

Now we want to study how such problems can be solved by means of computers. While
the above examples show that the notion of decision problems allows us to model rather
complex tasks, we start with simpler problems, i.e., languages that have a rather simple
structure. For such languages, the corresponding decision problems can be solved by
comparatively simple devices. Later on, however, we will allow more and more complicated
computations that will eventually lead to the notion of Turing machines, which are able to
solve the above-mentioned decision problems LPRIME and LHC and many others.

1.2 Deterministic Finite Automata
Our first idea to solve simple decision problems is to use a straightforward pattern recognition
mechanism. We read a given word letter by letter; depending on which letter we read, we
enter a state that saves information about the prefix of the word read so far. After the
whole word is processed that way, we end in some state, which can either be accepting or
nonaccepting; in the former case, the word is contained in the language, otherwise it is
not. This approach is formalized by so-called deterministic finite automata, DFAs for
short. Sometimes, we will speak of a DFA “reading a word,” and subsequently accepting or
rejecting the word.
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Definition 1.2 (Deterministic Finite Automaton, DFA). A DFA A is a quintu-
ple A = (Q,Σ, δ, q0, F ), where

• Q is a finite set of states,

• Σ is an alphabet, called the input alphabet,

• δ : Q× Σ→ Q is the transition function,

• q0 ∈ Q is the start state, and

• F is the set of accepting states.

Definition 1.2 does not exactly seem intuitive. In order to get a better feeling for a given
DFA, we usually choose another representation, which is given by a diagram. To this end,
we use the following conventions.

• The states are represented by circles,

• a transition δ(q, l) = q′ with q, q′ ∈ Q and l ∈ Σ is represented by an arrow from q to
q′ labeled by l,

• the start state is marked by an incoming arrow, and

• all accepting states are marked by a double circle.

An example is shown in Figure 2. It is important to keep in mind that a DFA has
exactly one start state, but an arbitrary number of accepting states. Moreover, a DFA is
always complete in the sense that every state has an outgoing transition for every letter
from the input alphabet.

DFAs can be used to accept simple languages. Consider, e.g., the language

L11 = {w ∈ {0, 1}∗ | w begins with 11} ,

which contains all binary words that begin with 11. A DFA A11 that accepts this language
reads a given word x letter by letter. If the first letter is 0, it enters a state qsink, which is
nonaccepting, since in this case x cannot be in L11; this state cannot be left, no matter
which letter appears afterwards. Conversely, if x begins with the letter 1, another state q1
is entered; intuitively, this state means “the first letter of x is 1,” whereas qsink means “x is
not in L11.” If the second letter is 0, again x cannot be in L11, which is why A11 enters the
state qsink also in this case. If, however, the second letter is 1, we have x ∈ L11, and thus A11
now enters an accepting state q11, which again cannot be left. The diagram representation
of A11 is shown in Figure 2b.

Another way to represent a DFA is by means of a transition table, which is nothing
else than a shorthand to define δ. The transition table of A11 is depicted in Figure 2c. For
obvious reasons, we will use the diagram representation when designing DFAs for given
languages. However, we will later need the formal representations in order to argue about
the limitations of DFAs.
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• Q = {q0, q1, q11, qsink},

• Σ = {0, 1},

• q0,

• δ(q0, 0) = qsink, δ(q0, 1) = q1,
δ(q1, 0) = qsink, δ(q1, 1) = q11,
δ(q11, 0) = δ(q11, 1) = q11,
δ(qsink, 0) = δ(qsink, 1) = qsink, and

• F = {q11}.

(a)

q0

q1

qsink

q11

1

0

1

0 0, 1

0, 1

(b)

State 0 1
→ q0 qsink q1

q1 qsink q11
∗ q11 q11 q11
qsink qsink qsink

(c)
Figure 2.

For a given DFA A, we can define the language Lang(A) of A as the language of all
words that are accepted by A. Formally, we extend the transition function δ to a function
δ̂ : Q×Σ∗ → Q, i.e., δ̂ is defined on words instead of single letters. This is done inductively
in a straightforward fashion. First, we define δ̂(q, ε) = q. Second, for a word w, which ends
with the letter a, i.e., w = va for some (possibly empty) word v, we have

δ̂(q, w) = δ(δ̂(q, v), a) .

Intuitively, δ̂(q, w) corresponds to the state in which the DFA ends if it starts in state q
and reads the word w. Since a DFA A accepts exactly those words that, starting in the
start state q0, end in an accepting state, we can define the language of A by

Lang(A) = {w ∈ Σ∗ | δ̂(q0, w) ∈ F} .

As we will see shortly, there are languages for which we cannot design any DFA. However,
the languages for which we can form an important class, namely the so-called class of
regular languages.

Definition 1.3 (Regular Language). A language L is called regular if there is a
DFA A with Lang(A) = L. The class of the regular languages is

Lreg = {L | L is regular} .

In the following sections, we will learn about alternative ways to define regular languages,
some of which are different automata models.

1.3 Nondeterministic Finite Automata
In this section, we introduce a seemingly more powerful model of pattern recognition, namely
the so-called nondeterministic finite automata, NFAs for short. The main difference
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between NFAs and DFAs is that the action of an NFA is not necessarily “determined” by
its transition function and the given word. If a DFA is in some state q and reads the letter
l, then it enters a fixed state q′. For an NFA, there may be a choice, i.e., there may be
multiple states that can be entered, or even no state at all. Besides that, NFAs are defined
analogously to DFAs.

Definition 1.4 (Nondeterministic Finite Automaton, NFA). An NFA N is a
quintuple N = (Q,Σ, δ, q0, F ), where

• Q is a finite set of states,

• Σ is the input alphabet,

• δ : Q× Σ→ Pow(Q) is the transition function,

• q0 ∈ Q is the start state, and

• F is the set of accepting states.

We see that, as opposed to DFAs, δ is not a function that maps pairs of states and
letters to single states, but to sets of states. Such a set may contain any number of states; in
particular, it can be empty, contain a single state, or all of them. The extended transition
function δ̂ is defined in the obvious way, i.e., it takes a state and a word and returns a set
of states. The language of an NFA N is defined as

Lang(N) = {w ∈ Σ∗ | δ̂(q0, w) ∩ F 6= ∅} .

In order to grasp this expression, let us put it into words. Lang(N) contains all words
for which there exists a run (traversal, tour, or computation) through N that ends in
an accepting state. This means that, again starting in the start state q0, we can follow
transitions that are labeled with the corresponding letters; if there is more than one
possibility, we can pick any and continue (if possible). If we are able to end up in an
accepting state, the word is contained in Lang(N). Another point of view is that, in any
state which offers multiple possibilities to continue, we can make a nondeterministic
guess. If there is a sequence of guesses that allows us to enter an accepting state for a
given word, the word is accepted. It is irrelevant what happens if we guessed differently; all
that counts is whether there is one way to guess correctly. For words not in Lang(N), there
is no such run, i.e., no matter which transitions are followed whenever there are multiple
possibilities, N never ends in an accepting state.

Another property of an NFA is that it is not necessarily complete (in contrast to DFAs).
If we enter a state and a letter is read for which there is no outgoing transition, we say that
the NFA is “stuck.” In this case, the word is not accepted in this run. However, as noted
above, if there is an accepting run, the word is still accepted by the NFA.

An NFA for the language L11 is shown in Figure 3a, and we note that it contains one state
fewer than the DFA A11 shown in Figure 2b. Indeed, the ability to make nondeterministic
guesses often allows us to design automata that are somewhat simpler. As a second example,

6



q0

q1

q11

1

1

0, 1
(a)

q0

qa qaa qaaa

qb qbb qbba

qaa|bb qaaa|bbaa, b, c

a

a a

b

b a

a, b, c

a, b, c

a

b

a

a, b, c

(b)

q0

q0

q0

q0

q0

q0 qa

qa

qaa

qb

qb

qbb

qbba

qbba

qa

a

b

b

a

a

(stuck)

(stuck)

(c)
Figure 3.

consider the language

Laaa,bba = {w ∈ {a, b, c}∗ | w contains the string aaa or the string bba} .

An NFA for this language can initially read a (potentially empty) prefix of the given word
until it guesses nondeterministically which of the two strings (if any) is contained in it; to
this end, it loops in the start state. According to its guess, it then either enters qa, qaa, qaaa

or qb, qbb, qbba, respectively; qaaa and qbba are accepting states, which allow the NFA to read
any suffix. Conversely, if the given word does not contain the string aaa or bba, the NFA
will never accept it, no matter how the guess at the beginning is made. The resulting NFA
is shown in Figure 3b; there it is also indicated how some of the states can be merged in
order to get a smaller NFA with only five states.

In order to get a better feeling for how an NFA N works on a given word w, we can
visualize its computations using a tree. The root of the tree corresponds to the start
state q0. Then we consider the first letter of w, and add a child for each state that can be
entered by N if this letter is read. We continue this process with all children in an iterative
fashion. If there is no outgoing transition that can be followed for the given letter, N is
stuck and the vertex of the tree becomes a leaf. Every computation that does not get stuck
results in a leaf that corresponds to a state in which N is after reading the whole word
and making the corresponding guesses. If there is such a leaf with an accepting state, N
accepts in the corresponding computation, and hence w is in Lang(N). Every path from
the root to a leaf corresponds to a computation of N on w, i.e., every branch represents a
nondeterministic guess. An example for the NFA shown in Figure 3b and the word abbaa
is depicted in Figure 3c; we see that an accepting computation is given by the sequence
q0, q0, qb, qbb, qbba, qbba of states.

A natural question is whether NFAs are more powerful than DFAs, i.e., whether there
is a language for which we can design an NFA, but no DFA. As a matter of fact, there is
not. Both models have the same expressive power. This means that, for every NFA N ,
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there is a DFA A that accepts the same language N accepts, and vice versa; we also say
that N and A equivalent.
Theorem 1.5. Every DFA can be converted into an equivalent NFA.

Proof. This implication is easy to see. Let A be a DFA with Lang(A) = L. Then A can
be regarded as an NFA that makes no nondeterministic guesses at all. Formally, the only
thing we need to change is to convert any transition δ(q, a) = q′ to δ(q, a) = {q′}. Clearly,
the resulting NFA N accepts the language L. �

Theorem 1.6. Every NFA can be converted into an equivalent DFA.

Proof. This implication is not that straightforward. Let N = (QN ,ΣN , δN , q0,N , FN) be an
NFA with Lang(N) = L. What we need to do is to design a DFA A = (QA,ΣA, δA, q0,A, FA)
with ΣA = ΣN and Lang(A) = L. In what follows, we describe a method called the
powerset construction that achieves this goal. The idea is to have A simulate all possible
nondeterministic guesses of N in parallel; i.e., if N has two outgoing transitions from a
state q labeled with l that lead to a state q′ and a state q′′, respectively, A has a state that
contains the information “after reading l, N could be in either q′ or q′′.” We denote such a
state by 〈{q′, q′′}〉. Formally, this process can be described as follows.

• The start state of A is q0,A = 〈{q0,N}〉.

• For every letter l ∈ ΣA, we create a new state of A that “contains” all states
p0,N , p1,N , . . . , pm,N of N with pi,N ∈ δN(q0,N , l); this state is denoted by

q = 〈{p0,N , p1,N , . . . , pm,N}〉 ,

and we set δA(q0,A, l) = q.

• We iterate this process with the newly obtained states, e.g., with q. This way, the
states of A correspond to sets of states of N (possibly also the empty set or QN ); the
fact that QA ⊆ Pow(QN) is responsible for the construction’s name.

• The process terminates if no new state is obtained and the transitions of all known
states are defined.

• The accepting states FA of A are exactly those states that “contain” at least one state
from FN .

Now consider some word w ∈ Lang(N). This means that there is a run through N such
that N ends in an accepting state, i.e., w induces a sequence

(p0,N , p1,N , . . . , p|w|,N)

with p0,N = q0,N and p|w|,N ∈ FN . By construction, w leads to a run

(p0,A, p1,A, . . . , p|w|,A)

such that pi,N is one of the states that are contained in pi,A. It follows that p0,A is the start
state of A, and that the accepting state p|w|,N is contained in the state p|w|,A, which implies
that p|w|,A is also an accepting state. Therefore, A accepts w. By the same reasoning, if N
does not accept w, then neither does A. �
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The easiest way to apply the powerset construction is by explicitly constructing the
transition table of the DFA from the NFA. First, let us have a look at the simplified NFA
with five states depicted in Figure 3b. By definition, the start state of the DFA is 〈{q0}〉.
Now we look at the outgoing transitions. Reading an a, the NFA can either stay in q0 or
change to the state qa, which leads to a new state 〈{q0, qa}〉. Likewise, we obtain a state
〈{q0, qb}〉 if the letter b is read. The NFA stays in q0 if a c is read; analogously, the DFA
stays in 〈{q0}〉. This leads to the first row

State a b c

→ 〈{q0}〉 〈{q0, qa}〉 〈{q0, qb}〉 〈{q0}〉

of the transition table of the DFA we are about to design. We observe that there are two
new states for which we need to specify the outgoing transitions. The first one represents
the state “the NFA is in one of the two states q0 or qa.” So what happens in this case if an
a is read? If the NFA is in q0, it either stays in q0 or it again changes to the state qa; if it is
in qa, it changes to qaa|bb. Conversely, if a b is read, the NFA stays in q0 or changes to qb

if it was in q0; it gets stuck if it was in qa, since there is no outgoing transition labelled b.
Last, if a c is read, the NFA stays in q0 or gets stuck. With this, we obtain

State a b c

→ 〈{q0}〉 〈{q0, qa}〉 〈{q0, qb}〉 〈{q0}〉
〈{q0, qa}〉 〈{q0, qa, qaa|bb}〉 〈{q0, qb}〉 〈{q0}〉

as the first two rows of the transition table. We continue in this fashion until we do not
find any new state and the transitions of all states found are defined. The next state is
〈{q0, qb}〉, the one after that 〈{q0, qa, qaa|bb}〉, and so on. We finally get

State a b c

→ 〈{q0}〉 〈{q0, qa}〉 〈{q0, qb}〉 〈{q0}〉
〈{q0, qa}〉 〈{q0, qa, qaa|bb}〉 〈{q0, qb}〉 〈{q0}〉
〈{q0, qb}〉 〈{q0, qa}〉 〈{q0, qb, qaa|bb}〉 〈{q0}〉

〈{q0, qa, qaa|ab}〉 〈{q0, qa, qaa|bb, qaaa|bba}〉 〈{q0, qb}〉 〈{q0}〉
〈{q0, qb, qaa|ab}〉 〈{q0, qa, qaaa|bba}〉 〈{q0, qb, qaa|bb}〉 〈{q0}〉

∗〈{q0, qa, qaa|bb, qaaa|bba}〉 〈{q0, qa, qaa|bb, qaaa|bba}〉 〈{q0, qb, qaaa|bba}〉 〈{q0, qaaa|bba}〉
∗ 〈{q0, qa, qaaa|bba}〉 〈{q0, qa, qaa|bb, qaaa|bba}〉 〈{q0, qb, qaaa|bba}〉 〈{q0, qaaa|bba}〉
∗ 〈{q0, qb, qaaa|bba}〉 〈{q0, qa, qaaa|bba}〉 〈{q0, qb, qaa|bb, qaaa|bba}〉 〈{q0, qaaa|bba}〉
∗ 〈{q0, qaaa|bba}〉 〈{q0, qa, qaaa|bba}〉 〈{q0, qb, qaaa|bba}〉 〈{q0, qaaa|bba}〉
∗〈{q0, qb, qaa|bb, qaaa|bba}〉 〈{q0, qa, qaaa|bba}〉 〈{q0, qb, qaa|bb, qaaa|bba}〉 〈{q0, qaaa|bba}〉

as the complete transition table. Note that this DFA has ten states, i.e., twice as many as
the original NFA.

As a second example, consider the NFA in Figure 3a. If a one is read, the NFA enters
the state q1; conversely, there is no outgoing edge labeled zero, which means that the set of
states entered is empty. This leads to the first line

State 0 1
→ 〈{q0}〉 〈∅〉 〈{q1}〉

of the transition table. There are two new states, one of which is the empty set, which
corresponds to the NFA being stuck; once this state is entered, it is never left, independent

9



q0 q1 q2 . . . qk−1 qk
1

0, 1

0, 1 0, 1 0, 1 0, 1

Figure 4.

of the input symbols read. After applying the powerset construction, we obtain

State 0 1
→ 〈{q0}〉 〈∅〉 〈{q1}〉

〈∅〉 〈∅〉 〈∅〉
〈{q1}〉 〈∅〉 〈{q11}〉

∗ 〈{q11}〉 〈{q11}〉 〈{q11}〉

as the complete transition table of the DFA accepting L11.
We observe that the DFA designed in the proof of Theorem 1.6 is generally a lot larger

than the given NFA. Since, in principle, the so-designed DFA A can have a single state for
every possible combination of states of the NFA N , it seems reasonable to assume cases
where

|QA| = 2|QN | .

We might of course wonder whether this is only due to the powerset construction;
maybe there is another way of conversion that does not increase the number of states that
drastically. Unfortunately, this “exponential blowup” is indeed necessary. In what follows,
we give a language for which any DFA needs exponentially more states than an NFA. For
every k ∈ N, consider the language

Lright,k = {w ∈ {0, 1}∗ | the kth letter from the right is 1} .

Let us first design an NFA Nright,k with k + 1 states for Lright,k. The idea is that Nright,k
guesses when the kth position from the right is read. Before that, arbitrarily many letters
can be read; after the guess, exactly k− 1 more letters are read. Words not in the language
cannot be accepted this way; Nright,k is shown in Figure 4.

Now we formally prove that every DFA has to have a number of states that is exponen-
tially larger than that of Nright,k.

Lemma 1.7. Every DFA for Lright,k has at least 2k states.

Proof. For a contradiction, suppose that this is not the case, i.e., there is a DFA Aright,k
with Lang(Aright,k) = Lright,k and with at most 2k − 1 states. Now consider all binary words
of length k. All these words each induce a tour through Aright,k, ending in some state. Since
there 2k such words, but only at most 2k − 1 states, by the pigeonhole principle, two
binary words have to end up in the same state q; let b = b1b2 . . . bk and b′ = b′1b

′
2 . . . b

′
k with

bi, b
′
i ∈ {0, 1} be two such words, and let j with 1 ≤ j ≤ k be the first position at which

10



they are different. Without loss of generality, let the jth bit of b be one and that of b′ zero.
Now consider the two words

b1b2 . . . bj−1 1bj+1 . . . bk0 . . . 0︸ ︷︷ ︸
k letters

and b′1b
′
2 . . . b

′
j−1 0b′j+1 . . . b

′
k0 . . . 0︸ ︷︷ ︸

k letters

that are obtained by concatenating k − (k − j + 1) = j − 1 zeros to b and b′, respectively.
By the definition of Lright,k, the first one has to be accepted by Aright,k, while the second
one must not be accepted. However, by assumption, after reading the first k letters of both
words, the DFA is in q. After that, reading j − 1 zeros leads to ending up in the same state
q′. As a consequence, either both words get accepted or they both do not get accepted,
which is a contradiction. �

Note that our arguments do not rely on the powerset construction, but we proved that
no DFA for Lright,k can have fewer than 2k states, not matter how it is obtained.

1.4 Nondeterministic Finite Automata with ε-Transitions
Let us introduce yet another automata model. The so-called nondeterministic finite
automata with ε-transitions, ε-NFAs for short, are NFAs with the added property that
transitions are allowed to be labeled with the empty word ε. When reading a word w, such
an ε-transition can always be followed without reading any letter from w. Formally, the
transition function δ is extended to be defined on {ε} ∪ Σ instead of Σ. This can come in
very handy when proving some given language to be regular. Consider the language

Lab,ba = {w ∈ {a, b, c}∗ | w starts with ab or ends with ba} .

An ε-NFA for this language guesses which of the two constraints (if any) is satisfied and
follows a corresponding ε-transition; see Figure 5a.

We now define ε-close(q) to be the ε-closure of a given state q, which simply denotes
the set of all states that are reachable from q by following only ε-transitions. Formally, we
define ε-close(q) inductively by

• q ∈ ε-close(q) and

• if there is an ε-transition from some q′ ∈ ε-close(q) to a state q′′, then q′′ ∈ ε-close(q).
Instead of defining ε-closures on single states, they can also be defined in a straightforward

fashion on sets of states. We do not need this, however, with one exception; we define

ε-close(∅) = ∅ .

Consider the ε-NFA shown in Figure 5b and its start state q0. We initially set
ε-close(q0) = {q0}. Second, there is an ε-transition from q0 to q2; therefore, we obtain
ε-close(q0) = {q0, q2}. After that, we add q1 to ε-close(q0) due to the ε-transition from q2
to q1. Since there are no additional ε-transitions to any state that is not already contained
in the ε-closure of q0, we finally have ε-close(q0) = {q0, q1, q2}.

In what follows, we prove that the expressive power of ε-NFAs is not larger than that
of DFAs. We again start with the simpler direction, which can be seen analogously to
Theorem 1.5.

11
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q1 qa qab
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a, b, c
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q1
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q3

0

ε

ε

0

1

0, 1

(b)
Figure 5.

Theorem 1.8. Every DFA can be converted into an equivalent ε-NFA.

Proof. This implication is again easy to see since every DFA can be regarded as an ε-NFA
with neither nondeterministic guesses, nor ε-transitions. �

Now we show how to convert a given ε-NFA to an equivalent DFA. The idea of the
proof follows a similar approach as the proof of Theorem 1.6 while paying special attention
to ε-transitions.

Theorem 1.9. Every ε-NFA can be converted into an equivalent DFA.

Proof. We use a variant of the powerset construction that incorporates the possibility to
follow ε-transitions after every letter from the input word that is read; we call the resulting
method the powerset construction with ε-closures. Let N = (QN ,ΣN , δN , q0,N , FN ) de-
note the given ε-NFA with Lang(N) = L, from which we design a DFA A = (QA,ΣA, δA, q0,A,
FA) with ΣA = ΣN and Lang(A) = L. The construction works as follows.

• The start state of A is q0,A = 〈ε-close(q0,N)〉.

• For every letter l ∈ ΣA, we create a new state of A that contains all states from
ε-close(p1,N), ε-close(p2,N), . . . , ε-close(pm,N) of N with pi,N ∈ δN(p, l) for any p ∈
ε-close(q0,N); this state is denoted by

q = 〈ε-close(p1,N) ∪ ε-close(p2,N) ∪ · · · ∪ ε-close(pm,N)〉 ,

and we set δA(q0,A, l) = q.

• As in the original construction, we iterate this process with the newly obtained states.
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• The process terminates if no new state is obtained.

Now consider a word w ∈ Lang(N). As in the proof of Theorem 1.6, this induces a
run through N , which may use ε-transitions between any two letters of w. This can be
translated into a corresponding run through A that ends in an accepting state. Whenever
the run through N follows an ε-transition, this transition is taken into consideration by
adding the corresponding states due to the ε-closures. Thus, w ∈ Lang(A). Conversely, if
N does not accept w, then neither does A. �

As for NFAs without ε-transitions, the easiest way to construct a DFA from the given
ε-NFA is to define the DFA’s transition table right away. Let us consider the ε-NFA
depicted in Figure 5b. As noted above, the start state q0 of the ε-NFA has the ε-closure
ε-close(q0) = {q0, q1, q2}, which corresponds to the start state 〈{q0, q1, q2}〉 of the DFA we
are about to design. Now we consider all three states q0, q1, and q2, and see where we get
reading the letter 0. From q0, we go to q1, and we have ε-close(q1) = {q1}; from q1, we go to
q3, and ε-close(q3) = {q3}. From q2, there are no outgoing transitions labeled 0; note that,
in this case we do not follow the ε-transition.1 The new state of the DFA is thus 〈{q1, q3}〉.

Next, we look at reading the letter 1 while being in either q0, q1, or q2. From both
q0 and q1, there are no outgoing transitions labeled 1; from q2, we go to q3, and we have
ε-close(q3) = {q3} This leads to the first row

State 0 1
→ 〈{q0, q1, q2}〉 〈{q1, q3}〉 〈{q3}〉

of the DFA’s transition table. Now we continue this procedure with the two new states
〈{q1, q3}〉 and 〈{q3}〉 of our DFA, which gives

State 0 1
→ 〈{q0, q1, q2}〉 〈{q1, q3}〉 〈{q3}〉
∗ 〈{q1, q3}〉 〈{q1, q2, q3}〉 〈{q1, q2}〉
∗ 〈{q3}〉 〈{q1, q2}〉 〈{q1, q2}〉

as intermediate transition table with two new states, namely 〈{q1, q2, q3}〉 and 〈{q1, q2}〉.
We follow the above approach, and finally get the table

State 0 1
→ 〈{q0, q1, q2}〉 〈{q1, q3}〉 〈{q3}〉
∗ 〈{q1, q3}〉 〈{q1, q2, q3}〉 〈{q1, q2}〉
∗ 〈{q3}〉 〈{q1, q2}〉 〈{q1, q2}〉
∗ 〈{q1, q2, q3}〉 〈{q1, q2, q3}〉 〈{q1, q2, q3}〉

〈{q1, q2}〉 〈{q3}〉 〈{q3}〉

as a result.

1Formally, since there is no outgoing transition labeled 1, the resulting state is ∅ and ε-close(∅) = ∅.
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1.5 Regular Expressions
Another pattern recognition mechanism are regular expressions. Regular expressions
can be defined inductively as follows; for a given regular expression R, Lang(R) ⊆ Σ∗, for
some alphabet Σ, denotes the language described by R.

• The empty word ε is a regular expression that describes the language Lang(ε) = {ε},
which contains the empty word only.

• The empty set ∅ is a regular expression describing the empty language Lang(∅) = ∅.

• Every letter l ∈ Σ is a regular expression that describes the language Lang(l) = {l}.

• If R is a regular expression, then R∗ is a regular expression that describes the language
Lang(R∗) = Lang(R)∗; the regular expression R+ is defined in the obvious way.

• If R1 and R2 are regular expressions, then R1 + R2 is a regular expression that
describes the language Lang(R1 +R2) = Lang(R1) ∪ Lang(R2).

• If R1 and R2 are regular expressions, then R1 ◦ R2 = R1R2 is a regular expression
that describes the language Lang(R1R2) = Lang(R1)Lang(R2).

In order to evaluate a given regular expression, we need to fix the precedence. The
following rules are analogous to those of arithmetic; exponentiation (Kleene star) before
multiplication (concatenation) before addition (union).

• The Kleene star is of highest precedence, e.g., R1 +R∗2 6= (R1 +R2)∗.

• Next comes concatenation, e.g., R1R2 +R3 6= R1(R2 +R3).

• Finally comes union.

• Otherwise, parentheses have to be used.

Moreover, there are a couple of rules we need to know about. First, let us state basic
ways how to treat the special expressions ε and ∅. For every regular expression R, we have

• εR = R = Rε,

• ∅R = ∅ = R∅, and

• ∅+R = R = R + ∅.

Second, we have laws of commutativity for the union operation, and distributivity
and associativity for binary operations. More formally, for any three regular expressions
R1, R2, and R3, we have

• R1 +R2 = R2 +R1,

• R1(R2R3) = (R1R2)R3,
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• R1 + (R2 +R3) = (R1 +R2) +R3, and

• R1(R2 +R3) = R1R2 +R1R3.

Consider the language L11 of binary words that start with 11 as described above. A
regular expression can be obtained by a bottom-up approach. First, the regular expression
1 gives the language Lang(1) = {1} that only contains the single word 1. Second, the
regular expression 11 describes the language Lang(1)Lang(1), which describes the regular
expression that corresponds to Lang(11) = {11}. Furthermore, 0 + 1 corresponds to
Lang(0 + 1) = {0} ∪ {1}, and (0 + 1)∗ represents Lang(0 + 1)∗ = ({0} ∪ {1})∗. Finally, we
obtain

11(0 + 1)∗

as a regular expression for L11. Let us give a few more examples.

• (0 + 1)∗101(0 + 1)∗ is a regular expression for the language of binary words that
contain the pattern 101.

• (ab)∗ + (ba)∗ + b(ab)∗ + a(ba)∗ is a regular expression for the language that contains
all words that consist of alternating as and bs (including ε, a, and b).

• (ε+ b)(ab)∗(ε+ a) is also a regular expression for the preceding language.

We now show that regular expressions and DFAs have the same expressive power, i.e.,
for every regular expression there is an equivalent DFA, and vice versa.

Theorem 1.10. Every regular expression can be converted into an equivalent DFA.

Proof. The idea behind this proof is to design an ε-NFA from a given regular expression in
a bottom-up fashion. We will make sure that all intermediate ε-NFAs have exactly one
start state and one accepting state. We start with smallest subexpressions for which we
build ε-NFAs that each consist of two states; one of them is the start state, the other one is
an accepting state.

• We start with the subexpression ∅, for which we build an ε-NFA as shown in Figure 6a.

• For the subexpression ε, we build an ε-NFA as depicted in Figure 6b.

• For every subexpression that corresponds to a single letter l ∈ Σ, we apply the
construction in Figure 6c.

Now we iteratively build larger and larger automata for larger and larger subexpressions,
yielding an ε-NFA for the complete expression.

• Let R1 and R2 be two subexpressions for which we already designed two ε-NFAs N1
and N2. Suppose the given regular expression contains the subexpression R1R2. Then
we build an ε-NFA for R1R2 by connecting N1 and N2 by an ε-transition. Since both
automata have exactly one start state and one accepting state, this is always possible.
The accepting property of N1 is removed such that the resulting ε-NFA again has one
start state and one accepting state. The construction is shown in Figure 6d.
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Figure 6.

• If the subexpression R∗ appears where we already designed an ε-NFA for the subex-
presion R, we design an ε-NFA by the construction shown in Figure 6e. Note that
the new ε-NFA has both a start and accepting state.

• For two subexpressions R1 and R2 with ε-NFAs N1 and N2, we can build an ε-NFA
N for R1 + R2 by adding a new start state that has an ε-transition to each of the
start states of N1 and N2. Likewise, the two accepting states are made nonaccepting
and connected by two ε-transitions to a new accepting state. The resulting ε-NFA is
shown in Figure 6f.

The claim then follows since every ε-NFA can be converted into an equivalent DFA, as
stated by Theorem 1.9. �

Let us give an example in order to apply the construction used in the proof of Theo-
rem 1.10. To this end, consider the regular expression

01∗ + 1 .

We first build ε-NFAs for the smallest subexpressions 0 and 1 as shown in Figure 6c, yielding
0

and
1

.

Following the precedence constraints of regular expressions, we consider the next largest
subexpression 1∗ and make use of the second ε-NFA we just build. This leads to
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ε 1 ε

ε

ε

as a next step, following the construction from Figure 6e. After that, we build the ε-NFA

0 ε ε 1 ε

ε

ε

for 01∗ by using the construction from Figure 6d. Finally, we take the preceding ε-NFA
and the one for 1 and obtain an ε-NFA for the complete regular expression; the result is
shown in Figure 7a.

We note that the final ε-NFA has many unnecessary ε-transitions. However, with
these transitions present, we are on the safe side and can easily argue that the iterative
construction works, which is why we stick to it.

Now we have a look at the reverse operation.

Theorem 1.11. Every DFA can be converted into an equivalent regular expression.

Proof. We show how to design a regular expression from a given DFA A with m states
using dynamic programming. For ease of presentation, we assume that the states of A are
simply labeled 1, 2, . . . ,m with q0 = 1 being the start state.

• R
(0)
ij is a regular expression that corresponds to going from state i to j without using

another state. If there is a transition from i to j labeled with k letters a1, a2, . . . , ak,
we set R(0)

ij = a1 + a2 + · · ·+ ak; if there is no transition from i to j, R(0)
ij = ∅.

A special case is that i = j. If there is a loop on i labeled by k letters a1, a2, . . . , ak,
we set R(0)

ii = ε+ a1 + a2 + · · ·+ ak; if there is no loop, we set R(0)
ii = ε.
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• Now we iteratively allow more and more intermediate states. First, we compute R(1)
ij ,

i.e., we look at all possibilities to go from i to j while allowing to use the intermediate
state 1. There are two possibilities.

– Either the intermediate state 1 is not used, i.e., we can go from i to j directly,
which corresponds to the regular expression R(0)

ij ;
– or the intermeditate state 1 is used. In this case, we can split the tour from i to
j into three parts. First, a transition from i to 1 is taken. Second, we can follow
any number of loops in 1 (if there is a loop). Last, a transition from 1 to j is
taken.

To sum up, we obtain

R
(1)
ij = R

(0)
ij +R

(0)
i1

(
R

(0)
11

)∗
R

(0)
1j ,

where we have already computed all expressions involved.
We can generalize this approach for R(k)

ij with k ≥ 1, i.e., for the case that we allow
intermediate states 1, 2, . . . , k. Suppose we have already computed R(k−1)

ij for all i
and j, and now allow to use the intermediate state k. Then we obtain

R
(k)
ij = R

(k−1)
ij +R

(k−1)
ik

(
R

(k−1)
kk

)∗
R

(k−1)
kj

by the same reasoning as above, i.e., the two terms represent the following two
possibilities.

– The intermediate state k is not used and thus only the intermediate states
1, 2, . . . , k − 1 appear on the tour;

– or k is used as intermediate state on the way from i to j. This again means that
we can split the tour into three parts. We can represent this tour by

i k k . . . k j

where we mark all the occurrences of the state k. The first part now is a tour
that starts at i and ends with the first occurrence of k. We know that on this
tour only the states 1, 2, . . . , k − 1 appear; this corresponds to the expression
R

(k−1)
ik . Likewise, the tour from the last appearance of k to j corresponds to

R
(k−1)
kj and constitutes the third part. For the second part, consider any two

consecutive occurrences of the state k. On any such tour, again only the states
1, 2, . . . , k − 1 appear, which thus corresponds to R(k−1)

kk .

Finally, let i1, . . . , ir denote the accepting states of A. We note that the language
Lang(A) is described by the regular expression

R
(m)
1i1 +R

(m)
1i2 + · · ·+R

(m)
1ir

,

which is thus equivalent to A. �
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Again, let us consolidate our intuition by applying the procedure described in the proof
of Theorem 1.11 to a concrete DFA, namely the simple one with two states shown in
Figure 7b. To sum up, we get

R
(0)
11 = ε+ 1, R

(0)
12 = 0, R

(0)
21 = ∅, and R(0)

22 = ε+ 0 + 1 .

Now we allow the intermediate state 1, yielding

• R
(1)
11 = R

(0)
11 +R

(0)
11

(
R

(0)
11

)∗
R

(0)
11 = (ε+ 1) + (ε+ 1)(ε+ 1)∗(ε+ 1) = 1∗,

• R
(1)
12 = R

(0)
12 +R

(0)
11

(
R

(0)
11

)∗
R

(0)
12 = 0 + (ε+ 1)(ε+ 1)∗0 = 1∗0,

• R
(1)
21 = R

(0)
21 +R

(0)
21

(
R

(0)
11

)∗
R

(0)
11 = ∅+ ∅(ε+ 1)∗(ε+ 1) = ∅, and

• R
(1)
22 = R

(0)
22 +R

(0)
21

(
R

(0)
11

)∗
R

(0)
12 = (ε+ 0 + 1) + ∅(ε+ 1)∗0 = ε+ 0 + 1.

Also allowing the states 1 and 2 as intermediate states, we get

• R
(2)
11 = R

(1)
11 +R

(1)
12

(
R

(1)
22

)∗
R

(1)
21 = 1∗ + 1∗0(ε+ 0 + 1)∗∅ = 1∗,

• R
(2)
12 = R

(1)
12 +R

(1)
12

(
R

(1)
22

)∗
R

(1)
22 = 1∗0 + 1∗0(ε+ 0 + 1)∗(ε+ 0 + 1) = 1∗0(0 + 1)∗,

• R
(2)
21 = R

(1)
21 +R

(1)
22

(
R

(1)
22

)∗
R

(1)
21 = ∅+ (ε+ 0 + 1)(ε+ 0 + 1)∗∅ = ∅, and

• R
(2)
22 = R

(1)
22 +R

(1)
22

(
R

(1)
22

)∗
R

(1)
22 = (ε+0+1)+(ε+0+1)(ε+0+1)∗(ε+0+1) = (0+1)∗.

Since 2 is the only accepting state, it follows that R(2)
12 is the regular expression that

corresponds to the given DFA; of course, it would not have been necessary to compute the
other expressions (and the corresponding intermediate steps) in this case.

Let us now summarize one of the key points we learned about so far.

Theorem 1.12. The following statements are equivalent.

1. L is a regular language.

2. There is a DFA A with Lang(A) = L.

3. There is an NFA N with Lang(N) = L.

4. There is an ε-NFA N with Lang(N) = L.

5. There is a regular expression R with Lang(R) = L.
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1.6 Closure Properties of Regular Languages
A very convenient fact about regular languages is that they are closed under many operations
such as union, intersection, complement, etc. In this section, we will discuss a few of them.
In order to prove the following claims, we use different approaches that rely on the fact that,
if a language is regular, this implies the existence of a corresponding DFA, NFA, ε-NFA, or
regular expression.

We start by complementing a given language L over an alphabet Σ, i.e., by considering
the language L{ = Σ∗ \ L = {w ∈ Σ∗ | w /∈ L}.

Lemma 1.13. If a language L is regular, then L{ is a regular language, too.

Proof. Since L is regular, there is a DFA A = (Q,Σ, δ, q0, F ) with Lang(A) = L. Now we
can easily design a DFA A with Lang(A) = L{ that is equal to A with the only difference
that the accepting states are complemented. Hence, we get A = (Q,Σ, δ, q0, Q \ F ). Now
let w ∈ L; thus, w ends in an accepting state of A. Since this state is made nonaccepting
in A, we immediately get w /∈ Lang(A). Conversely, if w is not accepted by A, it has to be
accepted by A. It follows that A is a DFA for L{, i.e., L{ = Lang(A){ = Lang(A). �

Next, for any word w, let wR denote the reversal of w, i.e., the word written backwards.
For any language L, the reversal of L, denoted by LR, is the language of all reversals of
words in L. For example, we have LR = {a, ba, cb, bba} for L = {a, ab, bc, abb}.

Lemma 1.14. If a language L is regular, then LR is a regular language, too.

Proof. Again, since L is regular, there is a DFA A = (Q,Σ, δ, q0, F ) with Lang(A) = L.
Now we design an ε-NFA N = (Q ∪ {q′0},Σ, δ′, q′0, F ′) with Lang(N) = LR. The transition
function δ′ is obtained by reversing all transitions given by the original transition function
δ. Then we add a new start state q′0 that is connected to all states from F by ε-transitions.
Finally, we set F ′ = {q0}, i.e., the only accepting state of N is the starting state of A. Now
let w ∈ L, and thus w ends in an accepting state of A. More specifically, consider the tour

(p0, p1, . . . , p|w|)

with p0 = q0 and p|w| ∈ F . This implies that there is a tour

(q′0, p|w|, p|w|−1, . . . , p0)

through N , and by the definition of N the transition from q′0 to p|w| is an ε-transition and
p0 ∈ F . This tour thus corresponds to εwR = wR. Hence, wR is accepted by N . Conversely,
if w is not accepted by A, there cannot be an accepting tour through N induced by wR.
Hence, LR = Lang(A)R = Lang(N). �

As an example to apply the construction used in the proof of Lemma 1.14, consider the
language

L01,11 = {w ∈ {0, 1}∗ | w starts with 01 or is a string of 1s with positive even length} ,
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for which Figure 8a shows a DFA, and Figure 8b gives the ε-NFA for LR
01,11 (with a redundant

state q5).
The proof of Lemmata 1.13 and 1.14 used the existence of a DFA for a given regular

language. However, due to Theorem 1.12, we also know that we can design regular
expressions for regular languages. The following lemmata can be proven in a straightforward
fashion due to this fact.

Lemma 1.15. If a language L is regular, then L∗ is a regular language, too.

Proof. Since L is regular, there is a regular expression R with Lang(R) = L. Due to the
definition of regular expressions, the regular expression (R)∗ corresponds to the language L∗,
which is therefore also regular. �

So far, we dealt with unary operations, i.e., operations on a single regular language.
Now let us consider binary operations, i.e., how to obtain regular languages by combining
two given regular languages in a particular way.

Lemma 1.16. If two languages L1 and L2 are regular, then L1L2 is a regular language.

Proof. Since L1 and L2 are regular, there are two regular expressions R1 and R2 with
Lang(R1) = L1 and Lang(R2) = L2. Due to the definition of regular expressions, we have
that the regular expression R1R2 corresponds to the language L1L2. �

Lemma 1.17. If two languages L1 and L2 are regular, then L1 ∪ L2 is a regular language.

Proof. This time, the regular expression R1 +R2 corresponds to the language L1 ∪ L2. �
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While the proof for the union of two regular expressions was almost trivial, it seems
to be more tricky if we think about the intersection. Specifically, we did not define any
operation on regular expressions R1 and R2 with Lang(R1) = L1 and Lang(R2) = L2 that
corresponds to L1 ∩ L2. However, in this case, we can again use the existence of two DFAs
A1 and A2 with Lang(A1) = L1 and Lang(A2) = L2. From these, we design a third DFA,
which we call the product automaton of A1 and A2.
Lemma 1.18. If two languages L1 and L2 are regular, then L1 ∩ L2 is a regular language.

Proof. Since L1 and L2 are regular, there are two DFAs A1 = (Q1,Σ1, δ1, q0, F1) and
A2 = (Q2,Σ2, δ2, p0, F2) with Lang(A1) = L1 and Lang(A2) = L2. Without loss of generality,
we assume that Σ1 = Σ2, and Q1 = {q0, q1, . . . , qm−1} and Q2 = {p0, p1, . . . , pn−1}. Now we
design a DFA A with Lang(A) = Lang(A1) ∩ Lang(A2) by a construction that is somewhat
related to the powerset construction. The idea is that A = (Q,Σ1, δ, r0, F ) simulates A1
and A2 in parallel on the given word w. If and only if the computation on w ends in both
an accepting state of A1 and A2, then A accepts w. The idea is that Q = Q1 × Q2, i.e.,
each state rij with 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1 corresponds to the two states qi and
pj . For every letter l ∈ Σ1, we add a transition from rij to ri′j′ labeled l if and only if there
is such a transition from qi to qi′ in A1 and from pj to pj′ in A2, i.e.,

δ(rij, l) = ri′j′ ⇐⇒ δ1(qi, l) = qi′ and δ1(pj, l) = pj′ .

We define the start state of A to be r0 = r0,0, i.e., the state that corresponds to q0 and
p0. The set of accepting states F of A contains all states rij such that qi is accepting for A1
and pj is accepting for A2, i.e.,

rij ∈ F ⇐⇒ qi ∈ F1 and pj ∈ F2 .

Now suppose w ∈ L1 ∩L2; then both A1 and A2 accept w, which implies that w ends in
some state qi ∈ F1 for A1 and in some state pj ∈ F2 for A2. In this case, w ends in rij ∈ F
by construction. Conversely, if A1 or A2 does not accept w, then A neither accepts w. �

Let us consider an example in order to apply the construction used in the proof of
Lemma 1.18. To this end, consider the two languages L1 and L2 that are given by the two
regular expressions

R1 = (b∗ab)∗aa(a+ b)∗ and R2 = (a∗ba)∗bb .
Two DFAs A1 with Lang(A1) = L1 and A2 with Lang(A2) = L2 and with three and four
states, respectively, are shown in Figure 9, together with the resulting product automaton
A. Note that A contains two unreachable states, namely r11 and r12, which can be deleted.
Moreover, the states r02, r03, r12, and r23 can be merged into a single nonaccepting state
with a loop.

We observe that, by applying the same construction as in the proof of Lemma 1.18,
we can give an alternative proof of Lemma 1.17. The only difference is that a state rij is
contained in F if qi ∈ F1 or pj ∈ F2, but not necessarily both conditions have to be true.
Lemma 1.19. If two languages L1 and L2 are regular, then L1 \ L2 is a regular language.

Proof. The claim immediately follows from observing that L1 \ L2 = L1 ∩ L2 together with
Lemmata 1.13 and 1.18. �
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1.7 The Pumping Lemma for Regular Languages
We already indicated that DFAs (NFAs, regular expressions, respectively) are rather limited
when it comes to decision problems. In other words, there are many decision problems (i.e.,
languages) for which we cannot design DFAs; these languages are therefore not regular.
Intuitively, the reason is that DFAs only have a finite memory.

How do we formally prove that a language is not regular? We first identify a property
that is true for every regular language. After that, we can show a given language to
be nonregular by proving that this property is not true. Let us start with an example.
Consider the DFA A shown in Figure 10a and suppose it reads the word w = cacbbc, which
is accepted. Reading w induces a tour

(q0, q2, q3, q4, q2, q1, q5)

through A, and we observe that the state q2 appears twice in this tour; see Figure 10b. We
can decompose w into three parts; the first part x corresponds to all letters that are read
until q2 appears for the first time, i.e., x = c; the second part y continues after x until q2 is
encountered for the second time, i.e., y = acb; the last part z makes up the remainder of w,
i.e., z = bc. Note that, starting in q0, the word x results in A being in state q2; after that,
y induces a loop, and A is again in q2 after y is read; finally, starting at q2, z leads to the
accepting state q5.

Now consider the word xyyz; again, here the x part leads to A being in q2; then a loop
is made by reading the part y, and A is again in state q2; next, another loop is made by
reading y once more; since A is once again in q2, reading z now results in A being in q5,
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and thus this word is accepted, too. The tour induced by reading xyyz is

(q0, q2, q3, q4, q2, q3, q4, q2, q1, q5) ,

which is shown in Figure 10c, and we see that a similar reasoning also works for xyyyz,
xyyyyz, and so on. This idea is formalized by the following lemma.

Lemma 1.20 (Pumping Lemma for Regular Languages). Let L be a regular lan-
guage. Then there is a constant n0 such that, for every word w ∈ L with |w| ≥ n0,
there is a decomposition w = xyz such that

1. |xy| ≤ n0,

2. |y| ≥ 1, and

3. xy`z ∈ L for every ` ∈ N.

Proof. Since L is regular, there is a DFA A = (Q,Σ, q0, δ, F ) with Lang(A) = L by definition.
The set Q of A’s states is finite; let n0 denote its size, i.e., n0 = |Q|. Now consider any word
w ∈ L with |w| ≥ n0. Since A is a DFA for L, when reading w we end up in an accepting
state. More specifically, this induces a tour

p = (p0, p1, . . . , p|w|)

through A with p0 = q0 and p|w| ∈ F . We observe that, since p visits |w| + 1 ≥ |n0| + 1
states, at least two states pi and pj with i 6= j have to be the same, i.e., pi = pj = q for
some state q ∈ Q; assume that q is the first such state. It follows that we can write p as

p = (p0, p1, . . . , pi−1, q︸ ︷︷ ︸
x

, pi+1, . . . , pj−1, q︸ ︷︷ ︸
y

, pj+1, . . . , p|w|︸ ︷︷ ︸
z

) ,

where x, y, and z are defined to be the parts of w that correspond to the indicated parts
of p.
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• We first observe that Property 1 follows from the fact that the prefix of xy of w
corresponds to the first repetition of the state q, which has to happen within the first
n0 letters of w.

• Moreover, the middle part y of w cannot be empty, which is formalized by Property 2.

• Lastly, we observe that, starting in the state q, reading the word z will always result
in ending up in the accepting state p|w|. Therefore, the tour

(p0, p1, . . . , pi−1, q︸ ︷︷ ︸
x

, pi+1, . . . , pj−1, q︸ ︷︷ ︸
y

, pi+1, . . . , pj−1, q︸ ︷︷ ︸
y

, pj+1, . . . , p|w|︸ ︷︷ ︸
z

) ,

which corresponds to the word xyyz, and the word

(p0, p1, . . . , pi−1, q︸ ︷︷ ︸
x

, pj+1, . . . , p|w|︸ ︷︷ ︸
z

) ,

which corresponds to xz, are also contained in L. The same is true for any xy`z with
` ∈ N, which shows Property 3.

In words, the part y of the word can be “pumped” (also zero times). The idea is that a
DFA does not recall the way it took to end up in a certain state. �

Now let us give an example of how to prove the nonregularity of a given language. To
this end, consider the language

Lab = {w ∈ {a, b}∗ | w = akbk with k ∈ N} ,

which contains all words that consist of a sequence of as followed by the same number of bs,
i.e.,

Lab = {ε, ab, aabb, aaabbb, . . . } .

We now use the pumping lemma to prove that this language is not regular.

Theorem 1.21. Lab is not regular.

Proof. For a contradiction, assume that Lab were regular. Let n0 be the constant from the
pumping lemma for regular languages (i.e., Lemma 1.20). Consider the word w = an0bn0 ∈
Lab. Since |w| ≥ n0, there has to be a decomposition of w = xyz that fulfills the three
conditions stated by the lemma. First, we know that |xy| ≤ n0 due to Property 1, and
therefore y consists only of as. Thus, xy2z, which must be in Lab if Lab is regular, consists
of more than n0 as (since |y| ≥ 1 due to Property 2), followed by exactly n0 bs. However,
this word is not in Lab, which contradicts Property 3 and therefore the assumption that
Lab is regular. �

This concludes our studies of regular languages as a first approach to model easy decision
problems. In the next section, we will learn about more powerful models that accept more
general languages than DFAs.
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1.8 Historical and Bibliographical Notes
There is a rich literature on automata theory and regular languages. This chapter is based
on the two textbooks by Hopcroft et al. [11] and Hromkovič [12]. DFAs, as we defined
them here, were introduced after Turing machines in the mid-1950s [13, 20, 21]. Both NFAs
and the powerset construction (sometimes also referred to as the subset construction) were
proposed by Rabin and Scott in 1959 [25].

Regular expressions are nowadays standard tools to parse, e.g., user input; they date
back to 1956 and in particular to Kleene [16]. They are found in text editors, such as
vim, programming languages, such as perl, or text processing tools, such as grep. The
algorithm applied in the proof of Theorem 1.11 is due to Kleene’s original publication [16]
and therefore called Kleene’s algorithm. The algorithm applied in the proof of Theorem 1.10
is due to McNaughton and Yamada [19].

Many of the closure properties of regular languages we described were also already
observed by Kleene [16].

Note that the pumping lemma only states an implication. Indeed, there are nonregular
languages for which the properties of the pumping lemma hold, e.g., the language {w ∈
{a, b}∗ | |w|a 6= |w|b}. The pumping lemma, as formulated in Lemma 1.20, is actually
unnecessarily restrictive; we can reformulate it to speak about any word w ∈ Σ∗ instead of
any word w ∈ L with |w| ≥ n0, and then draw the conclusion that if w ∈ L, all pumped
versions are in L as well, and if w /∈ L, then neither are any of the pumped words [12]. The
proof uses the exact same arguments as the original one, with the additional assumption
that, if w does not end in an accepting state, then neither do any of the pumped words.
With this, we can prove the above language to be nonregular. However, even with this
generalization, the pumping lemma remains the statement of an implication, i.e., there are
nonregular languages that satisfy the properties of this generalization as well. A statement
of an equivalence is given by the Myhill-Nerode theorem, which was proven in 1958 [22].
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2 Context-Free Languages
A particular language that we proved to be nonregular is Lab, which consists of all words
akbk with k ∈ N. We have seen that the finiteness of DFAs is not sufficient to accept exactly
the words in that language. In this chapter, we will learn about a class of languages to
which also Lab belongs; these languages are called context-free languages. It is possible
to describe them with a kind of generalized ε-NFA, which we will do shortly. Before that,
however, we will learn about another method to describe context-free languages, which at
first glance does not seem to be related to any automata model.

2.1 Context-Free Grammars
A grammar is a system of rewriting rules. These rules describe how symbols can be
substituted by other symbols in a specific way. Such substitutions can be repeated until
only certain symbols remain. An example is given by the following rules.

• Initially, S is written down.

• Any S can be replaced by aSb; this can be iterated any number of times.

• Finally, any S can be deleted; a valid word does not contain S.

Now let us look at what kind of words can be generated in this way. We start by writing
down an S, which we can then replace by aSb. Since there is again an S in the word, we
again replace it by aSb, which leads to aaSbb. Finally, we delete S and obtain the word
aabb. We see that by replacing S one more time by aSb before deleting S, we get the word
aaabbb. Thinking about it, we see that these rules allow us to exactly obtain all words from
Lab. Let us formalize this concept.

Definition 2.1 (Context-Free Grammar, CFG). A CFG G is a quadruple G =
(ΣN,ΣT, S, P ), where

• ΣN is an alphabet, called the nonterminals or variables,

• ΣT is an alphabet, called the terminals,

• S ∈ ΣN is the start symbol, and

• P is the set of productions. A production p ∈ P is a pair p = (A,α) with A ∈ ΣN
and α ∈ (ΣN ∪ ΣT)∗, which, for simplicity, is usually written as

A→ α ,

and which states that the nonterminal A can be replaced by the word α. In this
context, A is called the head of p and α is the body of p.

Following Definition 2.1, we can formally define the CFG Gab for the language Lab,
which we described above, as Gab = ({S}, {a, b}, S, P ) with P = {S → aSb, S → ε}.
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The language Lang(G) of a CFG G = (ΣN,ΣT, S, P ) is the set of all terminal words
that can be derived in G. To formalize this notion, we first need to define a derivation
step, which is simply any application of a production rule. Suppose there is a production

A→ γ ∈ P with A ∈ ΣN and γ ∈ (ΣN ∪ ΣT)∗ .

Then a derivation step using this rule is written as

αAβ ⇒ αγβ with α, β ∈ (ΣN ∪ ΣT)∗ .

We can, e.g., derive the word a3b3 in Gab, starting with S, by a sequence of derivation steps
that each correspond to applying a rule from Gab, which can be formalized by

S ⇒ aSb⇒ aaSbb⇒ aaaSbbb⇒ aaabbb .

Any sequence of derivation steps that starts with S and ends with a terminal word is
called a derivation. Similar to the transition function δ of a DFA, which we extended to
δ̂, we can extend the derivation relation ⇒ to formalize any number of derivation steps
instead of a single one; this relation is denoted by ⇒* and hence α⇒* β should be read as
“β can be derived from α in some finite number (possibly zero) of derivation steps.” Since
Lang(G) contains exactly those terminal words that can be derived in G, we get

Lang(G) = {w ∈ Σ∗T | S ⇒* w} .

In the previous example, we have Lang(Gab) = Lab. As another example, consider the
language Lab,ba, which contains all words over {a, b, c} that start with ab or end with ba (see
Figure 5a). A CFG for this language is given by Gab,ba = ({S,X, Y }, {a, b, c}, S, P ) with

P = {S → abX | Y,
X → aX | bX | cX | ε,
Y → aY | bY | cY | ba} ,

where we use S → α | β as a shorthand for S → α, S → β for some α, β ∈ (ΣN ∪ ΣT)∗.
Using the above rules, indeed only words of the desired form can be generated. The start
symbol S either generates the prefix ab, which can then be extended by any arbitrary word
over {a, b, c}; or an arbitrary prefix, which can then only be extended to a word that ends
with ba.

As another example, consider simple arithmetic expressions, which are defined iteratively
as follows.

• a is an arithmetic expression (a is some terminal) and

• if x and y are arithmetic expressions, then (x+y), (x−y), x ·y, and x/y are arithmetic
expressions.

An example for an arithmetic expression is (a+ a) · (a · (a+ a · a · a) + a). A CFG for
Garith = ({S,A,B,C}, {(, ), a,+,−, ·, /}, S, Parith) contains the rules

Parith = {S → A,
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A→ (ABA) | ACA | a,
B → + | −,
C → · | /} .

Note that the nonterminals B and C could be left out by extending the rules with A as
head. Consider the arithmetic expression (a · (a − a) + a). A derivation of this word in
Garith is given by

S ⇒ A⇒ (ABA)⇒ (A+ A)⇒ (ACA + A)⇒ (A · A+ A)
⇒ (A · (ABA) + A)⇒ (A · (A− A) + A)
⇒ (a · (A− A) + A)⇒ (a · (a− A) + A)
⇒ (a · (a− a) + A)⇒ (a · (a− a) + a) ,

which is rather hard to follow. In order to visualize derivations of CFGs, we can make use
of so-called parse trees, which give an easier way to describe derivations, and which have

• the start symbol S as root,

• terminals as leaves, and

• nonterminals as inner vertices such that the application of a rule X → α1α2 . . . αk

with X ∈ ΣN and α1, α2, . . . , αk ∈ ΣN ∪ ΣT is visualized by
X

α1 α2 . . . αk

as part of the parse tree.

An example of a parse tree for the word (a · (a− a) + a) derived in the CFG Garith is
shown in Figure 11a. Observe that parse trees are not necessarily unique, i.e., a fixed word
can induce different parse trees; see, e.g., the two trees for the word a · a · a generated by
Garith shown in Figures 11b and 11c.

Similarly to the regular languages, which are characterized by the fact that there are
DFAs that accept them, we can also characterize languages which are generated by CFGs.

Definition 2.2 (Context-Free Language). A language L is called context-free if
there is a CFG G with Lang(G) = L. The class of the context-free languages is

Lcf = {L | L is context-free} .

2.2 Normalizing Context-Free Grammars
For the subsequent investigations, we need to transform given CFGs into a particular form,
i.e., we only want rules of some certain kind. Since the head of rules of CFGs is always a
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single nonterminal, this basically refers to the bodies of the rules. In order to avoid making
the following constructions unnecessarily complicated, we make the assumption that ε is
never in the language of any of the given CFGs; this implies that there is no rule S → ε.

We call a CFG normalized if its rules only have a specific form and there are no
terminals or nonterminals that are never used in any derivation; more specifically,

• there are no ε-productions, i.e., rules of the form A→ ε for any A ∈ ΣN,

• there are no unit productions, i.e., rules of the form A→ B for any A,B ∈ ΣN, and

• there are no useless symbols, i.e., nonterminals or terminals which never appear in
any derivation starting with S.

We will now describe three methods that, applied in the correct order, transform any
given CFG into an equivalent one for which these three properties hold. In what follows,
consider any CFG G = (ΣN,ΣT, S, P ) with ε /∈ Lang(G).

2.2.1 Eliminating ε-Productions

We change the rules P such that all rules A→ ε with X ∈ ΣN are removed. This is done
in two steps, which result in a new set P ′ of rules.

Step 1. Find all nullable nonterminals, i.e., variables X ∈ ΣN such that X ⇒* ε. This is
done in an iterative fashion.
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Initialize. Set Null1 = {X ∈ ΣN | X → ε}, i.e., the set of all nonterminals that
appear as head of ε-productions.

Iterate. Nulli+1 = Nulli ∪ {X ∈ ΣN | X → α and α ∈ Null∗i }, and repeat this until
Nulli+1 = Nulli, i.e., until no new nonterminals are added.

As a result, we obtain Nulli = {X ∈ ΣN | X ⇒* ε}. The idea behind this is that, in
every iteration step, we add those variables which can be replaced, in one derivation
step, by nonterminals from which we already know that they are nullable.

Step 2. We now construct the set P ′ of new rules. Consider some rule X → X1X2 . . . Xk ∈
P with k ∈ N+, and suppose that m ≤ k of the Xis are nullable. P ′ contains 2m

versions of this rule, where the nullable Xis, in all possible combinations, are present
or absent. This simulates that the absent Xis are substituted by ε.
There is an important exception, which prevents us from creating another ε-production.
If k = m (i.e., all Xis are nullable), then we do not add the rule where all Xis are
absent to the new set P ′ of rules. The head of such a production is nullable already.
This works since ε /∈ Lang(G).
As a result, P ′ does not contain any rule of the form X → ε with X ∈ ΣN.

As an example, consider the CFG G = ({S,A,B,C}, {a, b, c}, S, P ) with P = {S →
aAB, S → C,A→ aB,A→ ε, B → bA,B → ε, C → AB,C → c}. We apply the first step
in order to compute all nullable symbols. Due to the rules A → ε and B → ε, we set
Null1 = {A,B}. Now we compute Null2, i.e., we add all rules whose bodies are any word
of A and B. The only rule that only contains As or Bs in its body is C → AB, and thus
we set Null2 = Null1 ∪ {C} = {A,B,C}. After that, we compute Null3. Since there are no
rules (except those already considered) whose bodies are words consisting of A, B, and C
only, we have Null3 = Null2, and the procedure terminates.

As a second step, we consider all rules with nonterminals from Null2 as body, and
construct all rules by removing any combination of these nonterminals. With this,

S → aAB becomes S → a, S → aB, S → aA, and S → aAB,

A→ aB becomes A→ a, and A→ aB,

B → bA becomes B → b, and B → bA, and
C → AB becomes C → A,C → B, and C → AB.

Finally, the new rules are

P ′ = (P \ {A→ ε, B → ε})
∪ {S → a, S → aB, S → aA,A→ a,B → b, C → A,C → B}

= {S → aAB, S → aA, S → aB, S → aAB,

A→ a,A→ aB,B → b, B → bA,C → A,C → B,C → AB,C → c} ,

and we set G′ = (ΣN,ΣT, S, P
′) as a CFG equivalent to G.
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2.2.2 Eliminating Unit Productions

Next, we want to eliminate all unit productions, i.e., all rules of the form X → Y with
X, Y ∈ ΣN. A first idea is to expand the productions, e.g.,

A→ B,B → a, and B → b is replaced byA→ a and A→ b .

However, this leads to problems if there are cycles such as the three rules A→ B, B → C,
and C → A. If we encounter something like this, the expansion will not terminate. Instead,
we find all unit pairs (X, Y ) with X, Y ∈ ΣN such that X ⇒* Y using unit productions
only. Now, if there is a sequence of derivation steps

X ⇒ Y1 ⇒ Y2 ⇒ . . .⇒ Yn ⇒ α ,

where Yn → α is no unit production, then this can be replaced by X → α.
In order to replace unit productions systematically, there are again two steps involved.

Step 1. First, we find all unit pairs (X, Y ) of G as above.

Initialize. (X,X) is a unit pair for every X ∈ ΣN.
Iterate. If (X, Y ) is a unit pair with X, Y ∈ ΣN and there is a rule Y → Z with

Z ∈ ΣN, then (X,Z) is a unit pair. Since there is a finite number of nonterminals,
this procedure terminates in finite time. Specifically, if there is a cycle such that
X ⇒* X using unit productions, this will lead to a unit pair (X,X), which was
already considered.

Step 2. We now again construct the set P ′ of new rules. To this end, for every unit
pair (X, Y ), we add to P ′ (new) productions X → α, where Y → α is a non-unit
production in P ; this includes the case X = Y .

Afterwards, we delete all unit productions.
As an example, consider the CFG G = ({A,B,C,D}, {a, b, d, e}, A, P ) with P = {A→

aB,B → C,B → D,B → b, C → D,D → de}. Following the first step, we first compute
all unit pairs. We start with (A,A). Since there is no unit production with A as head,
this is the only unit pair with A at the first position. Next, we add (B,B). Due to the
unit productions B → C and B → D, we add the two pairs (B,C) and (B,D). After that,
(C,C) is added, and also (C,D) due to C → D. Finally, we add (D,D) as the only pair
with D at the first position.

Now we move to the second step. For every unit pair (X, Y ), we add every rule X → α
for a non-unit production Y → α. The first unit pair is (A,A) and thus gives the rule
A→ aB. Next, we add B → b due to the unit pair (B,B) and the rule B → b ∈ P . Since
there is no non-unit production with head C, the unit pair (B,C) does not lead to any rule.
Due to (B,D) and the rule D → de ∈ P , we add B → de. C is no head of any non-unit
production, and thus (C,C) does not give any new rule. The two unit pairs (C,D) and
(D,D) and the rule D → de ∈ P finally yield two new rules C → de and D → de.

We can summarize these two steps by a table as follows.

Unit pair (A,A) (B,B) (B,C) (B,D) (C,C) (C,D) (D,D)
Production A→ aB B → b B → de C → de D → de
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We note that, due to the unit pairs (X,X) for all X ∈ ΣN, all non-unit productions are
preserved; we finally get a new set

P ′ = {A→ aB,B → b, B → de, C → de,D → de}

of rules of G′, which is again equivalent to G.

2.2.3 Eliminating Useless Symbols

As already mentioned, useless symbols are nonterminals and terminals that never appear in
any derivation. There are two different kinds of useless symbols. Let X ∈ ΣN ∪ ΣT.

• X is generating if X ⇒* w for w ∈ Σ∗T; every terminal is generating since it generates
itself in zero derivation steps.

• X is reachable if there is some derivation S ⇒* αXβ with α, β ∈ (ΣN ∪ ΣT)∗.

• X is called useless if it is not reachable or not generating.

Obviously, if all useless symbols (and the corresponding rules) are removed, this does
not change the language of the CFG. We again give a method that works in two steps.

Step 1. We start by computing the generating symbols of the given CFG, i.e., we remove
the nongenerating symbols.

Initialize. Set Gen1 = {x | x ∈ ΣT}, the set of all terminals.
Iterate. Geni+1 = Geni ∪ {X ∈ ΣN | there is X → α ∈ P with α ∈ Gen∗i }, and

repeat this until Geni+1 = Geni, i.e., until no new nonterminals are added.
The new CFG is G′ = (Geni ∩ ΣN,ΣT, S, P

′) with

P ′ = {X → α ∈ P | X ∈ Geni ∩ ΣN and α ∈ Gen∗i } .

Step 2. Next, we compute the reachable symbols of a CFG G′ with a set P ′ of rules, i.e.,
we remove the nonreachable symbols.

Initialize. Set ReachN,1 = {S} and ReachT,1 = ∅.
Iterate. For every rule X → α ∈ P ′ with X ∈ ReachN,i and α ∈ (ΣN ∪ ΣT)∗,

ReachN,i+1 = ReachN,i∪{Y ∈ ΣN | Y appears in α} and ReachT,i+1 = ReachT,i∪
{a ∈ ΣT | a appears in α}, and repeat this until ReachN,i+1 = ReachN,i and
ReachT,i+1 = ReachT,i.
The new CFG is G′′ = (ReachN,i,ReachT,i, S, P

′′) with

P ′′ = {X → α ∈ P ′ | X ∈ ReachN,i} .
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Again, let us consolidate our intuition by an example. To this end, consider the CFG
G = ({S,A,B,C}, {a, b, c}, S, P ) with P = {S → A, S → AB,A → Aa,A → a,B →
bB,B → Bb,C → c}. First, we compute the generating symbols following the first step,
and set Gen1 = {a, b, c}. Due to A→ a and C → c, we obtain Gen2 = {a, b, c, A, C}, and
then, due to S → A, we obtain Gen3 = {a, b, c, A, C, S}; then the procedure terminates.
The new CFG is G′ = ({S,A,C}, {a, b, c}, S, P ′) with

P ′ = {S → A,A→ Aa,A→ a, C → c} .

Next, we compute the reachable symbols of G′. Let ReachN,1 = {S} and ReachT,1 = ∅.
Due to S → A, we have ReachN,2 = {S,A}, but still ReachT,2 = ∅, and due to A→ a, we
have ReachT,3 = {a} while ReachN,3 = ReachN,2; then the procedure terminates. The final
CFG is G′′ = ({S,A}, {a}, S, P ′′) with

P ′′ = {S → A,A→ Aa,A→ a} .

The two steps must be applied in the given order, i.e., removing nonreachable symbols
first and then nongenerating ones might lead to a CFG that still contains useless symbols.
Consider the CFG G = ({S,A,B}, {a}, S, P ) with P = {S → AB, S → a,A→ a}. Since
all symbols are reachable, removing nonreachable symbols does not change the CFG, and
hence we get G′ = G. Removing the nongenerating symbols means to remove B and the
rule S → AB, which gives the CFG G′′ = ({S,A}, {a}, S, P ′′) with P ′′ = {S → a,A→ a},
which contains a nonreachable symbol A.

2.2.4 The Correct Order of Applying the Transformations

It is crucial to apply the transformations in the given order given above, i.e., first remove
the ε-productions, then remove unit productions, and finally remove any useless symbols.
Diverging from this order may result in a CFG that is not normalized. This can, e.g.,
happen if unit productions are removed before ε-productions. Let us revisit the example
above where we removed ε-productions. During this procedure, we added the rule C → A
due to the original rule C → AA and the fact that A is nullable; we observe that the new
CFG contains a new unit production.

2.2.5 The Chomsky Normal Form

The final modification we apply to a given CFG G restricts it to rules of a certain form,
which makes sure that within a single derivation step a nonterminal is replaced by either
two nonterminals or a single terminal.

Definition 2.3 (Chomsky Normal Form). Let G be a CFG with ε /∈ Lang(G). G
is in Chomsky normal form, ChNF for short, if all rules are either of the form

• X → Y Z, for X, Y, Z ∈ ΣN, or

• X → l, for X ∈ ΣN and l ∈ ΣT.
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Suppose G is normalized according to Sections 2.2.1 to 2.2.4. Consider any rule p from
G. Either p has the form X → l for X ∈ ΣN and l ∈ ΣT, which is already fine, or X → α
with |α| ≥ 2 (since there are no unit productions, α cannot be a single nonterminal).

What remains to be done is

• arrange that bodies of length 2 or more consist of nonterminals only and

• break bodies of length 3 or more into a set of rules each of which has a body of exactly
2 nonterminals.

We again proceed in two steps.

Step 1. For every l ∈ ΣT that appears in a body of length 2 or more, create a new Xl ∈ ΣN
and add the rule Xl → l.
In each of the bodies of length 2 or more, replace l by Xl.

Step 2. Due to the first step, every rule of length 2 or more now consists of nonterminals
only. All rules with a body of length 2 are again already fine.
So consider any rule X → Y1Y2 . . . Yk with k ≥ 3, where X, Y1, Y2, . . . , Yk ∈ ΣN. We
now introduce new nonterminals Z1, Z2, . . . , Zk−2 and replace the above rule by

X → Y1Z1, Z1 → Y2Z2, Z2 → Y3Z3, . . . , Zk−3 → Yk−2Zk−2, Zk−2 → Yk−1Yk .

As an example, consider the CFG G = ({S,A,B,C,D}, {a, b, c, d}, S, P ) with P =
{S → Aa,A→ BCD, B → cd, C → bc,D → d}. We transform G by applying the first step,
leading to a new CFG G′ = ({S,A,B,C,D,Xa, Xb, Xc, Xd}, {a, b, c, d}, S, P ′) with

P ′ = {S → AXa, Xa → a,

A→ BCD,
B → XcXd, Xc → c,Xd → d,

C → XbXc, Xb → b,

D → d} .

Applying the second step, we obtain a CFG G′′ that is equal to G′ except that it contains
an additional nonterminal Z and that the two rules A → BZ and Z → CD replace the
rule A→ BCD.

2.3 The CYK Algorithm
Suppose we want to figure out whether a word w is in a given regular language L. In other
words, we would like to solve the instance w of the decision problem L. In the previous
chapter, we have seen a number of ways to achieve this; one possibility is to design a DFA A
for L and then check whether A accepts w, i.e., whether w ∈ Lang(A). So far so good, but
what happens if we consider context-free languages? We already know that such a language
L is uniquely described by a given CFG G with Lang(G) = L. But how to determine
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whether w ∈ Lang(G)? Indeed, for us it seems to be a lot harder to grasp what a CFG “is
doing” than what a DFA “is doing.” In order to determine whether w ∈ Lang(G) or not,
we will use the CYK algorithm, which again uses a dynamic programming approach.

Without loss of generality, let G be a CFG in ChNF with ε /∈ Lang(G), and let
w = a1a2 . . . an be a word for which we want to determine whether w ∈ Lang(G) or not.
The idea of the CYK algorithm is to compute, for every subword aiai+1 . . . aj, the set Ni,j

of all nonterminals X ∈ ΣN with

X ⇒* aiai+1 . . . aj .

As a consequence, w ∈ Lang(G) if and only if S ∈ N1,n. We start with shortest subwords (i.e.,
single letters), and consider larger and larger subwords, such that we can use intermediate
solutions for smaller subwords to compute solutions for larger ones.

Consider a word of length 5, say w = a1a2a3a4a5 ∈ Lang(G). Since G is in ChNF, a
valid derivation of w has a form like

S ⇒ X1X2 ⇒ X11X12X2 ⇒ X111X112X12X2 ⇒ X111X112X12X21X22

⇒* a1a2a3a4a5 .

On a high level, the idea of the CYK algorithm is to do this backwards. We take the
word a1a2a3a4a5 and, as a first step, try all possibilities of the last couple of derivations that
replaced single nonterminals by terminals. One of the possibilities is the nonterminal string
X111X112X12X21X22 right before the terminating rules X111 → a1, X112 → a2, X12 → a3,
X21 → a4, and X22 → a5 are applied to derive the word w. Then, we consider all possibilities
how this string X111X112X12X21X22 may have been derived; one such possibility is that
X111X112X12X2 was changed to the former string by applying the rule X2 → X21X22 to
the last nonterminal, which is what actually happened in our sample derivation. We then
continue in this fashion until a single nonterminal is left. If this is start terminal S, we know
that a1a2a3a4a5 can be derived in G. However, it is crucial that we consider all possibilities.

As a more concrete example, consider the CFG in ChNF G = ({S,A,B,C}, {a, b}, S, P )
with

P = {S → AB | BC,
A→ BA | a,
B → CC | b,
C → AB | a} ,

and suppose we want to decide whether baaba ∈ Lang(G). As described above, we first
consider all nonterminals from which the single letters of this word can be derived; e.g.,
both A and C can be replaced by the letter a, while b can only be derived from B; thus
N1,1 = N4,4 = {B} and N2,2 = N3,3 = N5,5 = {A,C}. We arrange the possibilities in a
table as follows.

1 {B} {A,C} {A,C} {B} {A,C}
b a a b a
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One of the possibilities is that baaba was derived from BAABC . If this were the case,
the derivation step before that may have been BACC , and the rule C → AB was applied
to the first C. Another possibility is that the rule A→ BA was applied to the first A of
the nonterminal word AABC . We take all possibilities into account by extending the table
as follows.

2 {S,A} {B} {S,C} {S,A}
1 {B} {A,C} {A,C} {B} {A,C}

b a a b a

The row marked 2 contains all nonterminals that derive all subwords of length two that
are composed of nonterminals in the row marked 1 in the same column and the column to
the right in the given order. Consider, e.g., the first two columns in row 1. The sets are
{B} and {A,C}; this means that the prefix ba of the word was derived from either BA or
BC. In the first column of row 2, we put the set with all nonterminals X that are head of
a rule X → BA or X → BC. Thus, due to S → BC and A→ BA, we add S and A. The
second and third column of row 1 give the pairs AA, AC, CA, CC, and hence we add B
due to the rule B → CC. We continue in this fashion until row 2 is completed; note that it
contains one column fewer than row 1. We see that row 2 contains nonterminals that allow
the derivation of all subwords of length 2 of baaba. For instance, in the first column, the
two nonterminals S and A both derive the prefix ba (i.e., the subword of length 2 starting
at the first column) via S ⇒ BC ⇒* ba or A⇒ BA⇒* ba; likewise, the two nonterminals
S and C in the third column derive the subword ab of length 2 starting at the third column
via S ⇒ AB ⇒* ab or C ⇒ AB ⇒* ab.

Next, we fill row 3 with all nonterminals that derive subwords of baaba of length 3. Here,
we have to be more careful than for subwords of length 2. Consider the first column of row
3. Thus, we look at the following positions

3 ×

2
1

b a a b a

and combine each letter represented by the two or by the two . In our example, the
are both {B}; thus we search for all rules with body BB and find none. Next, we

consider the ; the first one (in the first column) is {S,A} and the second one (the third
column) is {A,C}, which gives four bodies SA, SC, AA, and AC. Also here, we do not
find any corresponding rules. Therefore, we write the empty set in the first column of row
3. Continuing in this fashion, we extend the table to

3 ∅ {B} {B}
2 {S,A} {B} {S,C} {S,A}
1 {B} {A,C} {A,C} {B} {A,C}

b a a b a

and now need to continue with row 4, i.e., searching for all nonterminals that allow to
derive subwords of length 4. Since the complete word has length 5, there are two of those
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words, namely the prefix baab and the suffix aaba. Let us consider the first column that
represents the subword baab. From any such nonterminal, the next derivation step leads to
two nonterminals X1X2 such that

• X1 yields the word b of length 1 and X2 yields the word aab of length 3, or

• X1 yields the word ba of length 2 and X2 yields the word ab of length 2, or

• X1 yields the word baa of length 3 and X2 yields the word b of length 1.

All those nonterminals have already been computed in the previous steps, and thus we fill
out this cell by considering the cells

4 ×

3
2
1

b a a b a

of the table. Applying the same scheme to the second column of row 4 leads to

4 ∅ {S,A,C}
3 ∅ {B} {B}
2 {S,A} {B} {S,C} {S,A}
1 {B} {A,C} {A,C} {B} {A,C}

b a a b a

as intermediate table. Finally, we fill out row 5 with those nonterminals that derive the only
subword of length 5, i.e., the word itself. To this end, we again have to take into account
all possible subwords that can be derived from the nonterminals X1X2 as above. Thus we
consider the cells

5 ×

4
3
2
1

b a a b a

and obtain

5 {S ,A,C}
4 ∅ {S,A,C}
3 ∅ {B} {B }
2 {S, A } {B} {S, C } {S,A}
1 {B } {A ,C} {A ,C} {B } {A, C }

b a a b a
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as the complete table. Since the starting symbol S appears in row 5, we know that there is
a derivation of baaba in G. In the last table, we marked such a derivation

S ⇒ AB ⇒ BAB ⇒ BACC ⇒ BAABC ⇒* baaba .

Note that the gray boxes and connections between them correspond to the parse tree
induced by this derivation.

The above illustration can be easily generalized to find out whether an arbitrary word
w is in the language of a given CFG in ChNF as follows.

• Start with finding all nonterminals that derive all subwords of length 1 (i.e., the
letters) of w.

• Find all nonterminals Y that derive all subwords of length ` by considering all possible
derivation steps Y → X1X2, i.e., all possible combinations of deriving subwords w1
and w2 from X1 and X2; these are all subwords such that w1w2 is the considered
subword of length `. Since 1 ≤ |w1|, |w2| ≤ ` − 1, all nonterminals of interest have
already been computed in previous steps.

• Repeat this until all nonterminals are computed that derive the single subword of
length |w|, i.e., w itself. If S is among those nonterminals, w is in the language of the
CFG; otherwise, it is not.

With the CYK algorithm, we now finally have a means to solve decision problems that
are given by context-free languages.

2.4 The Pumping Lemma for Context-Free Languages
While the class of context-free languages is larger than that of regular languages, they
still have significant limitations, i.e., we can define rather simple languages that are not
generated by any CFG. In order to prove that, for a given language L, there is no CFG
G with Lang(G) = L, we proceed similar to proving that a language is not regular. In
other words, we deduce a property that is true for all context-free languages similar to the
pumping lemma for regular languages. In fact, we will also perform a sort of pumping.
However, the ability to pump up words from the given language will now not be the
consequence of the existence of a DFA, but of a CFG.

Let us start with an example. Consider the CFG G = ({S,A,B,C}, {a, b, c}, S, P ) in
ChNF with P = {S → AB,B → CC,C → BA,A→ a,B → b, C → c} together with the
derivation

S ⇒ AB⇒ ACC⇒ ABAC⇒ aBAC⇒ abAC⇒ abaC⇒ abac

of the four-letter word abac ∈ Lang(G). The last four steps generate the terminal symbols,
while the first three steps increase the sequence of nonterminals; the corresponding parse
tree Tabac is shown in Figure 12a. There is a path (S,B,C,B, b) in Tabac of length 4 from
the root S to the leaf b. On this path, the nonterminal B appears twice; the first time, it is
the root of the subtree Tbac which derives the subword bac, and the second time it is the
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root of Tb which derives the single letter b. Since both these trees have the same root, we
can simply exchange the subtree Tb by the subtree Tbac, which leads to a new parse tree
Tabacac, which is shown in Figure 12b. In doing this, we have shown that the corresponding
word abacac is also in the language of G.

Basically, we again applied a kind of “pumping” in order to derive another word in the
language. It is therefore not surprising that generalizing this idea allows us to prove the
following lemma. Here, we pick a word from the given language that ensures that there is
a repetition of a nonterminal in the corresponding parse tree on a path from the root to
some leaf.

Lemma 2.4 (Pumping Lemma for Context-Free Languages). Let L be a context-
free language. Then there is a constant n0 such that, for every word w ∈ L with |w| ≥ n0,
there is a decomposition w = uvxyz such that

1. |vxy| ≤ n0,

2. |vy| ≥ 1, and

3. uv`xy`z ∈ L for every ` ∈ N.
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Proof. Let G = (ΣN,ΣT, S, P ) be a CFG in ChNF with |ΣN| = m; let n0 = 2m. Let w ∈ L
have at least n0 letters and consider a derivation of w in G together with the resulting
parse tree T . Obviously, T has at least n0 leaves, each one labeled with a single terminal.
Every leaf has one parent, while every inner vertex has two children, except those that are
parents of leaves.

For a contradiction, assume that T has height less than m+ 1, i.e., there is no path of
length m+ 1 from the root to any leaf. This means that T has less than 2m leaves (since T
is binary except for the parents of leaves). This immediately contradicts |w| ≥ 2m, because
the leaves of T correspond to letters of w. Therefore, there is at least one path

p = (X1, X2, . . . , Xk, l)

of length k ≥ m + 1 (i.e., with at least k + 1 ≥ m + 2 vertices) from the root X1 = S
to some leaf l with Xi ∈ ΣN and l ∈ ΣT. Since there are only m nonterminals in ΣN in
total, at least one nonterminal has to repeat at least once during p. Let X be one such
nonterminal and let i and j with 1 ≤ i, j ≤ k and i < j be such that X = Xi = Xj ; without
loss of generality, let i and j be the largest integers with the property, i.e., Xi and Xj are
the last two occurrences of X in p if there is more than one repetition.

An example of such a parse tree is shown in Figure 12c; Figure 12d gives a more
high-level picture. Now we can decompose w according to this tree. Let x denote that
part of w that is generated from Xj, i.e., which corresponds to the subtree of T rooted at
the second appearance of X. Let v and y be the two substrings left and right of x that
correspond to the subtree rooted at the first appearance Xi of X. Furthermore, let u be
the maximum-length substring left of v, and let z be the maximum-length substring right
of y. Now let us consider the three properties stated by the lemma.

• We note that vxy corresponds to the part of T in which X is repeated at least once;
the root of this subtree is Xi and there is an inner vertex Xj. For some X, such a
subtree has to exist, and we know from the reasoning above that this subtree has a
height of at most m+ 1; thus, Property 1 follows.

• Since G is in ChNF (in particular, there is no unit production X → X), it cannot be
the case that both v and y are empty, which is stated by Property 2.

• Property 3 states that v and y can be “pumped” simultaneously for any number of
times, which leads to words that are also contained in L. In particular, a parse tree for
uv`xy`z is obtained by ` times iteratively replacing the subtree rooted at Xj by the
subtree rooted at Xi; this is possible since Xi and Xj are the same nonterminal and
thus all corresponding rules can be used. A example for ` = 2 is shown in Figure 12e.
The case ` = 0 then means that the subtree rooted at Xi is replaced by the subtree
rooted at Xj.

The claim of the lemma follows. �

Now let us apply this new tool in order to prove that a given language is not context-free,
i.e., is not generated by a CFG. To this end, consider

Labc = {akbkck | k ∈ N+} .
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Theorem 2.5. Labc is not context-free.

Proof. For a contradiction, assume that Labc were context-free. Let n0 be the constant
from the pumping lemma for context-free languages (i.e., Lemma 2.4). Consider the word
w = an0bn0cn0 ∈ Labc. Since |w| ≥ n0, there has to be a decomposition of w = uvxyz that
fulfills the three conditions stated by the lemma. First, we know that |vxy| ≤ n0. Now we
make a case distinction according to the concrete decomposition.

1. Suppose vxy only contains as. Due to Property 2, vy contains at least one a.
Consequently, the word uv2xy2z cannot be in Labc since it contains more as than both
bs and cs. We can argue in an analogous way if vxy consists of bs only or of cs only.

2. Suppose vxy contains both as and bs. Then, again due to Property 2, uv2xy2z contains
more as or more bs (or both) than cs. A similar argument can be applied in the case
that vxy consists of bs and cs only.

3. Note that the case that vxy contains as, bs, and cs cannot occur due to Property 1
and |w| = an0bn0cn0 .

It follows that uv2xy2z is not in Labc, which contradicts Property 3 and thus the
assumption that Labc is context-free. �

We note that applying the pumping lemma for context-free languages is more complicated
than applying the lemma for regular languages. This is due to the fact that a more involved
case distinction has to be made as there are more ways as to what the decomposition
actually looks like.

2.5 The Chomsky Hierarchy
We have introduced the concept of grammars in a way that restricts the set of allowed rules.
More specifically, so far we have only spoken about CFGs, which have the property that the
head of every rule consists of a single nonterminal. In this section, we want to have a quick
look at what happens when we relax this property or, conversely, make it even stricter.

Let us start with the latter, and suppose we only allow rules that contain a single
nonterminal as head. Moreover, for the body of any rule, we now demand that it is either
of the form wX or w with X ∈ ΣN and w ∈ Σ∗T; we also allow the rule X → ε. Now we
claim that such grammars can mimic the work of DFAs. The idea behind this is that every
derivation in such a grammar always has the form vX or v with X ∈ ΣN and v ∈ Σ∗T. As
an example, recall that DFAs can count modulo some number. Consider the language

L3m4 = {w ∈ {0, 1, 2}∗ | (|w|0 + 2|w|1) mod 4 = 3}

and let us design a grammar G3m4 for this language while obeying the above restrictions on
the rules. To this end, we use four nonterminals Q1, Q2, Q3, and Q4. As explained above,
every derivation in G3m4 contains at most one nonterminal, and this nonterminal is always
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at the end of the intermediate word (i.e., the word “derived” so far), preceded by a word
x ∈ {0, 1, 2}∗. The rules of our grammar are designed such that the invariant

if Qi is the only nonterminal in the intermediate word, then (|x|0 + 2|x|1) mod 4 = i

is always true. It follows that Q0 is the start symbol, since the initial derivation Q0 is
preceded by the empty word, and clearly (|ε|0 + 2|ε|1) mod 4 = 0. How do the productions
with Q0 as head look like? We add three of them, one for every terminal, such that the
above invariant holds. This means that, if a 0 is generated, the number (|x|0 + 2|x|1) mod 4
increases by 1 and so does the index i of the nonterminal at the end of the intermediate
word; if a 1 is generated, i has to increase by 2 (since 1s count double); and if a 2 is
generated, i does not change at all. This yields the three rules

Q0 → 0Q1, Q0 → 1Q2, and Q0 → 2Q0 .

We continue in this fashion with all remaining states; e.g., we set

Q3 → 0Q0, Q3 → 1Q1, and Q3 → 2Q3

as the rules with Q3 as head. So far, so good, but it remains to add a terminating rule, i.e.,
the possibility to get rid of the nonterminal at the end if x ∈ L3m4. We observe that this is
exactly the case if, following the invariant, this nonterminal is Q3. Hence we add the rule
Q3 → ε, and with this obtain the grammar G3m4 = ({Q0, Q1, Q2, Q3}, {0, 1, 2}, Q0, P ) with

P = {Q0 → 0Q1 | 1Q2 | 2Q0,

Q1 → 0Q2 | 1Q3 | 2Q1,

Q2 → 0Q3 | 1Q0 | 2Q2,

Q3 → 0Q0 | 1Q1 | 2Q3 | ε} .

We observe that every word over {0, 1, 2} has a unique derivation in this grammar.
Consider, e.g., 010021 ∈ L3m4 with the derivation

Q0 ⇒ 0Q1 ⇒ 01Q3 ⇒ 010Q0 ⇒ 0100Q1 ⇒ 01002Q1 ⇒ 010021Q3 ⇒ 010021 ,

while there is no terminating derivation for the word 01012 /∈ L3m4 since

Q0 ⇒ 0Q1 ⇒ 01Q3 ⇒ 010Q0 ⇒ 0101Q2 ⇒ 01012Q2

still contains the nonterminal Q2, which cannot be removed.
Now consider the DFA A3m4 for L3m4 as shown in Figure 13a. Every state qi of A3m4

corresponds to the nonterminal Qi of G3m4. In particular, for every rule Qi → aQj in
P , there is a transition δ(qi, a) = qj in A3m4. Furthermore, q0 is the start state and q3 is
the single accepting state. As a consequence, for any derivation Q0 ⇒* xQi in G3m4, A3m4
ends in state qi when reading x. With this, it is probably not very surprising that we call
grammars as such above regular grammars since they are indeed equivalent to DFAs. To
prove this, the above construction can be generalized to prove the following theorem.
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Figure 13.

Theorem 2.6. Every DFA can be converted into an equivalent regular grammar.

Proof. Let A = (Q,Σ, δ, q0, F ) be a DFA with Lang(A) = L; without loss of generality,
assume that Q = {q0, q1, . . . , qm−1}. We design a regular grammar G = (ΣN,ΣT, Q0, P )
with ΣT = Σ as follows. For every state qi ∈ Q, we add a nonterminal Qi, and for every
transition δ(qi, a) = qj with a ∈ Σ, we add a rule Qi → aQj . Finally, we add a rule Qi → ε
for every qi ∈ F . Consider any word w ∈ Lang(A) with |w| = n. Then w induces a run

(p0, p1, . . . , pn)

through A with p0 = q0 and pn ∈ F . For every two consecutive states pi and pi+1 with
0 ≤ i ≤ n − 1 of this run, A follows a transition δ(pi, a) = pi+1, where a is the (i + 1)th
letter of w. Now let j and j′ be such that qj = pi and qj′ = pi+1. Then the rule Qj → aQj′

is by definition contained in P , and since A is a DFA (which implies that there is exactly
one transition for every state and letter), this is the only such rule. It follows that there
is one unique way to generate the word wQj′′ in G; since qj′′ = pn ∈ F is accepting, the
rule Qj′′ → ε is also contained in P , which gives that w is generated by G. Conversely, if
w /∈ Lang(A), then there is a unique derivation wQj′′′ in G, where the nonterminal at the
end cannot be removed; thus G does not generate w. �

In order to show that regular grammars cannot generate more words than DFAs, we
prove the following theorem. To this end, we first have to normalize the given regular
grammar G as described in Section 2.2. As before, suppose that ε /∈ Lang(G). Let us
quickly discuss why the normalizing process yields a grammar that is also regular.

• Removing ε-productions as in Section 2.2.1 from a regular grammar leads to adding
rules of the form X → w with X ∈ ΣN and w ∈ Σ∗T; thus, the resulting grammar is
still regular.

• Removing unit productions as in Section 2.2.2 only adds rules with bodies that are
regular due to G being regular.
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• Removing unnecessary symbols from G as in Section 2.2.3 only removes rules and
therefore also ensures that the resulting grammar is regular.

As a result, we get a regular grammar that has rules of the form X → w and X → wY
with X, Y ∈ ΣN and w ∈ Σ+

T . Following an approach similar to the one used in Section 2.2.5,
we take one final normalization step. To this end, consider any rule as above with w =
w1w2 . . . wk with wi ∈ ΣT for some k ≥ 2. We introduce new nonterminals Z1, Z2, . . . , Zk−2
and replace the rule above by

X → w1Z1, Z1 → w2Z2, Z2 → w3Z3, . . . , Zk−1 → wk (Zk−1 → wkY, respectively) ;

e.g., a rule A→ aabaB is transformed into a sequence

A→ aZ1, Z1 → aZ2, Z2 → bZ3, and Z3 → aB .

With a regular grammar normalized in this way, we can easily follow the steps taken in
the proof of Theorem 2.6 backwards.

Theorem 2.7. Every regular grammar can be converted into an equivalent DFA.

Proof. Without loss of generality, let G = (ΣN,ΣT, S, P ) be a normalized regular grammar
with Lang(G) = L. All rules are of the form X → aY or X → a with X, Y ∈ ΣN and
a ∈ ΣT. From this, we design a DFA with the same language by essentially following the
approach from the proof of Theorem 2.6 backwards. We have to be a little more careful
though since the rules of G may in fact be ambiguous. Thus, we design an NFA N with
Lang(N) = L, which can then be converted to an equivalent DFA by Theorem 1.6.

Without loss of generality, let ΣN = {Q0, Q1, . . . , Qm−1} with S = Q0 being the start
symbol. We define N to have m+ 1 states q0, q1, . . . , qm with q0 being the start state, and
qm being the single accepting state.

• For every rule Qi → aQj with 0 ≤ i, j ≤ m− 1, we add the state qj to the set δ(qi, a);
i.e., qj ∈ δ(qi, a).

• For every rule Qi → a, we add qm to δ(qi, a).

Let w ∈ Lang(G) and let w = w1w2 . . . wk. Hence, there is a derivation in G of the form

P1 ⇒ w1P2 ⇒ w1w2P3 ⇒ w1w2 . . . wk−1Pk ⇒ w1w2 . . . wk

with Pi ∈ ΣN and P1 = Q0 = S. By construction, there is thus a run (p1, p2, . . . , pk) with
p1 = q0 (and pi = qj if and only if Pi = Qj with 1 ≤ i ≤ k and 1 ≤ j ≤ m − 1) through
N reading the word w1w2 . . . wk−1. Since Pk can be replaced by the terminal wk, there is
a transition labeled wk from pk to the accepting state qm. Thus, w is accepted by N . It
is easy to see that, if there is no derivation of w in G, i.e., w /∈ Lang(G), there is also no
accepting computation for N on w. It follows that Lang(N) = L. �
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The DFA resulting from an application of the construction for the regular grammar
G = ({Q0, Q1, Q2, Q3}, {a, b}, Q0, P ) with

P = {Q0 → aQ1 | bQ3 | bQ4,

Q1 → aQ1 | bQ2,

Q2 → a | b,
Q3 → a,

Q4 → bQ4 | b}

is shown in Figure 13b.
Since there is a regular grammar for any DFA and vice versa, we can add the point

6. There is a regular grammar G with Lang(G) = L.

to the five equivalent points of Theorem 1.12.
After having investigated what happens if we restrict CFGs, let us now do the opposite

and allow more general rules instead of restricting them further. Once again, the heads
of all rules of a CFG are single nonterminals. In a way, this means that the rules are
independent of the context of the given nonterminal X. If there is a rule X → α, this
rule can be applied whenever we find X in any intermediate derivation, independent of its
“context,” i.e., where X is located. For a context-sensitive grammar, CSG for short,
this changes. Here, we allow rules of the form α → β with α, β ∈ (ΣN ∪ ΣT)∗; the only
restriction is that |α| ≤ |β|. In this case, how a nonterminal X can be replaced depends
on the surrounding nonterminals and terminals (there may be productions of the sort
aX → ab and cX → cd with a, b, c, d ∈ ΣT, etc.). This adds quite some (substantial)
power to grammars. In the preceding section (more specifically, Theorem 2.5), we have
learned that there is no CFG generating Labc = {akbkck | k ∈ N+}. Now consider the CSG
Gabc = ({S,A,B,C}, {a, b, c}, S, P ) with

P = {S → aBSc | aBc,
Ba → aB,

Bc → bc,
Bb→ bb} .

The idea of Gabc is to first use the rules of the first line to generate any (nonempty)
word of the form (aB)kck, for some k ∈ N+; then, the rules of the second line can be used
to reorder the symbols to akBkck; last, the rules of the fourth line can be used to replace
the nonterminals B by terminals b, but only if they are at the correct position. For the
word a3b3c3 ∈ Labc, we get the derivation

S ⇒ aBSc ⇒ aBaBScc ⇒ aBaBaBccc
⇒ aBaaBBccc ⇒ aaBaBBccc ⇒ aaaBBBccc
⇒ aaaBBbccc ⇒ aaaBbbccc ⇒ aaabbbccc .

In order to see that Gabc indeed generates Labc, we note that all words from this language
can be generated in the above way. Now we argue that every word with a derivation in
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Gabc has the above form. In particular, every word over ΣT with a derivation in Gabc has
the same number of as, bs, and cs, because as, Bs, and cs can only be generated together.
Moreover, bs can only be generated when neighboring the leftmost c or another b, and there
cannot be any a to the right of a b.

We have now seen three different types of grammars; regular grammars, which can be
extended to context-free grammars, and the yet more general context-sensitive grammars.
Grammars can be arranged systematically as follows.

Definition 2.8 (Chomsky Hierarchy). Let G = (ΣN,ΣT, S, P ) be a grammar. Then
G is called a

• type-0 grammar;

• type-1 grammar or context-sensitive grammar if P only contains rules of the
form

α→ β with α, β ∈ (ΣN ∪ ΣT)∗ and |α| ≤ |β|;

• type-2 grammar or context-free grammar if P only contains rules of the form

X → α with X ∈ ΣN, α ∈ (ΣN ∪ ΣT)∗; and

• type-3 grammar or regular grammar if P only contains rules of the form

X → wY, X → w, and X → ε with X, Y ∈ ΣN and w ∈ Σ∗T.

We already know that Lab is generated by no type-3 grammar, but by a type-2 grammar,
while Labc is generated by no type-2 grammar, but by a type-1 grammar. In general, type-i
grammars are more powerful than type-(i + 1) grammars in the sense that the former
generate more languages than the latter; the only exception is that the empty word is never
generated by CSGs, but by some CFGs (although we excluded this case).

2.6 Nondeterministic Pushdown Automata
In this section, we equip ε-NFAs with a particular kind of additional memory, namely a
last-in, first-out memory, i.e., a stack. With every letter read from the input word, such a
nondeterministic stack automaton or nondeterministic pushdown automaton (NPdA
for short) makes its decisions depending on the state it is currently in, the letter it currently
reads, and the top symbol of the stack. Let us continue with a formal definition.

Definition 2.9 (Nondeterministic Pushdown Automaton, NPdA). An NPdA
P is a septuple P = (Q,Σ,Γ, δ, q0, Z0, F ), where

• Q is a finite set of states,
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• Σ is the input alphabet,

• Γ is the stack alphabet,

• δ : Q× (Σ ∪ {ε})× Γ→ Pow(Q× Γ∗) is the transition function,

• q0 ∈ Q is the start state,

• Z0 is the start symbol, and

• F is the set of accepting states.

The language Lang(P ) of an NPdA P is defined in the obvious way. More specifically,
as for NFAs, NPdAs accept a word if there exists a computation on this word that ends in
an accepting state. To understand how this works in detail, let us have a closer look at the
transitions of NPdAs.

• The transition function δ takes a triple (q, a,X) where q ∈ Q, a ∈ Σ or a = ε, and X
is a stack symbol;

• δ returns a finite set (since NPdAs are nondeterministic) of pairs (p, γ) where p ∈ Q
is the new state and γ is the string of stack symbols that replaces X at the top of the
stack. We distinguish the following cases depending on how γ looks like.

– If γ = ε, then the stack is popped, i.e., X is deleted;
– if γ = X, then the stack is unchanged; and
– if γ = YZ , then X is replaced by Z and Y is pushed onto the stack.

As an example,

q p

a

X . . . YX . . .

visualizes a transition δ(q, a,X) = {(p,YX)} where the top symbol X is replaced by YX ,
which basically means that Y is pushed onto the stack. For the graphical representation
of an NPdA, we use a different approach to indicate the change of the stack content; by
labeling a transition by a,X/α, we mean that the letter a is read from the input word, and
X is the top symbol, which is replaced by α if the transition is followed. Thus, if there is a
transition (p, α) ∈ δ(q, a,X), we have

q p

a,X /α
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Figure 14.

as a part of the corresponding diagram. All other conventions are similar to those of NFAs,
e.g., the start state is indicated by an incoming arrow, etc.

NPdAs are more powerful than DFAs, which we demonstrate by designing an NPdA
Pab for the nonregular language Lab = {akbk | k ∈ N}. The idea of the construction is as
follows.

• While reading as, Pab stays in the start state and pushes as onto its stack.

• While reading bs, as are popped from the stack for every symbol read; on the first b
encountered, the state is changed.

• If the stack is empty, an accepting state is entered. This state does not have any
outgoing transitions; hence, the word is not accepted in this computation if any
further letter has to be read.

Pab is shown in Figure 14a. Now let us investigate how Pab works on the word a3b3. At
the beginning, Pab finds its stack initialized as Z0 and reads the first letter a. Therefore,
the transition a, Z0/aZ0 is followed, which leads to a stack content aZ0 while Pab stays
in q0. Then the second and third a are read and the transition a, a/aa is followed both
times, yielding a stack content aaaZ0 . If the first b is read, the transition b, a/ε leads to

aaZ0 and the new state q1. The second and third b result in popping the two as and the
stack content becomes Z0 . Finally, since there is no more letter to be read and Z0 is
the top symbol on the stack, Pab enters the accepting state q2. Note that Pab also accepts
the empty word.

Conversely, consider any word w not in Lab. If w starts with b, Pab is stuck since there
is no transition for the case that b is read and Z0 is the top symbol of the stack. Thus,
suppose w has a nonempty prefix ak with k ∈ N+. If this is followed by fewer than k bs, w
is not accepted, because there is no transition from q1 for the case that no more letter is
read and a is the top symbol of the stack. If more than k bs follow the k as, Pab is again
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stuck since there is no transition for the case that Z0 is the top symbol and a b is read.
Finally, after the first b is read, reading another a also results in Pab getting stuck as there
is no transition from q1 or q2 that can be followed.

We note that Pab is even deterministic; hence, we simply call Pab a DPdA. For the
language

Lpal = {wwR | w ∈ {a, b}∗}

of palindromes over {a, b} of even length, we need the nondeterminism. Here, an NPdA Ppal
reads the input word and pushes all letters onto the stack. When Ppal reaches the middle of
the word, it makes a nondeterministic guess, and starts popping all symbols from the stack
while reading the rest of the word; this is shown in Figure 14b. If the word 01100110 ∈ Lpal
is read, this leads to a stack content 0110Z0 after reading the first four letters. Then Ppal
makes a nondeterministic guess that half the word is read and changes to q1 with neither
reading a letter nor modifying the stack. After that, it loops in q1 and pops a letter from
the stack if and only if the same letter is read. If and only if this is successful, i.e., if the
complete word is read this way and the stack is emptied at the same time, then a transition
to the accepting state q3 is made.

NPdAs accept exactly the context-free languages, and are thus equivalent to CFGs. One
way to prove this formally requires to modify NPdAs in a particular way, which we will
omit in this introduction. We thus state the following two theorems without proof.

Theorem 2.10. Every NPdA can be converted into an equivalent CFG. �

Theorem 2.11. Every CFG can be converted into an equivalent NPdA. �

As a consequence, we obtain the following theorem, which characterizes context-free
languages.

Theorem 2.12. The following statements are equivalent.

1. L is a context-free language.

2. There is an NPdA P with Lang(P ) = L.

3. There is a CFG G with Lang(G) = L.

With this, we conclude our studies of context-free languages, and now turn to yet more
general ones, which finally allow us to model decision problems as introduced in Section 1.1.

2.7 Historical and Bibliographical Notes
Using (context-free) grammars to generate (natural) languages was first proposed by the
linguist Noam Chomsky [2] in 1956, after whom the terms Chomsky normal form (he
proposed this normal form in 1959 [3]) and Chomsky hierarchy are named. The presentation
of the normalization methods introduced in Sections 2.2.1 to 2.2.4 are taken from the
textbook by Hopcroft et al. [11].
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The CYK algorithm has its name from Cocke, Younger [28], and Kasami, who proposed
it independently. The pumping lemma for context-free languages is due to Bar-Hillel et
al. [1]. A generalization is known as Ogden’s lemma [23]. Remarkably, Swiss German is
one of the textbook examples for a natural language that is not context-free [7] as it allows
to derive words of the from ww. As an example, consider the sentence “Me cha säge, dass

d’Assistänte︸ ︷︷ ︸
1

de Studänte︸ ︷︷ ︸
2

d’Ufgabe hälfe︸ ︷︷ ︸
1

lööse︸ ︷︷ ︸
2

.”

Note that this is not possible in standard German, where one would do a construction of
the sort wwR, namely “Man kann sagen, dass

die Assistierenden︸ ︷︷ ︸
1

den Studierenden︸ ︷︷ ︸
2

die Aufgaben lösen︸ ︷︷ ︸
2

helfen︸ ︷︷ ︸
1

.”

We can even take it two steps further with “Me cha säge, dass

d’Rektorin︸ ︷︷ ︸
1

de Profässer︸ ︷︷ ︸
2

d’Assistänte︸ ︷︷ ︸
3

de Studänte︸ ︷︷ ︸
4

d’Ufgabe wott︸ ︷︷ ︸
1

la︸︷︷︸
2

hälfe︸ ︷︷ ︸
3

lööse︸ ︷︷ ︸
4

.”

The analogous construction in standard German gives “Man kann sagen, dass

die Rektorin︸ ︷︷ ︸
1

den Professor︸ ︷︷ ︸
2

die Assistierenden︸ ︷︷ ︸
3

den Studierenden︸ ︷︷ ︸
4

die Aufgaben lösen︸ ︷︷ ︸
4

helfen︸ ︷︷ ︸
3

lassen︸ ︷︷ ︸
2

will︸︷︷︸
1

.”

In Theorems 1.5 and 1.6, we have seen that NFAs and DFAs have the same expressive
power. This is not the case for DPdAs and NPdAs; there are languages for which the
nondeterminism is somewhat “needed.” An example is the language Lpal, for which we have
designed an NPdA (see Figure 14a) while there is provably no DPdA [11]. It is noteworthy
that, if we consider the language {wcwR | w ∈ {a, b}∗} instead, we can easily design a
DPdA [11]. It follows that the class of languages accepted by DPdAs is a strict superset of
the regular languages and a strict subset of the context-free languages.
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3 Turing Machines
In Section 2.6, we augmented finite controls (in other words, DFAs) by a stack memory.
This allowed us to accept languages such as Lab, which cannot be accepted by finite controls
without any additional memory. Still, the data structure of a stack is rather limited in
that it does not allow for random access. In this chapter, we exchange the stack by a more
general memory, namely a tape. This tape also contains the input at the beginning. So
far, the input word was read once from left to right, and the computation ended if the
complete word was “consumed.” In particular, there was no way to read any part of the
input multiple times. This is different for the following model of computation, which may
look at arbitrary positions of the input for any number of times and even modify them. We
call this machine a Turing machine, or TM for short.

Definition 3.1 (Turing Machine, TM). A TM M is a septuple M = (Q,Σ,Γ, δ, q0,
, F ), where

• Q is a finite set of states,

• Σ is the input alphabet,

• Γ is the tape alphabet and Σ ⊆ Γ,

• δ : Q× Γ→ Q× Γ× {L,R} is the transition function,

• q0 ∈ Q is the start state,

• is the blank symbol with ∈ Γ but /∈ Σ, and

• F is the set of accepting states.

Turing machines are (if not stated otherwise) deterministic. The tape of a TM consists
of tape cells, which initially contain the input word, one letter per cell. The tape length is
infinite to the left and to the right; the cells right of the last letter of the input each contain
a blank. At any given point of its computation, a TM “scans” a cell of the tape. It does so
using its tape head which it may move on the tape in a sequential manner. Such a tape
head was not considered explicitly for DFAs, NFAs, or NPdAs since, as mentioned above,
they only read the input word once from left to right, anyway. We can, however, in this
context, think of a read-only tape that is read once; the different high-level sketches are
shown in Figure 15. What all three models do have in common is the finite control, i.e.,
the finite set of states. Let us take a look at the transition function of a given TM.

• The transition function δ takes a pair (q,X) where q ∈ Q and X ∈ Γ;

• δ returns a triple (p, Y,D) where p ∈ Q is the new state, Y ∈ Γ is a tape symbol that
replaces X on the scanned tape cell, and D is a direction, which is either L or R.

Although TMs are deterministic, they do not necessarily have to be “complete” in the
sense of DFAs, which means that there may be “missing” transitions. In the case that a
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TM cannot follow a transition, it gets stuck and the input word is not accepted; we say that
the TM “halts” and that the input is “rejected.” Another property that is not consistent
with previous machine models is that accepting states cannot be left. If a TM at any point
is in an accepting state, the input word is accepted immediately; also in this case the TM
“halts.” It follows that accepting states do not have any outgoing transitions. At any given
point in time, a TM is in a certain configuration, which is given by

• the current state,

• the current position of the tape head, and

• the current string that is written on the tape.

Such a configuration of a given TM is denoted by the shorthand

X1X2 . . . Xi−1qXiXi+1 . . . Xn ,

which we interpret as follows.

• The word X1X2 . . . Xn is currently written on the tape, where X1 and Xn are the
leftmost and rightmost, respectively, “non-blank” letters (an exception is that the
TM scans one of the leading or trailing blanks),

• the current state is q, and

• the tape head currently scans the ith symbol from the left (i.e., the letter written
right of the state).

The change from one configuration to another is called a move of the TM. Recall that
such a move involves possibly changing the state, replacing the symbol in the scanned cell,
and moving the tape head either to the left or to the right. Such a move is defined by the

-relation (analogously to the derivation ⇒-relation for CFGs). We distinguish two cases
depending on whether the head moves to the left or to the right.
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• If a transition δ(q,Xi) = (p, Y,L) is followed, this leads to a move

X1X2 . . . Xi−1qXi . . . Xn X1X2 . . . Xi−2pXi−1Y . . .Xn .

We have to take special attention to the cases that the head is either at the beginning
or the end of the word X1X2 . . . Xn.

– If i = 1, i.e., the tape head scans X1, then we obtain

qX1X2 . . . Xn p Y X2 . . . Xn .

– If i = n and Y = , i.e., the tape head scans Xn and replaces it by a blank,
then “joins” the blanks right of Xn−1 and is thus not written down as part of
the configuration, i.e.,

X1X2 . . . qXn X1X2 . . . pXn−1 .

• If the transition followed is δ(q,Xi) = (p, Y,R), we get a move

X1X2 . . . Xi−1qXi . . . Xn X1X2 . . . Xi−1Y pXi+1 . . . Xn .

There are again two special cases

– If i = n, we get

X1X2 . . . qXn X1X2 . . . Xn−1Y p .

– If i = 1 and Y = , the result is

qX1X2 . . . Xn pX2 . . . Xn .

We use a graphical representation similar to those of the other models of computing. For a
transition δ(q,X) = (p, Y,D), we have

q p

X /Y,←

if D = L and

q p

X /Y,→

if D = R as part of the given TM’s diagram.
Consider a TM M = (Q,Σ,Γ, δ, q0, , F ). M ’s start configuration (also called the

initial configuration) q0w corresponds to the situation where only the input word w is
written on the tape, M scans the cell with first letter of w and is in the start state q0.
Recall that M accepts a word as soon as M enters an accepting state; hence, the input
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q0 q1 q2

q3 q4

a /X,→

Y /Y,→
a / a,→

b / Y,←

X /X,→

Y /Y,←
a / a,←

Y /Y,→

Y /Y,→
/ ,→

Figure 16.

is accepted if an accepting state appears in the current configuration. Defining * in the
obvious way, we can formally define the language of M by

Lang(M) = {w ∈ Σ∗ | q0w * αpβ with α, β ∈ Γ∗ and p ∈ F} .

Let us design TMs for two languages. First, we consider the nonregular language Lab

and design a TM Mab with Lab = Lang(Mab). Mab is shown in Figure 16 and works using
the following idea. The first a is replaced by the symbol X, which marks it as “checked.”
After that, Mab moves its tape head to the right over all as until it scans a b, which is then
marked as checked by replacing it by Y . After that, the tape head is moved to the left
over all as and Y s until the rightmost X is encountered. This is repeated until all as are
replaced; this is detected by scanning a Y next to an X. Finally, it is checked whether also
all bs have been replaced by checking whether the last Y is followed by a . If the input
word diverges from the form akbk in any way, Mab gets stuck and thus rejects the word.

The computation of Mab on the word aabb ∈ Lab can be expressed by a sequence of
moves

q0aabb Xq1abb Xaq1bb Xq2aY b q2XaY b Xq0aY b XXq1Y b

XXY q1b XXq2YY Xq2XYY XXq0YY XXY q3Y

XXYY q3 XXYY q4 ,

where the last configuration is accepting since q4 is an accepting state; thus aabb is accepted.
Conversely, the word aaba /∈ Lab yields

q0aaba Xq1aba Xaq1ba Xq2aY a q2XaY a Xq0aY a XXq1Y a

XXY q1a XXY aq1

and, since Mab is stuck in q1 (there is no outgoing transition for the case that a blank is
read), aaba is rejected.
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q0 q1 q2

q3 q4 q5 q6 q7

q8 q9

a /X,→

Y /Y,→
a / a,→

b / Y,←

X /X,→

Y /Y,←
a / a,←

Y /Y,→

Y /Y,→

c / c,←

Y /Y,←

X /X,→ Y /Y ,→ c /Z,←

Z /Z,→
Y /Y,→

Z /Z,←
Y /Y,←

Y /Y ,→Z /Z,→

/ ,→
Z /Z,→

Figure 17.

So far, so good, but we know that Lab can also be accepted by an NPdA. To see that
TMs are more powerful than that, let us also design a TM Mabc for the non-context-free
language Labc. The idea is to iterate the strategy of Mab two times; see Figure 17. First,
as are again replaced by Xs and bs by Y s as above. If the input word is akbkck, we now
have a work XkY kck on the tape. As a second step, Mabc replaces Y s by Y s and cs by Zs
in the same fashion.

The languages for which we can design TMs are called recursively enumerable.
Designing a TM M for a given language L means that all words in L are accepted by M .
However, this does not determine what happens with words that are not in L (in contrast
to DFAs or NPdAs). If a word w is not in L, then M must not accept w; but it may
either reject w or it may not halt. The latter case is obviously something we would like to
avoid, since there is generally no way to test whether a given TM will run forever or halt
eventually. There is an important subset of the recursively enumerable languages for which
we have TMs that are guaranteed to halt, i.e., every input is either accepted or rejected;
such languages are called recursive languages.

Definition 3.2 (Recursively Enumerable Language, Recursive Language). A
language L is called recursively enumerable if there is a TM M with Lang(M) = L.
The class of the recursively enumerable languages is

LRE = {L | L is recursively enumerable} .
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L is called recursive if there is a TM M with Lang(M) = L and M always halts. The
class of the recursive languages is

LR = {L | L is recursive} .

In the remainder of this chapter and throughout the subsequent one, these two classes
of languages will be our main object of study. Specifically, we are interested in classifying
decision problems into those that are recursive, or recursively enumerable but not recursive,
or not even recursively enumerable. We use the following terms.

• If a language L is recursive, we also call L decidable, and say that there is a TM
which decides L.

• If a language L is recursively enumerable, we also call L semi-decidable, and say
that there is a TM which recognizes L.

3.1 Restrictions and Extensions of Turing Machines
There are many different models of TMs that are all equally powerful in terms of their
expressive power. We name a few of them, without formally proving that they can accept
the exact same languages as TMs according to Definition 3.1. Note that, while the languages
of the TMs are not changed, their size (in particular the number of states), may increase
significantly. Moreover, the number of moves the TM makes may increase; this point will
be addressed in Chapter 5.

• TMs with a single accepting state. A TM can have any number of accepting
states in general. However, we can easily modify a TM M into a TM M ′ that only
has one accepting state. Since accepting states are never left, but M immediately
accepts its input when one of them is entered, we can simply change all transitions to
the accepting states of M to point to a single accepting state of M ′.

• TMs with a sink. A TM can get stuck in a nonaccepting state in which case the
input word is rejected. We can convert a TM M into a TM M ′ that only possesses
one such state qreject by adding the “missing transitions” and having them point to
qreject. If in M there is no outgoing transition from some state q and a tape letter
X, M would get stuck in q when reading X. In this situation, M ′ changes to qreject
where it then gets stuck since there are no outgoing transitions from qreject at all. We
call such a state qreject the sink or simply the “rejecting state” of M ′.

• TMs that accept by halting. Following the above two points, suppose we are
given a TM M that contains a single accepting state and a single rejecting state qreject.
We can then convert M to a TM M ′ where qreject contains a transition to itself (i.e.,
a loop) for every letter of the tape alphabet (including the blank); without loss of
generality, the tape head is moved to the right every time the transition is followed.
This way, M ′ runs in an infinite loop (i.e., it does not halt) whenever the input word
is not in the language Lang(M) = Lang(M ′).
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• TMs with stationary moves. As we have defined it, a TM has to move its head
either to the left or to the right with every computational move. We can easily allow
a third type of move S for “stationary.” The transition function then returns a triple
with the last entry being L, R, and S. If it is S, the tape head stays on the scanned
cell. Such a TM M can be converted into a TM M ′ without stationary moves by
simulating an S-move by an L-move directly followed by an R-move, such that the
latter does not change the tape content.

• Multitape TMs, MTMs. When designing TMs for given languages, it is often
convenient to assume that they are allowed to have more than one tape. The number
of tapes may be arbitrary, but fixed, i.e., it may not depend on the input length.
With every move, such an MTM M changes its state and the head positions of every
tape. We call the first tape of M the input tape and the other tapes M ’s working
tapes. An MTM with one input tape and k working tapes is simply referred to as a
k-MTM.
A k-MTM M with a tape alphabet Γ can be simulated by a usual TM M ′ with one
tape. Suppose that Γ contains m letters (including the blank ) X1, X2, . . . , Xm. At
any given point in time t, let Yt,i,j ∈ Γ denote the letter currently written on the jth
position of the ith tape of M with t ∈ N, j ∈ Z, and 0 ≤ i ≤ k (assigning index 0 to
the input tape); thus we can think of the jth position of all tapes as a (k + 1)-tuple
(Yt,0,j, Yt,1,j, . . . , Yt,k,j), which is interpreted as “the input tape contains the letter Yt,0,j

at the jth position at time step t, the first working tape contains the letter Yt,1,j at
the jth position at time step t,” and so on. The tape alphabet Γ′ of M ′ now consists of
all such tuples; i.e., any possible contents of any of the cells of M at a fixed position.
It thus contains the letters

X1
X1
...
X1

,

X1
X1
...
X2

,

X1
X1
...
X3

, . . . ,

X2
X1
...
X1

,

X2
X1
...
X2

,

X2
X1
...
X3

, . . . ,

Xm

Xm
...

Xm−1

,

Xm

Xm
...

Xm−2

,

Xm

Xm
...
Xm

 .

At time step t, where, without loss of generality, M ’s tapes do not contain any
non-blank left of the first cell or right of the nth cell, the single tape of M ′ therefore
contains the string

Yt,0,1
Yt,1,1
...

Yt,k,1

,

Yt,0,2
Yt,1,2
...

Yt,k,2

,

Yt,0,3
Yt,1,3
...

Yt,k,3

, . . . ,

Yt,0,n

Yt,1,n
...

Yt,k,n


between the leftmost and rightmost non-blank. In order to keep track of the k + 1
head positions of M , we have to further extend the tape alphabet Γ′ of M ′. So far,
every component Xi of a letter from Γ′ is a letter from Γ; now we also allow a second
component, which we denote by Xi for every Xi ∈ Γ. An example of this construction
for a 2-MTM that works over a binary alphabet (thus with a tape alphabet {0, 1, })
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Figure 18.

is shown in Figure 18. We note that the tape alphabet of M ′ is exponentially larger
than that of M , more specifically,

|Γ′| = (2m)k+1 ,

and also M ′ has to contain a lot more states than M .
Moreover, a single move of M needs to be simulated by a possibly very large number
of moves made by M ′. M ′ needs to search its whole tape for the k+ 1 positions of the
corresponding tape heads of M and change them (and the cells to the left or right)
accordingly.

• Multitape TMs with read-only input tape, Input-RO-MTMs. An Input-RO-
MTM M is an MTM with the restriction that M cannot change the content of its
input tape, i.e., it has read-only access on that tape.2

• Semi-infinite TMs. We can modify a TM M such that it uses its tape as if it is of
infinite length only on the right side. To this end, we design a 1-MTM M ′ from M
that simulates on its input tape the part of the input tape of M right of the initial
position, and on its working tape the part left of the tape of M ; the latter is done in
reverse order, and the initial position is marked by a special symbol. M ′ can then be
converted to a TM M ′′ with a single tape.
However, it is not allowed to further restrict the “length” of the input tape by making
it finite; see Section 3.4.

Since all the above definitions are equivalent, we choose among them in order to design
TMs for given languages or to show that no TMs for a given language exist. In the former
case, we will usually choose a general model such as an MTM; in the latter case, we will
study more restricted models.

2This kind of TM is of special interest when analyzing the space complexity of TMs, which is not
coverered by these lecture notes.
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3.2 Turing Machines that Compute Functions
In order to show how TMs compute, we leave decision problems for a minute and focus on
TMs that compute functions. The input is encoded on the input tape at the beginning,
and after the computation is done, the value of the function applied to the input values is
written on the first working tape.

We design an 2-MTM M (recall that this implies one input tape and two working tapes)
that adds two binary numbers x and y, which are both at least 1. The working tapes of M
are simply called “tape 1” and “tape 2.” We assume that x has n bits xn−1, xn−2, . . . , x0
and y has m bits ym−1, ym−2, . . . , y0, and that they are written with the least significant
bit on the right; there are no leading 0s, so both strings start with 1. Furthermore, both
numbers are separated by a #. We assume that M is allowed not to move any of the heads
in any step, which is indicated by the direction ↓.

We know that this implies that there also exists a TM M ′ that is in accordance with
the original definition (M ′ has one tape and can only move the head left or right) that can
do the exact same calculations as M . Recall that, since M does not accept a language, we
do not need to define an accepting state, but only want to ensure that the correct value is
written on tape 1 when M halts. The initial configuration of M is as follows.

Input tape:

Tape 1:

Tape 2:

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

xn−1 xn−2 x0 # ym−1ym−2 y0

M is shown in Figure 19; to make the transition graph as simple as possible, we use the
symbol ∗ as a wildcard. A transition of M is labelled

X0, X1, X2 / Y0, Y1, Y2;D0, D1, D2

if, on the input tape X0 is read and replaced by Y0, on tape 1, X1 is read and replaced by
Y1, and on tape 2, X2 is read and replaced by Y2. The head on the input tape is moved in
direction D0, the head on tape 1 in direction D1, and the one on tape 2 in direction D2.
Let us briefly explain how it works. In q0, M runs over all 0s and 1s on the input tape
until it encounters the first #. The heads on tape 1 and 2 are not moved. If M finds #, it
copies all bits from the input tape to tape 2 in q1. Eventually, it arrives at the end of the
input tape (reading a blank ), and goes to state q2 while moving the head on tape 2 one
position to the left. This means that this head is now positioned on y0. In q2, M moves the
head on the input tape back until it is positioned on the cell that contains ym−1. As soon
as it finds #, it makes one more move to the left, entering q3. Now, the head on the input
tape is positioned on the cell that contains x0.

At this point in time, M begins with adding the two numbers x and y. It does so while
moving from right to left on all tapes simultaneously. Let us first ignore all transitions that
have a anywhere but on tape 1. If, for instance, M finds a 0 on the input tape and a 1
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q0

q1 q2

q3

q4 q5

0, , / 0, , ;→, ↓, ↓
1, , / 1, , ;→, ↓, ↓

0, , / 0, , 0;→, ↓,→
1, , / 1, , 1;→, ↓,→

0, , ∗ / 0, , ∗;←, ↓, ↓
1, , ∗ / 1, , ∗;←, ↓, ↓

, , 1 / , 1, 1;←,←,←
1, , / 1, 1, ;←,←,←
1, , 0 / 1, 1, 0;←,←,←
0, , 0 / 0, 0, 0;←,←,←
0, , 1 / 0, 1, 1;←,←,←

, , 1 / , 0, 1;←,←,←
1, , / 1, 0, ;←,←,←
0, , 1 / 0, 0, 1;←,←,←
1, , 0 / 1, 0, 0;←,←,←
1, , 1 / 1, 1, 1;←,←,←

#, , /#, , ;→, ↓, ↓

, , / , , ;←, ↓,←

#, , ∗ /#, , ∗;←, ↓, ↓

1, , 1 / 1, 0, 1;←,←,←

, , 0 / , 1, 0;←,←,←
0, , / 0, 1, ;←,←,←
0, , 0 / 0, 1, 0;←,←,←

, , / , , ; ↓, ↓, ↓

, , / , 1, ; ↓, ↓, ↓

Figure 19.

on tape 2, then it writes a 1 on tape 1. This is indicated by the transition

0, , 1 / 0, 1, 1;←,←,←

in the figure. If it reads both a 1 on the input tape and on tape 2, it writes a 0 to tape 1,
but changes to state q4. In this state, M knows that it has to take into consideration a
carry of 1. The only way to go back to state q3 is to read both a 0 on the input tape and
on tape 2. Indeed, if there is, for instance, a 1 on the input tape and a 0 on tape 2, but we
have a carry, the right thing to do is write 0 on tape 1 and maintain the carry, which is
formalized by the transition

1, , 0 / 1, 0, 0;←,←,←

and staying in q4. From states q3 or q4, M goes to q5 when the work is done, that is, when
it finds blanks on both the input tape and tape 2. In the case that it is in q4, it must write
one more 1 to tape 1.
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This approach works fine if n = m, that is, both binary strings have the same length.
However, this is not the case in general. Therefore, M interprets the shorter number as if it
contains leading zeros. Since the tape is infinite to the left side, this can easily be done by
interpreting blanks as zeros, which is the reason for transitions such as

, , 1 / , 0, 1;←,←,←

when being in q4.
It is obvious that describing TMs on such a low level is tedious work. We are therefore

happy to describe them on a more intuitive level. Once we understand the model, it is,
for instance, clear that a TM can find the first or last position of the input word, the first
occurrence of some given symbol, and so on.

In the above case, M can be described as follows.

• M first scans the input tape to find the symbol #.

• Then, M copies the binary string between # and the first to tape 2.

• After that, M moves the heads of its input tape and tape 2 to the left such that the
pointer of the input tape is located on x0, and the head of tape 2 on y0.

• M then adds the binary values cell per cell from right to left, while writing the result
of every single binary addition onto tape 1. Depending on whether it must consider a
carry in the current addition step or not, it is in one of two states. Since x and y do
not necessarily have the same length in their binary representation, M treats blanks
on the left of the words as 0s as long as bits are found on one of the two tapes. In
the first step where a blank is encountered on both the input tape and tape 2, M
either writes a 1 on tape 1 if it is in the state that indicates that there is a carry and
halts, or it halts without any further action if there is no carry.

From now on, we will stick to such a high-level description of TMs in order to investigate
which languages are recursively enumerable or even recursive, and which are not.

3.3 The Church-Turing Thesis and the Universal Turing Machine
As we have just seen, we can use TMs in order to compute the sum of two binary numbers. It
follows that there is a TM for the language {x#y#z | x, y, z ∈ Σbin∗ and Val(x) + Val(y) =
Val(z)}, where Val(x) denotes the value of the binary string x. Clearly, this language is
neither regular (for a pumping lemma constant n0, consider the word 1n0#10n0#1n0+1) nor
context-free (which implies the former and can be shown using the same word).

Similarly to the TM that adds binary numbers, we can design a TM that subtracts
binary numbers. With a little more effort, we can use our TM for adding binary numbers
in order to design a TM for multiplying binary numbers by repeated addition. With this,
we can design a TM, e.g., for exponentiation and a TM for division. Being able to divide
two numbers allows us to compute the residue of division. With this, we can finally build a
TM for LPRIME, i.e., for primality testing.
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With similar reasoning, we can deduce TMs for many other problems, and it is widely
believed that we can design TMs for exactly those problems that we consider computable
on an intuitive level.

Theorem 3.3 (Church-Turing Thesis). Turing machines can compute exactly what we
understand as computable in an intuitive sense. �

Note that this statement is a thesis, i.e., it is on an axiomatic level, which means it
cannot be proven, but has to be trusted, for which up to today we have firm reasons. Indeed,
we cannot prove the Church-Turing thesis since the term “computable in an intuitive sense”
(also referred to as effectively computable) is not well defined. As stated above, the
thesis is widely believed and we will assume it to be true in what follows. The even more
interesting point under this assumption is the contraposition, which basically states that
anything that we cannot compute by means of TMs is not computable in whatever way.

So, following the Church-Turing thesis (Theorem 3.3), we can identify each TM with a
computer program, and TMs that always halt with algorithms. But what is the equivalent
of a computer then? A computer, in an abstract way, is a device that can run any kind of
program given that it is expressed in a language understood by this computer.

In what follows, we will design a special kind of TM that is able to simulate any given
TM on any given input; it is thus called the universal Turing machine. Consider TMs
with a binary input alphabet and a single accepting state; without loss of generality, this
state is q1. Moreover, let X1 = 0, X2 = 1, and X3 = be all letters from the tape alphabet,
and let D1 = L and D2 = R be the two directions in which the tape head can move. Every
single TM can be uniquely described by its transition function. Each single transition

δ(qi, Xj) = (qk, Xl, Dm)

of M can be written down as

0i+110j10k+110l10m ,

and multiple transitions encoded this way can be encoded sequentially and separated by 11.
As an example, consider the TM

q0 q1 q2 q3

0 / 1,→
1 / 1,→

0 / 0,→

1 / 1,→

0 / 0,→

/ ,←

with four states and the transitions

δ(q0, 0) = (q2, 1,R), δ(q2, 0) = (q2, 0,R), δ(q2, 1) = (q3, 1,R),
δ(q3, 0) = (q3, 0,R), δ(q3, 1) = (q2, 1,R), and δ(q2, ) = (q1, ,L) ,

which is encoded by the binary string

0101000100100 11 00010100010100 11 00010010000100100 11
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0000101000010100 11 00001001000100100 11 0001000100100010 .

We denote this encoding by Code(M). Consider the input word w = 0101, which leads
to a computation, i.e., a sequence

q00101 1q2101 11q301 110q31 1101q2 110q11

of moves, resulting in M accepting w. Now suppose that we are given M encoded in
binary as above. In Code(M), the substring 111 never appears. We thus use 111 as a
delimiter between Code(M) and the word w. The string Code(M)111w is unambiguously
interpretable and allows us to simulate the work of M on w as just as before, with the
only difference that the transitions are encoded in a different way. Since, in Code(M), 0 is
encoded as 0 and 1 is encoded as 00, we rewrite w as 010010100. Initially, M is in state q0,
encoded by 0 and reads to first letter of w, i.e., 0. We then search Code(M) for a transition
with the prefix 010 (which encodes δ(q0, 0)); there has to be at most one such transition.

This mechanical work can be done by a TM as well. We call this TM the universal
Turing machine U since it can simulate any given TM, encoded as Code(M) on any
given word w; we will stick to assuming that w is a word over Σbin. U is a Input-RO-MTM
with three working tapes, which we call tape 1, tape 2, and tape 3.

• First, U checks whether the input x is of the form Code(M)111w, i.e., whether there
is a substring 111 in the input. The prefix before this substring is then checked with
respect to whether it is a valid encoding of a TM. If x does not have the correct form,
U changes to a nonaccepting state without any outgoing transition, i.e., U rejects x.

• The part of x behind 111, i.e., the binary word w is copied to tape 1, encoded in the
same fashion as in Code(M), i.e., a 0 is encoded by 0 and 1 is encoded by 00; letters
are separated by 1s. The head of U on tape 1 is then moved to the first letter of the
encoded word w.

• On tape 2, U writes the encoding of q0 of M according to Code(M), i.e., 0.

• The contents of tape 1 and tape 2 of U are now used to store the current configuration
of M working on w; tape 1 stores the current tape content of M , and tape 2 stores
the current state of M . The input tape is used to look up the transitions of M .

• Now U searches for the transition corresponding to M being in state q0 (as indicated
by tape 2) and scanning the first letter of w (as indicated by tape 1). To this end,
it searches the input tape for the encoding of a transition with the corresponding
prefix. If no such transition is found U rejects its input x. If it finds the encoding
010j10k+110l10m of such a transition (and there is at most one), U imitates M ’s
move by changing the encoding of the current state on tape 2 to 0k+1, by changing
the content on tape 1 by replacing 0j by 0l, and by moving the head on tape 1 as
indicated by 0m.
If, e.g., a single 0 is replaced by two 0s on tape 1, some parts of the word written
on that tape need to be shifted to the right or to the left. For this purpose, U uses
tape 3.
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(in state q3)

(a)

Input: . . .. . . Code(M) 1 1 1 0 1 0 1

Input of M : . . .. . . 0 1 0 0 1 0 1 0 0

State of M : . . .. . . 0 0 0 0

Aux. comp.: . . .. . .

Finite
control

(b)
Figure 20.

• This procedure is then repeated until U either writes the encoding 00 of the accepting
state of M onto tape 2 or does not find a possible transition. In the former case, U
accepts x; in the latter case, U rejects x.

The TM U is sketched in Figure 20, where the input word to M is 0101. We see that we
have the following implications if the input x of U has the correct form, i.e., Code(M)111w.

• If M accepts w, i.e., w ∈ Lang(M), then U accepts x;

• if M rejects w, then U rejects x; and

• if M does not halt on w, then neither does U .
In particular, M halts on w if and only if U halts on x. Hence, U simulatesM on w, and

we may consider U as the formalization of a computer that runs programs or algorithms.
Summing up, U accepts exactly those words x that can be interpreted as Code(M)111w
for a TM M where M accepts w (i.e., w ∈ Lang(M)). Sometimes, to keep the notation
simple, we will write (M,w) instead of Code(M)111w. We call the language

LU = {(M,w) | w ∈ Lang(M)}

the universal language and, since Lang(U) = LU, i.e., the TM U recognizes LU, we have
proven the following theorem.
Theorem 3.4. LU is recursively enumerable. �

A naturally arising question is of course whether LU is even recursive. Our reasoning
about U does not suffice as a proof since U might not halt if x /∈ LU (which happens if and
only if M does not halt on w). In the next chapter, we will show that LU is not recursive,
but before that we need powerful tools (which we will introduce in Section 4.3) in order to
formally prove such a claim.
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3.4 Relations to Other Models of Computing
We have already discussed that it is sufficient to assume the tape of the TM to be infinite in
one direction. However, we are not allowed to restrict the size of the tape further. Suppose
we are given a TM with finite memory, i.e., with a tape length that is fixed from the start.
Since the input word is initially written on the tape and has an arbitrary length, we need
to use the model of an Input-RO-MTM with one working tape of finite length. It can be
shown that such TMs, which we call CTMs, are even no more powerful than the simplest
computational model we have looked at, i.e., DFAs, which we state without a proof.

Theorem 3.5. Every CTM can be converted into an equivalent DFA. �

TMs are more powerful than both DFAs and NPdAs, since the latter cannot accept
Labc = {akbkck | k ∈ N+}, as proven in Theorem 2.5, while there is a TM for this language;
see Figure 17. A 2-NPdA is an extension of a usual NPdA with the only difference that it
has two stacks instead of one. In every computing step, it can change both stacks in the
obvious way, that is, pop the top symbol and push any sequence of symbols onto the stack.

Theorem 3.6. Every TM can be converted into an equivalent 2-NPdA.

Proof. In what follows, we show how to simulate a TM using a 2-NPdA. The idea behind
this is to simulate the tape of the TM using the two stacks in such a way that the top of
one stack corresponds to the position of the writing head and a step from left to right is
simulated by moving a symbol from one stack to the other.

Let M be a TM. We simulate the work of M on a 2-NPdA P as follows. One important
difference between NPdAs (and thus 2-NPdAs) and TMs is that NPdA only read the input
once. However, other than DFA, their work is not terminated if the whole input is read.
We call the two stacks of P “stack 1” and “stack 2.” The two start symbols are called Z0,1
and Z0,2, respectively. In our intuition, stack 1 is located left of stack 2. Moreover, think of
stack 1 as being rotated by 90 degrees to the right, and stack 2 by 90 degrees to the left.

Reading its whole input, P first pushes it onto stack 1. We realize that the input word
X = X1X2 . . . Xn now is on this stack with Xn being on the top, right above Xn−1, and so
on. If the input has length 5, the situation is as follows.

Stacks of P : X1 X2 X3 X4 X5Z0,1 Z0,2

Next, the symbols are popped from stack 1 to stack 2, which leads to the following situation.

Stacks of P : X1 X2 X3 X4 X5Z0,1 Z0,2

All the transitions of P necessary for this moving (as well as all following steps) are
ε-transitions, that is, P does not need to read its own input from now on.

Now we are ready to start the simulation. For this, we interpret the top symbol of stack
2 as the cell of M ’s tape on which the tape head is located. The remaining content of stack
2 describes the content of the tape right of the tape head, whereas stack 1 describes the
tape to the left of the tape head. Changing the symbol at the position of the writing head
now can be easily simulated. A move to the right on the tape corresponds to moving the
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top symbol from stack 2 to stack 1, whereas a move to the left corresponds to moving the
top symbol from stack 1 to stack 2. If the symbol is changed by M , P just pushes the new
symbol and pops the old one.

There is one special case we need to be careful about. If, for instance, on stack 1, only
the start symbol Z0,1 is encountered by P , that is, the tape head of M is on the left end of
input, and M makes a move to the left, stack 1 remains unchanged and a blank symbol
is pushed onto stack 2. The case that the tape head is on the right end of the input is
handled analogously.

This way, P can imitate any transition of M while moving between its states that
imitate the states of M with the only difference that an operation on the tape is changed
to operations on the two stacks as described above. If, for instance, M has its tape head on
the symbol X4 and the input has length 8, we have the following situation.

Tape of M :

Stacks of P :

X1 X2 X3 X4 X5 X6 X7 X8

X1 X2 X3 X4 X5 X6 X7 X8

. . . . . .

Z0,1 Z0,2

If M replaces X4 by Y and moves the tape head to the right, this corresponds to the
following situation.

Tape of M :

Stacks of P :

X1 X2 X3 X5 X6 X7 X8

X1 X2 X3 X5 X6 X7 X8

Y

Y

. . . . . .

Z0,1 Z0,2

As a result, we conclude that two stacks are as powerful as a tape, and therefore 2-NPdAs
are as powerful as TMs. �

3.5 Historical and Bibliographical Notes
In his seminal paper “On computable numbers with an application to the Entscheidungsprob-
lem” [27], Alan Turing introduced the notion of computing machines, which today we
call Turing machines in his honor. His contribution was not only the formal definition
of the term “algorithm,” but also pointing out the limitations of automated work; this
is what our next chapter is devoted to. More or less simultaneously with Turing, other
researchers proposed models for what is computable in an intuitive sense, such as Church’s
λ-calculus [4], and other models by Kleene [15] and Post [24]. It has turned out that
all these models are equivalent, which hints towards the correctness of the Church-Turing
thesis. Although all these works were predated by Gödel’s incompleteness theorem [10],
Turing’s approach can be considered more constructive – and the dawn of computer science.
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4 Computability
Now that we have a mathematical formalization of algorithms, we strive to explore the
limitations of computers, i.e., we study problems that cannot be solved algorithmically. In
this chapter, we will learn about languages that are undecidable, and this is meant in
the broadest sense. We have, e.g., already seen that there languages, e.g., Lab, which are
not decidable by DFAs, but that are decidable by more powerful models of computation,
e.g., NPdAs. Here, we want to investigate what the most general model of computation,
i.e., TMs, cannot compute. Due to the Church-Turing thesis (Theorem 3.3), it follows that
these problems cannot be solved by means of computers, i.e., algorithmically.

4.1 Infinite Sets
Before we analyze what TMs can and cannot compute, we make an excursion into set
theory. In particular, we are interested in comparing the sizes of different sets. Intuitively,
the size of a set A is at most as large as the size of a set B, if we can map every element of
A to one unique element of B. If that way every element from B is assigned an element
from A, we conclude that A and B have the same size; in the former case, such a mapping
is called an injective function, in the latter case we call it a bijective function (or also a
“pairing” of the elements of A and B).

Definition 4.1 (Comparison of Sets). If there is an injective function f : A → B
between two sets A and B, then |A| ≤ |B|. If f is a bijective function, then |A| = |B|.

Now we apply this definition to a number of infinite sets. The first two sets we want to
compare are the even natural numbers Neven = {0, 2, 4, . . . } and the odd natural numbers
Nodd = {1, 3, 5, . . . }. It does not seem very surprising that both sets have the same size,
since every even number is followed by an odd one and vice versa.

Theorem 4.2. |Nodd| = |Neven|.

Proof. In order to prove the claim, we make use of Definition 4.1. To this end, we need
to define a bijection between Nodd and Neven, i.e., we have to assign every element from
Nodd to exactly one element from Neven. Consider the function f1 : Nodd → Neven with
f1(x) = x− 1, which maps every odd number to exactly one even number. �

Next, we want to compare the natural numbers N and the positive natural numbers N+.
Both sets are infinite, but our intuition is that they do not have the same size; in particular
we have {0} = N \N+, i.e., the number zero is contained in one set, but not in the other.
Rather surprisingly, both sets do have the same size.

Theorem 4.3. |N+| = |N|.

Proof. We again apply Definition 4.1. To this end, we need to define a bijection between
N+ and N, i.e., we have to assign every element from N+ to exactly one element from N
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and hit every element from N with this assignment. Consider the function f2 : N+ → N

with f2(x) = x− 1, i.e., 1 is mapped to 0, 2 is mapped to 1, and so on. It is easy to see
that f2 is indeed a bijection. Every element from N+ is mapped to a unique element from
N (namely the next smaller one), and every element from N is mapped to a unique element
from N+ (namely the next larger one). �

Next, consider the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }. This time, there are roughly
twice as many elements in Z than in N (namely all negative numbers). Still both sets have
the same size.

Theorem 4.4. |Z| = |N|.

Proof. We once more apply Definition 4.1. This time, consider the function f3 : Z → N

with f3(0) = 0, f3(x) = |2x| for x < 0, and f3(x) = 2x − 1 for x > 0; in words, negative
numbers are mapped to even numbers and positive numbers are mapped to odd numbers.
Also f3 is a bijection since every element from Z is mapped to a unique number from N

and vice versa. �

Sets that have the same size as N are called countable, because of the existence of a
bijection between them and the natural numbers; indeed, according to this bijection we can
speak of the zeroth, the first, the second, or the hundredth element of the set.

Definition 4.5 (Countable and Uncountable Sets). An infinite set is called count-
able if it has the same size as N. If a set is larger than N, it is called uncountable.

As a consequence of Theorems 4.3 and 4.4, both N+ and Z are countable. Now let us
consider an infinite set that intuitively seems to be yet larger, namely the rational numbers
Q+ = {x/y | x ∈ N, y ∈ N+}. In particular, we see that between any two rational numbers,
there are infinitely many other rational numbers; e.g., between 0 and 1, we have 1/2, 1/3,
1/4, and so on. Surprisingly, this does not imply that Q+ is larger than N.

Theorem 4.6. |Q+| = |N|, i.e., Q+ is countable.

Proof. Once more, we apply Definition 4.1. This time, we give a injective function from
Q+ to N. As an intermediate step, we show how to enumerate all pairs P = {(x, y) | x ∈
N, y ∈ N+}. To this end, consider the table shown in Figure 21a. We enumerate all the
pairs as indicated in Figure 21b; this leads to a enumeration

(0, 1), (0, 2), (1, 1), (2, 1), (1, 2), (0, 3), (0, 4), (1, 3), (2, 2), (3, 1), (4, 1), . . . ,

and consequently

f4((x, y)) =
g(x, y) + x if x+ y is even,
g(x, y) + y − 1 if x+ y is odd
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1 2 3 4 5 . . .

0 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)
1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5)
3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5)
... . . .

(a)

1 2 3 4 5 . . .

0
1
2
3
4
... . . .

(b)
Figure 21.

with

g(x, y) =
x+y−1∑

i=1
i .

As a second step, we can easily give an injective function f5 : Q+ → P by f5((x/y)) = (x, y).
We note that f5 is not bijective as, e.g., no rational number is mapped to the pair (2, 4).
Therefore, Q+ is not larger than N and thus countable. �

It is not very difficult to extend the proof of Theorem 4.6 to the general rational numbers
Q. To summarize, in this section we have shown the unintuitive results “|N| + 1 = |N|,”
“2 · |N| = |N|,” and even “|N| · |N| = |N|.”

4.1.1 Hilbert’s Hotel

The results of the previous section can be demonstrated by the following example. Con-
sider a hotel, called Hilbert’s hotel, which contains infinitely many rooms numbered
room 1, room 2, room 3, . . . . Each room is occupied by exactly one guest, thus there are
infinitely many guests and no room is free (as shown in Figure 22a); for ease of presentation,
let guest i be the guest who resides in room i, for every i ∈ N+.

Now suppose a new guest arrives, and asks for a room. The porter asks each of the
guests to move to another room; in particular, guest i is reassigned to room i + 1. This
way, there is no guest assigned to room 1, and the new guest can move into this room; this
is sketched in Figure 22b. If we think about it, this is exactly the same situation as in
Theorem 4.3, which exemplifies that “infinity plus 1 is still infinity.”

We can even go one step further. This time, instead of one new guest, countably
infinitely many new guests arrive. Still, they can easily be assigned an empty room each.
The porter simply asks guest i to move from room i to room 2i. This way, all rooms with
an odd index are now available and can be assigned to the new guests; this is sketched in
Figure 22c. Here, we have just seen an illustration of the fact that “two times infinity is
also still infinity.”

Finally, assume there are countably many buses bus 1, bus 2, bus 3, . . . arriving that
carry countably many guests each, where guest (i, j) denotes the jth guest of the ith bus
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guest 2

New
guest 3 . . .

(c)
Figure 22.

that arrives. The porter remains unimpressed, as he knows that he can easily assign the
guests to rooms according to f4 from the proof of Theorem 4.6. However, he follows a
different approach, and relocates the guests that already reside in the hotel to rooms with
even index as before. Next, a unique prime number pi larger than 2 is assigned to bus i.
Finally, guest (i, j), i.e., the jth guest from the ith bus, gets the room with index pj

i . Since
there are infinitely many prime numbers and every natural number has a unique prime
factorization, each guest gets a single room. We can interpret this as an illustration of
“infinity times infinity is still infinity.”

4.1.2 An Uncountable Set

Now we have a surprising insight, namely that there are many infinite sets that have the
same size as N although they contain elements that are not contained in N. Naturally, the
question arises whether there are any uncountable sets, and if so, what they look like. The
first answer is positive, and we consider the real numbers in this section as an example.
Similarly to the rational numbers, there are infinitely many real numbers between any two
given real numbers. Indeed, every rational number is also a real number, but there are also
real numbers such as

√
2, π, or e, which are not rational. We already know, however, that

this fact alone does not show that the real numbers are larger than the rational ones.

Theorem 4.7. R is uncountable.
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Proof. We even prove a far stronger statement, namely that already the interval [0, 1]R
between 0 and 1 is uncountable. For a contradiction, assume [0, 1]R were countable, i.e.,
we can enumerate those numbers. Thus, we have the first real number a1, the second real
number a2, etc. Since 0 ∈ N, we enumerate these numbers by 0, 1, 2, . . . . Since every ai is
a real number between 0 and 1, we can write it as

0.ai1ai2ai3 . . . ,

where aij is ai’s jth decimal place. This way, we get a table

Number Real number
0 0. a11 a12 a13 a14 a15 a16 a17 a18 . . .

1 0. a21 a22 a23 a24 a25 a26 a27 a28
2 0. a31 a32 a33 a34 a35 a36 a37 a38
3 0. a41 a42 a43 a44 a45 a46 a47 a48
... ... . . .

representing the hypothetical enumeration of [0, 1]R. Now we show that this table cannot
be complete in that there is at least one real number between 0 and 1 missing. To this end,
we create a real number b = 0.b1b2b3 . . . with bi 6= aii, i.e., bi is different from ai at the ith
decimal place (and possibly other positions, of course). We have to be careful, however,
because for some numbers there are two representations, e.g., 0.001 = 0.0009. To make sure
that b is not in the above enumeration, also not with another representation, we ensure
that b contains neither 0s nor 9s. Formally, we define

bi =
1 if aii = 8 or aii = 9,
aii + 1 else

for every i ∈ N. For a contradiction, suppose b appears in the hypothetical enumeration of
[0, 1]R. This means that there is some j ∈ N such that b = aj . Now consider the j position
of j, i.e., ajj. By construction, bj 6= ajj, and thus b cannot be aj. As a consequence, b is
not contained in the above enumeration, which is a contradiction to its existence. It follows
that [0, 1]R cannot be enumerated and is thus not countable. �

The technique applied in the proof of Theorem 4.7 is called Cantor’s diagonal
argument. As an example, consider the hypothetical table

Number Real number
0 0. 2 5 6 5 1 4 0 5 . . .

1 0. 6 8 0 0 7 1 4 3
2 0. 6 1 7 3 9 0 1 9
3 0. 8 8 7 4 0 8 4 8
... ... . . .

leading to a number b = 0.3185 . . . not contained in this table.
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Note that we can give a similar proof when comparing N with its power set Pow(N).
For every set S ∈ Pow(N), consider its characteristic vector, which has a 1 at the ith
position if and only if i ∈ S; otherwise, it contains a 0 at this position; intuitively, the size of
Pow(N) is 2|N|. Suppose we are able to enumerate all sets in Pow(N) by their characteristic
vectors. Then we can again apply Cantor’s diagonal argument and show that there is a set
whose characteristic vector is missing, and hence “2|N| > |N|.” More generally speaking, we
can show that the power set of any set is always larger than the set itself.

4.2 The Diagonalization Language
Such a diagonalization argument can also be applied to decision problems in order to prove
that there is such a problem for which no TM exists. Such a language is thus not recursively
enumerable since there is no TM that accepts exactly the words of this language. The idea
behind the following proof is that there is a countable set of TMs, but an uncountable
number of decision problems, i.e., languages.

In what follows, consider the binary alphabet Σbin = {0, 1}. Without loss of generality,
let us restrict our attention to that alphabet as input alphabet of the TMs we study. We
can impose a total ordering ≺ on all words from Σ∗bin such that, for all such words w and w′,

• if |w| < |w′|, then w ≺ w′, and

• if |w| = |w′|, then w ≺ w′ if w = u0x and w′ = u1y, i.e., w has a 0 at the first position
from the left at which w and w′ differ, while w′ has a 1 at this position.

We therefore have

ε ≺ 0 ≺ 1 ≺ 00 ≺ 01 ≺ 10 ≺ 11 ≺ 000 ≺ 001 ≺ 010 ≺ 011 ≺ 100 ≺ . . . ,

which we call the canonical order of Σ∗bin, and which allows us to speak of the ith binary
word with respect to this order.

Next, we would like to have an enumeration of all TMs as well. As we have seen in
Chapter 3, TMs can be encoded in binary, but of course not every binary word is the correct
encoding of a TM. However, using the canonical order of Σ∗bin, we can also impose an order
on all TMs. We enumerate all binary words as above, and check for every word whether
it is a valid encoding of a TM. If the first word is found that actually encodes a TM, we
define this TM to be the first TM M1. Then we continue until we find the next word
that encodes a TM; the corresponding TM is called M2. This way, we get an enumeration
M1,M2,M3, . . . of all TMs.

An analogous argument for computer programs is easy to follow. Suppose we define a
canonical order on all words over the ASCII (UNICODE, respectively) alphabet and design
a program that enumerates all those words; after every generation of a word, this word is
supplied to, say, a C compiler. In most of the cases, the compiler will, of course, not be able
to process the word and thus exit with an error message. However, eventually the string

int main(){}
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will be generated and compiled, which then equals the first program in C according to the
above order; the second string that is successfully compiled is

int main( ){} ,

and so on, which gives us an enumeration C1, C2, C3, . . . of all valid C programs.
Now consider the enumeration w1, w2, w3, . . . of all binary words and the enumeration

M1,M2,M3, . . . of all TMs (encoded as binary words) with a binary input alphabet. Every
TM Mi accepts a specific set of binary words, i.e., a language Lang(Mi) ⊆ Σ∗bin. We
design a table whose rows correspond to TMs and whose columns correspond to binary
words. Specifically, the entry in the ith row and the jth column is 1 if Mi accepts wj, i.e.,
wj ∈ Lang(Mi); this entry is 0 if wj /∈ Lang(Mi). Now we define a language

Ldiag = {wi | wi /∈ Lang(Mi)} ,

i.e., Ldiag contains the ith binary word wi if and only if this word is not accepted by the ith
TM Mi. Consider the hypothetical table T

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

M1 1 0 1 1 1 1 1 0 0
M2 0 0 0 0 0 0 1 0 1 . . .

M3 1 0 0 1 0 1 0 0 0
M4 0 0 1 1 0 0 1 0 0
... ... . . .

constructed as described above; in this case w1 would not be contained in Ldiag, but w2
would and so would w3; w4 would not be included, etc.

Note that it is impossible to “write down” T since it is of infinite size in both dimensions.
Here, T is just a means to visualize the language Ldiag on an intuitive level.

Theorem 4.8. Ldiag is not recursively enumerable.

Proof. For a contradiction, suppose Ldiag were recursively enumerable. This means that
there is a TM M for Ldiag, i.e., Lang(M) = Ldiag. Since M is a TM, it must appear in the
enumeration of all TMs. In other words, there has to be an i ∈ N+ such that i is the index
of M according to the enumeration of all TMs; i.e., M = Mi. It therefore has to follow that
Ldiag = Lang(Mi). Now consider the ith binary string wi; this word is either in Ldiag or it
is not.

• If wi ∈ Ldiag, then Tii = 0 and Mi does not accept wi, i.e., wi /∈ Lang(Mi).

• If wi /∈ Ldiag, then Tii = 1 and Mi accepts wi, i.e., wi ∈ Lang(Mi).

As a consequence, we obtain the equivalence

wi ∈ Ldiag ⇐⇒ wi /∈ Lang(Mi) ,

which is a direct contradiction to Ldiag = Lang(Mi). Therefore, Mi cannot exist and Ldiag
cannot be recursively enumerable as a consequence. �
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We see that the ith row of T corresponds to the characteristic vector of the language
Lang(Mi). With Ldiag, we have designed a language with a characteristic vector that is
different from all those in T ; more specifically, the characteristic vector of Ldiag is different
from that of Lang(Mi) at the ith position (and possibly other positions). Note that this is
exactly the same application of Cantor’s diagonal argument as in the proof of Theorem 4.7.

4.3 Reductions and Basic Properties
We have now encountered a decision problem, which is not recursively enumerable, namely
Ldiag; since recursive languages are a subset of recursively enumerable languages, we also
know that Ldiag is not recursive. In what follows, we would like to build up a theory of
nonrecursive decision problems. In particular, we are interested in problems that are of
more practical use; in fact, Ldiag does seem like a rather artificial problem.

To this end, we need to design TMs that simulate a given TM on a given word (or even
multiple TMs on multiple words) similar to the proof of Theorem 3.4. In contrast to the
universal TM U , however, we design a TMM ′ which simulates a TMM on a word w without
being given M and w as input, but they are “hardwired” into M ′. As an example, sup-
pose that the first transition ofM is δ(q0, 0) = (q1, 0,L), which is encoded as 0101001010, and
the word w is 100, which M ′ encodes as 001010; the transitions

. . .

∗, , / ∗, 0, 0; ↓,→,→

∗, , / ∗, 1, 0; ↓,→,→∗, , / ∗, 0, 1; ↓,→,→∗, , / ∗, 1, 0; ↓,→,→∗, , / ∗, 0, 1; ↓,→,→∗, , / ∗, 0, 0; ↓,→,→
∗, , / ∗, 1, ; ↓,→, ↓ ∗, , / ∗, 0, ; ↓,→, ↓ ∗, , / ∗, 1, ; ↓,→, ↓ ∗, , / ∗, 0, ; ↓,→, ↓ ensure that,

after the first ten moves of M ′, the first transition of M is written on the first working tape,
and the word w is written on the second working tape. After all transitions of M and the
complete word w are written down, M ′ simulates M on w the same way U would.

We start with two general observations that speak about recursively enumerable and
recursive languages. In the following, a “∗” in the superscript of a TM M indicates that M
always halts.

Theorem 4.9. If a language L is recursive, then L is recursive, too.

Proof. Suppose L is recursive and let M∗ be a TM that decides L, i.e., for every input w,
M∗ accepts w if w ∈ L, and M∗ rejects w if w /∈ L; in particular M∗ always halts. Without
loss of generality (see Section 3.1), we assume that M∗ has exactly one accepting state and
one rejecting state. Thus, every word given to M∗ as input ends in exactly one of these
two states. We design a TM M

∗ which is a copy of M∗ with the only difference that the
accepting and the rejecting state are switched. Any word w that is accepted by M∗ is thus
rejected by M∗ and vice versa. As a result, M∗ accepts L and is guaranteed to halt, and
hence L is recursive. �

Note that a direct consequence of Theorem 4.9 is that, if a language L is not recursive,
then neither is L.

Theorem 4.10. If both a language L and L are recursively enumerable, then L is recursive.

Proof. Let M be a TM for L and let M a TM for L. Every word w is either in L or in L;
thus w is accepted either by M or by M . We design a TM M∗ which simulates M and M
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on its input w at the same time. Eventually, either M or M has to accept w. If M accepts
w, M∗ accepts; if M accepts, M∗ rejects. As a result, M∗ accepts L and is guaranteed to
halt, and hence L is recursive. �

An implication of Theorems 4.9 and 4.10 is that, for any language L, one of the following
points is true.

• Both L and L are recursive;

• neither L nor L are recursively enumerable; or

• L (L, respectively) is recursively enumerable but not recursive and L (L, respectively)
is not recursively enumerable.

Next, we introduce a general technique that allows us to prove that a given language is
not recursive or even not recursively enumerable. To this end, suppose we already know
that a language L1 is not recursive (recursively enumerable, respectively). A reduction
establishes a connection between L1 and a second language L2 implying that

if L2 were recursive (recursively enumerable, respectively),
then L1 would be recursive (recursively enumerable, respectively), too.

The two facts that L1 is already known to be nonrecursive (not recursively enumerable),
but it would be recursive (recursively enumerable) if L2 would be recursive (recursively
enumerable), immediately implies that L2 cannot be recursive (recursively enumerable). A
reduction is carried out by a special kind of algorithm (i.e., a TM that always halts) which
converts inputs for L1 to inputs for L2.

Definition 4.11 (Reduction). Let L1 and L2 be two languages. If there is a TM R
which converts inputs x for L1 to inputs y = R(x) for L2 such that

x ∈ L1 ⇐⇒ y ∈ L2 ,

we say that L1 reduces to L2 or that there is a reduction from L1 to L2, denoted
by L1≤r L2.

We now formally prove that such a reduction is indeed a valuable tool in order to prove
a language to be nonrecursive (not recursively enumerable).

Theorem 4.12. Let L1 and L2 be two languages, and suppose L1≤r L2.

• If L1 is not recursive, then neither is L2;

• if L1 is not recursively enumerable, then neither is L2.
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Proof. We start by proving the first claim. As usual, we use the terms “recursive” and
“decidable” interchangeably. Since there is a reduction from L1 to L2, there is a TM R that
converts inputs for L1 to inputs for L2 as in Definition 4.11. Consider any input x for L1.
Our goal is to decide whether x ∈ L1 or x /∈ L1; if we can achieve this, L1 is recursive.

For contradiction, suppose L2 were recursive and L1 were not; hence, there is a hypo-
thetical TM M∗

2 that decides L2. We show how to design a TM M∗
1 that decides L1 using

M∗
2 . To this end M∗

1 first converts x (which it receives as input) to an input y for L2 using
the TM R. As a result, y ∈ L2 if and only if x ∈ L1 due to Definition 4.11. The word
y is then given to M∗

2 as input, i.e., M∗
1 simulates M∗

2 on y. Since M∗
2 decides L2, M∗

2
gives the correct answer as to whether y ∈ L2 or y /∈ L2 after finite time by accepting or
rejecting y. This answer is then also correct for the question concerning whether x ∈ L1
or x /∈ L1. Thus, M∗

1 accepts if M∗
2 accepts and rejects if M∗

2 rejects. Consequently, M∗
1

decides L1, and L1 is therefore recursive by definition. This, however, is a contradiction to
our assumptions, and thus also L2 cannot be recursive.

As for the second claim, we can do a similar reasoning with a hypothetical TM M2
for L2. The only difference to the above argumentation is that M2 does not necessarily
halt if y /∈ L2. However, M2 always accepts y if y ∈ L2. Likewise, M1 accepts any x with
x ∈ L1, and hence L1 is recursively enumerable, which again contradicts our assumptions.
Therefore, L2 cannot be recursively enumerable. �

In the subsequent sections, we will use reductions in order to show that a number of
languages are not recursive.

4.4 The Universal Language
We have already studied the language LU, which contains all words Code(M)111w (which
we simply write as “(M,w)”) with w ∈ Lang(M) in Section 3.3 and proved that it is
recursively enumerable (see Theorem 3.4) since the universal TM U accepts LU. However,
since U simply simulates M on w, it runs forever if M runs forever on w; i.e., it might not
halt if (M,w) /∈ LU. Of course, it may be the case that there is a more sophisticated way
of testing whether a given word is in LU that always gives an answer within finite time; in
this case, LU were recursive. However, in what follows, we will show that there is no TM
for LU that is guaranteed to halt.

Theorem 4.13. LU is not recursive.

Proof. We know that, if LU were recursive, then also its complement LU would be recursive
(see Theorem 4.9). Thus, if we succeed in showing that LU is not recursive, then LU cannot
be recursive. We have to be careful here, because LU also contains the binary strings that
are not proper encodings of TMs and binary strings separated by “111.” Formally, the
language is thus defined as

LU = {x | x does not encode a TM and a word separated by 111}
∪ {Code(M)111w |M is a TM and M does not accept w}
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Figure 23.

We reduce the problem of deciding whether a given word is in Ldiag to deciding whether
some word is in LU, i.e., Ldiag≤r LU. If then we would have a TM for deciding LU (i.e., if
this language were recursive), we could use it to decide Ldiag (i.e., this language were also
recursive). As before, we mark all TMs with “∗” if they are guaranteed to halt. So suppose
we have a TM U

∗ that decides LU. Let x ∈ {0, 1}∗ be any word for which we want to know
whether it is in Ldiag. What does that mean? The word x is at some position, say i, in the
enumeration of all possible binary strings; thus, we just write wi instead of x. Deciding
whether wi ∈ Ldiag just means to decide whether this word is in Lang(Mi), i.e., accepted
by the ith TM. If wi is not in Lang(Mi), then it is in Ldiag; if it is in Lang(Mi), then it is
not in Ldiag. Our reduction is illustrated in Figure 23. The idea is that we can use the
hypothetical TM U

∗ to do the work for us. To this end, we design a TM D∗ that decides
Ldiag by first giving x = wi to a TM R that computes the index i and the ith TM Mi. After
that, R outputs the word y = Code(Mi)111wi, which is a valid input for U∗. It expects the
part before the three 1s to be the encoding of a TM and the string behind them to be some
binary word. Then, by the definition of LU, U

∗ will accept if and only if the TM Mi that is
encoded does not accept wi. This is exactly the case if x = wi is in Ldiag; therefore

x ∈ Ldiag ⇐⇒ y ∈ LU ,

and we can simply give the same answer to decide whether x is in Ldiag. As a result,
D∗ decides Ldiag, which is a contradiction to Theorem 4.8. Thus, neither LU nor LU are
recursive. �

As a consequence of Theorems 3.4 and 4.13, LU ∈ LRE \ LR. The above proof even
shows that LU is not recursively enumerable. With this, we can separate all language classes
we have learned about so far by giving a language that is in one of them, but not in any
subclass; see Figure 24.

4.5 The Halting Problem
As mentioned above, we use the terms “language” and “problem” interchangeably, and we
may thus refer to LU as the universal problem, which is to figure out whether a given TM
accepts a given word. A related problem is the halting problem LH; here, we are also
given the encoding of a TM M and a binary string w as input, but instead of deciding
whether M accepts w, we want to know whether M halts on w, i.e., we define

LH = {(M,w) |M halts on w} .
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We first show that there is a TM H that accepts LH.

Theorem 4.14. LH is recursively enumerable.

Proof. The proof can be done analogously to the proof of Theorem 3.4. A TM H recognizing
LH works the same way as the universal TM U on a given input x = (M,w). The only
difference is that H also accepts x if M rejects w. This way, if M halts (no matter whether
w is accepted or rejected) on w, H accepts x; if M runs forever on w, H also runs forever,
and thus does not accept x. Hence, Lang(H) = LH, and LH is recursively enumerable as a
consequence. �

We will now prove that the halting problem is not recursive. In essence, this means
that we cannot decide whether a given TM halts on a given word in general. Since we
consider TMs that halt to be algorithms, we can draw the conclusion that it is not possible
to decide whether a given computer program is actually an algorithm. To see that this is
indeed a problem, consider the computer program GoCon, which is given in pseudocode in
Algorithm 4.1 and uses a function “isprime( ),” which returns true if and only if its argument
is a prime number. Is GoCon an algorithm, i.e., does this program, which takes no input,
eventually halt? By inspection, we observe that this only happens if an even number n is
found which cannot be written as n = p+ q, where p and q are prime numbers. In other
words, GoCon halts if and only if we find an even number that cannot be written as the
sum of two prime numbers.

However, whether such an even number exists, is one of the most famous open questions
in mathematics, which is is known as Goldbach’s conjecture. Thus, answering whether
GoCon halts means proving or disproving Goldbach’s conjecture. Of course, this is not
a formal proof that halting cannot be decided, yet it shows that the question of whether
a given program halts or not cannot be answered by simply “taking a close look” at it.
Understanding in detail how GoCon works and under which condition the while-loop is
left, does not help at all.
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Algorithm 4.1. The program GoCon.
n = 4; /∗ Initialization. ∗/
p = 1;

while (true)
p = p+ 1;
if (isprime(p))
q = n− p;
if (isprime(q)) /∗ Both p and q are prime and n = p+ q. ∗/

print(n . “ = ” . p . “ + ” . q);
n = n+ 2;
p = 1;

if (p > n/2) /∗ No primes p and q with n = p+ q were found. ∗/
return;

end

We will present two different approaches to prove the subsequent theorem which formally
states that “halting” cannot be decided in general, i.e., we cannot design an algorithm that
decides whether a given TM halts on a given input (while we may of course be successful
for a specific class of special TMs).

Theorem 4.15. LH is not recursive.

Proof. We give a reduction from LU, i.e., we show LU≤r LH. Since we know LU is not
recursive due to Theorem 4.13, neither is LH. We design a TM U∗ that decides LU given a
TM H∗ that decides LH. Note that U∗ is different from the universal TM U for LU, which
is not guaranteed to halt. U∗ passes its input x to a TM R, which first checks whether it
has the correct form, i.e., whether x = Code(M)111w for a TM M and a binary string w.

• If not, the word y = x is output by R and given to H∗. For sure, H∗ will not accept
x since it does not have the correct form, and U∗ should not accept x. Thus, the
answer (output) of H∗ is correct as answer (output) for U∗.

• If, however, x has the correct form, R inspects the encoding Code(M) of M , and
creates Code(M ′), which is the encoding of a TM M ′ that works similarly to M but
with one important difference. M ′ has one additional state q in which it always runs
into an infinite loop. If a transition is not present in M in some non-accepting state
(that is, a state in which M might get stuck and thus halt without accepting), R adds
this “missing” transition such that it ends in q. Therefore, when M halts without
accepting, M ′ does not halt; this idea was already described in Section 3.1. Then,
y = Code(M ′)111w is given to H∗ as input.

We thus get the following implications.

• If H∗ accepts Code(M ′)111w, we know that M ′ halts on w and therefore accepts w.
But in this case, also M accepts w; this is a direct consequence of the way that M ′ is
constructed from M .

81



TM U∗ for LU

Hypothetical
TM H∗ for LH

Does x have
the correct

form
Code(M)111w?

Construct M ′ from M

x No; y = x

Yes y = Code(M ′)111w

accept

reject

accept

reject

Figure 25.

• If H∗ does not accept Code(M ′)111w, we know that M ′ runs into an infinite loop on
w. In this case, M either halts on w without accepting or it also does not halt. In
either case, M does not accept w. The idea of the construction is shown in Figure 25,
where the two steps of R are shown separately.

This yields the equivalence

M accepts w ⇐⇒ M ′ halts on w .

Therefore, U∗ can take the answer of H∗ for the input Code(M ′)111w as a correct
answer for its own input x. This means that U∗ is a TM that decides LU, but this leads to
a contradiction to Theorem 4.13. Thus, there is no TM H∗ that decides LH, and hence LH
is not recursive. �

Note that a similar approach can be used to reduce LH to LU. Now we give an alternative
proof that does not use a reduction; however, the ideas employed in this proof incorporate
the same ones (in particular, Cantor’s diagonal argument) as in the proof of Theorem 4.8.

Alternative Proof. For a contradiction, suppose LH were recursive, and let H∗ be a TM that
decides LH. Consider a TM M that does the following. On a binary input word w, M first
computes the index i ∈ N+ of w according to the canonical order, i.e., wi = w; furthermore,
M computes the encoding of the ith TM Mi. Now M uses H∗ to decide whether Mi halts
on wi. If so, M runs into an infinite loop; if Mi does not halt on wi, M halts, e.g., by
moving to an accepting state.

Since M is a TM, there also has to be an index j ∈ N+ such that Mj = M . Now we
ask whether Mj halts on the word wj. By the design of M , we get the equivalence

Mj halts on wj ⇐⇒ M does not halt on wj ,

which is a direct contradiction to Mj = M ; hence H∗ cannot exist, and consequently LH is
not recursive. �
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4.6 Rice’s Theorem
While one may argue that Ldiag is a rather artificial problem, the undecidability of the
halting problem seems to have quite some impact on practice. In this section, we prove an
even more general result, namely that almost all problems that deal with the semantics
of TMs are undecidable. To this end, we need the formal definition of a property of a
recursively enumerable language.

Definition 4.16 (Property of Recursively Enumerable Languages). A proper-
ty of the recursively enumerable languages E ⊆ LRE is any collection of recursively
enumerable languages. E is called nontrivial if both E 6= ∅ and E 6= LRE, i.e., E neither
contains no recursively enumerable language nor all of them.

As a consequence of Definition 4.16, we can define intuitive properties by a collection of
the corresponding recursively enumerable languages; e.g., the property of “being a regular
language” is formalized by Ereg = Lreg; the property of “being empty” is formalized by
Eempty = {∅}. For every such property E , let TM(E) denote the set of all encodings of TMs
that accept languages in E ; e.g., TM(Ereg) contains encodings of exactly those TMs that
accept a regular language. The following theorem states that it is undecidable whether a
given TM has a language with a given nontrivial property.

Theorem 4.17 (Rice’s Theorem). For every nontrivial property of the recursively enu-
merable languages E, TM(E) is not recursive.

Proof. Consider a language L ∈ E with a TM E with Code(E) ∈ TM(E), i.e., E is a TM
with L = Lang(E) ∈ E . We give a reduction from LU to TM(E); due to Theorem 4.13, the
claim then follows. For now, let us assume that ∅ /∈ E . Consider an input Code(M)111w
of LU. We design a TM M ′ that has Code(E), Code(M), and w built into its transitions,
and, at the beginning of its computation, writes Code(M) and w (encoded as in the proof
of Theorem 3.4) onto its tapes. Let w′ denote the input of M ′; M ′ works as follows.

• First, M ′ simulates M on w while completely ignoring its own input w′. If M rejects
w, then M ′ also rejects; if M runs forever on w, then M ′ also runs forever.

• If M accepts w, then M ′ simulates E on the input w′. If E accepts w′, then M ′ also
accepts; if E rejects w′, then M ′ rejects; if E runs forever, then M ′ also runs forever.

We consequently get the following implications.

• If w /∈ Lang(M), then the simulation of M on w either does not halt or M rejects w.
In this case, M ′ does not halt or it rejects. This means that M ′ does not accept its
input w′ (independently of which word w′ actually is). Thus, Lang(M ′) = ∅, which is
not in E .

• If w ∈ Lang(M), then M accepts w, and thus M ′ continues with simulating E on its
input w′. Thus, in this case, M ′ accepts exactly the language L of E.
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This yields the equivalence

w ∈ Lang(M) ⇐⇒ Lang(M ′) = L

and since M ′ is a TM for L ∈ E ,

w ∈ Lang(M) ⇐⇒ Code(M ′) ∈ TM(E) .

For a contradiction, now suppose TM(E) were decidable and consider a TM M∗ which
decides TM(E). We supply the encoding of M ′ as input to M∗. If M∗ answers that
Code(M ′) ∈ TM(E), we know that the simulation of M on w, which was carried out by M ′,
must have resulted in M accepting w; thus w ∈ Lang(M) and hence Code(M)111w ∈ LU.
Conversely, if M∗ answers that Code(M ′) /∈ TM(E), it immediately follows that M does
not accept w and therefore Code(M)111w /∈ LU.

Now we assume that ∅ ∈ E . In this case, consider the property E ; obviously, ∅ /∈ E ,
and hence the above proof shows that TM(E) is not recursive. The language of any given
TM is either in E or in E . Therefore, if the encoding of any TM is not in TM(E), it has
to be in TM(E), which means that TM(E) = TM(E). From TM(E) not being recursive, it
immediately follows that TM(E) is also not recursive due to Theorem 4.9. �

A consequence of Theorem 4.17 is that it is impossible in general for a given TM M to
decide whether the language Lang(M) of M

• is regular (or context-free or context-sensitive),

• is empty,

• is finite,

• contains a given word (or does not contain it), or

• only contains words that start with a given prefix (or end with a given suffix).

As stated earlier, Rice’s theorem speaks about the semantics of TMs, i.e., about the
languages they accept. Syntactical questions such as “does a given TM have more than five
states?” are decidable; “does a given TM reach its fifth state with a given word as input?”
is not.

4.7 Historical and Bibliographical Notes
As already mentioned, Turing machines were introduced by Turing [27] in 1936. In this
publication, he also showed that there is a language that is not recursively enumerable
(Theorem 4.8). As also mentioned earlier, Gödel proved his incompleteness theorem in
1931 [10], using an approach similar to that in the proof of that theorem, also applying
Cantor’s diagonal argument. In the original proof, Turing assumed the machines to
accept words by halting; thus there was no distinction between halting in an accepting or
nonaccepting state; we described that both models are equivalent in Section 4.5. It is a
different formulation to the halting problem as defined in Section 4.5.

Rice’s theorem (Theorem 4.17) was proven by Rice in 1953 [26].
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5 Intractability
In the previous chapter, we have learned about decidable problems, i.e., those problems
which can be solved automatically. A problem is called decidable (or recursive) if it can, in
principle, be solved by an algorithm. Now we would like to take a closer look at this “in
principle.” Indeed, we have so far neglected completely how hard it is to compute a solution
in terms of the resources used; such resources are, e.g., time and space. In this chapter,
we will focus on the former one, i.e., we will investigate how much time is used in order to
solve particular decision problems. Depending on the concrete bounds, we will distinguish
between problems that are tractable (which means solvable in practice) and those that are
intractable (which means decidable, thus solvable theoretically, but unsolvable in practice
since this would require too much time also for reasonably small instances).

We have so far not considered the running time of TMs at all. We start by defining
the running time of a TM M on a word x, denoted by TimeM(x), which is simply
the number of moves M makes before halting; the TM Mab (see Figure 16), e.g., has a
running time of 13 on the word aabb. In a way, it is sufficient to count the s in a given
computation (if we are able to write it down explicitly). What we are particularly interested
in is the worst-case running time of M , i.e., a guarantee on the number of moves M makes
on a given word. For sure, the running time will usually increase with the length of the
input word (there are exceptions, such as deciding whether the given word starts with a
particular letter), but it makes a huge difference how large this growth is. We define the
time complexity of M with input alphabet Σ as a function that gives, for every n ∈ N,
the maximum number of moves M makes on words of length n, i.e.,

TimeM(n) := max{TimeM(x) | x ∈ Σn} .

To classify TMs with respect to their running time, we use the big O notation; i.e., we
speak about their asymptotic time complexities. Let f and g be two positive functions
in a variable n; to make our arguments simpler, we will write f(n) (g(n), respectively)
instead of f (g, respectively). Recall that f(n) is in O(g(n)) if, for values larger than some
fixed threshold, f(n) grows faster than g(n) only by a fixed constant; more formally

f(n) ∈ O(g(n)) ⇐⇒ ∃n0, k such that ∀n ≥ n0 we have f(n) ≤ k · g(n) .

A few examples are n2 ∈ O(n3), 3n2 +5n ∈ O(n3), n3 ∈ O(n!), n4 ∈ O(n4),
√
n ∈ O(n),

10 000 · n100 ∈ O(2n), and log2 n ∈ O(n). We then say that a TM M has a time complexity
in O(g(n)) if TimeM(n) ∈ O(g(n)); of course, we are interested in functions g that give
a bound which is as tight as possible, i.e., the smaller g grows, the more meaningful the
statement becomes.

5.1 The Class P
In particular, we are interested in TMs with polynomial time complexities, i.e., those TMs
M with TimeM(n) ∈ O(nd) for a fixed (i.e., independent of n) d ∈ N. Decision problems
that can be decided by such TMs are called tractable, efficiently solvable, or simply
solvable in polynomial time.
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Definition 5.1 (The Class P). A language L is called tractable if there is a TM M
with Lang(M) = L and TimeM(n) ∈ O(nd) for some fixed d ∈ N, and we say that L is
solvable in polynomial time. The class of tractable problems is

P = {L | L is solvable in polynomial time} .

Note that, by definition, P ⊆ LR since our definition of “time complexity” assumes that
M always halts after TimeM(n) moves, independent of whether the input is accepted or
not. As an alternative, we could have defined that M has time complexity TimeM(n) if
it makes that many moves on all words in its language; in this case, M could make more
moves if it rejects or it may even not halt at all. However, for such a TM M , we could then
design an MTM M ′ that simulates M on any given input x and keeps track of the number
of moves M makes on x. As soon as M ′ detects that M would make more than TimeM(n)
steps on x, it “knows” that M rejects x or runs forever; in this case, M ′ rejects x. We can
then convert M ′ to a TM M ′′ that has a time complexity which is polynomial in that of
M ; thus P contains exactly the same decision problems with this definition.

One could argue that allowing for any polynomial function in order to call a problem
tractable is very coarse and unsatisfying; e.g., it seems very doubtful why we should call a
TM with a time complexity of n1000 efficient. Why not bound the time complexity from
above more concretely, e.g., by defining tractable problems to be those that admit TMs
with a time complexity in O(n4)? There are good reasons why this is not done.

• Equivalence of different TM models. In Section 3.1, we considered different
restrictions and extensions of Turing machines, and argued that the expressive power
of all of them is the same. However, converting, e.g., an MTM into a TM with a
single tape both increases the size of the TM and its time complexity.
It can be shown that converting any model of a TM to any other model only increases
the time complexity polynomially. This allows us to switch between them in order to
prove lower and upper bounds on the time complexity of TMs for a given decision
problem L. If, e.g., we want to show that L is tractable, it is sufficient to design an
MTM M for L with polynomial time complexity; it then follows that there is a TM
M ′ for L with polynomial time complexity, as well. The degree of the time complexity
of M ′ may, however, be a lot larger than that of M . Conversely, if we want to show
that L does not admit a efficient TM, it is sufficient prove that there is no such TM
according to the most simple model; this directly implies that there neither is any
efficient more general TM.
Actually, we already made use of this fact when we discussed the alternative definition
of time complexity above.

• Equivalence to real computers. With arguments more involved than those above,
it can be argued that a TM can also simulate a “real computer.” Each computational
step of the computer takes a polynomial number of moves of the TM. We will not
describe the details of the proof here.
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To prove for a given decision problem L that it is contained in P , it thus suffices to
design an algorithm for L in some fixed programming language (or even pseudocode).

• Closure properties. The class of polynomial functions is closed under many
important operations; we say that polynomials are “robust.” This is crucial to build
up the complexity theory which we will introduce in Section 5.3.

– The sum p1 + p2 of two polynomials p1 and p2 yields another polynomial; e.g.,
(2n3 + n2) + (4n5 + 7n2 + 11) = 4n5 + 2n3 + 8n2 + 11.

– The multiplication p1 · p2 of two polynomials p1 and p2 also yields a polynomial;
e.g., (6n2 + 3n) · (n3 + 2) = 6n5 + 3n4 + 12n2 + 6n.

– Plugging a polynomial p1 into a polynomial p2 (thus replacing every variable n of
p2 by p1) also yields a polynomial p2(p1); e.g., p1 = n2+3n and p2 = 5n3+7n2+3n
leads to 5(n2 + 3n)3 + 7(n2 + 3n)2 + 3(n2 + 3n) = 5n6 + 45n5 + 142n4 + 177n3 +
66n2 + 9n.

• Practical relevance. Experience of many decades has shown that it is indeed
reasonable to call problems tractable if there are algorithms (likewise, TMs that
always halt) for them which work in polynomial time. Usually, if a problem arising
from a practical application admits an algorithm with polynomial time complexity, we
are also able to find such an algorithm with a rather small exponent such as n3 or n4.
Thus, problems in P are those that we can handle well with computers. Conversely,
problems that do not admit polynomial-time algorithms (or at least do not seem to)
and thus (seem to) require algorithms with a time complexity asymptotically larger
than a polynomial function cannot be solved in meaningful time.

5.2 Nondeterministic Turing Machines and the Class NP
We have encountered the principle of nondeterminism in the context of finite automata
(Section 1.3) and pushdown automata (Section 2.6); now we introduce nondeterminism for
TMs. Nondeterministic TMs (NTMs for short) are defined in the obvious way, i.e., the
components Q, Σ, Γ, δ, q0, , and F are defined as in the deterministic case (i.e., as in
Definition 3.1) with the only difference that δ is not a function that maps tuples of states
and letters to single triples of states, letters, and directions, but to sets of such triples. Such
a set may again be empty, contain a single triple, or all of them. Generally, NTMs do not
have to halt on all computations, but only on accepting ones. Analogously to MTMs, there
are NMTMs, which can be simulated by NTMs with a single tape.

For an NTM N = (Q,Σ,Γ, δ, q0, , F ), we can define the -relation similar to determin-
istic TMs; however, a move αqβ γpµ with p, q ∈ Q and α, β, γ, µ ∈ Γ∗ now incorporates
a nondeterministic guess in the transition from the first configuration to the second one;
the * -relation is defined accordingly. The language of N is then defined analogously to
that of deterministic TMs as

Lang(N) = {w ∈ Σ∗ | q0w * αpβ with α, β ∈ Γ∗ and p ∈ F} .
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We have seen that DFAs and NFAs are equivalent with respect to their expressive power.
Now we prove that the same is true for TMs and NTMs.

Theorem 5.2. Every TM can be converted into an equivalent NTM.

Proof. We can use the exact same arguments as in the proof of Theorem 1.5, and regard
any given TM as an NTM that makes no nondeterministic guesses at all. �

Theorem 5.3. Every NTM can be converted into an equivalent TM.

Proof. This implication is again not as straightforward as the opposite direction. Similarly
to the proof of Theorem 1.6, let N = (QN ,ΣN ,ΓN , δN , q0,N , , FN) be an NTM with
Lang(N) = L, and let us design a TM M = (QM ,ΣM ,ΓM , δM , q0,M , , FM ) with ΣM = ΣN

and Lang(M) = L. Without loss of generality, we assume that the input alphabets are
binary. As opposed to converting NFAs to DFAs, it is now not sufficient to mimic being in
a number of states at the same time. We can, however, follow an idea that is still somewhat
similar to the powerset construction; the key is to consider the different configurations in
which N can be after a fixed number of moves.

M is a 4-MTM which, as described in Section 4.3, first writes the encoding of N onto
its second working tape. M then copies its input x from the input tape to its third working
tape, converting it to the same encoding as in the encoding of N (i.e., 0 is encoded as 0 and
1 as 00, and 1s separate single letters). The fourth tape is used for auxiliary computations.
M now simulates N on x as follows.

• First, M writes the initial configuration of N on x on its first tape. By concatenating
a ∗ to this configuration it is marked as the current configuration. It positions the
head on the third working tape on the first letter of x.

• Depending on the current state of N (indicated on the first tape), and the currently
scanned letter (indicated on the third tape), M searches a corresponding transition
on the first tape.
If the current state is an accepting state, M also moves to an accepting state.
If no transition is found, N gets stuck, and therefore also M gets stuck by entering a
state without outgoing transitions.
If a transition is found, let r denote the number of different choices, out of which one
is chosen nondeterministically. M writes all possible successor configurations to the
first working tape. This is done by copying the current configuration r times to the
end of the tape and then modifying them to realize the r choices.

• After that, M moves the tape head of its first working tape back to the current
configuration, removes the ∗ and writes it behind the next configuration.

• This is iterated until either an accepting state is found in the current configuration,
in which case M moves to an accepting state, or N gets stuck, in which case M gets
stuck as well.
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Suppose that N accepts x after n moves, and suppose that, for any transition, N has a
choice between at most m possibilities. This means that there are m different configurations
in which N can be after one move, m2 configurations in which it can be after two moves,
and so on. In the sum this makes

n∑
i=1

mi ≤ nmn

configurations which M needs to write down. However, this means that M accepts after
finite time. Essentially, M performs a breadth-first search on the configuration tree of M
on x. It follows that M accepts x if and only there is an accepting computation of N of x,
i.e., if and only if N accepts x. �

Theorem 5.3 proves that NTMs and TMs have the same expressive power. Then again,
we note that M may be a lot larger than N , and furthermore n moves of N translate to at
most nmn moves of M , which may thus take exponentially more time. Of course, this may
be a very pessimistic bound.

Definition 5.4 (The Class NP). A language L is called solvable in nondetermin-
istic polynomial time if there is an NTM N with Lang(N) = L and TimeN (n) ∈ O(nd)
for some fixed d ∈ N and N always halts after at most TimeN (n) moves. We say that L
is solvable in nondeterministic polynomial time, and the corresponding class is

NP = {L | L is solvable in nondeterministic polynomial time} .

Note that, as the NTM in the above definition is guaranteed to halt, we trivially have
NP ⊆ LR, i.e., all problems in NP are decidable.

Some of the problems we study in what follows are defined on graphs, for which we
want to decide whether they have some certain properties. At all times, with “graph” we
mean both an undirected and unweighted graph.

Definition 5.5 (Independent Set). Let G = (V,E) be a graph. An independent
set in G is any set of vertices I such that no vertices from I are connected by an edge.

Figure 26a shows an independent set of size four in a graph with nine vertices. The
counterpart of independent sets are called cliques, which are set of vertices that are all
pairwise connected; a clique of size four is shown in Figure 26b.

Definition 5.6 (Clique). Let G = (V,E) be a graph. A clique in G is any set of
vertices C such that any two vertices from C are connected by an edge.

The independent set problem is, given a graph G and an integer k, to find out whether G
contains an independent set of size k (or larger). As for the Hamiltonian cycle problem (we
simply write “HC” instead of LHC), which we defined at the very beginning in Section 1.1,
G is encoded by its adjacency matrix which is a word over Σgraph. The value of k is written
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down in binary as a word over Σbin. The graph from Figure 26a and the integer 4 would
then be encoded as

x = 011101011#101011111#110000001#100001101#010001101#110110010#
010110011#110001101#111110110##11 .

In order to keep the notation simple, we will simply write “(G, k)” as an input of
IND-SET and similar problems, just as we wrote “(Code(M), w)” instead of Code(M)111w
as inputs of LU. Formalized as a decision problem (we again write “IND-SET” instead of
LIND-SET), we get

IND-SET = {(G, k) | G contains an independent set of size k} .

Theorem 5.7. IND-SET ∈ NP.

Proof. We show IND-SET ∈ NP constructively by designing an NTM NIND-SET that
decides, for a given input x = (G, k) to IND-SET, whether x ∈ IND-SET or x /∈ IND-SET
and that has a polynomial time complexity. Let m be the number of vertices of G, i.e., G
is represented by an adjacency matrix of size m×m. Thus, the encoding of G has a length
of m2 + (m− 1), accounting for the #s, then there are two #s and the binary encoding
of k, which has length dlog2(k + 1)e; hence |x| = m2 +m+ 1 + dlog2(k + 1)e. Obviously,
k ≤ m for any feasible input.

• NIND-SET first scans the input until it encounters two consecutive #s. It then reads
the succeeding bit string and interprets it as an integer k. This needs O(|x|) moves.

• Next, NIND-SET writes down k distinct integers between 1 and m in binary. This
is done nondeterministically, i.e., NIND-SET is designed such that there is a run for
every possible sequence of k such numbers. Every number can be encoded with
dlog2(m+ 1)e bits and can thus be written down with O(logm) moves. Writing down
all numbers can therefore be done within O(k logm) ⊆ O(m2) ⊆ O(|x|) moves.
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• The k integers are now interpreted as the indices of k vertices of G. Due to the design
of NIND-SET, there may be any such sequence written down on NIND-SET’s tape. If G
indeed has an independent set I of size k, there is a run of NIND-SET such that I is
also written down; if there is no such independent set, every run leads to a sequence
of indices such that at least two of the corresponding vertices are connected by an
edge.
Therefore, NIND-SET now checks whether the k indices indeed encode an independent
set. It does so by looking up the corresponding entries in the adjacency matrix of G.
For a single index, it needs to consider k − 1 cells, which can be done with O(m2)
moves. If, at any time a 1 is found in a cell that is checked, NIND-SET immediately
halts and rejects. Checking all cells can be done within O(km2) ⊆ O(|x|2) moves. If
all cells contain a 0, NIND-SET finally accepts.

Since NIND-SET only accepts x if it guesses nondeterministically a sequence of m vertices
that form an independent set in G, we have the equivalence

x ∈ IND-SET ⇐⇒ there is a run of NIND-SET in which it accepts x ,

and therefore L(NIND-SET) = IND-SET. Since NIND-SET makes a number of moves that is
polynomial in |x| and always halts, we have TimeN(n) ∈ O(nd), for some d ∈ N, and the
claim follows. �

By arguments very similar to those used in the proof of Theorem 5.7, we can also show
that HC ∈ NP. Here, an NTM first nondeterministically guesses a permutation of the
vertices of the input graph and then checks whether it encodes a Hamiltonian cycle; if so, it
accepts, otherwise it rejects.

5.3 Polynomial-Time Reductions and NP-Completeness
The class NP contains all decision problems L for which we can nondeterministically decide
in polynomial time whether x ∈ L or x /∈ L for any given x. Another point of view is
that we can verify in polynomial time that an input x is indeed a “yes” instance of L.
Suppose that we are dealing with IND-SET, but instead of only receiving an input x to
the problem, we also obtain a so-called witness as to whether x ∈ IND-SET, which is
a binary word that can be used to verify this fact. In this case, the witness is simply
an independent set of size k in G. We can then design a “verifier” MIND-SET that works
similarly to NIND-SET from the proof of Theorem 5.7. Instead of making nondeterministic
guesses, MIND-SET uses the witness to verify that an independent set of size m exists. Since
MIND-SET works in polynomial time, we call it a polynomial-time verifier. This can be
done for all problems in NP , i.e., NP contains exactly those decision problems for which
we can verify in polynomial time whether a given instance is a “yes” instance.

It makes sense to restrict ourselves to such decision problems if we are looking for those
that are solvable in polynomial time. In other words, if there is no NTM (or equivalently,
polynomial-time verifier) that solves a problem in polynomial time, it is hopeless to search
for a TM with polynomial time complexity for this problem. But are TMs and NTMs even
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equally powerful not only with respect to their expressive power but also with respect to
the time they take (i.e., only different by a polynomial)?

Giving an answer to this question seems far from trivial. Up to today we do not know
any nontrivial (i.e., beyond linear) lower bound on the time complexity necessary to solve
any of the problems in NP . This means that we have no clue whether any of them need,
e.g., exponential running time. An idea to shed some light on this question is to identify
a class of “hardest” problems within NP. Also for those we do not have any nontrivial
bounds so far, but at least we know that these problems are good candidates to search
among. This approach leads to a concept of “relative hardness” in that the other problems
in NP are not harder than those. This is formalized by the fact that, if at any point
someone would find a polynomial-time algorithm for any of these hard problems, we would
immediately have polynomial-time algorithms for all problems in NP. The hardness of
solving problems in NP efficiently can thus be “reduced” to efficiently solving the hard
problems. To prove that a problem is hard in this sense, we therefore use a special kind
of reduction. A polynomial-time reduction establishes a connection between L1 and a
second language L2 implying that

if L2 were decidable in polynomial time,
then L1 would be decidable in polynomial time, too.

The formal definition of such a reduction is very similar to that of Definition 4.11 with
the only difference that we demand that it can be carried out in polynomial time.

Definition 5.8 (Polynomial-Time Reduction). Let L1 and L2 be two decision prob-
lems. If there is a TM P with TimeP (n) ∈ O(nd), for some d ∈ N, which converts inputs
x of L1 to inputs y = P (x) of L2 such that

x ∈ L1 ⇐⇒ y ∈ L2 ,

we say that there is a polynomial-time reduction from L1 to L2, denoted by
L1≤p L2.

With the concept of a polynomial-time reduction, we have a formal way to express that
a given decision problem is “as hard as” another given decision problem with respect to the
ability to solve the problems in polynomial time.

Theorem 5.9. Let L1 and L2 be two languages, and suppose L1≤p L2. If L1 is not decidable
in polynomial time, then neither is L2.

Proof. The idea of the proof is essentially that of the proof of Theorem 4.12; there is
only a new aspect, namely the time it takes to perform the reduction. Since there is a
polynomial-time reduction from L1 to L2, there is a TM P with polynomial time complexity
that converts inputs to L1 to inputs to L2 as in Definition 5.8.

For a contradiction, suppose L2 were decidable in polynomial time (but not L1), and
let M2 be a TM for this task. A TM M1 for L1 takes its input x and converts it to an
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input y to L2 using P ; this can be done in time p1(|x|), where p1 is a polynomial function.
Since P made a polynomial number of moves, the output y it created also has a length
polynomial in |x|; specifically, |y| ≤ p1(|x|). M1 now simulates M2 on y, and since M2
works in polynomial time with respect to its input, it also works in polynomial time with
respect to |x|. More formally, there is a polynomial function p2 such that M2 works in time
p2(|y|) ≤ p2(p1(|x|)). M2’s answer as to whether y ∈ L2 or y /∈ L2 is then also correct for
the question whether x ∈ L1 or x /∈ L1. Consequently, M1 decides L1 in polynomial time
(bounded from above by p1(|x|) + p2(p1(|x|))), which is a contradiction to our assumptions,
and thus L2 cannot be decidable in polynomial time. �

Now we can use this kind of reduction in order to define the aforementioned hardest
class of problems (within NP) such that, if one of them can be solved in polynomial time,
all problems in NP can.

Definition 5.10 (NP-Hardness and NP-Completeness). A decision problem L
is called NP-hard if, for every L′ ∈ NP, we have L′≤p L. L is called NP-complete
if

• L ∈ NP and

• L is NP-hard.

The concept of polynomial-time reductions allows us to show that a problem is NP-
complete by reducing it to another NP-complete problem. However, we need a first problem
to start with.

5.4 Cook’s Theorem
Similar to Ldiag, which we used as a first problem that is not recursive, and which then
allowed us to prove other problems not to be recursive as well by reductions, we now need
an NP-complete problem that plays the same role in complexity theory. In other words,
for this particular problem, we need to show that every problem in NP reduces to it; i.e.,
if this one problem can be solved in polynomial time, then all problems in NP can, and
thus P = NP would follow.

Inputs of the problem are given as specific formulae.

Definition 5.11 (Boolean Expression and Conjunctive Normal Form). Boolean
variables are variables that are either 0 or 1. A literal is either a Boolean variable
x or its negation (denoted by x). The “or” (denoted by ∨) of one or more literals is
called a clause; the “and” (denoted by ∧) of one or more clauses is called a Boolean
expression in conjunctive normal form.

For simplicity, we abbreviate conjunctive normal form by CNF, not to be confused
ChNF, which is short for Chomsky normal form. A truth assignment ϕ for E assigns a
value of 0 or 1 to each variable of a Boolean expression E; by ϕ(E) we denote the value of
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E if the values of E’s variables are assigned according to ϕ. As an example, consider the
Boolean expression

E = (x1 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3) ∧ (x4)

in CNF together with the truth assignment ϕ(x1) = 1, ϕ(x2) = 0, ϕ(x3) = 0, and ϕ(x4) = 1,
which yields

ϕ(E) = (1 ∨ 1) ∧ (1 ∨ 0 ∨ 1) ∧ (0 ∨ 1 ∨ 0) ∧ (0 ∨ 1) ∧ (1) ,

and hence ϕ(E) = 1 or “ϕ makes E true.” If such a truth assignment satisfying all clauses
exists for E, we call E satisfiable. The satisfiability problem, SAT for short, is, given a
Boolean expression E in CNF, to decide whether it is satisfiable, i.e.,

SAT = {E is a Boolean expression in CNF | ∃ϕ with ϕ(E) = 1} .

An input for SAT can have an arbitrary number of literals. Since the alphabet size
needs to be fixed and independent of the input, we need to be careful with the encoding at
this point. An easy way is to consider the alphabet ΣBool = {x, 0, 1, (, ),¬,∧,∨} and encode
the variable xi by “xBin(i),” where Bin(i) is the binary encoding of i. The expression
(x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x6) ∧ (x3 ∨ x5 ∨ x7) is then encoded as

(x1 ∨ ¬x10 ∨ x101) ∧ (x10 ∨ x11 ∨ ¬x110) ∧ (¬x11 ∨ ¬x101 ∨ x111) .

With SAT, we now have a first NP-complete problem, i.e., SAT is very general in the
sense that every problem in NP reduces to it; it is consequently our basic building block
for the theory of NP-completeness.

Theorem 5.12 (Cook’s Theorem). SAT is NP-complete.

Proof. According to Definition 5.10, proving a problem to be NP-complete means to show
both that it is in NP, and that every problem in NP reduces to it in polynomial time.
Showing the former is rather simple. An NTM MSAT for SAT simply guesses a truth
assignment ϕ of the given Boolean expression E and then checks whether ϕ(E) = 1. This
can obviously be done in time polynomial in the length of E.

Now it remains to show that every problem in NP reduces to SAT in polynomial time.
Let L be any decision problem in NP; we show L≤p SAT. Since L ∈ NP, according
to Definition 5.4, there is an NTM N = (Q,Σ,Γ, δ, q0, , F ) with Lang(N) = L and
TimeN(|x|) ≤ p(|x|) for a polynomial function p(|x|) and any word x ∈ Σ∗. To keep our
arguments simple, we assume that N with Q = {q0, q1, . . . , ql−1} and Γ = {X1, X2, . . . , Xz}
is an NTM that

• has one semi-infinite tape,

• has a tape alphabet with Xz = ,

• is not allowed to make stationary moves with its tape head, and
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• has one accepting state; without loss of generality, we assume that this is state ql−1.

We now show how to convert N and a given input word x ∈ Σ∗ to a Boolean expression
EN(x) in CNF such that the equivalence

x ∈ Lang(N) ⇐⇒ EN(x) is satisfiable

holds.
The initial configuration of N on x = x1x2 . . . xm is q0x1x2 . . . xm, and generally a

configuration is given by

Y1Y2 . . . Yi−1qYi . . . Yn .

Since the running time of N on x is bounded from above by p(|x|) and in one move of N
its tape head can move at most one cell, we immediately get3

n ≤ max{|x|+ 1, p(|x|) + 1} = p(|x|) + 1 ,

and consequently at most p(|x|) + 1 cells of N ’s tape contain a symbol different from
when N is given x. To make the following arguments simpler, we pad all configurations
by blanks such that each of them has a length of exactly p(|x|) + 2, i.e., exactly the first
p(|x|) + 1 cells of the tape are considered. Furthermore, we modify N such that it loops in
ql−1 whenever it reaches this state. This way, we get

N accepts x ⇐⇒ ql−1 appears in the (p(|x|) + 1)th configuration .

A configuration of N on x is uniquely defined by three parameters, namely the current
state, head position, and tape content. For each of them, there will be a class of Boolean
variables that make up EN(x).

• Current state. There are l · (p(|x|) + 1) Boolean variables sk,t with 0 ≤ k ≤ l − 1
and 0 ≤ t ≤ p(|x|) such that

sk,t = 1 ⇐⇒ N is in state qk after its tth move.

Here and subsequently, “after the 0th move” means that N made no move yet.

• Current head position. There are (p(|x|) + 1) · (p(|x|) + 1) Boolean variables pi,t

with 1 ≤ i ≤ p(|x|) + 1 and 0 ≤ t ≤ p(|x|) such that

pi,t = 1 ⇐⇒ N ′s head is scanning the ith tape cell after its tth move.

• Current tape content. There are (p(|x|) + 1) · z · (p(|x|) + 1) Boolean variables
ci,j,t with 1 ≤ i ≤ p(|x|) + 1, 1 ≤ j ≤ z and 0 ≤ t ≤ p(|x|) such that

ci,j,t = 1 ⇐⇒ N ′s ith tape cell contains Xj after its tth move.
3Without loss of generality, we assume p(|x|) ≥ |x|.
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EN(x) is composed of four subformulae that ensure that EN(x) is only satisfiable if
there is an accepting computation of N on x, i.e., a sequence of configurations that we
consider to be of length p(|x|) + 2 each.

• Uniqueness. At first, we have to make sure that EN(x) indeed corresponds to a
sequence of valid configurations of N on x. To this end, we have to ensure that in
each of the p(|x|) + 1 time steps (i.e., after each number of possible moves), N is in
exactly one state, scans exactly one tape cell, and on each cell there is written exactly
one letter from Γ; it must, e.g., be forbidden that s0,3 and s1,3 are both true since N
cannot be in the states q0 and q1 simultaneously after it made three moves.
For a fixed t with 0 ≤ t ≤ p(|x|), exactly one of the variables sk,t has to be 1 for
exactly one k with 0 ≤ k ≤ l − 1; i.e., EN (x) will not be satisfiable if all such sk,t are
0 or if two of them are 1. The first point can be ensured by

s0,t ∨ s1,t ∨ · · · ∨ sl−1,t

for every t. Forcing that two Boolean variables a and b are not true at the same time
can be achieved by a ∧ b, or equivalently (using de Morgan’s laws to ensure CNF),
a ∨ b; the second part is thus ensured by

(s0,t ∨ s1,t) ∧ (s0,t ∨ s2,t) ∧ · · · ∧ (s0,t ∨ sl−1,t)
∧ (s1,t ∨ s2,t) ∧ (s1,t ∨ s3,t) ∧ · · · ∧ (s1,t ∨ sl−1,t)
∧ . . .

∧ (sl−2,t ∨ sl−1,t) .

Summing up, we obtain

Ustate,N,t(x) =
( l−1∨

k=0
sk,t

)
∧

∧
0≤k<k′≤l−1

(sk,t ∨ sk′,t)

as the subformula of EN (x) that ensures that N is in exactly one state after making t
moves.
With the same construction, we can make sure that, for any fixed t, N ’s head scans
exactly one cell of the tape and the tape has a unique content. This yields two
subformulae

Uposition,N,t(x) =
( p(|x|)+1∨

i=1
pi,t

)
∧

∧
0≤i<i′≤p(|x|)+1

(pi,t ∨ pi′,t)

and

Ucontent,N,t(x) =
( p(|x|)+1∧

i=1

( z∨
j=1

ci,j,t

))
∧

∧
0≤i≤p(|x|)+1

( ∧
1≤j<j′≤z

(ci,j,t ∨ ci,j′,t)
)
,

and the conjunction of all three subformulae for all t with 0 ≤ t ≤ p(|x|)

UniqueN(x) =
p(|x|)∧
t=0

(
Ustate,N,t(x) ∧ Uposition,N,t(x) ∧ Ucontent,N,t(x)

)
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ensures that all configurations are unique.
The total number of literals in this subformula is polynomial in |x|; in particular, it is
in O(p(|x|)3), where the O-notation hides a constant depending on the number l of
states and the size z of Γ.

• N starts in initial configuration. Second, we ensure that N starts in the initial
configuration, which we represent as

q0x1x2 . . . xm . . .︸ ︷︷ ︸
p(|x|)+1−m

.

Thus, we have to make sure that, in time step t = 0, N is in state q0 and N ’s head
scans the first cell of its tape. Furthermore, for i with 1 ≤ i ≤ m, the ith letter xi of
x is written on the ith cell; for i with m + 1 ≤ i ≤ p(|x|) + 1, the ith cell contains
a blank . Suppose that xi is the letter Xji

∈ Γ with 1 ≤ ji ≤ z − 1, and thus
x = Xj1Xj2 . . . Xjm ; recall that Xz = . Then we obtain the subformula

StartN(x) = s0,0 ∧ p1,0 ∧ c1,j1,0 ∧ c2,j2,0 ∧ · · · ∧ cm,jm,0︸ ︷︷ ︸
the input x

∧ cm+1,z,0 ∧ · · · ∧ cp(|x|)+1,z,0︸ ︷︷ ︸
the blanks at the end

,

with p(|x|) + 2 literals.

• N ends in accepting configuration. Third, we make sure that N accepts x. Recall
that we assume that N does not leave its accepting state ql−1 once it is encountered.
If x is accepted, this state therefore has to appear in the last configuration (i.e., the
p(|x|)th configuration) of N on x, which is taken care of by the subformula

AcceptN(x) = sl−1,p(|x|) ,

which consists of a single literal.

• N makes valid moves. Last, we have to ensure that EN(x) can only be satisfied if
there is a sequence of configurations of N on x that constitute a valid computation.
To this end, we first have to make sure that, if N scans the ith tape cell after t moves,
only this cell is allowed to be changed after the (t+ 1)th move.
For every i and j with 1 ≤ i ≤ p(|x|) + 1 and 1 ≤ j ≤ z, ci,j,t ↔ ci,j,t+1 ensures
that the content of the ith cell does not change from time step t to t + 1. It is
only allowed to be changed if in time step t this ith cell is scanned, which leads to
(ci,j,t ↔ ci,j,t+1) ∨ pi,t. Since a↔ b is equivalent to (a ∨ b) ∧ (a ∨ b) for two Boolean
variables a and b, we obtain the subformula

Mhead,N,t(x) =
p(|x|)+1∧

i=1

( z∧
j=1

(
(ci,j,t ∨ ci,j,t+1) ∧ (ci,j,t ∨ ci,j,t+1)

)
∨ pi,t

)

=
p(|x|)+1∧

i=1

( z∧
j=1

(
(ci,j,t ∨ ci,j,t+1 ∨ pi,t) ∧ (ci,j,t ∨ ci,j,t+1 ∨ pi,t)

))
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in CNF.
Of course, EN (x) has to mimic the transition function δ of N . Consider the transition

(qku , Xju , Dpu) ∈ δ(qk, Xj)

with D1 = L and D2 = R; we set d1 = −1 and d2 = 1. Suppose that |δ(qk, Xj)| = r,
i.e., there is a nondeterministic guess between r transitions, and thus 1 ≤ u ≤ r. We
thus design a subformula that can be made true if and only if the (t+ 1)th move is in
accord with δ (and any corresponding nondeterministic choice). This is achieved by

Mtrans,N,t(x) =
p(|x|)∧
i=1

( z∧
j=1

( l−1∧
k=0

((
sk,t ∨ pi,t ∨ ci,j,t

)

∨
r∨

u=1

(
sku,t+1 ∧ pi+dpu ,t+1 ∧ ci,ju,t+1

))))
,

︸ ︷︷ ︸
FN,t(i,j,k)

which, for any fixed k, i, and j, is true if N is not in state qk, or the head is not
positioned on the ith tape cell, or the ith letter on this cell is not Xj; conversely, if
the state, tape head position, and tape content are according to the transition, the
subformula can only be made true by following a transition defined by δ.
Note that the functions FN,t(i, j, k) with 0 ≤ k ≤ l − 1 and 1 ≤ i ≤ p(|x|) are not in
CNF.4 However, converting these parts into CNF leads to an exponential growth with
respect to r only, and the resulting formula still has a length polynomial in |x|.
The conjunction of the two subformulae for all t with 0 ≤ t ≤ p(|x|)− 1 yields

MoveN(x) =
p(|x|)−1∧

t=0

(
Mhead,N,t(x) ∧Mtrans,N,t(x)

)
.

The total number of literals in this subformula is in O(p(|x|)2); here the O-notation
hides a constant depending on l, z, and r.

Finally, we set

EN(x) = UniqueN(x) ∧ StartN(x) ∧ AcceptN(x) ∧MoveN(x) ,

and due to the construction it follows that this Boolean expression is satisfiable if and only
if there is a computation of N that accepts x.

It remains to show that the construction can be performed in time polynomial with
respect to the input size |x|. The number of literals in EN (x) is in O(p(|x|)3); encoding the
index of a single literal can hence be done with O(log(|x|)), where the O-notation hides a
constant that depends on the degree of the polynomial that bounds the time complexity of
N . The length of EN(x) is therefore also polynomial in |x|, and the construction from N
and x can be performed in polynomial time. �

4Observe that, here, we cannot simply apply de Morgan’s law in order to ensure CNF.
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Figure 27.

In order to demonstrate how the construction used in the proof of Theorem 5.12
works, let us consider an example with the NTM N00,1 = (Q,Σ,Γ, δ, q0, , F ) with Q =
{q0, q1, q2, q3, q4, q5}, Σ = {0, 1}, Γ = {0, 1, A, }, and F = {q5}, which is shown in
Figure 27. N00,1 accepts the language

L00,1 = {w ∈ {0, 1}∗ | w starts with 00 and ends with 1} ,

and to this end it reads a given input one time from left to right until it encounters the
first blank; thus TimeN00,1(n) = n. As an example, consider the input word 00101, which is
accepted by N00,1 after six moves and hence involves seven configurations.

We show the main points of constructing the Boolean expression EN00,1(00101). Since
there are six states, four tape letters, and seven configurations, the construction from the
proof of Theorem 5.12 yields

• 6 · 7 = 42 Boolean variables s0,0, s1,0, . . . , s5,6,

• 7 · 7 = 49 Boolean variables p1,0, p2,0, . . . , p7,6, and

• 7 · 4 · 7 = 196 Boolean variables c1,1,0, c1,1,1, . . . , c7,4,7.

We enumerate the letters from Γ as 0, 1, A, . Designing the first part UniqueN00,1(00101)
of the expression EN00,1(00101) is a straightforward application of what is done in the proof
of Theorem 5.12.

Making sure that N00,1 has to start with an initial configuration q000101 is done
with the subexpression

StartN00,1(00101) = s0,0 ∧ p1,0 ∧ c1,1,0 ∧ c2,1,0 ∧ c3,2,0 ∧ c4,1,0 ∧ c5,2,0 ∧ c6,4,0 ∧ c7,4,0 ,

where the last two variables model that there are two blanks right of the input word such
that the string has a length of seven.
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That EN00,1(00101) can be satisfied if and only if N00,1(x) ends in an accepting state is
taken care of by the simple expression

AcceptN00,1(00101) = s5,6 ,

which just means that N00,1 is in the accepting state q5 after six moves.
The subformulae Mhead,N00,1,t(00101) of MoveN00,1(00101) do not depend on the tran-

sitions of the NTM, as they simply state that only correct cells of the tape can be
modified. It is more interesting to have a look at the subformulae Mtrans,N00,1,t(00101).
Consider reading a 0 in state q0; there is a nondeterministic guess involved, and we have
δ(q0, 0) = {(q1, A,L), (q2, A,R)}. Let us look at the first option, which involves q1. For a
fixed tape position i and time step t, the subformula

s1,t+1 ∧ pi−1,t+1 ∧ ci,3,t+1

can only be made true if in the next time step (i.e., after the (t+ 1)th move) the state q1 is
entered, the cell left of i is scanned, and cell i contains the third letter of Γ, which is A.
Likewise, for the second option, we obtain

s2,t+1 ∧ pi+1,t+1 ∧ ci,3,t+1 .

We consider the “or” of these two expressions, and further combine them with expressions
(the first part of FN00,1,t(i, j, k)) that make sure that this formula only needs to be true if
and only if in time step t the current state is is q0 and the symbol read is 0. Then the “and”
over all possible states, tape positions, tape letters, and time steps, ensures that only valid
transitions can be followed in order to satisfy EN00,1(00101).

The accepting computation of N00,1 on 00101 is

q000101 Aq20101 AAq3101 AA1q301 AA10q31 AA10Aq4 AA10q5A .

The part of EN00,1(00101) mimicking this sequence of seven configurations is

StartN00,1(00101) {state: q0, position: 1, read: 0}
∧ s2,1 ∧ p2,1 ∧ c1,3,1 {state: q2, position: 2, written: A, read: 0}
∧ s3,2 ∧ p3,2 ∧ c2,3,2 {state: q3, position: 3, written: A, read: 1}
∧ s3,3 ∧ p4,3 ∧ c3,2,3 {state: q3, position: 4, written: 1, read: 0}
∧ s3,4 ∧ p5,4 ∧ c4,1,4 {state: q3, position: 5, written: 0, read: 1}
∧ s4,5 ∧ p6,5 ∧ c5,3,5 {state: q4, position: 6, written: A, read: }
∧ s5,6 ∧ p5,6 ∧ c6,4,6 {state: q5, position: 5, written: , read: A}
∧ AcceptN00,1(00101) .

5.5 Other NP-Complete Problems
Our goal is to prove other problems to be NP-complete by polynomial-time reductions.
According to Definition 5.10, we have to show that every problem in NP reduces to the
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given problem L ∈ NP in order to show its NP-completeness; this is what we did in
the proof of Theorem 5.12. Having a first NP-complete problem at hand, however, it is
sufficient to reduce this single problem to L, since this implies that all problems in NP
reduce to L in polynomial time.

Theorem 5.13. Let L1, L2 ∈ NP be two languages, and suppose L1≤p L2. If L1 is NP-
complete, then L2 is NP-complete, too.

Proof. First, since L1 is NP-complete, due to Definition 5.10 there is a polynomial-time
reduction from L to L1 for every L ∈ NP, i.e., L≤p L1. There is thus a TM P1 that
converts any input x for L to an input y for L1 in time p1(|x|), where p1 is a polynomial
function. Second, since L1≤p L2, there is a TM P2 that converts inputs y for L1 to inputs
z for L2 in time p2(|y|) for a polynomial function p2.

Using P1 and P2 consecutively, the input x for L can thus be converted into an input y
for L1 in time at most p1(|x|) with |y| ≤ p1(|x|), and then y can be converted to an input z
for L2 in time at most p2(|y|) ≤ p2(p1(|x|)). As a consequence, x is converted to z in time
at most p1(|x|) + p2(p1(|x|)). This constitutes a polynomial-time reduction from L to L2,
and therefore L2 is NP-complete. �

Note that, if we drop the assumption that L1 and L2 are both in NP , the same proof
can be used to show L2 to be NP-hard if L1 is NP-hard.

By now, there are thousands of NP-complete problems, and so far no one was able
to either show that any of them allows for a polynomial-time algorithm (in which case
P = NP) or that it cannot be solved in polynomial time (in which case P 6= NP). Here,
we will only look at four specific problems. The first one is a special variant of SAT, and the
other three are all defined on graphs; as before, by “graph” we always refer to undirected
and unweighted graphs.

5.5.1 The Satisfiability Problem with Clauses of Length Three

An input for SAT is by definition given in CNF; now we consider a subproblem which
only allows clauses with exactly three literals; we call this a 3CNF, and the corresponding
problem is called 3SAT. An input for 3SAT is, e.g.,

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x3 ∨ x4 ∨ x5) ,

and even though the restriction to 3CNF seems to remove quite some of the complexity of
the problem, it is still NP-complete.

Theorem 5.14. 3SAT is NP-complete.

Proof. Clearly, 3SAT ∈ NP by the same arguments we used to argue that SAT ∈ NP . We
now prove that 3SAT is NP-hard by SAT≤p 3SAT, which is sufficient due to Theorem 5.13.
Let E be a Boolean expression in CNF that is an input for SAT. We show how to convert
E to a Boolean expression E ′ in 3CNF that is satisfiable if and only if E is satisfiable. We
consider each of the clauses C1, C2, . . . , Cn of E separately, and describe how each Ci with
1 ≤ i ≤ n is converted to a sequence of clauses each with three literals that are satisfiable if
and only if Ci is satisfiable.
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• If Ci = (li), i.e., it consists of a single literal, then E ′ contains four clauses

E ′i = (li ∨ y1 ∨ y2) ∧ (li ∨ y1 ∨ y2) ∧ (li ∨ y1 ∨ y2) ∧ (li ∨ y1 ∨ y2)

that replace Ci, where y1 and y2 are “new” Boolean variables (i.e., variables that are
not contained in E).
If a truth assignment ϕ satisfies E, then it has to set Ci and thus li to 1. If there is
such a ϕ, then there is also an truth assignment ϕ′ for E ′i that extends ϕ; ϕ′ satisfies
E ′i by setting li to 1 and y1 and y2 arbitrarily.
Conversely, if a truth assignment ϕ sets li to 0, there is no possibility to extend ϕ
such that E ′i is satisfied, independent of how the values of y1 and y2 are chosen.

• If Ci = (li,1 ∨ li,2), i.e., it consists of two literals, then E ′ contains two clauses

E ′i = (li,1 ∨ li,2 ∨ y) ∧ (li,1 ∨ li,2 ∨ y)

instead of Ci, where y is a new variable. Similarly as in the first case, if a truth
assignment ϕ makes Ci true, it can be extended to a truth assignment ϕ′ that makes
E ′i true; if there is no such ϕ, then E ′i cannot be satisfied.

• If Ci = (li,1 ∨ li,2 ∨ li,3), i.e., it consists of three literals, then E ′ contains E ′i = Ci.

• If Ci = (li,1 ∨ li,2 ∨ · · · ∨ li,m) with m ≥ 4, i.e., it consists of more than three literals,
then let y1, y2, . . . , ym−3 be m− 3 new variables. Ci is replaced by

E ′i = (li,1 ∨ li,2 ∨ y1) ∧ (y1 ∨ li,3 ∨ y2) ∧ (y2 ∨ li,4 ∨ y3) ∧ (y3 ∨ li,5 ∨ y4) ∧ . . .
· · · ∧ (ym−4 ∨ li,m−2 ∨ ym−3) ∧ (ym−3 ∨ li,m−1 ∨ li,m) ,

which consists of m− 2 clauses.
Now consider a truth assignment ϕ that satisfies Ci by setting one of its literals to
1, say li,k. In this case, there is a truth assignment ϕ′ that makes E ′i true, by also
setting li,k to 1 together with y1, y2, . . . , yk−2; furthermore, yk−1, yk, . . . , ym−3 are set
to 0. This leads to

ϕ′(E ′i) = (li,1 ∨ li,2 ∨ 1) ∧ (0 ∨ li,3 ∨ 1) ∧ (0 ∨ li,4 ∨ 1) ∧ . . .
· · · ∧ (0 ∨ li,k ∨ 0) ∧ . . .
· · · ∧ (1 ∨ li,m−3 ∨ 0) ∧ (1 ∨ li,m−2 ∨ 0) ∧ (1 ∨ li,m−1 ∨ li,m) ,

which is true since the kth clause of E ′i is true due to li,k = 1.
Conversely, any truth assignment that does not make Ci true cannot be extended to
a truth assignment that makes E ′i true. To see this, note that all literals of Ci are set
to false by such an assignment. It is not possible to make all clauses of E ′i true by
choosing the values of the new variables accordingly, because there are m− 2 clauses
but only m− 3 new variables, and each variable can only make at most one clause
true.
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Finally, we set E ′ = E ′1 ∧ E ′2 ∧ · · · ∧ E ′n. Due to the construction of E ′ and the
considerations above, if there is a truth assignment that makes E true, then there is truth
assignment that makes E ′ true. If, however, there is no truth assignment that makes E
true, there is no truth assignment that makes E ′ true. Hence, we get the equivalence

E ∈ SAT ⇐⇒ E ′ ∈ 3SAT .

It follows that 3SAT is NP-complete. �

We see that 1SAT is decidable in polynomial time; easily, if all clauses of a Boolean
expression are of size one, this expression is satisfiable if and only if no literal is the negation
of another one. 2SAT is also in P although proving this is not as straightforward.

5.5.2 The Independent Set Problem

We have already described the decision problem IND-SET in Section 5.2; it turns out that
this problem is also NP-complete, which can be shown by a polynomial-time reduction
from 3SAT.

Theorem 5.15. IND-SET is NP-complete.

Proof. We already know that IND-SET ∈ NP, thus it remains to show that it is also
NP-hard. To this end, we show 3SAT≤p IND-SET. Let E be a Boolean expression as
input for 3SAT, and suppose that E consists of n clauses C1, C2, . . . , Cn; the literals of Ci

are denoted by li,1, li,2, and li,3. We construct an input (G, k) to IND-SET as follows. G
consists of n cliques K1, K2, . . . , Kn that are each of size three; the three vertices of Ki are
called vi,1, vi,2, and vi,3 with 1 ≤ i ≤ n. The clique Ki corresponds to the clause Ci (which
is why we will refer to it as a “clause clique”), and more specifically the jth vertex vi,j of Ki

corresponds to the jth literal li,j of Ci. All vertices vi,j and vi′,j′ with i 6= i′ are connected
by an edge if and only if li,j is the negation of li′,j′ .

Now we prove the equivalence

E ∈ 3SAT ⇐⇒ (G, n) ∈ IND-SET .

Suppose that E ∈ 3SAT; hence, E is satisfiable and there is a truth assignment ϕ with
ϕ(E) = 1. For every clause Ci of E, there is consequently at least one literal li,j with
1 ≤ i ≤ n and 1 ≤ j ≤ 3 that is made true by ϕ; if there are more than one for some clause,
we pick one of them arbitrarily. Now consider the set I of the corresponding n vertices vi,j

of G. Clearly, |I| = n, and thus it only remains to show that I is indeed an independent set,
i.e., that there are no edges between any two vertices in I. Note that no two vertices from
I are from the same clause clique, because the vertices are all from different clauses. Now
let v and w be two vertices from I. By the construction of G, the only way that there is an
edge between them is that v corresponds to a literal l and w corresponds to its negation l.
However, this would mean that ϕ sets both l and l to one, which is impossible. Therefore,
there is no edge between v and w. It follows that I is an independent set of size n in G
and thus (G, n) ∈ IND-SET.
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Now suppose that (G, n) ∈ IND-SET; hence there is an independent set I with |I| = n
in G. We first note that no two vertices from I can be part of the same clause clique, and
thus there has to be exactly one vertex per clause in I. Consider the truth assignment
ϕ that sets the literal li,j to 1 if vi,j ∈ I. All variables that are not assigned a value as a
consequence get an arbitrary value, say 1. We argue that ϕ satisfies E. Since I contains
one vertex per clause clique, at least one literal per clause is set to 1 by ϕ. Moreover, no
two of these literals are the negation of one another, since then the corresponding vertices
were connected by an edge in G and thus would not both be part of I. It follows that
ϕ(E) = 1 and thus E ∈ 3SAT. �

Let us apply the construction from the proof of Theorem 5.15 to the Boolean expression

E = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x4 ∨ x5) ∧ (x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5) ,

which consists of five clauses C1, C2, C3, C4, and C5. The corresponding graph is shown in
Figure 28 and consists of five cliques K1, K2, K3, K4, and K5, such that Ki corresponds to
the clause Ci; the threshold k which is part of the input is 5. An independent set of size 5
is given by the vertices

v1,1, v2,1, v3,2, v4,2, and v5,3 ,

and this corresponds to a truth assignment ϕ that assigns the variables

x1 = 1, x2 = 0, x4 = 0, x4 = 0, and x5 = 1 .

This leads to

ϕ(E) = (1 ∨ 0 ∨ x3) ∧ (1 ∨ x3 ∨ 0) ∧ (0 ∨ 1 ∨ 1) ∧ (x3 ∨ 1 ∨ 0) ∧ (0 ∨ x3 ∨ 1) ,

which evaluates to true independent of the value of x3. It follows that E is satisfiable and
thus E ∈ SAT, while at the same time (G, 5) ∈ IND-SET.
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5.5.3 The Clique Problem

One of the most straightforward insights obtainable once the NP-completeness of IND-SET
is understood is that also CLIQUE is NP-complete. Indeed, compared to the preceding
ones, the subsequent reduction is as simple as it gets.

Theorem 5.16. CLIQUE is NP-complete.

Proof. It is easy to see that CLIQUE ∈ NP. In order to show that it is also NP-hard,
we prove IND-SET≤p CLIQUE. The idea behind the following proof is already hinted in
Figure 26. Let (G, k) be an input for IND-SET. The input for CLIQUE is (G, k), where G
is the complement of G, i.e., the graph that is obtained by removing all edges from G and
adding edges between all vertices that are not connected by an edge in the original graph.
Converting (G, k) to (G, k) can be done in polynomial time; all that needs to be done is to
complement the adjacency matrix of G (by replacing 0s by 1s and vice versa, except for the
0s on the main diagonal).

Any set of vertices in G in which no two vertices are connected by an edge corresponds
to a set of vertices in G in which every pair of vertices is connected by an edge. In other
words, we have the equivalence

G has an independent set of size k ⇐⇒ G has a clique of size k ,

and thus CLIQUE is NP-complete. �

5.5.4 The Vertex Cover Problem

Let us investigate yet another problem on graphs.

Definition 5.17 (Vertex Cover). Let G = (V,E) be a graph. A vertex cover in G
is any set of vertices N such that every edge in G has at least one of its vertices in N .

The vertex cover problem, VC for short, is defined analogously to IND-SET and CLIQUE,
i.e., we are given a graph and a threshold and want to decide whether the graph has a
vertex cover of the given size.

Theorem 5.18. VC is NP-complete.

Proof. As for IND-SET and CLIQUE, it is easy to see that VC ∈ NP . Now we show that
VC is NP-hard by proving IND-SET≤p VC. Let (G, k) be any input for IND-SET, and
suppose that G has n vertices. We construct an input (G, n− k) to VC; the conversion can
clearly be done in polynomial time. We now show the equivalence

G has an independent set of size k ⇐⇒ G has a vertex cover of size n− k .

Suppose there is a vertex cover in G of size n − k. Then there is a set N in G such
that every edge from G has at least one of its endpoints in N . Let N ′ denote the other
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vertices from G that are not in N . Since N is a vertex cover, there are no edges between
the vertices in N ′. Thus N ′ is an independent set in G.

Now suppose there is no vertex cover of size n− k in G. Then there is accordingly no
set of size n− k such that all edges have endpoints in this set. It follows that there is no
set of size k in G such that there is no edge between any two vertices in this set, which
means that there is no independent set of size k in G.

It follows that VC is NP-complete. �

The idea used in the proof of Theorem 5.18 is shown in Figure 29. Here, G has 5 vertices
and k is 3. G contains an independent set N ′ of size 3 (see Figure 29a) and at the same
time a vertex cover of size 5− 3 = 2 (see Figure 29b). The independent set N ′ = {v1, v2, v5}
of G is marked by filled vertices; the vertex cover N = {v3, v4} is circled with a dashed line.

Note that the constructions from Theorems 5.16 and 5.18 can be combined in a straight-
forward fashion to give, e.g., a reduction from CLIQUE to VC.

5.6 An NP-Hard Problem Outside NP
Definition 5.10 defines the two terms “NP-hard” and “NP-complete,” but so far all NP-
hard problems we studied are also contained in NP . So are there actually problems that
are NP-hard, but not in NP? The answer is positive, and thus there indeed exist problems
that are NP-hard but not NP-complete; these problems are “harder,” and the halting
problem LH is one of them. Obviously, it cannot be in NP , because it is not even decidable
as we know from Theorem 4.15, but all problems in NP admit TMs that eventually halt.
We now show that LH is NP-hard by giving a polynomial-time reduction from SAT.

Theorem 5.19. LH is NP-hard.

Proof. Suppose there is a TM H∗ for LH that always halts and that runs in polynomial
time. We design a TM MSAT that decides whether a given instance of SAT is satisfiable
in polynomial time using H∗, thus proving SAT≤p LH. Let w be the input for MSAT.
MSAT first checks whether w is a valid input for SAT, that is, a formula in CNF. If not,
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MSAT constructs an output that is for sure not accepted by H∗, for instance, the word
Code(M ′)111ε with M ′ being a TM that runs forever on ε. If it is, MSAT constructs a TM
M that works as follows. For a given input E, which is a formula in CNF, M tries all
possible assignments of the given variables and checks whether E is true for any of them.

• If M finds such an assignment, it halts.

• Otherwise, there is no such assignment; in this case, M enters some state in which it
loops forever, that is, never halts.

For the given instance w of SAT, we therefore have the equivalence

w is satisfiable ⇐⇒ M halts on w .

For sure, the running time of M on w is exponential in the length of w, but this does
not matter. What does matter is that M can be constructed from w in polynomial time.

Then, Code(M)111w is given as input to H∗. By definition, H∗ will output the correct
answer while working in polynomial time. The answer “yes” is given if and only if w is
satisfiable. Thus, H∗ can be used to solve SAT in polynomial time, which contradicts that
SAT is NP-hard and P 6= NP . �

It is easy to see that a slight modification of the proof of Theorem 5.19 leads to an
analogous statement about LU. Our current assumptions on the relationship between P and
NP is depicted in Figure 30. Finally, let us remark that, in the case that P 6= NP , there
are problems in NP that are neither in P nor NP-complete; the corresponding problems
are called NP-intermediate .

5.7 Historical and Bibliographical Notes
Cobham [5] and Edmonds were the first to argue that problems that are solvable in
polynomial-time are those that are solvable “efficiently” in practice, and this has been
commonly known as the Cobham-Edmonds thesis. In 1971, Stephen Cook gave rise to
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the theory of NP-completeness by proving Cook’s theorem [6] (Theorem 5.12), and one
year later, Richard Karp showed the NP-completeness of 21 other decision problems [14];
“Karp’s 21NP-complete problems” include the independent set problem (Theorem 5.15), the
clique problem (Theorem 5.16), and the vertex cover problem (Theorem 5.18). Independent
results were proven by Levin in 1973 [18]. By now, we know thousands of NP-complete
problems, and it is quite remarkable that so far no one found either an efficient algorithm
or a strong lower bound for any of them [8,9].

We assumed SAT to be defined on Boolean expressions in CNF, while in the literature
it is sometimes defined on general Boolean expressions and our definition of SAT is called
CSAT [11]. Moreover, we defined 3CNF such that all clauses contain exactly three literals.
It is sometimes assumed that they have at most three literals; in this case, our 3SAT is
referred to as E3SAT [12].

The fact that NP-intermediate problems exist is known as Ladner’s theorem and was
shown by Ladner in 1975 [17].
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