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Abstract

The subject of this thesis is a relaxation of proper graph colorings -
bounded monochromatic component colorings (bmc colorings). A vertex-
coloring of a graph is called a bmc coloring if every color-class induces
monochromatic components containing at most a certain bounded num-
ber of vertices. A proper coloring for instance is a bmc coloring in which
every color-class induces monochromatic components of order one. We
investigate three different aspects of bmc colorings.

We investigate extremal graph theoretic problems of bmc colorings.
For certain families of graphs we determine bounds for the smallest
monochromatic component order C, the critical component order, such
that every graph contained in this family accommodates for a bmc col-
oring with respect to C. We determine bounds for the critical compo-
nent order C for graphs with a bounded maximum degree: Every graph
of maximum degree at most three admits a bmc 2-coloring with one
color-class inducing monochromatic components of order one and the
other color-class inducing monochromatic components of order at most
22; and every graph of maximum degree at most five admits a bmc
2-coloring inducing monochromatic components of order at most 1908
in each of the two color-classes. Additionally we restrict the graphs to
being planar and show that every maximal planar graph (a triangula-
tion) with maximum degree ∆ and containing at most d vertices of odd
degree admits a bmc 3-coloring inducing monochromatic components of
order at most 2∆d.

Secondly we study algorithmic aspects of bmc colorings. The proof
of the existence of a bmc 2-coloring with one color-class inducing mono-
chromatic components of order one and the other color-class of order
at most 22 can be turned into an efficient algorithm that actually 2-
colors these graphs. For some large constant C ′ we derive an efficient
algorithm that 2-colors every graph with maximum degree at most five
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with monochromatic components of order at most C ′ in each color-class.
As a third aspect we focus on complexity theoretic problems of bmc

colorings. For a fixed monochromatic component order C ′′ we investi-
gate the decision problem whether a graph from the family of graphs
with bounded maximum degree admits a bmc coloring with respect to
C ′′. We exhibit a sudden “hardness jump” in the complexity of this
decision problem for graphs of maximum degree at most three at the
critical component order C.

To almost all proofs related to bmc colorings there is a common
denominator: bounded component transversals of multipartite graphs.
Thus we devote the first part of this thesis to these transversals, prov-
ing both extremal and algorithmic results. We investigate the smallest
number of vertices n(∆′) that still guarantees the existence of (an effi-
cient algorithm for finding) a transversal inducing bounded components
in every multipartite graph with partite sets of order at least n(∆′) and
maximum degree at most ∆′. We further emphasize the importance of
transversals inducing bounded components with an application to the
Linear Arboricity Conjecture.
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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist eine Relaxierung gültiger Fär-
bungen – sogenannte bmc Färbungen. Eine Knotenfärbung eines Gra-
phen heisst bmc Färbung, falls jede monochromatische Komponente
einer Färbungsklasse höchstens eine gewisse beschränkte Anzahl Kno-
ten enthält. Zum Beispiel enstpricht jede gültige Färbung einer bmc
Färbung mit monochromatische Komponenten der Grösse eins. Im fol-
genden betrachten wir drei Aspekte der bmc Färbungen.

Wir untersuchen Fragestellungen aus der Extremalen Graphentheo-
rie bezüglich bmc Färbungen und beweisen Schranken für die kleinste
monochromatische Komponentengrösse C, die kritische Komponenten-
grösse, sodass jeder Graph aus einer gewissen Graphenfamilie eine bmc
Färbung mit monochromatischen Komponenten der Grösse höchstens
C besitzt. Im Zusammenhang mit dieser Fragestellung bestimmen wir
Schranken für die kritische Komponentengrösse für die Familie aller
Graphen mit beschränktem Maximalgrad: Jeder Graph mit Maximal-
grad höchstens drei besitzt eine bmc 2-Färbung, sodass die monochro-
matischen Komponenten der ersten Färbungsklasse einen, diejenigen
der zweiten Färbungsklasse höchstens 22 Knoten enthalten; und je-
der Graph mit Maximalgrad höchstens fünf besitzt eine 2-Färbung,
wobei die monochromatischen Komponenten beider Färbungsklassen
höchstens 1908 viele Knoten enthalten. Desweiteren schränken wir uns
zusätzlich auf planare Graphen ein und beweisen, dass jeder maxima-
le planare Graph (d.h., eine Triangulierung) mit Maximalgrad ∆ und
höchstens k vielen Knoten ungeraden Grades eine bmc 3-Färbung be-
sitzt, wobei die monochromatischen Komponenten aller drei Färbungs-
klassen höchstens 2∆k viele Knoten enthalten.

Wir untersuchen algorithmische Aspekte der bmc Färbungen und
entwerfen, für eine konstante Komponentengrösse C ′, einen effizien-
ten Algorithmus, der jeden Graphen mit Maximalgrad höchstens fünf
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mit zwei Farben einfärbt, sodass alle monochromatischen Komponenten
höchstens C ′ viele Knoten enthalten. Auch kann die zuvor erwähnte bmc
2-Färbung der Graphen mit Maximalgrad höchstens drei, wobei eine der
Färbungsklassen monochromatische Komponenten der Grösse eins, die
andere der Grösse höchstens 22, enthält, effizient gefunden werden.

An dritter Stelle behandeln wir komplexitätstheoretische Aspekte
der bmc Färbungen. Für konstante monochromatische Komponenten-
grösse C ′′ betrachten wir das Entscheidungsproblem, ob ein Graph mit
beschränktem Maximalgrad eine bmc Färbung besitzt. Wir stellen einen
Sprung der Komplexität des Entscheidungsproblems für Graphen mit
Maximalgrad drei an der kritischen Komponentengrösse fest.

Ein grossteil der Beweise bezüglich bmc Färbungen benutzen ein ge-
meinsames Prinzip: Transversalen multipartiter Graphen mit beschränk-
ten Komponenten – sogenannte bc Tranversalen. Deshalb beschäftigen
wir uns im ersten Teil dieser Arbeit mit bc Tranversalen und beweisen
für diese extremale – sowie algorithmische Resultate. Wir betrachten die
kleinstmögliche Anzahl Knoten n(∆), sodass jeder multipartite Graph
mit Maximalgrad höchstens ∆ und Knotenmengen der Grösse minde-
stens n(∆) eine bc Transversale enthält und entwerfen effiziente Algo-
rithmen zum Auffinden solcher bc Transversalen. Desweiteren belegen
wir die Bedeutung der bc Tranversalen mittels einer Anwendung für die
Lineare Arborizität eines Graphen.
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Chapter 0

Introduction

It’s a Bit Complicated!

Eddie Argos

We start this thesis with a short introduction to graph theory and in
particular to graph colorings.

0.1 Graph Colorings

A graph G is a set V (G) of vertices and a set E(G) of edges, each con-
necting a pair of vertices, its endpoints. We say that the two endpoints
of an edge are adjacent. A drawing that shows the well known Petersen
Graph can be found in Figure 1(a).

v2

v3

v5v10

v9 v6

v7v8

v4

v1

(a) Petersen Graph

1 2

3

3

2

21

1
1

3

(b) proper 3-coloring

Figure 1: The Petersen Graph and a proper 3-coloring of its vertices.

A proper k-coloring of the vertices of a graph G is an assignment of

1



2 Chapter 0. Introduction

k colors (often the integers 1, . . . , k) so that no two adjacent vertices get
the same color, see for instance Figure 1(b) for a proper 3-coloring of
the Petersen Graph. The set of vertices receiving color j is a color-class
and induces a graph with no edges, i.e., it is an independent set of G.
So, a proper k-coloring of the vertices of G is simply a partition of V (G)
into k independent sets (compare Figure 1(b) with Figure 2).

V2 V3

V1

v6
v1

v10

v8

v3

v7

v9

v5

v2

v4

Figure 2: A partition of the Petersen Graph into three independent sets.

The chromatic number χ(G) of a graph G is the minimum k for
which there is a k-coloring of G. One straightforward reason for a graph
to have large chromatic number is the containment of a large clique (i.e.,
a large complete subgraph). Obviously if a graph G contains a clique of
order k, then χ(G) ≥ k. Similarly for every subgraph H ⊆ G it holds
that χ(H) ≤ χ(G). Since the Petersen Graph contains odd cycles, and
an odd cycle requires at least three colors in any proper coloring, the
chromatic number of the Petersen Graph is at least three.

The following proposition states a relation between the maximum
degree ∆(G) of a graph G and its chromatic number.

Proposition 0.1 (Greedy Coloring). For every graph G, χ(G) ≤
∆(G) + 1.

This can be easily seen as follows. Fix an arbitrary ordering, v1, . . . , vn,
of the vertices of G. For each vi in turn, color vi with the smallest color
not appearing on any neighbor earlier in this ordering. Thus every
vertex receives a color between 1 and ∆(G) + 1.

Numerous problems of pure mathematics and theoretical computer
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0.1. Graph Colorings 3

science require the study of proper colorings and even more real-life
problems require the calculation or at least an estimation of the chro-
matic number. Nevertheless, there is the discouraging fact that the
calculation of the chromatic number of a graph or the task of finding
an optimal proper coloring are both intractable problems. The follow-
ing theorem by Karp [45] and its specialization to planar graphs by
Stockmeyer, [59] formalize what we have just mentioned.

Theorem 0.1 ([45, 59]). Deciding whether a graph is 3-colorable is
NP-complete, even if the input graphs are restricted to being planar and
having maximum degree at most four.

Even fast approximation of the chromatic number is probably not
possible according to a theorem by Lund and Yannakakis in [24].

Theorem 0.2 ([24]). There is no polynomial-time algorithm that ap-
proximates the chromatic number of an n-vertex graph within a factor
n1−ε for some particular small ε > 0, unless P = NP.

Also the extremal graph theoretic question of finding upper bounds
for the chromatic number for some restricted classes of graphs turned
out to be very difficult and inspired researchers for more than a hundred
years. Arguably the genesis of all graph coloring problems is the ques-
tion whether every planar graph admits a proper 4-coloring. This has
been answered in the affirmative by Appel, Haken, and Koch in [13].

Theorem 0.3 (Four Color Theorem [13]). For every planar graph
G, χ(G) ≤ 4.

In some sense this proof of the Four Color Theorem is not satisfac-
tory, due to the fact that its verification forces the verifier to go through
a lengthy and computer aided proof. A shorter proof by Robertson
Sanders Seymour, and Thomas appeared in [55] – still it is lengthy, uses
computers and is hard to verify.

Many variants of proper colorings have been studied. A weaker
result for planar graphs for a relaxation of proper colorings by Cowen,
Cowen, and Woodall [25] states the following:

Theorem 0.4 ([25]). The vertex set of every planar graph G can be
partitioned into four sets V1, . . . , V4 such that each set Vi induces a graph
with isolated vertices and isolated edges only.

3



4 Chapter 0. Introduction

{1, 2, 3} {2, 3, 4}

{1, 3, 4}

{2, 4, 5}{2, 3, 4}

{1, 2, 3}

{1, 2, 4} {1, 2, 3}

{1, 4, 5}{2, 3, 4}

Figure 3: Lists of colors assigned to the vertices of the Petersen graph.

The proof of this statement does not assume the truth of the Four
Color Theorem, is much shorter and can be verified without using a
computer. We introduce the notion of bounded monochromatic com-
ponent colorings, bmc colorings for short. A k-coloring is said to be
a (C1, . . . , Ck)-bmc k-coloring if the graph induced by the ith color-
class Vi contains no component larger than Ci. In particular, The-
orem 0.4 shows that every planar graph admits a (2, 2, 2, 2)-bmc 4-
coloring. The main focus of this thesis, Part II, is the investigation
of bounded monochromatic component colorings.

A generalization of colorings with many applications, also in prac-
tice, are list-colorings. Instead of choosing the colors from the set
{1, . . . , k}, every vertex v has a list Lv = {c1, . . . , ck′} of available col-
ors assigned to it. A coloring is called a list-coloring if for every vertex
v in G the color of vertex v is contained in Lv. We call a graph G
properly k-choosable if for every assignment of lists of length at least
k to the vertices of G, the graph G has a proper list-coloring, see also
Figure 3. Let us define the list-chromatic number χl(G) of a graph G
to be the smallest list-length k such that G is k-choosable. Somewhat
unexpectedly, the list-chromatic number can be much larger than the
chromatic number. For instance the complete bipartite graph Kn,n,

with n =
(

2k−1
k

)

, is not k-choosable (but χ(Kn,n) = 2). Nevertheless,
we can again by a greedy algorithm show the following upper-bound:

Proposition 0.2 (Greedy list-coloring). For every graph G, χl(G) ≤
∆(G) + 1.

For planar graphs the following statement has been proved by Tho-

4



0.1. Graph Colorings 5

massen in [61].

Theorem 0.5 ([61]). For every planar graph G, χl(G) ≤ 5.

The proof of this theorem applies an ingenious inductive argument.
In [64] Voigt exhibits planar graphs and lists of length exactly four, such
that there is no proper coloring of the graph consistent with the lists.

Another concept that is closely related to colorings and that can be
seen as a generalization of list-colorings are bounded component transver-
sals (bc transversals) of multipartite graphs G with V (G) = V1 ∪ · · · ∪
Vm. A transversal T of G is a subset of its vertices containing exactly
one vertex from each partite set Vi. Moreover if the graph induced by
the vertices of T , the transversal graph, contains no component larger
than f , then T is called an f -bc transversal.

V4
V3

V1

V2

v4,2

v4,3

v4,1

v4,4

v4,2

v4,4
v4,1

v4,1

v4,1

v4,3

v4,3
v4,2

Figure 4: Independent transversals generalize list-colorings.

Why are list-colorings a special-case of transversals? For a graph
G with assigned lists of length exactly k we define a new multipartite
graph H as follows. Take k copies of each vertex vi and for each color
c ∈ Lvi

denote one copy of vi by vi,c. Let two vertices vi,c and vj,c′ be
adjacent in H if i 6= j, {vi, vj} ∈ E(G) and c = c′. The partite set Vi

of H contains the k vertices vi,c, c ∈ Lvi
. For an example we show such

a transformation in Figure 4 of the four inner vertices v1, . . . , v4 of the
Petersen Graph and corresponding lists as in Figure 3. Hence choos-
ing a proper list-coloring of G corresponds to choosing an independent
transversal of H , i.e., a transversal inducing an independent set in G.
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6 Chapter 0. Introduction

It turns out that bc transversals are omnipresent in proofs for bmc
colorings. Therefore we devote Part I of this thesis to bc transversals.

0.2 Short Outline of the Thesis

In this section we attempt to give an informal and compact overview
of the thesis. Nevertheless we insist on setting our problems into their
corresponding context by stating existing results and also mentioning
related problems. Also, we take the opportunity to mention the corre-
sponding collaborators for each of the topics presented.

The thesis is organized into two parts, in one part results on bounded
component transversals are presented, in the other part results on boun-
ded monochromatic component colorings are shown. As mentioned ear-
lier, bounded monochromatic component colorings go hand in hand with
bounded component transversals – many proofs for bounded monochro-
matic component colorings apply results on bounded component transver-
sals. Thus we first present the part on bounded component transversals
before we come to bounded monochromatic component colorings.

Part I: Bounded Component Transversals

Let us recall that a transversal of a multipartite graph is a subset of
its vertices containing exactly one vertex from each partite set. The
transversal graph is the graph induced by the vertices of the transversal.
For an integer f ≥ 1 we call a transversal an f -bc transversal if the
largest component of the transversal graph contains at most f vertices.

The main goal of this part of the thesis is to guarantee the exis-
tence of bounded component transversals for multipartite graphs that
have large partite sets, with respect to their maximum degree. More-
over we want to elaborate on algorithms that even find such bounded
component transversals. It seems natural that for some fixed maximum
degree, the more vertices a multipartite graph contains in each of its
partite sets, the more freedom is given to choose a transversal, possibly
inducing only small components in the transversal graph. We have seen
in Proposition 0.2 that the (list-)chromatic number of a graph can easily
be upper bounded by its maximum degree, independent of the number
of vertices contained in the graph. Let us for a moment focus on in-
dependent transversals, i.e., transversals inducing an independent set.

6



0.2. Short Outline of the Thesis 7

Let G be a multipartite graph with maximum degree ∆ for which the
number of vertices in each of its partite sets is lower-bounded by some
value p(∆) depending only on ∆. In contrast to the greedy algorithm
for proper (list-)colorings, one can observe that a greedy algorithm for
choosing an independent transversal of G – choose a vertex ti from Vi

that is not adjacent to any of the earlier chosen vertices tj in G, j < i
– is likely to fail. This algorithm can get stuck in a partial transver-
sal t1, . . . , tk such that every vertex of Vk+1 is adjacent to a vertex of
t1, . . . , tk, with k < m.

Nevertheless using the well known Lovász Local Lemma one can
prove that every multipartite graph G with partite sets containing at
least 2e∆(G) many vertices contains an independent transversal. More-
over Haxell [35] found a proof for the fact that every multipartite graph
G with partite sets containing at least 2∆(G) many vertices contains an
independent transversal. A construction by Bollobás, Erdős, and Sze-
merédi [22] proves this result to be best possible. The result has then
been extended to f -bc transversals, f ≥ 1 by Haxell, Szabó, and Tar-
dos [39] as follows. Every multipartite graph with partite sets contain-
ing at least

⌊(

f+1
f

)

∆(G)
⌋

many vertices contains an f -bc transversal.
Subsequently we refer to this result as the “Transversal Theorem”.

Another closely related extremal problem that has gained lots of
attention is the minimum order of partite sets in an m-partite graph
with a certain maximum degree, such that the graph is guaranteed to
contain an f -bc transversal, for some fixed number of partite sets m
and fixed component order f (note that before we did not restrict on
the number of partite sets in the multipartite graph).

Bounded component transversals have proved to be very applicable
in many areas of graph theory. In Chapter 3 we show an application of
bounded component transversals in order to get one tiny step closer to
a proof of the Linear Arboricity Conjecture. Most importantly for us
we will see many applications of bounded component transversals for
bounded monochromatic component colorings in Part II of this thesis.
applications, we mention some of the

Chapter 1: About f-Bc Transversal

We start this chapter with a new short proof of the Transversal Theorem
by proving a stronger statement.

7



8 Chapter 0. Introduction

Independent Transversal Hereupon we shortly turn our focus to in-
dependent transversals. Again due to the Transversal Theorem applied
with f = 1, every multipartite graph G with partite sets containing
at least 2∆(G) many vertices has an independent transversal. On the
other hand it has been shown by Bollobás, Erdős, and Szemerédi [22]
that there are multipartite graphs with partite sets containing 2∆(G)−1
many vertices with no independent transversal. Here we give a simpli-
fied construction for the same fact.

For some fixed numbers m and ∆, the minimum partite set order
such that every m-partite graph G with maximum degree at most ∆
is guaranteed to have an independent transversal has been thoroughly
studied. A line of research including work from Aharoni, Alon, Bollobás,
Erdős, Haxell, Jin, Szabó, Szemerédi, Tardos, and Yuster ([22, 6, 8, 44,
35, 36, 67, 2, 9, 60]) culminated in the work of Haxell and Szabó [38] that
completely determines this smallest number of vertices in each partite
set of G with respect to the maximum degree of G such that G contains
an independent transversal.

Matching Transversals For the remainder of this chapter we focus
on 2-bc transversals, subsequently referred to as matching transversals.
Matching transversals have been introduced by Haxell, Szabó, and Tar-
dos in [39] and successfully applied for the problem of bmc 2-coloring
of 4-regular graphs. Also in Chapter 4 transversals are an invaluable
tool in handling bmc 2-coloring of graphs of maximum degree three.
The result used in the two proofs states that every multipartite graph
of maximum degree at most two such that each part contains at least
two vertices contains a matching transversal (see [39]). Note that this
is a strengthening of the Transversal Theorem (which would only yield
that the partite sets should contain at least three vertices provided
that the maximum degree of the graph remains two). Our knowledge
about matching transversals is much sparser than about independent
transversals. Already the question whether every multipartite graph of
maximum degree at most three and partite sets containing at least three
vertices has a matching transversal remains open. If every partite set of
the multipartite graph contains at least four vertices, then the answer
is “YES” and if they contain only two vertices, then it can be easily
verified that the answer is “NO”.

From the Transversal Theorem we can conclude that every mul-
tipartite graph with partite sets containing at least b3∆(G)/2c many

8



0.2. Short Outline of the Thesis 9

vertices contains a matching transversal. On the other hand there are
multipartite graphs H with partite sets containing at most ∆(H) − 1
many vertices such that H does not contain a matching transversal.
It is a great challenge to close this gap between the upper and lower
bounds. We conjecture that every multipartite graph G with partite
sets of order at least ∆(G) contains a matching transversal.

In order to get closer to this conjecture we considered the problem
restricted to m-partite graphs, for some constant m. We first determine
the minimal maximum degree of 3-partite graphs with partite sets of
order exactly n with no matching transversal to be d3n/2e. Secondly
restricted to 4-parite graphs we obtain the lower bound 4n/3 and the
upper bound b10n/7c+ 12.

The results presented in this chapter are joint work with Penny
Haxell and Tibor Szabó [16].

Chapter 2: Algorithmic Aspects

The lack of a greedy algorithm for (independent) transversals also leaves
us with no algorithm for finding such a transversal. The proof of the
Transversal Theorem is purely existential, and also its original proof by
Haxell, Szabó, and Tardos in [39] and its topological proof by Aharoni,
Chudnovsky and Kotlov [1] (and its stengthening by Szabó and Tar-
dos in [60]) seem to resist any attempt to turn them into an efficient
algorithm.

In this chapter we show the existence of a simple, deterministic, and
polynomial-time (in the number of parts m) algorithm for finding an
independent transversal for every m-partite graph of maximum degree
at most ∆ and parts of size Ω(∆3), provided that ∆ is constant.

Let us remark that using proof ideas by Alon (see [8]) one can im-
prove the bound on the partite set order to be linear in ∆(G). Moreover
– as an outlook – this technique can then be combined with our result
above yielding the currently smallest factor C such that there is such
a polynomial-time algorithm for finding an independent transversal of
a multipartite graph with partite sets containing at least C∆(G) many
vertices.

Let us also mention that several proofs for results for the existence
of certain bounded monochromatic component colorings can be turned
into efficient algorithms using efficient algorithms on bounded compo-

9



10 Chapter 0. Introduction

nent transversals, see for instance Section 4.2.

The results shown in this chapter can be found in [15].

Chapter 3: Application – Linear Arboricity

We promised several times that bounded component transversals find
many applications in graph theory. In this chapter we want to high-
light one such application that is not related to bounded monochro-
matic component colorings. The Linear Arboricity Conjecture, raised
by Akiyama, Exoo, and Harary [4] states that every r-regular graph can
be edge-colored with

⌈

r+1
2

⌉

many colors such that each monochromatic
component forms a path. Let us observe here that this bound on the
number of colors is just the obviously necessary one. Every color-class
contains only paths and hence at most n − 1 many edges. Since an
r-regular graph on n vertices contains rn/2 many edges, any such edge-
coloring requires at least rn

2(n−1) > r/2 many colors. The conjecture has

been answered in the affirmative for r ∈ {3, 4} by Akiyama, Exoo, and
Harary in [4, 5], for r ∈ {5, 6, 8} by Enomoto and Péroche in [28], and
for r = 10 by Guldan in [31]. Moreover the conjecture has been verified
by Alon in [6] for r-regular graphs G if r is even and G has high girth,
and for r-regular graphs if r is odd, G has a perfect matching and G
has high girth.

We show that the above condition on the graph G having a perfect
matching for r being odd can be relaxed to G having a 3-factor using
the Transversal Theorem. Also we prove that every 7-regular graph
with high girth fulfills the conjecture.

The results presented in this chapter are joint work with Thomas
Rauber [17].

Part II: Bounded Monochromatic Component Color-

ings

Sometimes the number of colors available to color a graph is less than
its chromatic number. Therefore one is forced to relax the properness
condition and to find a good approximation of its properness. Another
good reason to introduce relaxations of proper colorings is that in some
theoretical or practical situations a small deviation from proper is still
acceptable, while the problem could become tractable, or in certain

10



0.2. Short Outline of the Thesis 11

problems the use of the full strength of proper coloring is an “overkill”.
Often a weaker concept suffices and provides better overall results.

The variant of relaxations of proper colorings we study in this part of
the thesis allows the presence of some small level of conflicts in the color
assignment. Namely, we will allow vertices of one or more color-class(es)
to participate in one conflict or, more generally, let each conflicting com-
ponent have a bounded number of vertices. Since we impose bounds on
the number of vertices in monochromatic components of a coloring, this
relaxation is referred to as bounded monochromatic component colorings
or short bmc colorings. Recall that a k-coloring is (C1, C2, . . . , Ck)-bmc
if every monochromatic component in the graph induced by the ith
color-class contains at most Ci many vertices, for 1 ≤ i ≤ k. Note that
a (1, . . . , 1)-bmc k-coloring corresponds to a proper k-coloring. We will
mostly be concerned with bmc 2-colorings and especially the two most
natural cases of it: symmetric bmc 2-colorings (when C1 = C2), and
asymmetric bmc 2-colorings (when C1 = 1).

Bmc colorings have been introduced by Kleinberg, Motwani, Ragha-
van, and Venkatasubramanianby in [46] motivated by a problem in
computer science concerning storage management problems for evolv-
ing databases. Symmetric bmc 2-colorings were first studied by Alon,
Ding, Oporowski, and Vertigan [10]. Asymmetric bmc 2-colorings were
introduced in a joint paper with Tibor Szabó [19].

Chapter 4: Bmc 2-Colorings

This chapter can be considered as the main chapter of the thesis. We
deal with bmc 2-colorings – the asymmetric case in the first section –
the symmetric case in the second section.

Asymmetric Bmc 2-Colorings Any graph of maximum degree two
– a graph consisting of disjoint paths and cycles only – easily admits
a (1, 2)-bmc 2-coloring. On the other hand, we show a construction of
4-regular graphs on n-vertices, where the removal of any independent
set leaves a graph with components of order 2n/3. Thus such graphs
do not admit a (1, 2n/3− 1)-bmc 2-coloring.

Henceforth we subsequently focus on graphs with maximum degree
at most three and investigate whether every such graph G contains an
independent set such that its removal from G leaves only component
of constant order (in other words, whether G admits a (1, C)-bmc 2-

11



12 Chapter 0. Introduction

coloring, for some universal constant C). Indeed we prove that every
graph with maximum degree three admits a (1, 22)-bmc 2-coloring. Let
us call the smallest component order C for which there exists a (1, C)-
bmc 2-coloring for every graph with maximum degree three the critical
component order C∗. At the moment we can only construct graphs
that are not (1, 5)-bmc 2-colorable, hence 6 ≤ C∗ ≤ 22. The proof of
the upper bound is constructive and implies an algorithm that actually
finds such a (1, 22)-bmc 2-coloring in quasilinear-time in the order of the
graph. The algorithm and also its analysis is quite lengthy, therefore
we introduce the main concepts of the algorithm on the more restrictive
class of triangle-full graphs with maximum degree at most three. There
we show that every triangle-full graph of maximum degree at most three
admits a (1, 6)-bmc 2-coloring. Moreover we can construct triangle-full
graphs with maximum degree three showing that this results is best
possible.

A similar statement – using a completely different approach for its
proof – is true for triangle-free graphs of maximum degree at most
three. Namely we show that every such graph admits a (1, 6)-bmc 2-
coloring. This result turns out to be crucial later when it comes to
the determination of the complexity of asymmetric bmc 2-colorability
problems.

We study bmc 2-colorings not only from the point of view of extremal
graph theory, but also of complexity theory, and find that these aspects
eventually meet for asymmetric bmc 2-colorings. We show that for
every component order 2 ≤ C < C∗, the decision problem whether a
graph with maximum degree at most three is (1, C)-bmc 2-colorable is
NP-complete. Let us emphasize here that this result implies a “sudden
jump” in the hardness of the decision problem, since for C ≥ C∗, by
definition, every graph with maximum degree at most three admits a
(1, C)-bmc 2-coloring. Moreover, as mentioned earlier, we can construct
graphs for any ∆ ≥ 4 and positive C, that are not (1, C)-bmc 2-colorable
and have maximum degree ∆. These graphs can then be used to show
that the decision problem whether a graph with maximum degree at
most ∆, with ∆ ≥ 4, is (1, C)-bmc 2-colorable is NP-complete, for
every C ≥ 2.

In Figure 5 we overview the results about the hardness of deciding
whether a graph of maximum degree ∆ admits a (1, C)-bmc 2-coloring.
We divide the results into three classes, depending on whether the
problem is trivial (T), polynomial-time decidable (P) or NP-complete

12



0.2. Short Outline of the Thesis 13

(NPc). Similar hardness jumps have been shown for instance for the

1 2 3 4 5 6
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22

NPc
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NPc NPc

NPc

NPc

NPc

C∗
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Figure 5: Hardness of the decision problem whether a graph of maxi-
mum degree ∆ admits a (1, C)-bmc 2-coloring.

k-SAT problem with limited occurrences of each variable by Tovey [63]
for k = 3 and Kratochv́ıl, Savický, and Tuza [48] for arbitrary k.

The results presented in this chapter are joint work with Tibor Szabó
[19, 18].

Symmetric Bmc 2-Colorings In the second section we investigate
symmetric bmc 2-colorings of graphs with bounded maximum degree.

Note first that the two vertex sets of a maximum edge-cut of a graph
G with ∆(G) ≤ 3 immediately impose a 2-coloring of G such that every
monochromatic component contains at most two vertices. In [10] Alon,
Ding, Oporowski, and Vertigan showed that any graph of maximum de-
gree four has a (57, 57)-bmc 2-coloring. This was improved by Haxell,
Szabó, and Tardos in [39], who showed that even a (6, 6)-bmc 2-coloring
is possible, and such a (6, 6)-bmc 2-coloring can be constructed in poly-
nomial time. They also proved that the family of graphs of maximum
degree at most five is (17617, 17617)-bmc 2-colorable, but the proof does
not directly imply an efficient algorithm for finding such a coloring.

In this section we improve on this last result, by making use of

13



14 Chapter 0. Introduction

independent transversals, showing that every graph of maximum degree
at most five is (1908, 1908)-bmc 2-colorable. This new proof can actually
be turned into an efficient algorithm that (C, C)-bmc 2-colors every
graph of maximum degree at most five, with C = 94371840.

For the sake of completeness let us note here that a similar statement
is not possible for graphs of maximum degree six. In [10] Alon, Ding,
Oporowski, and Vertigan constructed for every component order C a
graph HC of maximum degree six such that in every 2-coloring of HC

there is a monochromatic component of order larger than C. The graph
HC actually implies a much stronger statement. In every 2-coloring of
HC there is a monochromatic component of order Ω(

√
n), with n being

the number of vertices of HC .

For the complexity theoretic aspect of sbmc 2-colorings we show that
deciding whether a graph of maximum degree at most six is (C, C)-sbmc
2-colorable is NP-complete, for C ≥ 2. Moreover we conjecture that
there is a sudden jump in the hardness of the symmetric case as well,
for both maximum degree four and maximum degree five, similar to the
asymmetric case. Such a result would particularly be interesting for
graphs of maximum degree at most four, since here the determination
of the critical component order is even more within reach (between 4
and 6). So far we can show that deciding whether a graph of maximum
degree at most four is (C, C)-sbmc 2-colorable is NP-complete, for C ∈
{2, 3}. The similar problem is wide open for graphs with maximum
degree 5: Currently the critical component order lies between 6 and
1908.

A summary of our knowledge about symmetric sbmc 2-colorings is
shown in Figure 6. The results appearing in this chapter can be found
in [15] and in a joint paper with Tibor Szabó [18].

Chapter 5: Bmc k-Colorings, k > 2

The last chapter is devoted to the study of bmc k-colorings with k > 2.

Asymmetric bmc (k, l)-Colorings In a first section we investigate
a generalization of asymmetric bmc 2-colorings. That is, several color-
classes form an independent set and some other color-classes induce
monochromatic components of order at most C, for some fixed param-
eter C. We say that a class of graphs is abmc (k, l)-colorable if there is
a constant C ′ depending only on k and l such that every graph in the

14
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Figure 6: Hardness of the decision problem whether a graph of max.
degree ∆ admits a (C, C)-bmc 2-coloring.

class admits a (C1, . . . , Ck, Ck+1, . . . , Ck+l)-bmc (k + l)-coloring with
Ci = 1, for i ∈ [k] and Cj = C ′ for j ∈ {k + 1, . . . , k + l}. For every two
integers k, l we give lower and upper bounds for the smallest maximum
degree ∆ such that there is a graph of maximum degree at most ∆ that
is not abmc (k, l)-colorable.

The results appearing in this first section are joint work with Tibor
Szabó [19].

Symmetric Bmc Colorings of Planar Graphs In the second sec-
tion of this chapter we focus on planar graphs. Recall that every planar
graph is properly 4-colorable due to the Four Color Theorem, see The-
orem 0.3. On the other hand there are planar graphs that are not
properly 3-colorable. Let us consider symmetric k-colorings of planar

15



16 Chapter 0. Introduction

graphs with k ∈ {2, 3}.
Considering symmetric bmc 2-colorings, we mentioned earlier that

in [10] the authors construct planar n-vertex graphs H such that in every
2-coloring of H there is a monochromatic component of order Ω(

√
n).

Note that these graphs have maximum degree six. On the other hand
if we restrict to outerplanar graphs G, then we can show that G admits
a (C, C)-bmc 2-coloring with C = 2∆(G) − 1. This result is tight up
to a factor two, there are outerplanar graphs H ′ for which in every 2-
coloring of H ′ there is a monochromatic component containing at least
∆(H ′)− 3 many vertices.

Kleinberg, Motwani, Raghavan, and Venkatasubramanianby in [46]
and also Linial, Matoušek, Sheffet, and Tardos [49] construct planar
graphs H ′′ such that in every 3-coloring of H ′′ there is a monochromatic
component of order Ω(n1/3), n = |V (H ′′)|. Unlike the graphs H for the
symmetric bmc 2-colorings, these graphs H ′′ contain vertices of large
degree, i.e., linear in the number of vertices of H ′′. Motivated by this
fact, Kleinberg et al [46] ask the following natural question which we will
formulate as a conjecture. Is there a constant f(∆) depending only on ∆
such that every planar graph with maximum degree at most ∆ admits
a (f(∆), f(∆), f(∆))-bmc 3-coloring? We solve a weaker but similar
problem. Every triangulation of maximum degree at most ∆ with at
most d many vertices of odd degree admits a (2d∆3, 2d∆3, 2d∆3)-bmc
3-coloring.

The results presented in this section are joint work with Gábor Tar-
dos [20].

0.3 Preliminaries and Notation

We denote the set of integers {1, . . . , k} by [k].

Let G be a graph, then V (G) and E(G) denote the set of vertices and
the set of edges of G. The order of a graph G is the cardinality of V (G)
(often simply denoted by n), the size of G is the cardinality of E(G).
The edge joining two vertices u and v is denoted by {u, v} (when an edge
is directed from u to v, then we denote this arc by the ordered pair (u, v)
instead). Sometimes we want to allow multiple edges between the same
pair of vertices, such graphs are denoted as multigraphs. For a vertex v
in V (G), NG(v) denotes the set of neighbors of v, and dG(v) = |NG(v)| is
the degree of v in G. If the graph G is obvious from the context, we write

16



0.3. Preliminaries and Notation 17

d(v) and N(v) instead of dG(v) and NG(v). The maximum degree and
the minimum degree of G are denoted by ∆(G) and δ(G), respectively.
We call G an r-regular graph, if dG(v) = r for all v in V (G). A graph
where all vertex degrees are even is also called an Eulerian graph.

Similarly we define for a directed graph G, i.e., a graph with only
directed edges, the in-neighborhood N−

G (v) = {(u, v) ∈ E(G)}, the out-
neighborhood N+

G (v) = {(v, u) ∈ E(G)} and correspondingly the inde-
gree d−G(v) = |N−

G (v)| and the outdegree d+
G(v) = |N+

G (v)|. Moreover we
define δ−(G), ∆−(G), δ+(G), and ∆+(G) to be the minimum indegree,
maximum indegree, minimum outdegree, and maximum outdegree of
G.

A path P is a connected graph with ∆(P ) ≤ 2 consisting either of
only one single vertex or of two distinct vertices vs and ve of P with
d(vS) = d(ve) = 1 and other vertices v with d(v) = 2. The length of a
path P is the number of edges in P . The length of the shortest path
between two vertices u and v in G is denoted by distG(u, v). The girth
of G, denoted by g(G), is the minimum length of a shortest cycle in G.
The diameter dia(G) of a graph G is the length of a longest shortest
path, i.e., dia(G) = maxu,v∈V (G) dist(u, v). A tree T is a connected
graph with containing no cycles. The depth of a tree is the minimum
distance from the root to a leave vertex.

A component C of a graph G is a containment-maximal connected
subgraph of G. Sometimes it is more appropriate to think of a compo-
nent as just the vertices of C. We will switch between both viewpoints.

An edge-cut of a graph G is a vertex-partition U = (U1, U2). We say
that an edge of G with one endpoint in U1 and the other endpoint in
U2 is contained in U . We define |U| (the size of U) to be the number of
edges contained in U . Also we say that we switch the sides of a vertex
v ∈ Ui, if in fact we move v from Ui to U3−i, i ∈ {1, 2}. Similarly a
subset U ′ ⊆ V (G) of G is called a vertex-cut if G \ U ′ consists of more
than one connected component. A graph G is called k-edge-connected
(k-vertex-conntected) if there is no edge-cut (vertex-cut, resp.) (a subset
of the edges (vertices, resp.) of G that disconnects G) of size at most
k− 1. A block is a maximal (w.r.t. vertex inclusion) 2-vertex-connected
component of a graph G. Similarly an edge-block is a maximal (w.r.t.
edge inclusion) subgraph of G not containing any cut-edge.

A graph G together with a partition of its vertex set V (G) into
independent sets V1, . . . , Vm, is called an m-partite graph (or a multi-
partite graph). Clearly, every m-partite graph is properly m-colorable.

17



18 Chapter 0. Introduction

A graph G is called bipartite if there is some partition of V (G)such that
each partite set forms an independent set (note that the partition of
V (G) is not fixed for bipartite graphs). The complete bipartite graph
with |V1| = n and |V2| = m is denoted by Kn,m.

We denote the complete graph on n vertices by Kn. The graph K3

is also called a triangle. We say that a graph G is H-free if G does not
contain H as a subgraph. Also we call a graph G H-full if every vertex
in G is contained in a subgraph isomorphic to H . Another graph that
we will meet in the course of this thesis is the diamond D, that is two
triangles sharing exactly one edge.

A graph that can be embedded into the plane without crossing edges
is referred to as a planar graph. A plane graph is a planar graph together
with a particular planar embedding of it. A face of a plane graph is,
informally speaking, a maximal region of the plane containing no point
of the embedding. Let us denote the set of faces of a plane graph G
by F (G). A finite plane graph has one unbounded face - the outerface.
A maximal planar graph (with respect to edge addition) is called a
triangulation - all faces form a triangle. If a graph admits a planar
embedding such that all vertices lie on the outerface, then we call the
graph outerplanar. The dual G∗ of a plane graph G is define to be the
multigraph with V (G∗) = F (G) and E(G∗) = (Fe | e ∈ E(G)), where
Fe denotes the two (not necessarely distinct) faces in G incident to the
edge e.

Similarly to proper vertex colorings (as defined in Section 0.1), a
proper edge k-coloring of a graph G is an assignment of the integers
1, . . . , k to the edges of G such that no two incident edges get the
same color. The line-graph L(G) of a graph G is defined as follows:
V (L(G)) = E(G) and E(L(G)) = {{e1, e2} | e1, e2 ∈ E(G), e1 is inci-
dent to e2 in G}. It is not hard to see that a proper edge-coloring of a
graph G corresponds to a proper vertex-coloring of L(G) and vice versa.

The subgraph of a graph G induced by a vertex set U ⊆ V (G)
is denoted throughout by G[U ]. Vertices and edges in G[U ] are ref-
ered to as U -vertices and U -edges, respectively. Neighbors of a vertex
v ∈ V (G) in the induced subgraph G[U ] are called U -neighbors of v
and connected components in an induced subgraph G[U ] are called U -
components. Similarly, G−U denotes the induced subgraph G[V (G)\U ].
And for a subset T ⊆ E(G), G− T denotes the graph obtained from G
by deleting the edges of T .

A spanning subgraph H of a graph G is a graph H ⊆ G with V (H) =

18
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V (G). An f -factor of G is a spanning subgraph F of G such that for
every vertex v in F , dF (v) ∈ f . We say that a graph G can be factored
into the factors F1, . . . , Fl if there is a partition E1, E2, . . . , Ej of E(G)
such that G restricted to the edges of Ei forms a factor from the family
F1, . . . , Fl. For a factor F of a graph G we define G−F to be the graph
G with all edges of F removed.
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Chapter 1

About f-Bc Transversals

...Weisste Bescheid...

Horst Schlämmer

Let G be a multipartite graph with V (G) = V1∪· · ·∪Vm. A transver-
sal T of G is a subset of the vertices in G containing exactly one vertex
from each partite set Vi. An f -bc transversal of a graph with a vertex
partition is a transversal T in which each connected component of the
subgraph induced by T (the transversal graph) has at most f vertices.
Let ∆f (m, n) denote the smallest integer ∆ such that there exists an
m-partite graph G with maximum degree ∆ and parts of size n and
with no f -bc transversal. We define ∆f (n) = minm∈N ∆f (m, n) in case
we do not want to restrict the number of parts in the graphs under con-
sideration and let ∆f denote limn→∞ ∆f (n)/n. It is not hard to check
that this limit always exists.

A formal statement of the Transversal Theorem follows.

Theorem 1.1 (Transversal Theorem). Let f ≥ 1 be fixed. Let G be
a multipartite graph with each partite set containing exactly n vertices
and ∆(G) ≤

⌊(

f
f+1

)

n
⌋

. Then G has an f -bc transversal, and therefore

∆f (n) >
(

f
f+1

)

n.

For a graph G and a set U ⊆ V (G) of vertices, we say that U
dominates G if for every v ∈ V (G) there exists u ∈ U such that {u, v} ∈
E(G). Note that even the vertices v ∈ U have to be dominated. In order
to prove Theorem 1.1 we first show the following stronger theorem.

Theorem 1.2. Let G be a graph, and suppose V1∪. . .∪Vm is a partition
of V (G) into m independent vertex classes. Suppose G has no f -bc
transversal, but the graph G1 = G[V2∪ . . .∪Vm] has an f -bc transversal.

23



24 Chapter 1. About f-Bc Transversals

Then there exists a subset S ⊆ {V1, . . . , Vm} and a subset Z ⊆ ⋃

Vi∈S Vi

such that

(i) V1 ∈ S,

(ii) Z dominates GS = G[
⋃

Vi∈S Vi],

(iii) |Z| ≤
⌊(

f+1
f

)

(|S| − 1)
⌋

, and

(iv) all components of G[Z] have at least f + 1 vertices.

To see that Theorem 1.2 immediately implies Theorem 1.1, we as-
sume on contrary that the graph G as in Theorem 1.1 does not con-
tain an f -bc transversal. Suppose first that G1 does contain an f -bc
transversal. Therefore according to Theorem 1.2 there exists the sub-
set S and the subset Z such that conclusions (i)-(iv) hold. Observe
here that the number of vertices in a graph of maximum degree ∆
that can be dominated by a set of size at most

⌊(

f+1
f

)

(|S| − 1)
⌋

, is

at most
⌊(

f+1
f

)

(|S| − 1)
⌋

∆. Since GS contains n|S| ≥
(

f+1
f

)

∆|S| >
⌊(

f+1
f

)

(|S|−1)
⌋

∆ vertices, not both, conclusions (ii) and (iii) of Theo-
rem 1.1 can hold in G. Hence in this case G must have an f -bc transver-
sal - a contradiction. On the other hand if G1 does not contain an f -bc
transversal, then we repeat the above argument with G replaced by G1.

Proof of Theorem 1.2. We prove Theorem 1.2 by induction on m. Let
G be as in the statement of the theorem. The assertion of the theorem is
trivially true when m = f , so assume m ≥ f +1 and that the statement
is true for smaller values of m.

Choose an f -bc transversal T of G1. Then every vertex v of V1 has
the property that the component Cv of T ∪{v} containing v has at least
f + 1 vertices. Amongst all choices of v and T , we take those which
minimize the order of the component Cv. We form a new graph H by

• removing the vertex set W = NG(Cv) from G (note Cv ⊂W ),

• unifying the remaining vertices in ∪Vj∩V (Cv)6=∅Vj into one new
vertex class Y ∗ (and removing any edges inside Y ∗).

Each other class Vi just becomes Yi = Vi \W in H . Note that each
class apart from possibly Y ∗ is nonempty because it still contains an
element of T , and indeed the remainder of T forms an f -bc transversal
of all classes of H except Y ∗.
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Case 1: Y ∗ = ∅.
In this case set S = ∪Vj∩Cv 6=∅Vj and Z = Cv. Then, by definition of Cv

with respect to T and v, Z dominates all of GS as required. Moreover
since Cv contains exactly one vertex from each class in S, and Cv has
at least f + 1 vertices, we have |Z| = |S| ≤

⌊(

f+1
f

)

(|S| − 1)
⌋

.

Case 2: Y ∗ 6= ∅.
First we verify that H does not have an f -bc transversal. Suppose on
the contrary that T ′ is an f -bc transversal for H . Let z be the vertex
of T ′ in Y ∗. Then by definition of Y ∗, in G we have z ∈ Vj for some
Vj with Vj ∩ Cv 6= ∅. By definition of H , there are no edges joining
any vertex of T ′ (including z) to any vertex of Cv . Thus if z ∈ V1

we find that T ′ ∪ (Cv \ {v}) is an f -bc transversal of G, which is a
contradiction. If z ∈ Vj for some j 6= 1, let w be the vertex of Cv in
Vj . Then T ∗ = T ′ ∪ (Cv \ {v, w}) is an f -bc transversal of G1 with the
property that the component of T ∗ ∪ {v} containing v is smaller than
Cv . This contradicts our choice of T . We conclude that H has no f -bc
transversal.

Let t denote the number of vertex classes that intersect Cv in G.
Then t ≥ f + 1. Since H has m − t + 1 < m vertex classes, by the
induction hypothesis applied to H and the class Y ∗, there exists a set
S′ of vertex classes containing Y ∗ together with a set of vertices Z ′ of
HS′ that satisfies the conclusions (i)–(iv). We set S = S ′ \ {Y ∗}∪ {Vj :
Vj ∩Cv 6= ∅} and Z = Z ′ ∪Cv . Then (i) holds. To check (ii), note that
every vertex of GS that was in H is dominated by a vertex of Z ′, and
all the remaining vertices of GS are dominated by Cv . For (iii) we have
|S| = |S′|−1+t and |Z| = |Z ′|+t ≤

⌊(

f+1
f

)

(|S′|−1)
⌋

+t ≤
⌊(

f+1
f

)

(|S′|−
2 + t)

⌋

since t ≤
⌊(

f+1
f

)

(t − 1)
⌋

. Therefore |Z| ≤
⌊(

f+1
f

)

(|S| − 1)
⌋

as

required. Finally for (iv) note that since Cv has at least f + 1 vertices,
each component of G[Z] has at least f + 1 vertices.

Szabó and Tardos ([60]) construct graphs showing the following up-
per bound on ∆f (n).

Proposition 1.1 ([60]). For every three integers n ≥ 1, f ≥ 2 and

m ≥∑f
i=0 ni, ∆f (m, n) ≤ n + 1.

Proof. Let G be the disjoint union of n copies of an n-ary tree of depth
f together with a partition of V (G) as follows. For a vertex v ∈ V (G)
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26 Chapter 1. About f-Bc Transversals

which is not a leaf of G, define the partite set Vv to contain every child
of v. For the root vertices we define a part Vroot including all n root
vertices.

Obviously ∆(G) = n + 1 and |Vv | = n for every vertex v that is not
a leaf of G.

It is not hard to see that in every transversal of the multipartite
graph G with partite sets Vv , there is a path from one of the n root
vertices to a leaf of the same tree. Hence G does not contain an f -bc
transversal.

We conclude according to Theorem 1.1 and Proposition 1.1 that

( f

f + 1

)

n < ∆f (n) ≤ n + 1,

for every two integers f, n ≥ 1.

1.1 Independent Transversals

Historically the investigation of ∆f (m, n) started with 1-bc transversals,
subsequently called independent transversals. Independent transversals
and in particular the determination of the number ∆1(m, n), for m ≥ 2
and n ≥ 1 received a lot of attention. In a series of works ([22, 6, 8, 44,
35, 36, 67, 2, 9, 60, 38]) ∆1(m, n) has been completely determined.

Theorem 1.3. For integers m ≥ 2 and n ≥ 1 the following holds,

∆1(m, n) =

{

⌈ (m−1)n
2(m−2)

⌉

, if m is odd, and
⌈

mn
2(m−1)

⌉

, if m is even.

The upper bound for all m and n has been proved by Szabó and
Tardos for even m in [60] and in [38] is has been shown that this con-
struction is also optimal for odd m (adding one more partite set). We
give here a simplified construction showing n/2 < ∆1(m, n) ≤ dn/2e+1
for m − 2 ≥ N only. This yields a tight bound if n is even. Let G be
the graph in Figure 1.1 (a vertex represents a whole class of vertices).
That is, G is an r-partite graph with partite sets of size n, m > n and
each partite set Vi, i ∈ [m − 2] is partitioned into two almost equally
sized classes Vi,1 and Vi,2 (i.e., |Vi,1| = bn/2c and |Vi,2| = dn/2e). Let
every vertex in part Vi,2 be adjacent to every vertex in Vi+1,1, with
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1.2. Matching Transversals 27

i ∈ [m − 3] and let every vertex in Vm−2,2 be adjacent to every ver-
tex in V1,1. We assume that the two parts Vm−1 and Vm each contain
n ≤ m− 2 vertices vm−1,1, vm−1,2, . . . , vm−1,n and vm,1, vm,2, . . . , vm,n,
respectively. Further let every vertex of Vi,j be adjacent to vm+1−j,i,
i ∈ [n] and j ∈ {1, 2}.

Vi+5,2 Vi,1

Vi,2

Vi+1,1

Vi+1,2

Vi+2,1

Vi+2,2Vi+3,1

Vi+3,2

Vi+4,1

Vi+4,2

Vi+5,1

Vm−1 Vm

Figure 1.1: An m-partite graph G without an independent transversal.

Proposition 1.2. For the graph G in Figure 1.1 it holds that ∆(G) =
dn/2e+ 1 and G does not contain an independent transversal.

Proof. It is not hard to see that for every vertex v ∈ Vm−1 ∪ Vr , d(v) ≤
dn/2e. For a vertex v ∈ ⋃m−2

i=1 Vi, d(v) ≤ dn/2e+ 1.

Suppose for a moment that G contains an independent transversal
T . Hence either T ∩ (

⋃m−2
i=1 Vi,1) = ∅ or T ∩ (

⋃m−2
i=1 Vi,2) = ∅. Without

loss of generality assume the latter case. Thus there is an j ∈ [n] such
that the vertex T ∩ Vm is adjacent to the vertex T ∩ Vj,1.

1.2 Matching Transversals

Let us finally restrict to 2-bc transversals which we subsequently want
to call a matching transversals. According to Theorem 1.1 every mul-
tipartite graph G with partite sets of order n and ∆(G) ≤ b2n/3c con-
tains a matching transversal. On the other hand according to Proposi-
tion 1.1 there are multipartite graphs with partite sets of order n and
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28 Chapter 1. About f-Bc Transversals

∆(G) = n + 1 without a matching transversal. We think that these
graphs are in some sense optimal.

Conjecture 1.1. Let G be a multipartite graph with partite sets con-
taining at least n vertices. If ∆(G) ≤ n, then G contains a matching
transversal.

The following theorem by Haxell, Szabó, and Tardos [39] turns out
to be very useful later on.

Theorem 1.4 ([39]). Every multipartite graph G with partite sets of
order at least two and with maximum degree ∆(G) ≤ 2 contains a match-
ing transversal T , i.e., ∆2(2) = 2. Moreover there is a linear-time (in
the order of G) algorithm that finds T .

We will investigate ∆f (r, n) for matching transversals (f = 2). We
can construct graphs such that the following holds.

Proposition 1.3. For any two integers m ≥ 3, n ≥ 1,

∆2(m, n) ≤
{

n + d n
m−1e, if m is odd,

n + d n
m−2e, if m is even.

Proof. Assume first that m is odd. Let G be an m-partite graph such
that G[V2i ∪ V2i+1] is isomorphic to Kn,n, for 1 ≤ i ≤ (m − 1)/2.
Partition the part Vm into m− 1 almost equally sized parts Vm,i, with
bn/(m − 1)c ≤ |Vm,i| ≤ dn/(m − 1)e, for i ∈ [m − 1] and connect
every vertex in Vj with every vertex in Vm,j , see Figure 1.2. Hence
∆(G) = n+ d n

m−1e. In case m is even, then simply add another part to
G with n isolated vertices.

Obviously in every transversal T , the two vertices in T ∩ V2i and
T ∩V2i+1 form an edge in G. Hence every vertex of Vm has a neighbor in
an edge of G[T ] and thus G does not contain a matching transversal.

Let us note here that Proposition 1.3 improves Proposition 1.1 for
matching transversals in the following sense. For integers n > 0 and
m > n Proposition 1.3 shows the existence of m-partite graphs with
parts of size n and maximum degree ∆(G) = n + 1 without a matching

transversal, while Proposition 1.1 requires m ≥∑2
i=0 ni.

Improving on the lower bound ∆2(n) > 2n/3 seems to be hard in
general. In the remainder of this chapter we investigate 3-partite and
4-partite graphs.
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1.2. Matching Transversals 29

Vi+4

Vi+5

Vi+3 Vi+2

Vi+1

Vi
Vm

Vm,i+5 Vm,i

Figure 1.2: An m-partite graph with no matching transversal.

Lemma 1.1. ∆2(3, n) = d3n/2e.

Proof. Proposition 1.3 with m = 3 yields ∆2(3, n) ≤ d3n/2e. For the
lower bound we first observe that for every vertex v ∈ Vi, i ∈ [3] there is
a j ∈ [3] \ {i}, such that dVi

(v) = n. For that suppose there is a vertex
v ∈ Vi with dVj

(v) < n and dVk
(v) < n, where {i, j, k} = [3]. Hence

there is a non-neighbor vj of v in Vj and a non-neighbor vk of v in Vk .
Then the three vertices v, vi and vj form a matching transversal.

Hence we can define the following refined partition of G, see also
Figure 1.3. For {i, m} ⊂ [3] let

Vi,m = {v ∈ Vi | dVm
(v) = n}.

Since no vertex has degree n into two other classes, this is really a
partition. For a vertex v ∈ Vi,j it holds that N(v) ⊇ Vj∪Vk,i. Obviously
there is a part Vk with Vk,i 6= ∅ 6= Vk,j . Hence without loss of generality
|Vk,i| ≥ dn/2e, and the proof is concluded.

Now we turn our attention to ∆2(4, n). We define G4(n) to be
the family of 4-partite graphs with partite sets containing exactly n
vertices. We can subsequently assume for graphs G ∈ G4(n) that
∆(G) ≤ ∆2(3, n) = d3n/2e.

Theorem 1.5. Every graph G ∈ G4(n) with ∆(G) < 4n
3 has a matching

transversal. On the other hand for every n divisible by 7 there are graphs
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30 Chapter 1. About f-Bc Transversals

V1,3 V2,3

V3,2V3,1

V1,2 V2,1

Figure 1.3: 3-partite graph G with refined partite sets Vi,j ⊆ Vi, i ∈
[3], j ∈ [2]

G ∈ G4(n) with ∆(G) = 10n
7 and no matching transversal. Therefore

d4n/3e ≤ ∆2(4, n) ≤ b10n/7c+ 9.

Proof. For a given graph G, we say that a pair of vertices u, v dominates
a vertex set U if and only if every vertex of U is adjacent to u or v.

Lemma 1.2. A graph G ∈ G4(n) contains no matching transversal
if and only if every pair of vertices vi, vj from distinct partite sets Vi

and Vj of G dominates at least one of the other partite sets Vk with
k ∈ [4] \ {i, j}.

Proof. Suppose there is a pair v1 ∈ V1, v2 ∈ V2 that dominates neither
V3 nor V4. Hence there is a vertex v3 ∈ V3 and a vertex v4 ∈ V4, both
not adjacent to v1 and v2. We immediately conclude that v1, v2, v3 and
v4 form a matching transversal in G.

On the other hand suppose that G contains a matching transversal
T = {v′1, v′2, v′3, v′4}. Obviously the complement of G[T ] contains a 4-
cycle as a subgraph, say v′

1, v
′
3, v

′
2, v

′
4. then the pair v′

1, v
′
2 dominates

neither V3 nor V4 (and the pair v′
3, v

′
4 dominates neither V1 nor V2).

The crossing degree sum d×(vi, vj) of two vertices vi, vj from distinct
parts Vi and Vj is defined as dVi

(vj) + dVj
(vi).

Corollary 1.1. If there are vertices vi and vj from distinct parts of a
graph G ∈ G4(n) with ∆(G) < 4n/3 such that

(i) d×(vi, vj) > 2∆(G)− n, or
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1.2. Matching Transversals 31

(ii) d×(vi, vj) = 2n,
then G has a matching transversal.

Proof. (i) The two vertices vi and vj have together less than n neigh-
boring vertices outside of Vi∪Vj . Hence they do not dominate any other
part of G. According to Lemma 1.2, G contains a matching transversal.
(ii) follows immediately from (i) and ∆(G) < 4n/3.

Let G ∈ G4(n) with no matching transversal. We define a directed
graph K(G) on the vertex set V (K(G)) = {V1, V2, V3, V4} by putting
an arc (Vi, Vj) in K(G) if there exists a vertex vi ∈ Vi with dVj

(vi) = n.
From Corollary 1.1(ii) we conclude that for every two parts Vi and Vj

with {i, j} ⊆ [4] not both arcs (Vi, Vj) and (Vj , Vi) exist.

Lemma 1.3. Let G ∈ G4(n) be a graph with no matching transversal,
and let α be a constant such that ∆(G) < (1 + α)n. Suppose Vi is a
vertex of outdegree at most 1 in K(G). Let Vj be the outneighbor of Vi

if it exists, otherwise let Vj be an arbitrary class different from Vi. Let
Vk and Vl be the other two class es different from Vi and Vj . Then one
of the following holds.

(i) Vj contains a vertex y with dVi
(y) ≥ min{n, (2− 3α)n},

(ii) (Vl, Vk) is an arc of K(G),

(iii) (Vk, Vj) is an arc of K(G),

(iv) (Vk, Vl) is an arc of K(G),

(v) (Vl, Vj) is an arc of K(G).
Moreover, if none of (i), (ii) and (iii) hold then ∆(G) ≥ d4n/3e, and
if none of (i), (iv) and (v) hold then ∆(G) ≥ d4n/3e.

Proof. Let v ∈ Vj be a vertex with largest degree into Vi. If dVi
(v) = n

then (i) holds. Thus we may assume that v has a non-neighbor x in Vi.
Since there is no arc from Vi to Vk or Vl, we can find vertices w ∈ Vk

and z ∈ Vl that are not adjacent to x. Then by Lemma 1.2, we see that
v and w dominate Vl, w and z dominate Vj , and v and z dominate Vk .
Thus

d(v) + d(w) + d(z) ≥ 3n + dVi
(v) + dVi

(w) + dVi
(z).

Let us first look at the vertex z. If dVk
(z) = n then (ii) holds. Thus

we may assume z has a non-neighbor u ∈ Vk. If dVj
(u) = n then (iii)

holds, so we may assume u has a non-neighbor t ∈ Vj . Then z and t
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32 Chapter 1. About f-Bc Transversals

have a common non-neighbor in Vk, so by Lemma 1.2 we must have
that z and t dominate Vi. By choice of v we conclude that dVi

(z) ≥
n− dVi

(t) ≥ n− dVi
(v). Thus in particular if none of (i), (ii) and (iii)

hold then

3∆(G) ≥ d(v) + d(w) + d(z) ≥ 3n + n + dVi
(w).

This implies 3∆(G) ≥ 4n and therefore ∆(G) ≥ d4n/3e.
The same argument applied to w instead of z tells us that if (iv)

and (v) fail to hold then dVi
(w) ≥ n− dVi

(v), so if none of (i), (iv) and
(v) hold then ∆(G) ≥ d4n/3e. In addition if all of (ii), (iii), (iv), and
(v) fail we have

3(1 + α)n > 3∆(G) ≥ d(v) + d(w) + d(z) ≥ 5n− dVi
(v).

This implies dVi
(v) > (2− 3α)n, so (i) holds.

Lemma 1.4. Let G ∈ G4(n) with ∆(G) < (1 +α)n, and suppose K(G)
has at most one arc. If G has no matching transversal then α > 3/8.

Proof. First suppose K(G) has no arcs. By Lemma 1.3 applied with
Vi = V2 and Vj = V1, we find that V1 contains a vertex y with dV2(y) ≥
(2 − 3α)n. By Lemma 1.3 applied with Vj = V2 and Vi = V1, we find
that V2 contains a vertex z with dV1(z) ≥ (2−3α)n. Thus we have that
the crossing degree sum d×(y, z) ≥ (4−6α)n. Corollary 1.1 then implies
(4− 6α)n ≤ 2∆− n < 2(1 + α)n− n which implies 4− 6α < 1 + 2α, in
other words α > 3/8.

If (V1, V2) is the unique arc of K(G) then Lemma 1.3 applied with
Vi = V1 and Vj = V2 gives us a vertex z ∈ V2 with dV1(z) ≥ (2− 3α)n.
Together with a vertex y ∈ V1 with dV2(y) = n we find a pair with
crossing degree sum d(y, z) ≥ (3−3α)n. Thus (3−3α)n ≤ 2(1+α)n−n
which tells us that α > 2/5 > 3/8.

Theorem 1.5 follows from three lemmas.

Lemma 1.5. Let G ∈ G4(n) be a graph with no matching transversal,
and ∆(G) < 4n/3. Then it holds true that

(i) ∆+(K(G)) = 3, or

(ii) ∆−(K(G)) ≥ 2.
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1.2. Matching Transversals 33

Proof. Suppose on the contrary that there is a graph G ∈ G4, ∆(G) <
4n/3, with no matching transversal, ∆+(K(G)) ≤ 2 and ∆−(K(G)) ≤
1. We choose G from all graphs in G4(n) subject to these conditions such
that the number of edges in K(G) is maximal. According to Lemma 1.4,
K(G) contains at least one arc. Without loss of generality let V1 denote
a vertex of K(G) with maximum outdegree.

If d+(V1) = 1, then let V2 be the vertex adjacent to V1. Due to
Lemma 1.3 with Vi = V1, Vj = V2, and the fact that none of the cases
(i), (iii) and (v) applies, the edge (V3, V4) and the edge (V4, V3) exist in
K(G). A contradiction according to Corollary 1.1(ii).

If d+(V1) = 2, then let V2 be the vertex in K(G) not adjacent to V1.
Note first that the arcs (V2, V3) and (V2, V4) are not contained in K(G),
thus we apply Lemma 1.3 with Vi = V2 and Vj = V1. If either of the
cases (ii)− (v) occurs, then ∆−(K(G)) ≥ 2. Hence case (i) occurs. We
conclude that there is an arc from V1 to V2, again a contradiction.

Lemma 1.6. Let G ∈ G4(n) be a graph with no matching transver-
sal and ∆(G) < 4n/3 such that there is a vertex Vj′ in K(G) with
d+

K(G)(Vj′ ) = 3. Then ∆−(K(G)) ≥ 2.

Proof. Let us assume without loss of generality that Vj′ = V4 and choose
three vertices vi ∈ V4 with dVi

(vi) = n, i ∈ [3]. First we observe that
K(G) contains no other arcs than (V4, Vi), i ∈ [3].

Claim 1.1. For every v ∈ Vi (i ∈ [3]) there is a j ∈ [3] \ {i} such that
dVj

(v) > 2n/3.

Proof. According to Lemma 1.2 the pair v, vi dominates another part
Vj , j ∈ [3] \ {i}. Due to the fact that dVi

(vi) = n, and thus dVj
(v) <

4n/3− n = n/3, it holds for v that dVj
(v) > 2n/3.

Since we assume ∆(G) < 4n/3, we can classify every vertex v ∈ Vi

according to whether its degree to Vj or to Vk is larger than 2n/3, for
{i, j, k} = [3]. Hence we obtain a partition of Vi into classes Vi,j and
Vi,k as follows.

v ∈ Vi,m(⊆ Vi) ⇐⇒ dVm
(v) > 2n/3, with m ∈ [3] \ {i}.

Claim 1.2. For every vertex v ∈ V1 ∪ V2 ∪ V3, n/3 < dV4(v) < 2n/3.
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34 Chapter 1. About f-Bc Transversals

Proof. dV4(v) < 2n/3 immediately follows from Claim 1.1. Since there
is no arc in K(G) other than the arcs leaving V4, for every vertex ui ∈ Vi

we find a second vertex in uj ∈ Vj such that they have a common non-
neighbor in Vk. Thus ui and uj dominate V4. According to Claim 1.1,
dVl

(uj) > 2n/3, for a l ∈ [3] \ {j} and hence dV4(uj) < 2n/3. Moreover
dV4(ui) > n/3.

We are now ready to prove the proposition. We observe that |Vi,k|+
|Vj,k | < n, for {i, j, k} = [3], since otherwise there is a vertex w in
the common non-neighborhood of vi and vj in Vk with dVi∪Vj

(w) ≥ n
(note here that w is adjacent to every vertex of Vi,k and of Vj,k). This
fact combined with dV4(w) > n/3 (Claim 1.2) yields to a contradiction.
Therefore there is a choice of {i∗, j∗, k∗} = [3] such that |Vi∗,j∗ | ≥
n/2, |Vj∗,k∗ | ≥ n/2 and |Vk∗,i∗ | ≥ n/2. Let us choose three vertices
vi∗,j∗ ∈ Vi∗,j∗ , vj∗,k∗ ∈ Vj∗,k∗ and vk∗,i∗ ∈ Vk∗,i∗ . Suppose for a moment
that any of the three vertices va,b together with any vertex w ∈ Vb

dominate V4. For every vertex w ∈ Vb, NV4(w) ⊇ V4 \ NV4(va,b) 6= ∅
(since dV4(va,b) < 2n/3 < n). Therefore dV4(w) > n/3. Hence there is
a vertex in V4 that is complete to at least two of the three parts V1, V2

and V3, a contradiction. Thus we can choose va,b such that there is a
vertex w ∈ Vb for which the pair va,b, w does not dominate V4.

d(va,b) + d(w) ≥ dVb
(va,b) + dV4(va,b) + dVa

(w) + dV4(w) + |Vc|
> 2n/3 + n/3 + n/2 + n/3 + n = 17n/6 > 2(4n/3),

with {a, b, c} = [3]. This contradicts the fact that ∆(G) < 4n/3.

Lemma 1.7. Let G ∈ G4(n) be a graph with no matching transversal
such that there is a vertex Vi in K(G) with d−

K(G)(Vi) ≥ 2. Then ∆(G) ≥
d4n/3e.

Proof. Assume that ∆(G) < 4n/3 and let without loss of generality
{(V1, V3), (V2, V3)} ∈ E(K(G)). Further let vi ∈ Vi be a vertex with
dV3(vi) = n, i ∈ {1, 2}. We first observe the following:

Claim 1.3. No pair v1, w with w ∈ V3 dominates V2.

Proof. Suppose v1, w dominate V2. Since dV3(v1) = n, and therefore
dV2(v1) < n/3 we have that dV2(w) > 2n/3. Hence d×(w, v2) > 5n/3, a
contradiction to Corollary 1.1 and the fact ∆(G) < 4n/3.
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Y2

V4

X1

Y1 Y3

X3

X2,1 X2,3

Figure 1.4: The graph G with ∆(G) = 10n/7 that contains no matching
transversal.

Claim 1.4. There is a vertex w ∈ V3 such that the pair v1, w does not
dominate V4.

Proof. Suppose every pair v1, w with w ∈ V3 dominates V4. Again since
dV4(v1) < n/3, the crossing-degree sum of w and any non-neighbor of
v1 in V4 is larger than 5n/3, again a contradiction to Corollary 1.1.

Therefore there is a pair of vertices v1, w with w ∈ V3 that do neither
dominate V2 nor V4, contradicting the fact that G contains no matching
transversal (c.f. Lemma 1.2).

Suppose G contains no matching transversal, then Lemma 1.5 im-
plies the assumptions for Lemma 1.6, Lemma 1.6 implies the assump-
tions for Lemma 1.7 and finally Lemma 1.7 implies that ∆(G) ≥ d4n/3e.

For the upper bound we want to show the existence of a graph
G ∈ G4(n) with ∆(G) = 10n/7 with no matching transversal if n is
divisible by 7. Let us look at the graph G in Figure 1.4. We claim
that G contains no matching transversal. For that suppose that the
four vertices v1, v2, v3, and v4 form a matching transversal of G with
vi ∈ Vi, for i ∈ [4]. Since all vertices (including v4) from V4 have the
same neighborhood we conclude that the following is not possible:

(i) v1 ∈ X1 and v3 ∈ X3,

(ii) v1 ∈ X1 and a vertex from v3 ∈ Y3, or
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36 Chapter 1. About f-Bc Transversals

(iii) v1 ∈ Y1 and a vertex from v3 ∈ X3.

Thus v1 ∈ Y1 and v3 ∈ Y3. Now it is easy to see that any choice
for a vertex from V2 would result in a transversal T with ∆(G[T ]) > 1,
a contradiction.

We assumed that 7 divides n. For an optimal choice of the order
of the vertex classes, for instance |X1| = 3n/7, |Y1| = 4n/7, |X2,1| =
n/7, |X2,3| = n/7, |Y2| = 5n/7, |X3| = 3n/7, |Y3| = 4n/7, we observe
that no vertex in the graph G has degree larger than ∆(G) = 10n/7.
If 7 does not divide n, then let n′ > n denote the smallest integer that
is divisible by 7. Let G be the graph as in Figure 1.4 with partite sets
containing n′ vertices each and set r = n mod 7. Delete from V4 r
many vertices, from X1 and X3 br/2c many vertices, from Y1 and Y3

dr/2e many vertices, from X2,1 br/4c, from X2,3 dr/4e, and from Y2

dr/2e many vertices, resulting in a new graph G′. Now it is not hard to
check that ∆(G′) ≤ b10n/7c+ 9.

The graph G has the special property that for every pair of vertices
u and v from V4, N(u) = N(v). For graphs G ∈ G4(n) with this special
property the following strengthening of Theorem 1.5 is true.

Lemma 1.8. Every graph G ∈ G4(n) with N(v) = N(u) for all u, v ∈
Vi, for some i ∈ [4] and ∆(G) < 10n/7 contains a matching transversal.

Proof. For a vertex v ∈ Vi we define Xj(v) = NVj
(v) and Yj(v) =

Vj \ Xj(v), for j ∈ [4] \ {i}. Further we define Xj,k(v) ⊆ Xj(v) and
Yj,k(v) ⊆ Yj(v) as follows:

Xj,k(v) =
⋂

u∈Yk(v)

NXj(v)(u) and Yj,k(v) =
⋂

u∈Yk(v)

NYj(v)(u).

Let us now fix i = 4. We define X(v) =
⋃3

i=1 Xi(v) and Y (v) =
⋃3

i=1 Yi(v). (In case it is obvious from the context, we might skip the
parameter v.) Let in the following W either stand for X or Y . Note
here that Wi,j(v) and Wi,k(v) for j 6= k are not necessarily disjoint.
Let us denote the cardinality of these sets by the corresponding small
letters, e.g. wi,j(v) = |Wi,j(v)|.
Proposition 1.4. Let G ∈ G4(n) be a graph with no matching transver-
sal, then

(i) Xi,j ∪Xi,k = Xi, and
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(ii) Yi,j ∪ Yi,k = Yi,
for all i, j, k such that {i, j, k} = [3].

Proof. Suppose that Wi,j ∪Wi,k ⊂ Wi (with again W attaining either
X or Y ). There is a vertex vj ∈ Yj and a vertex vk ∈ Yk that do
neither dominate Vi nor V4. Hence by Lemma 1.2 {v, vi, vj , vk} forms a
matching transversal in G.

Fix a vertex v ∈ V4. According to Corollary 1.1(ii) dVi
(v) < n, for

all i ∈ [3]. Due to Proposition 1.4 we know that the partite sets Vi,
i ∈ [3] of G are dominated by classes Wi,j . For each of the Wi,j , Wi,k

pairs at least one of them has to be non-empty.

Choose {i, j} ⊂ [3]. According to the definition of the vertex classes
the following holds:

d(u) ≥
{

|V4|+ yj if u ∈ Xi,j , and

yj + xj,i + yk,i + xk,i if u ∈ Yi,j .

Hence for each vertex class we can lower bound the degree of the
vertices contained in it in terms of the order of other vertex classes.
These inequalities yield a set of constraints, such that we can define
a linear programm that optimizes for the smallest maximum degree.
To do so we also have to add the constraints that xi + yi = n, wi,j +
wi,k ≥ wi, and the inequalities ∆(G) ≥ d(wi,j) and finally the objective
∆(G). Since some of the sets Wi,j could be empty and thus could
not contain any single vertex, we minimize over total of at most 36

possibilities of the 6 pairs Xi,j , Xi,k and Yi,j , Yi,k being empty or not,
and the corresponding linear programs. For each possibility we solve
the corresponding linear program (with the inequalities removed that
correspond to empty sets) such that ∆(G) gets minimized. The MAPLE
code solving these linear programs can be found in the Appendix.

We verified that ∆(G) = 10n/7 is the optimal value and a solution
consists of the values x1,2 = 0, x1,3 = 4n/7, y1,2 = 3n/7, y1,3 = 0, and
x2,1 = n/7, x2,3 = n/7, y2,1 = 5n/7, y2,3 = 5n/7, and x3,2 = 0, x3,1 =
4n/7, y3,1 = 0, y3,2 = 3n/7 (compare also Figure 1.4).
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Chapter 2

Algorithmic Aspects

I’m Not Normally a Praying Man,
But If You’re Up There,
Please Save Me, Superman!

Homer Simpson

There seems to be no greedy-like algorithm for finding bounded transver-
sals of multipartite graphs similar to the one for (list-)colorings. Also
the proof of Theorem 1.1 shown in Chapter 1 resisted attempts to turn
it into a polynomial-time algorithm for finding a bounded transversal
of a multipartite graph. Similarly, the original proof of Theorem 1.1 by
Haxell, Szabó, and Tardos in [39] and the topological proof by Szabó
and Tardos in [60] are purely existential.

Throughout this chapter we restrict ourselves to independent trans-
versals. We call the running-time of an algorithm with input graph G
polynomial if it is polynomial in the order of G, assuming that ∆(G) is
constant. Let G be a multipartite graph with partite sets containing at
least n vertices. The goal of this chapter is to derive a polynomial-time
algorithm that finds an independent transversal of G. In order to do
so we are forced to strengthen the condition on the partite set sizes
from n ≥ 2∆(G) (for which G is guaranteed to contain an independent
transversal according to Theorem 1.1) to n = Ω(∆(G)3). Note here that
Alon [8] mentions that a deterministic polynomial-time algorithm exists
that finds an independent transversal of G even if only n ≥ C∆(G)
holds, C being a large constant. We believe that in a future work
our results can be combined with the techniques of Alon to obtain an
algorithm that finds an independent transversal in every multipartite
graph G with parts containing at least C ′∆(G) many vertices, for some
constant C ′ ≥ 2 that is much smaller than the constant C implicitly
given in [8].
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40 Chapter 2. Algorithmic Aspects

In Section 2.1 we start with a simple application of the Lovász Lo-
cal Lemma in order to show the existence of independent transversals
in certain multipartite graphs. Then we argue that unfortunately an al-
gorithmic variant of the Lovász Local Lemma (which would lead to an
algorithm as wanted) cannot be directly applied for finding independent
transversals.

In Section 2.2 we are finally going to present the simple determinis-
tic algorithm that efficiently finds an independent transversal for every
multipartite graph G with each partite set of G containing at least
20∆(G)3 many vertices.

2.1 No Algorithmic Local Lemma

We start by stating the famous Lovász Local Lemma.

Lemma 2.1 (Lovász Local Lemma [29]). Let A1, . . . , Ak be events
in an arbitrary probability space. Suppose each Ai is mutually indepen-
dent of all but at most d other events Aj and suppose the probability of
each Ai is at most p. If ep(d+1) < 1 then with positive probability none
of the events Ai hold.

A random transversal of an m-partite graph G is defined to be a
transversal T = {t1, . . . , tm} of G where each ti is chosen uniformly and
independently at random from Vi, for i ∈ {1, . . . , m}.

Let T be a random transversal of an m-partite graph G with partite
sets of size n > 2e∆(G). For an edge e = {u, v} ∈ E(G) we call Ae

the event that u ∈ T and v ∈ T . Obviously Pr(Ae) = 1/n2, and
p = maxe∈E(G) Pr(Ae) = 1/n2. Let u ∈ Vi and v ∈ Vj . It is not hard to
see that an event A{u,v} is mutually independent of all events A{u′,v′}

with {u′, v′} ∩ (Vi ∪ Vj) = ∅, in particular A{u,v} depends on at most
d = 2n∆(G) many other such events.

Lemma 2.1 asserts that if ep(d + 1) < 1, then there is a choice of
elementary events such that none of the events Ae, e ∈ E(G), occurs
and hence there is an independent transversal of G. Indeed for n >
2e∆(G), ep(d + 1) < 1 holds. Hence we obtain a short proof that every
graph G with parts of size larger than 2e∆(G) contains an independent
transversal. (This is a slightly weaker results than Theorem 1.1 applied
with f = 1.)

An algorithmic counterpart of the Lovász Local Lemma was shown
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2.2. Finding Independent Transversals 41

to exist if we require stronger conditions by Beck [14] and Alon [7]. In a
version by Molloy and Reed [53] among many additional requirements
the condition ep(d + 1) < 1 should be replaced by the new condition
pd9 < 1/512. Since in our case pd9 = Ω(n7∆9) = ω(1) we cannot
apply this algorithmic variant of the Lovász Local Lemma from Molloy
and Reed [53]. Still some ideas of its proof can be used to derive the
algorithm in the next section.

2.2 Finding Independent Transversals

Theorem 2.1. Let ∆ be a constant. There is a deterministic algorithm
running in polynomial-time that finds an independent transversal of ev-
ery multipartite graph G with ∆(G) ≤ ∆ and parts Vi of cardinality
|Vi| ≥ 20∆3.

In order to prove Theorem 2.1 we are first going to show the following
useful lemma.

Lemma 2.2. Let ∆ be a constant. For every m-partite graph G with
∆(G) = ∆ and parts Vi of cardinality |Vi| = n ≥ 5∆ there exists a
(5 log(5m∆))-bc transversal T of G. Moreover there is a deterministic
polynomial-time algorithm that finds T .

Proof. First we want to bound the number of connected induced sub-
graphs on r vertices of G. For that we fix an unlabeled tree S on r
vertices. Also we want to fix an ordering of the vertices of S such that
for every j = 2, . . . , r the jth vertex vj of S is adjacent to some vertex
vi of S with i < j. Let us now map the r vertices of S, starting with v1,
onto G. There are |V (G)| many choices for v1. For every subsequent
vertex vj of S we have already specified a vertex of G which maps onto
a neighbor of vj . Hence there remain only at most ∆(G) many vertices
of G to map vj onto. There are then a total of at most |V (G)|∆r many
possibilities to map S onto G.

The total number of distinct unlabeled trees on r vertices is less than
4r (c.f. Harary and Palmer [34]). Thus the number of trees on r vertices
in G, and also the number of connected induced subgraphs on r vertices
in G is at most |V (G)|(4∆)r . Let us denote the set of all connected
induced subgraphs on at most r vertices in G by Sr. As we have seen
|Sr| ≤ |V (G)|(4∆)r = mn(4∆)r.
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42 Chapter 2. Algorithmic Aspects

We choose a random transversal T . Now we are ready to compute
the expected number of components on r vertices contained in T .

E[|{S ∈ Sr : S ⊂ T}|] ≤
∑

S∈Sr

Pr(S ⊆ T )

=
∑

S∈Sr

∏

v∈V (S)

Pr(v ∈ T )

≤ mn(4∆)r

(

1

n

)r

≤ 4m∆

(

4

5

)r−1

.

We want to show that there is a (5 log(5m∆))-bc transversal by showing
that for r = (5 log(5m∆)) + 1 the above expectation is less than 1.

E[|{S ∈ S5 log(5m∆)+1 : S ⊂ T}|] ≤ 4m∆

(

4

5

)5 log(5m∆)

= 4m∆(5m∆)5 log(4/5)

<
4m∆

5m∆
< 1.

Hence there exists a set of vertices T ∗ = {t∗1, . . . , t∗m} such that G[T ∗]
contains no tree with at least 5 log(5m∆) + 1 vertices. Thus T ∗ forms
a (5 log(5m∆))-bc transversal.

Let us now proceed by showing how to find T ∗ deterministically.
The algorithm proceeds as follows: After having determined T ∗

i =
{t∗1, . . . , t∗i }, that is, a partial transversal of the first i parts V1, . . . , Vi

of G, we choose t∗i+1 ∈ Vi+1 as follows:
Let T = {t1, . . . , tm} be such that tj is chosen uniformly at random from
Vj , for j ∈ [m]. For each vertex v ∈ Vi+1 we compute E[|{S ∈ Sr :
S ⊂ T ∗

i ∪ {v} ∪ {ti+2, . . . , tm}|], i.e., the expected number of connected
trees on r = 5 log(5m∆) + 1 vertices in T ∗

i ∪ {v}∪ {ti+2, . . . , tm}. Then
we choose a vertex t∗i+1 for which this expectation is minimized. Thus,

E[|{S ∈ Sr : S ⊂ {t∗1, . . . , t∗i , t∗i+1, ti+2, . . . , tm}}|]
≤ E[|{S ∈ Sr : S ⊂ {t∗1, . . . , t∗i , ti+1, ti+2, . . . , tm}}|].

42



2.2. Finding Independent Transversals 43

Therefore after having chosen t∗m it holds that

|{S ∈ Sr : S ⊂ T ∗}| ≤ E[|{S ∈ Sr : S ⊂ T}|] < 1.

It only remains to show that the computation of E[|{S ∈ Sr : S ⊂
{t∗1, . . . , t∗i , v, ti+2, . . . , tm}|] can be carried out fast. For a fixed tree

S ∈ Sr it holds that Pr[S ⊂ {t∗1, . . . , t∗i , v, ti+2, . . . , tm}] =
(

1
n

)m−i−2
,

if {t∗1, . . . , t∗i , v} ⊆ S and 0 otherwise. Moreover we know that |Sr| ≤
mn(4∆)5 log(5m∆) = mn(5m∆)5 log(4∆) – a polynomial in n and m.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let l = 10∆2 and let G be a graph with ∆(G) ≤
∆, V (G) = V1 ∪ · · · ∪ Vm, and |Vi| ≥ l2∆, for i ∈ {1, . . . , m}.

We partition an arbitrary subset Ui of each partite set Vi, with |Ui| =
l2∆ into |Ui|/(2∆) = l many parts Ui,j , j ∈ {1, . . . , l}, each containing
2∆ many vertices. Also we define U∗

i = {Ui,j | j ∈ {1, . . . , l}}.
Further we define another m-partite graph H as follows.

V (H) = {Ui,j | i ∈ {1, . . . , m}, j ∈ {1 . . . , l}} and vertex partition
V (H) = U∗

1 ∪ · · · ∪ U∗
m. Two vertices Ui,j and Ui′,j′ are adjacent in

H if there is a vertex v ∈ Ui,j and a vertex v′ ∈ Ui′,j′ of G such that
{v, v′} ∈ E(G). Obviously ∆(H) ≤ 2∆ ·∆ = 2∆2.

Since |U∗
i | = l = 10∆2 ≥ 5∆(H) we can apply Lemma 2.2 to

H to obtain a (5 log(5m∆(H)))-bc transversal T ′ of H . Let us call
V ′ the set of all vertices of G contained in the selected parts of T ′.
Since the Ui,j ’s were chosen to contain 2∆ vertices of G we conclude
that the graph G[V ′] with partite sets imposed by T ′ contains an in-
dependent transversal T (according to Theorem 1.1). Since T ′ is an
(5 log(5m∆(H)))-bc transversal of H , every component of G[V ′] con-
tains at most 5 log(5m∆(H)) partite sets. Thus we can find an indepen-
dent transversal T by an exhaustive search on each component of G[V ′].
For each component of G[V ′] there are at most (2∆)(5 log(5m∆(H))) =
(5m∆(H))(5 log(2∆)) candidates for independent transversals – a poly-
nomial in m.
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Chapter 3

Application - Linear

Arboricity

I Wish...
...Robert Was Dead the Next Morning.

Prof. Emo Welzl, while
playing “Mafia”

Bounded transversals show many applications in graph theory and the-
oretical computer science. In this chapter we present an application of
bounded transversals to a special variant of edge-colorings of graphs,
the so-called linear arboricity. Although this is an application not re-
lated to bounded monochromatic component colorings, it’s worth not-
ing that bounded monochromatic component colorings have been first
introduced in the context of linear arboricity (see for instance [62, 10]).

3.1 Linear Arboricity

We call an edge k-coloring χ : E(G)→ {1, . . . , k} linear if every mono-
chromatic component of χ forms a path. The linear arboricity la(G) of
a graph G is defined to be the smallest integer k such that there exists
a linear edge k-coloring of G.

In [4] Akiyama, Exoo, and Harary made the following conjecture.

Conjecture 3.1 ([4]). For any r-regular graph G, la(G) =
⌈

r+1
2

⌉

.

The lower bound is easy to see. Consider an r-regular graph G with
n vertices. The maximum length of each path in G is n − 1. Since G
has n·r

2 edges it follows

la(G) ≥ n · r
2 · (n− 1)

>
r

2
,
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46 Chapter 3. Application - Linear Arboricity

that is la(G) ≥
⌈

r+1
2

⌉

.

Let us note that every graph G of maximum degree ∆(G) can be em-
bedded into a ∆(G)-regular graph H ⊇ G by adding edges and vertices
to G. Hence the following upper bound is an equivalent formulation of
the upper bound of Conjecture 3.1.

Conjecture 3.2 ([4]). For every graph G, la(G) ≤
⌈

∆(G)+1
2

⌉

.

Observe that in every linear k-coloring χ of a graph G with maximum
degree ∆(G) every vertex v ∈ V (G) is incident to edges of at least

dd(v)/2e many colors of χ, hence la(G) ≥
⌈

∆(G)
2

⌉

.

Conjecture 3.1 is obviously true for r = 1, 2. Further the conjec-
ture has been proved affirmatively for r = 3, 4 by Akiyama, Exoo, and
Harary ([4, 5]) and for r = 5, 6, 8 by Enomoto and Péroche ([28]). In
[31] the case r = 10 has been proved by Guldan.

Attacking Conjecture 3.1 in general seems to be a very hard problem.
Many variants of the linear arboricity problem have been studied. On
one hand, restrictions to smaller classes of graphs have been considered,
for instance to graphs with large girth.

Conjecture 3.1 has been partially verified by Alon [6] for graphs of
large girth.

Theorem 3.1 ([6]). For every r-regular graph G with

(i) r even and girth g(G) ≥ 50r, la(G) = r+2
2 ,

(ii) r odd, girth g(G) ≥ 100r, and having a perfect matching,
la(G) = r+1

2 .

It was mentioned in [6] that the bounds on the girth could be re-
duced. In [11] Alon, Teague, and Wormald show using Theorem 3.1
that Conjecture 3.1 holds asymptotically:

Theorem 3.2 ([11]). There is an absolute constant c > 0 such that

for every r-regular graph G, la(G) ≤ r
2 + cr

2
3 (log r)

1
3 .

The linear arboricity of planar graphs has also been considered. Wu
[66] almost completely proves the linear arboricity conjecture for planar
graphs.

Theorem 3.3 ([66]). Let G be a planar graph.

If ∆(G) 6= 7, then la(G) ≤
⌈

∆(G)+1
2

⌉

.
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3.1. Linear Arboricity 47

If ∆(G) = 7 and g(G) ≥ 4, then la(G) = 4.

Hence, even for planar graphs, the 7-regular case remains open, and
again a constraint on the girth had to be added.

In Section 3.1.1 we show that the restriction of Theorem 3.1 in G
having a perfect matching (a 1-factor) can be weakened to having a
3-factor. Note here that every r-regular graph G, with r being an odd
integer, that contains a perfect matching M , does also contain a 3-
factor. Indeed the (r− 3)-regular graph G−M contains a 2-factor (c.f.
Petersen’s Theorem).

Theorem 3.4. Let r ≥ 7 be an odd integer. For every r-regular graph G
such that g(G) ≥ 4r(r−1) and G contains a 3-factor, la(G) = (r+1)/2.

In case G is a 7-regular graph we can completely omit the factor
condition. In Section 3.1.2 we prove the following result.

Theorem 3.5. For every 7-regular graph G with girth g(G) ≥ 253,
la(G) = 4.

3.1.1 Odd Regular Graphs with a 3-Factor

We start this subsection with some useful lemmas.

Subsequently (in this chapter) we define V i(G) to be the vertices
of degree i in G (or just by V i if the G is obvious from the context).
Similarly we define V <i(G) = {v ∈ V (G) | d(v) < i}. The key lemma
of the proof by Enomoto and Péroche used in [28] for r-regular graphs,
with r = 5, 6, 8, is the following.

Lemma 3.1 ([28]). Suppose G is a connected graph with ∆(G) ≤ 4,
δ(G) ≤ 3, and ∆(G[V 4]) ≤ 1. Then la(G) = 2.

We say that two edges e and e′ of G are dependent if either e is
incident to e′ or there is an edge f ∈ E(G) such that both e and e′ are
incident to f . The proof of the following lemma applies the existence
of independent transversals.

Lemma 3.2. Let G and H be two graphs such that G ⊇ H, ∆(G) ≤ r
and H can be factored into k graphs, F1, . . . , Fk with ∆(Fi) ≤ 2, i ∈ [k].
Additionally let Ein, Eout ⊆ E(H) with Ein ∩ Eout = ∅, and such that
no two edges in Ein are dependent in G. If for every graph Fi every
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48 Chapter 3. Application - Linear Arboricity

cycle of Fi consists of at least g∗ = 4r(r − 1) + 2r(r − 1)|Ein| + |Eout|
many vertices, then there exists a linear (k +1)-coloring of H such that
one color-class T fulfills the following properties:

(i) no two edges in T are dependent in G,

(ii) Ein ⊆ T , and

(iii) Eout ∩ T = ∅.

Proof. From each cycle in Fi, i ∈ [k] we choose one edge such that the
resulting set of selected edges fulfills conditions (i)-(iii). We can assume
without loss of generality that each Fi consists of disjoint cycles, define
fi to be the number of cycles in Fi. Moreover each cycle contains
at least g∗ many vertices (or edges). After numbering all cycles in
Fi, we denote the edge set of the jth cycle in Fi by Ei,j and define
E∗

i,j = Ei,j \ ({e ∈ Ei,j | e and e′ are dependent in G, e′ ∈ Ein}∪Eout).
We now construct a new multipartite graph H∗ as follows:

V (H∗) =
⋃

i∈{1,...,k},j∈{1,...,fi}
Vi,j , with Vi,j = {e ∈ Ei,j}, and

e1e2 ∈ E(H∗) ⇐⇒ e1 6= e2, and e1 and e2 are dependent in G.

We claim that ∆(H∗) ≤ 2(r − 1)r. Indeed, since ∆(G) ≤ r every edge
in G is dependent to at most 2(r−1)+2(r−1)(r−1) = 2(r−1)r other
edges.

We aim to choose an independent transversal T of H∗ such that its
removal leaves only path components in H . All the edges of Ein are
forced to be contained in T , hence no edge dependent to an edge of Ein

in G can be chosen to be contained in T . Also none of Eout can be
chosen to be contained in T . Hence only the edges E∗

i,j of a partite set
Vi,j of H∗ can be chosen for T . Since

|E∗
i,j | = |Ei,j \ ({e ∈ Ei,j | e and e′ are dep. in G, e′ ∈ Ein} ∪ Eout)|

≥ g∗ − 2r(r − 1)|Ein| − |Eout|
≥ 4r(r − 1) ≥ 2∆(H∗),

we can apply Lemma 1.1 to obtain an independent transversal T ∗ ⊆
V (H∗) of H∗ with partite sets restricted to E∗

i,j only. We set T =
T ∗ ∪ Ein. Therefore Fi − T contains only paths and no two edges of T
are dependent in G with Ein ⊆ T and Eout ∩ T = ∅. We conclude that
the k color-classes Fi − T , i ∈ {1, . . . , k} and the special color-class T
form a linear (k + 1)-coloring as required.

We are now ready to prove Theorem 3.4.
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3.1. Linear Arboricity 49

Proof of Theorem 3.4. Let F be a 3-factor of G. Set H = G − F and
let k = (r−3)/2. Since H is 2k-regular, H can be factored into k many
2-factors (c.f. Petersen’s Theorem). Then by Lemma 3.2 applied to the
two graphs G and H , G ⊃ H , and with Ein = Eout = ∅ and the fact
that g(H) ≥ g(G) ≥ 4r(r − 1), H has a linear (k + 1)-coloring with
special color-class M ⊆ E(H). Let G′ = F ∪M . We see that ∆(G′) ≤ 4
and, since M contains no pair of dependent edges, ∆(G′[V 4]) ≤ 1.
So, by Lemma 3.1 (note that δ(G′) ≤ 3 directly follows from the fact
that M contains no dependent edges) we can conclude that la(G′) = 2.
Hence the linear (k +1)-coloring of H without the special color-class M
together with the linear 2-coloring of G′ is a linear (k+2) = ((r+1)/2)-
coloring, as wanted.

3.1.2 7-Regular Graphs

The following lemma proved by Bollobás, Saito, and Wormald is going
to be helpful.

Lemma 3.3 ([23]). Every 2-edge-connected 7-regular graph contains a
3-factor.

In order to prove Theorem 3.5 we are going to color each maximal
2-edge-connected component (an edge-block) of G separately. Since an
edge-block may contain vertices of degree less than seven, we first prove
the following statement.

Lemma 3.4. For every 2-edge-connected graph G with ∆(G) ≤ 7 and
girth at least 253, la(G) ≤ 4.

Proof. If V <7(G) = ∅, in other words if G is 7-regular, then due to
Lemma 3.3 G contains a 3-factor. Also since g(G) ≥ 253 ≥ 4 · 7 · 6 we
can apply Theorem 3.4 to G and obtain that la(G) = 4.

Hence we can subsequently assume that V <7(G) 6= ∅. If |V <7(G)| ≥
2 or V <7(G) = {v} and d(v) < 6, then we construct a new graph
G′ ⊇ G such that G′ is as well 2-edge-connected and either V <7(G′) = ∅
or V <7(G′) = {v} and d(v) = 6, as follows. We set k = 8 − δ(G) and
construct a new graph G′ from k many copies of G (G(i) with V (G(i)) =

{v(i)
j }j∈{1,...,V (G)}, i ∈ {1, . . . , k}) with every set of k corresponding

vertices {v(i)}i∈{1,...,k} and d(v) = δ(G) identified with a copy of Kk, see
also Figure 3.1 for an example with δ(G) = 5 and V 5(G) = {v1, v2, v3}.
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G(1) G(2) G(3)

Figure 3.1: New graph G′ with V <7(G) = {v1, v2, v3} and d(vi) = 6.

Iteratively apply this construction by setting G = G′ until we arrive
to a graph G′ with either V <7(G′) = ∅ or V <7(G′) = {v} and d(v) = 6
(in this case applying the construction once more would result in a graph
that is not 2-edge-connected, since a single K2 is not 2-edge-connected).

Subsequently suppose that V <7(G′) = {v}, d(v) = 6 and N(v) =
{u1, . . . , u6}. Split the vertex v into two vertices v1 and v2 such that
N(v1) = {u1, u2, u3} and N(v2) = {u4, u5, u6} and moreover there is a
path ui, . . . , uj in G′ − v with i ∈ {1, 2, 3} and j ∈ {4, 5, 6} (it is not
hard to see that such a path has to exist), see Figure 3.2. Let H be the

v v1 v2

HG′

Figure 3.2: Split vertex v of G′.

resulting graph. Further we construct a new graph I from two copies of
H , denoted by H ′ and H ′′, respectively, by identifying the two copies
of the vertices v1 and v2 respectively and adding the edge {v1, v2} to
I , see Figure 3.3. The new graph I is 2-edge-connected and 7-regular.
Apply Lemma 3.3 to I , and let F be a 3-factor of I . Either H ′ or H ′′

contains at most 3 edges of F incident to either v1 or v2 (but not to
both), say H ′. Moreover call f ′ the number of such edges in H ′.

Observe that |V (H ′)| is even, since all vertices but v1 and v2 of H ′
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v1 v2

H′

H′′

Figure 3.3: New graph I , 2-edge connected and 7-regular.

are odd and in every graph the number of vertices with odd degree is
even. Suppose that f ′ is odd, then either dF [V (H′)](v1) or dF [V (H′)](v2)
is odd and all other vertex degrees of F [V (H ′)] are odd. Hence the
number of vertices with odd degree in F [V (H ′)] is odd, a contradiction.

Let us look at the remaining two cases f ′ = 0 and f ′ = 2.

• f ′ = 0
We construct a new graph J from H ′−F as follows. Let u1 and u2

be two arbitrary non-adjacent neighbors of v. Let J be the graph
H ′ − F without the edges {v, u1} and {v, u2} but with the new
edge {u1, u2}. It holds that d(v) = 4 and hence J is 4-regular.
Hence J can be factored into two 2-factors F1 and F2. Also let
Ein = {{u1, u2}} and Eout = {{u, v} | u ∈ (NG(v) \ {u1, u2})}.
We define JG to be the graph J restricted to the edges contained
in G and to the edge {u1, u2} if at least one of the edges {v, u1},
{v, u2} is contained in G. Since ∆(G) ≤ 7 = r and 4r(r − 1) +
2r(r−1)|Ein|+ |Eout| ≤ 4 ·7 ·6+2 ·7 ·6 ·1+4 = 253−1 ≤ g(J)−1
(because of the new edge {u1, u2}) we can apply Lemma 3.2 to the
two graphs G and JG, and with Ein and Eout in order to obtain a
linear 3-coloring of JG with color-classes S1, S2 and special color-
class T ⊆ E(JG). Then we apply Lemma 3.1 to F ∪ T (since no
edges in T are dependent, clearly ∆(G[V 4]) ≤ 1) and obtain a
linear 2-coloring T1, T2 of F ∪ T . We color the edges {v, u1} and
{v, u2} with the same color as {u1, u2} and restrict to only the
edges of G to obtain two new color-classes T ′

1 and T ′
2. Therefore
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the four color-classes S1, S2, T
′
1 and T ′

2 form a linear 4-coloring of
G.

• f ′ = 2
Hence H ′−F is a 4-regular graph. Let F1 and F2 be two 2-factors
that factor H ′ − F . We apply Lemma 3.2 to the two graphs H ′

and H ′−F (restricted to G), and with Ein = Eout = ∅ and obtain
a linear 3-coloring of H ′ − F (restricted to G) with color-classes
S1, S2 and T (with no two edges of T dependent in H ′). The graph
F ′ = F ∪ T has therefore maximum degree at most 4, moreover
∆(F ′[V 4]) ≤ 1 and all vertices but possibly v have degree at least
3. Then we apply Lemma 3.1 to F ′ and obtain a linear 2-coloring
of F ′ with color-classes T1 and T2 and hence also obtain a linear
4-coloring of G.

B′

B

Figure 3.4: Color G edge-block by edge-block.

Let B1, . . . , Bm be the edge-blocks of G. We define the graph B(G)
with V (B(G)) = {Bi | i ∈ [m]} and E(B(G)) = {{B, B′} | v ∈ B, v′ ∈
B′, {v, v′} ∈ E(G)}. The graph B(G) forms a tree by the definition
of edge blocks. We color B(G) edge-block by edge-block in a preorder
traversal. Let B be the currently processed edge-block and B ′ the parent
edge-block that has already been colored. Let χ′ be a linear 4-coloring
of B′. Apply Lemma 3.4 to B and let χ be the linear 4-coloring of B. It
remains to color the edge e = {v, v′} with v ∈ B and v′ ∈ B′. Let c be
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one of the four colors such that c appears on at most one edge incident
to v′. The color c exists since dB′(v′) ≤ 6 (actually d(v′) ≤ 7 suffices
as well). Permute the colors of χ such that c also appears on at most
one edge incident to v and color e = {v, v′} with the color c. See also
Figure 3.4.
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Part II

Bounded Monochromatic

Component Colorings
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Let us recall the definition of bmc colorings. We say that a k-coloring
of a graph is (C1, C2, . . . , Ck)-bmc if every monochromatic component
induced by the vertices of the ith color-class is of order at most Ci, for
i ∈ [k]. Note that a (1, . . . , 1)-bmc k-coloring corresponds to a proper
k-coloring. We mainly deal with the two most natural cases of bmc k-
colorings. We say C-symmetric bmc k-coloring (also C-sbmc k-coloring)
when Ci = C, for i ∈ [k]. Similarly we say C-asymmetric bmc (k, l)-
coloring (also C-abmc (k, l)-coloring) when Ci = 1, for 1 ≤ i ≤ k and
Cj = C, for k + 1 ≤ j ≤ k + l. For 2-colorings refer to a C-abmc
(1, 1)-coloring also by a C-abmc 2-coloring.

In this part of the thesis we investigate bmc colorings of graphs with
bounded maximum degree. Symmetric bmc colorings were first studied
by Kleinberg, Motwani, Raghavan, and Venkatasubramanianby in [46].
In Chapter 4 we focus on bmc 2-colorings. Symmetric bmc 2-colorings
have been studied by Alon, Ding, Oporowski, and Vertigan [10] and
implicitly, even earlier, by Thomassen [62] who resolved the problem
for the line graph of 3-regular graphs initiated by Akiyama and Chvátal
[3]. Asymmetric bmc 2-colorings were first introduced in a joint paper
with Tibor Szabó [19].

In Chapter 5 we investigate bmc k-colorings of bounded degree (pla-
nar) graphs, k > 2.

Also Haxell, Szabó, and Tardos in [39], Linial, Matoušek, Sheffet,
and Tardos in [49], and Matoušek and Př́ıvětivý in [52] investigated
(symmetric) bmc colorings.

Related Relaxations of Proper Colorings There are several other
types of coloring concepts related to our relaxation of proper coloring.

Independently Andrews and Jacobson [12], Harary and Jones [32,
33], and Cowen, Cowen, and Woodall [25] introduced and investigated
the concept of improper colorings over various families of graphs. A
k-coloring is called l-improper if none of the at most k colors induces a
monochromatic component containing vertices of degree larger than l.
Hence in an improper coloring the amount of error is measured in terms
of the maximum degree of monochromatic components rather than in
terms of their order. Several papers on the topic have since appeared; in
particular, two papers, by Eaton and Hull [26] and Škrekovski[57], have
extended the work of Cowen et al. to a list-coloring variant of improper
colorings.
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Linial and Saks [50] studied low diameter graph decompositions,
where the quality of the coloring is measured by the diameter of the
monochromatic components. Their goal was to color graphs with as few
colors as possible such that each monochromatic connected component
has a small diameter.

Haxell, Pikhurko, and Thomason [37] study the fragmentability of
graphs introduced by Edwards and Farr [27], in particular for bounded
degree graphs. A graph is called (α, f)-fragmentable if one can remove
α fraction of the vertices and end up with components of order at most
f . For comparison, in a C-abmc 2-coloring one must remove an inde-
pendent set and end up with small components.

The so-called relaxed chromatic number (sometimes also called gen-
eralized chromatic number) was introduced by Weaver and West [65].
They used “relaxation” in a much more general sense than us, requir-
ing that each color-class is the member of a given family of graphs.
Naturally, our version also fits into this model.
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Chapter 4

Bmc 2-Colorings

HHHHRRRRRROOOOOOOAAAAAN!!!!!

Chewbacca the Wookiee

We study bmc 2-colorings of bounded degree graphs from three points of
view, extremal graph theory, complexity theory and algorithmic graph
theory, and find that the first two points eventually meet for asymmetric
bmc 2-colorings. We also make first steps for a similar connection in
the symmetric case. To demonstrate our problems, in the next few
paragraphs we restrict our attention to asymmetric bmc 2-colorings (as
in Section 4.1); the corresponding questions are asked and partially
answered for symmetric bmc 2-colorings in Section 4.2, but there our
knowledge is much less satisfactory.

On the one hand, there is the purely graph theoretic question:

For a given maximum degree ∆ what is the smallest com-
ponent order f(∆) ∈ N ∪ {∞} such that every graph of
maximum degree ∆ is f(∆)-abmc 2-colorable?

On the other hand, for fixed ∆ and C one can study the computa-
tional complexity question:

What is the complexity of the decision problem: Given a
graph of maximum degree ∆, is there a C-abmc 2-coloring?

Obviously, for the critical component order f(∆) which answers the
extremal graph theory question, the answer is trivial for the complexity
question: every instance is a “YES”-instance. Note also, that for C = 1
the complexity question is polynomial-time solvable, as it is equivalent
to testing whether a graph is bipartite.

Moreover we consider the following algorithmic question.
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60 Chapter 4. Bmc 2-Colorings

For a given maximum degree ∆ is there a polynomial-time
algorithm that finds a g(∆)-abmc 2-coloring of every graph
with maximum degree at most ∆, for some integer g(∆)?

Section 4.1 is on one hand devoted to the extremal graph theory
question. Mainly we show that f(3) is finite and determine the following
bound, 6 ≤ f(3) ≤ 22. Moreover we show that every graph of maximum
degree at most three can be 22-abmc 2-colored in polynomial-time. Also
we show that for ∆ ≥ 4, f(∆) is not finite. On the other hand we
look at the complexity theoretic question in the range between 2 and
the critical component order f(∆). We establish the monotonicity of
the hardness of the problem in the interval C ≥ 2 and prove a very
sharp “hardness jump”. By this we mean that the problem is NP-
hard for every component order 2 ≤ C < f(∆), while, of course, the
problem becomes trivial (i.e. all instances are “YES”-instances) for
component order f(∆). It is maybe worthwhile to note that at the
moment we do not see any a priori reason why the hardness of the
decision problem should even be monotone in the component order C,
i.e. why the hardness of the problem for component order C + 1 should
imply the hardness for component order C. In fact the problem is
obviously polynomial-time decidable for C = 1, while for C = 2 we
show NP-completeness.

In Section 4.2 we make similar investigations for sbmc 2-colorings.
For a given maximum degree ∆ we determine lower and upper bounds
for the smallest component order g(∆) such that every graph of max-
imum degree at most ∆ admits a sbmc 2-coloring. We obtain that
5 ≤ g(5) ≤ 1908 and moreover we derive an efficient algorithm that C-
sbmc 2-colors every graph of maximum degree at most 5, for some large
constant C = 94371840. Although we are not able to show a “hardness
jump” in the symmetric case, we obtain some preliminary results and
conjecture that indeed such a “hardness jump” occurs.

4.1 Asymmetric Bmc 2-Colorings

Recall that a C-abmc 2-coloring is a (1, C)-bmc 2-coloring. To formalize
our theorems we need further definitions.

Let us define (∆, C)-ABMCCol to be the decision problem whether
a given graph G of maximum degree at most ∆ allows a C-abmc 2-
coloring. Note here that (∆, 1)-ABMCCol is simply testing whether a
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graph of maximum degree ∆ is bipartite.

It is not hard to see that every graph of maximum degree at most
two admits a 2-abmc 2-coloring. Therefore already (2, 2)-ABMCCol
is trivial. For ∆ = 3, we showed together with Tibor Szabó in [19]
that every graph of maximum degree at most three admits a 189-abmc
coloring, making (3, 189)-ABMCCol trivial.

In the proof the vertex set of the graph was partitioned into a
triangle-free and a triangle-full part (every vertex is contained in a tri-
angle), then the parts were colored separately, using the following two
results: Every triangle-free graph of maximum degree at most three ad-
mits a 6-abmc 2-coloring. The proof of this statement can be found in
Subsection 4.1.1. And Every triangle-full graph of maximum degree at
most three admits a 21-abmc coloring. Finally the two colorings were
assembled amid some technical difficulties.

Here we present a completely different approach from [18] which
avoids the separation. While we still deal with our share of technical
difficulties, we greatly improve on the previous bound on the component
order and the running time of the algorithm involved.

A variant of the new method is first presented for triangle-full graphs
of maximum degree at most three. One facet of our technique is much
simpler to present in this scenario and gives an improved and optimal
result. Every triangle-full graph G of maximum degree at most three
admits a 6-abmc coloring. We prove this statement in Section 4.1.2
and show the existence of a triangle-full graph, see Figure 4.5 for which
monochromatic component order 6 is best possible.

The method is then enhanced in Subsection 4.1.3 to work for all
graphs of maximum degree at most three. It also implies a quasilinear
time algorithm (as opposed to the Θ(n7) algorithm implicitly contained
in [19]).

Theorem 4.1. Any graph of maximum degree at most three is 22-abmc
two-colorable. Moreover there is an O(n log4 n) algorithm which finds
such a 22-abmc 2-coloring.

In our next theorem we show that (3, C)-ABMCCol exhibits the
promised hardness jump.

Theorem 4.2. There is an integer f , 6 ≤ f ≤ 22 such that

(i) (3, C)-ABMCCol is NP-complete for every 2 ≤ C < f , and

(ii) every graph of maximum degree at most three admits an f -abmc
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2-coloring.

The proof of Theorem 4.2 can be found in Subsection 4.1.5.

In [19] it was shown that for any ∆ ≥ 4 and positive C, (∆, C)-
ABMCCol never becomes “trivial”, i.e., for every finite C there is a
“NO” instance. We show here, however, that the monotonicity of the
hardness of (4, C)-ABMCCol still exists for C ≥ 2 by proving that
(4, C)-ABMCCol is NP-complete for every 2 ≤ C < ∞. The proof
of this statement can also be found in Subsection 4.1.5, Theorem 4.4.
Obviously, this implies that (∆, C)-ABMCCol is NP-complete for every
∆ > 4 and 2 ≤ C <∞.

4.1.1 Abmc 2-Colorings of Triangle-Free Graphs G

with ∆(G) ≤ 3

In this subsection we prove that Theorem 4.1 (with a better constant)
holds if G has maximum degree at most three and is triangle-free.

Lemma 4.1. Every triangle-free graph G of maximum degree at most
three admits a 6-abmc 2-coloring.

Proof. We are going to construct an abmc 2-coloring with color-class
I , forming an independent set, and color-class B, inducing components
of order at most 6. As a first approximation let us take a maximum
edge-cut (U1, U2) (i.e., there is no other vertex-partition with more edges
going across), with |U1| minimal (among all maximum edge-cuts).

Since (U1, U2) is a maximum edge-cut, every vertex has degree at
most one within its own part. That is, G[U1] and G[U2] consist of
disjoint edges and isolated vertices. Eventually, our goal is to select one
of the endpoints of each edge in G[U1] and move it to the other side
such a way, that we do not create too large components.

First we make a few observations about the impossibility of certain
configurations. For i = 1, 2 and j = 0, 1 let Ui,j = {x ∈ Ui : dUi

(x) = j}.
For i ∈ {1, 2}, we refer to i′ as the other element of {1, 2}, i.e., i′ ∈ {1, 2}
and i′ 6= i.

Proposition 4.1. Let x ∈ Ui,1 and x′, x′′ ∈ Ui′,1, for some i = 1, 2.
Then x is not adjacent to both x′ and x′′.

Proof. Switching the sides of x, x′, x′′ increases the number of edges
in the cut and thus contradicts the maximality of (U1, U2). 2
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x′

Ui

Ui′

x

x′′

Figure 4.1: Configuration 1.

Proposition 4.2. Let x ∈ U2,0 and x′, x′′, x′′′ ∈ U1,1. Then x is not
adjacent to all of x′, x′′, and x′′′.

Proof. Switching the sides of x, x′, x′′, x′′′ would not decrease the
number of edges in the cut, but would decrease the cardinality of |U1|,
a contradiction. 2

U1

U2x

x′ x′′ x′′′

Figure 4.2: Configuration 2.

Proposition 4.3. Let x ∈ Ui,0, x′, x′′ ∈ Ui,1 and y′, y′′ ∈ Ui′,1, for
some i = 1, 2. Then it is not possible that x is adjacent to both y′ and
y′′, y′ is adjacent to x′, and y′′ is adjacent to x′′.

Proof. Switching the sides of x, x′, x′′, y′, y′′ increases the number of
edges in the cut and thus contradicts the maximality of (U1, U2). 2

Note that Propositions 4.1, 4.2 and 4.3 fail to be true if G contains
triangles.

We define an auxiliary graph H on the vertex set V (H) = U1,1. Two
vertices x and y of H are adjacent if they have a neighbor in the same
component of G[U2].
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U1

U2x

y′′y′

x′ x′′

Figure 4.3: Configuration 3.

Claim: ∆(H) ≤ 2

Proof. Let x ∈ V (H). By the definition of V (H), x has at most two
neighbors in U2. Let y be one of them.

If y is an isolated vertex of G[U2], then by Proposition 4.2, y has at
most one more neighbor (besides x) in U1,1. So y does not account for
more than one H-neighbor of x. If y is in an edge-component of G[U2],
let w be its unique neighbor in U2. By Proposition 4.1 y has no other
neighbor in U1,1 but x. Similarly, w has at most one neighbor in U1,1.
So y is responsible for at most one H-neighbor of x.

We showed that each of the (at most two) U2-neighbors of x can
produce at most one H-neighbor for x. That is, the degree of x in H is
at most 2.

Since ∆(H) ≤ 2, we can apply Lemma 1.4 for H , with a partition
of V (H) imposed by the edges ei of G[U1]. (Remember G[V (H)] is
a perfect matching!) We select a matching transversal T and move it
over; That is, we define I = U1 \ T and B = U2 ∪ T .

Clearly I is an independent set.

How large could a component be in G[B]? Note that T is an inde-
pendent set in G and since T induces a matching in H , any component
of G[B] can contain at most two vertices from T . If a component of
G[B] contains exactly one vertex of T , then its size is at most 5. Sup-
pose now that a component C of G[B] contains two vertices t1, t2 ∈ T .
There must be a component C ′ of G[U2] in which both t1 and t2 has
a neighbor. Since both t1 and t2 have at most two neighbors in U2,
C contains at most three components of G[U2]. If there are at most
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two components of G[U2] in C, then the cardinality of C is at most 6.
Assume now that there are three components C ′, C1, C2 of G[U2] glued
together in C. By Proposition 4.1, neither t1 nor t2 is adjacent to two
components of order two. So if |C ′| = 2, then |C1| = |C2| = 1 and thus
|C| = 6. Similarly, if |C ′| = |Ci| = 1 for some i = 1, 2, then |C| = 6.
Finally, the case |C ′| = 1 and |C1| = |C2| = 2 is impossible because of
Proposition 4.3.

Concluding, we proved that all components of G[B] are of order at
most 6. 2

4.1.2 Abmc 2-Colorings of Triangle-Full Graphs G

with ∆(G) ≤ 3

Recall that graphs for which every vertex is contained in a triangle are
called “triangle-full”.

In our investigation of C-abmc 2-colorings we will encounter two
color-classes I and B, where I denotes an independent set and B denotes
the color-class which induces components of order at most C. We say
that the color-class B and I are opposites of each other.

For a color-class R (which is a subset of the vertices of G), we often
say that we color a vertex v with color R, when in fact we place v into
R.

It about the right moment to justify a couple of simplifying assump-
tions for abmc 2-colorings of graphs with maximum degree at most
three.

Diamond-freeness Let G be a graph with maximum degree at most
three. No two triangles in G share exactly one vertex. Two triangles
sharing an edge form a diamond. We argue that, without loss of gen-
erality, we can assume that our graph is diamond-free. Indeed, let D
be a diamond in G and let G′ be the graph obtained from G by delet-
ing the vertices of D. By induction (on the number of diamonds) we
obtain a partitioning of G′ into sets I ′ and B′ satisfying the properties
of Lemma 4.2. Let the two vertices of D sharing the common edge
be v1, v2, the remaining two vertices are called u1, u2 and the unique
neighbor of ui outside of D by u′

i (u′
i might not exist). Now let us define

a partition of V (G) into sets I and B by letting I ′ ⊆ I and B′ ⊆ B
and putting ui into I if and only if u′

i is in B′. The vertices v1, v2 are
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u2u1

v2

v1

v3v2

v1 v4

u1 u2

Figure 4.4: A diamond and two triangles connected by at least two
edges

put into B regardless. Since u1 is not adjacent to u2, I is independent
by definition. Also, the vertices of D put into B are separated from B ′

by a vertex of I , thus the largest newly introduced component of G[B]
could be the diamond itself. Thus the order of the largest component
of G[B] is max{C ′, 4}, where C ′ is the order of the largest component
of G[B′].

By a similar argument, we can assume that G does not contain two
triangles connected by two edges (see Fig. 4.4).

Lemma 4.2. Every triangle-full graph G of maximum degree at most
three admits a 6-abmc 2-coloring.

The following proof and moreover the algorithm shown in the proof
serves as a good introduction to the much more involved algorithm in
Subsection 4.1.3 for that 22-abmc 2-colors every graph with maximum
degree at most three.

Proof of Lemma 4.2. As seen we can assume that G is diamond-free.
Hence from now on we suppose that every vertex is contained in exactly
one triangle. Let M be the set of edges of G not contained in triangles
of G. Obviously, M forms a matching. Further G − M consists of
disjoint triangles covering all vertices of G. The Algorithm PA TF(G) (a
pseudo-code for PA TF can be found in Algorithm 1) constructs a 6-abmc
2-coloring (I, B) of G by coloring the vertices triangle after triangle. It
colors the currently processed vertex v with I if it can, i.e., if v has
no neighbor which is colored with I already. The main point of the
algorithm is how to select the next vertex to color when all vertices
in the current triangle are colored. In particular we make sure that
the first vertex we color from each triangle gets a color opposite to its
partner.
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Let’s first introduce some notation used in Algorithm 1. For a vertex
v and an oriented triangle C in G−M containing v we define v− to be
the predecessor of v in C, by v+ it’s successor in C and by v∗ its unique
neighbor in M (if it exists). We call v∗ the partner of v.

Algorithm 1: PA TF(G)

Input: Graph G; ∆(G) ≤ 3, triangle-full and diamond-free.
Output: Vertex-partition (I, B); I independent set, no

component in G[B] larger than 6.

I ← ∅, B ← ∅
give an arbitrary cyclic orientation to each triangle in G
choose arbitrary vertex v in G
while not all vertices of G are colored do

while not all vertices of the triangle containing v are colored
do

if v− ∈ I or v∗ ∈ I or v+ ∈ I then Add(v, B)1

else Add(v, I)2

v ← v+

if not all vertices of G are colored then
v ← v− // now v is the last vertex we colored

if v∗ is uncolored then v ← v∗
3

else if v−∗ is uncolored then v ← v−∗
4

else v ← w, where w is arbitrary uncolored vertex with5

w∗ colored

return (I, B)

We immediately see that I forms an independent set. Indeed, only
in Line 2 we color a vertex with I , where no neighbor of it is colored I
already.

Suppose that there is a B-component C larger than 6.

First observe that if a triangle T of G is completely contained in C
then according to Line 1 in PA TF(G) the partner of each vertex in T
must be contained in I . Thus C consists of only the vertices from T , a
contradiction.

Hence we assume that C does not contain any triangle from G com-
pletely. Such a component C intersects with at least four triangles
T1, T2, T3, T4 in G. Suppose, without loss of generality, that Ti is inci-
dent to Ti+1, for i ∈ {1, 2, 3} and that T2 gets colored before T3 during
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the execution of PA TF(G). We denote by vi,j the vertex contained in
Ti ∩ C incident to triangle Tj .

Which vertex of T2 is colored first? It can be neither v2,1 nor v2,3,
since the first vertex of any triangle gets color opposite to its partner’s.
(In Lines 3, 4, 5 we select the first vertex of the next triangle, such that
its partner is colored. This is true for the first colored vertex of every
triangle except the very first one. Then Lines 1, 2 make sure that the
first vertex receives a color different from its partner. This is even true
for the very first vertex, since it is colored I in Line 2 and its partner
will receive color B in Line 1.)

So either v2,1 or v2,3 is the last vertex we color in T2 After all vertices
of T2 have been colored, PA TF(G) chooses either v1,2 or v3,2 to be colored
next, according to Line 3 and Line 4 (note that v3,2 is not yet colored
according to our assumption). This is a contradiction since, again, the
first vertex in any triangle has color opposite to its partner.

We want to note here that our proof is constructive and yields a
6-abmc 2-coloring of triangle-full graphs. It is not hard to see that the
running time of PA TF(G) is linear in the order of G.

Consider the graph H ′ whose triangle-graph H (the graph where
every triangle is contracted to a single vertex) is shown in Figure 4.5.
It is not hard to observe that the removal of any independent set of H ′

leaves at least one component of order at least 6. Hence Lemma 4.2 is
in this sense optimal.

4.1.3 Abmc 2-Colorings of Graphs G with ∆(G) ≤ 3

Again in our investigation of C-abmc 2-colorings we will encounter two
color classes I and B, where I denotes an independent set and B denotes
the color-class which induces components of order at most C. We say
that the color-class B and I are opposites of each other. In one of the
main auxiliary lemmas, we encounter a third color-class X . We will
also use the term opposite in relation to X and say that B and X are
opposite.

Proof of Theorem 4.1. We prove the statement of Theorem 4.1 by in-
duction on the number of vertices in G. A generalized diamond D is a
subgraph of G induced by four vertices of G such that dV (G)−V (D)(v) ≤
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Figure 4.5: The “triangle-graph” of H

1 for all v ∈ V (D) and the vertices of D with degree 1 into V (G)−V (D)
form an independent set in G.

The core of the proof is the case when G is generalized diamond-free.
Otherwise let D be a generalized diamond in G and proceed similarly
to the diamond case. By the induction hypothesis, G − V (D) has an
I/B-coloring such that the I-vertices form an independent set and the
B-vertices induce monochromatic components of order at most 22. We
extend this coloring to an I/B-coloring of G. We color the vertices of
D with B unless the vertex has a neighbor in G− V (D), in which case
we use the color opposite to the color of this neighbor. This is always
possible since such vertices of D form an independent set in G. Hence
all the B-components of G− V (D) remain the same, while the vertices
in D will be part of a B-component of order at most four.

It is now left to prove Theorem 4.1 when G is generalized diamond-
free. One of the main ingredients of the proof is the following lemma:

Lemma 4.3. Let G be a generalized diamond-free graph with maximum
degree at most three on n vertices. Further let vfix ∈ V (G) and c ∈
{I, B}. There exists a vertex partition (I, X, B) of G such that

(i) I ∪X induces a graph where each I-vertex has degree 0 and each
X-vertex has degree 1,

(ii) no triangle contains two vertices from X,

(iii) every B-component is of order at most 6, and
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(iv) if d(vfix) = 2 then either vfix is contained in c, or c = I and vfix

is contained in X.
Moreover, this vertex-partition can be found in time O(n log4 n).

First let us see how Lemma 4.3 implies Theorem 4.1. We note that
property (iv) is only needed for the inductive proof of Lemma 4.3.

Let I, X and B be such as promised by Lemma 4.3. We do a post-
processing in two phases, during which we distribute the vertices of X
between I and B: for each adjacent pair v, w of vertices in X we put
one of them to B and the other into I . When this happens we say
that we distributed the X-edge {v, w}. We specify how we distribute
an X-edge {v, w} by the operation Distribute(v, c), where c ∈ {I, B}.
Distribute(v, c) puts v into c while w is put into the opposite color-
class. Note that if property (i) is valid at some point then it is still
valid after the distribution of any X-edge. During the first phase some
vertices contained in B will be moved to I , but once a vertex is in I , it
stays there during the rest of the postprocessing.

For the first phase let us say that a vertex v is ready for a change if
v ∈ B and all the neighbors of v are in B ∪X . Once we find a vertex v
ready for a change we move v to I , and distribute each X-edge which
contains a neighbor u of v by Distribute(u, B). We iteratively make
this change until we find no more vertex ready for a change, at which
point the first phase ends. Property (ii) ensures that the rules of our
change are well-defined: It is not possible that an X-neighbor of v is
instructed to be placed in B, while it could also be the X-neighbor of
another X-neighbor of v which would instruct it to be in I .

Property (i) remains valid during the first phase, since besides X-
edges being distributed (which preserves property (i)) only such B-
vertices are moved to I whose neighbors will all be in B.

Let us now look at how property (iii) changes during the first phase.
Crucially, at the end of the first phase every B-component is a path,
since any B-vertex with three B-neighbors is ready for a change. As a
result of one change no two B-components are joined, possibly a vertex
u from X which just changed its color to B is now stuck to an old B-
component. In case this happens both of the other neighbors of u are
in I (and stay there). Let C be a B-component after the first phase.
We claim that all vertices adjacent to C are in I except possibly two:
one-one at each endpoint of C. Indeed, if an interior vertex of C had
an X-neighbor, it would have been ready for a change. By (iii) there is
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a path C ′ in C containing at most 6 vertices which used to be part of a
B-component before the first phase. So we can distinguish three cases
in terms of how many X-neighbors C has besides its I-neighbors.

Observation 4.1. After the first phase every B-component is one of
the following:

(a) C is a path containing at most 6 vertices with one X-neighbor
at each of its endpoints or

(b) C is a path containing at most 7 vertices with one X-neighbor
at one of its endpoints or

(c) C is a path containing at most 8 vertices with no X-neighbors.

In the second phase we distribute between I and B those vertices
which are still in X . The vertices of color I or B preserve their color
during this phase. Property (i) ensures that the set I we obtain at
the end of the second phase is an independent set. We have to be
very careful though that the connected components in G[B] don’t grow
too much during the second phase. We guarantee this via finding a
matching transversal in an auxiliary graph H . The graph H is defined
on the vertices of X , V (H) = X . There is an edge between two vertices
u and v of H if u and v are incident to the same component of G[B].

Claim 4.1. ∆(H) ≤ 2.

Proof. Let us pick a vertex y from V (H) = X . We aim to show that
each edge e incident to y which is not an X-edge (there are at most
two of these) is ”responsible”for at most one neighbor of y in H . That
is, the component of G[B] adjacent to y via such edge e is incident to
at most one other vertex from X . Indeed, by Observation 4.1 above,
each B-component is a path, possibly adjacent to X-vertices through
its endpoints, but not more than to one at each.

Theorem 1.4 guarantees a transversal inducing at most matching.
We note that the proof of Theorem 1.4 by Haxell, Szabó, and Tardos
in [39] involves a linear time algorithm which constructs the matching
transversal.

We apply Theorem 1.4 for H with the partition P defined by the
edges of G[X ] (i.e., P = E(G[X ])) and find a matching transversal T .

The second phase of our postprocessing consists of moving all ver-
tices of T into B and moving X \ T into I .
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Since ∆(H [T ]) ≤ 1 we connect at most three connected components
Q1, Q2 and Q3 of G[B] by moving an edge {u, v} of H into B, with u
incident to Q1 and Q2 and v incident to Q2 and Q3. Obviously, Q1 and
Q3 are incident to at least one vertex of H (u and v respectively) and Q2

is incident to at least two vertices from H (u and v) before moving the
vertices of T . According to Observation 4.1, the largest B-component
created this way is of order at most 7+1+6+1+7 = 22. Lemma 4.3(i)
guarantees that I is independent so the defined coloring is a 22-abmc
2-coloring.

We note that both phases of this proof could be turned into an
algorithm whose running time is linear in the number of vertices of
G

Proof of Lemma 4.3. We use induction on the number of vertices of G.
By induction we can of course assume that G is connected. If G is
not 2-connected then there is a cut-vertex u in G. Let G0 ⊆ G be a
component of G− u, such that dV (G0)(u) = 1 and let u′ be the unique
neighbor of u in G0. Define G1 = G−G0. Then dV (G1)(u) ≤ 2. Suppose
that vfix ∈ V (Gi) for i = 0 or 1. By induction, we can find a (Ii, Xi, Bi)-
partition of Gi such that vfix receives its prescribed color. Depending
on whether u ∈ V (Gi), either u or u′ has a color assigned to it by the
partition (Ii, Xi, Bi); say, u is part of the partition. Then we find a
partition (I1−i, X1−i, B1−i) of G1−i by induction, such that the vertex
u′ receives the color opposite to the color of u. This implies that the
partition of G defined by the partition (I0 ∪ I1, X0 ∪X1, B0 ∪B1) is as
required by Lemma 4.3.

All these steps can be done quickly. Standard techniques involving
a depth first search tree of G enable to find a cut-vertex of G in linear
time in the number of edges plus number of vertices of G (since we only
consider graphs with maximum degree at most three this is certainly
also linear in the number of vertices of G).

The essence of the proof of Lemma 4.3 is the case when G is 2-
connected. We start proving this case by finding an appropriate match-
ing in G.

Proposition 4.4. Every n-vertex, 2-edge-connected graph G with max-
imum degree at most three contains a matching M such that

(i) ∆(G−M) ≤ 2, and

(ii) G−M is triangle-free.
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Moreover, M can be found in time O(n log4 n).

Proof. Let us first assume that G contains an even number of vertices of
degree exactly two. We pair each vertex of degree 2 with another vertex
of degree 2 and add one edge between the vertices of each such pair.
We denote the new graph by H . Obviously H is a 3-regular, 2-edge
connected multigraph.

Secondly, suppose that G contains an odd number of vertices of
degree 2. We pick one vertex v with d(v) = 2 from G, remove v from G
and connect its two neighbors via an edge ev. The new graph contains
an even number of vertices of degree 2. Then we proceed as above to
obtain the graph H .

Assume first that H is triangle-free. By Petersen’s theorem, H con-
tains a perfect matching MH . Moreover, if the number of vertices of
degree 2 was odd, i.e., if ev is defined, then MH can be chosen such that
ev 6∈ MH . In Biedl, Bose, Demaine, and Lubiw [21] it is shown that
such a matching MH can be found in time O(n log4 n). Let M consist
of those edges of MH which are also edges of G. Then the requirements
of Proposition 4.4 are satisfied (if ev is defined, then the neighbors of v
have degree at most 2 in G−M , since ev /∈MH .)

Let us now consider the general case, when H might contain tri-
angles. In order to obtain a perfect matching M such that H −M is
triangle-free we iteratively contract every triangle of H into a vertex,
yielding a new triangle-free graph H ′. Then we apply the above pro-
cedure to H ′ instead of H and get a perfect matching M ′ of H ′. We
observe that this perfect matching M ′ can easily be extended to a per-
fect matching MH of H where each triangle of H contains exactly one
edge of MH . Thus H−MH is triangle-free. Also, even if ev is contained
in a triangle T , we can force ev 6∈MH by simply forcing that the unique
edge incident to T , but not to ev, is not contained in M ′.

The algorithm that partitions the vertices of G will be called PA(G, vfix, c)
(see Algorithm 2 for the pseudo-code) with vfix being the vertex of G
that will be colored c according to Lemma 4.3 (iv).

Let us first discuss informally the main ideas of our algorithm.
PA(G, vfix, c) chooses a matching M of G as in Proposition 4.4. This
is in fact the bottleneck of our algorithm, all other parts are done in
linear time. The graph G−M consists of path- and cycle-components.
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Algorithm PA(G, vfix, c) colors the vertices of G, one component of G−M
after another, by traversing each component in a predefined orientation.

PA(G, vfix, c) starts the coloring with the vertex vfix and color c. We
will sometimes also refer to this vertex as the very first vertex.

For each component the algorithm chooses one of its two orienta-
tions. For the component of vfix this is done according to a special rule.
The orientation of other components is arbitrary. Recall that v+ (v−)
denotes the vertex following (preceding) v according to the fixed orien-
tation of its component. To simplify the description of our algorithm
we introduce the following conventions. For the source v of a path com-
ponent, we denote by v− the sink of the path. Similarly for the sink
u of a path component we denote by u+ the source of the path. If a
vertex v is saturated by M , then the vertex v∗ adjacent to v in M is
called the partner of v.

As a default PA(G, vfix, c) tries to color the vertices of a component
of G −M with the colors I and B alternatingly. Its original goal is to
create a proper two-coloring this way. Of course there are several reasons
which will prevent PA(G, vfix, c) from doing so. One main obstacle is
when the partner (if it exists) of the currently processed vertex u is
already colored, and it is done so with the same color we would just
want to give to u. If the conflict would be in color I then the algorithm
resolves this by changing both u and its partner to X . The algorithm
generally decides not to care if the conflict is in B. Of course there
is a complication with this rule when the partner is within the same
triangle as u, since Lemma 4.3 does not allow two X-vertices in the
same triangle. This and other anomalies (like the coloring of the last
vertex of a cycle when the first and next-to-last vertex have distinct
colors) are handled by a well-designed set of exceptions in place. In fact
the design of such a consistent set of exceptions poses a major challenge.

Subsequently a vertex which is colored first in a component of G−M
is referred to as a first vertex. Similarly, a last vertex is just a vertex
colored last in a component of G−M .

After having colored the last vertex v of component C the algorithm
FirstVertex(G, v, I, X, B) chooses the partner v∗ of v unless v∗ is al-
ready colored or v∗ does not exist. In that case FirstVertex(G, v, I, X, B)
looks for a vertex with color B whose partner is uncolored by step-
ping backwards along the order in which the vertices of C have been
colored and eventually starts to color such a partner. If all of the B-
colored vertices of C have an already colored partner or no partner,
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then FirstVertex(G, v, I, X, B) selects an arbitrary uncolored vertex
with an already colored partner. The selection of first vertices accord-
ing to FirstVertex coupled with PA makes sure that every first vertex
has a color opposite to its partner.

For some subset U of the vertices, the operation Add(U, c), as used
in PA, first uncolors those vertices of U which were colored before and
colors all vertices in U with c. Add(v, c) will be written for Add({v}, c).
In case a vertex that has been referenced (for instance v∗) does not exist,
then Add(v∗, c) does not change anything. To simplify the description
of the algorithm, by saying, for example “v∗ ∈ I” we mean “v∗ exists
and v∗ ∈ I”.

Analysis of PA(G, vfix, c) In the following we make a couple of ob-
servations about first vertices. The proof of conclusion (ii) of Obser-
vation 4.2 does depend on Corollary 4.1 whose proof only depends on
part (i) of Observation 4.2.

Observation 4.2. Let v be a first vertex (but not the very first vertex).

(i) The partner of v exists and v∗ is colored before v. In particular,
v and v∗ are contained in distinct components of G−M .

(ii) v and v∗ receive opposite colors.

Proof. (i) A new first vertex is chosen by FirstVertex when each com-
ponent of G−M has either all or none of its vertices colored. If there are
still uncolored vertices in G, then there must be one which has a colored
partner (since G is connected) and FirstVertex will select such a first
vertex. The last claim then follows since a first vertex by definition is
colored first within its component, so its partner cannot be in it.

(ii) When FirstVertex selects the next first vertex v, then we know
that v∗ exists and is colored. Then Line 4 or 5 of PA will color v to the
opposite color, either I or B. If this color changes later during the
execution of PA then, according to part (i) and (ii) of Corollary 4.1,
this change must be from I to X , which does not effect the validity of
(ii). By part (iii) of Corollary 4.1, an X-vertex can change its color to
B only if it is the very first vertex vfix.

Observation 4.3. If Algorithm PA recolors a previously colored vertex
then one of the following three cases hold.
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Algorithm 2: PA(G, vfix, c)

Input: 2-edge-connected, generalized diamond-free graph G with ∆(G) ≤ 3;
vertex vfix ∈ V (G); color-class c ∈ {I,B};
Output: Vertex partition (I, X, B); according to Lemma 4.3(i)-(iv).

I ← ∅, X ← ∅, B ← ∅
choose matching M according to Proposition 4.4
while not all vertices of G are colored do

if I ∪X ∪B = ∅ then
v ← vfix

Orient the component of v such that {v−−, v−, v} does not form a1

triangle and {v, v+} ∈ E(G)
if d(v) = 3 then Add(v, I)2

else Add(v, c) // rule ‘‘very first’’3

else
v ← FirstVertex(G, v, I,X, B)
Orient the component of v arbitrarily
if v∗ ∈ I ∪X then Add(v, B) // rule ‘‘first’’4

else Add(v, I)5

while not all vertices of the component containing v are colored do

v ← v+

if v− ∈ I ∪X and {v−, v} ∈ E(G) then

Add(v, B) // rule ‘‘standard’’6

else // that is, v− ∈ B or {v−, v} /∈ E(G)
if v+ is not colored or v+ ∈ B or {v, v+} /∈ E(G) then

if v∗ ∈ B or v∗ is not colored or v∗ does not exist then

Add(v, I)7

else // that is, v∗ ∈ I ∪X
if {v, v∗} in a triangle then Add(v, B) // rule8

‘‘triangle’’

else if v∗ ∈ X then Distribute(v∗, B), Add(v, I)9

// rule ‘‘special’’

else Add({v, v∗}, X) // move partners into X10

else // color the last vertex of a cycle if the first is

in I ∪X
if v∗ ∈ I ∪X or v∗ does not exist or {v, v∗} in a triangle11

then

Add(v, B) // rule ‘‘last’’12

else // that is, v∗ ∈ B or uncolored, {v, v∗} not in a

triangle

if v+ ∈ X then Distribute(v+, B), Add(v, I) // rule13

’’special’’

else Add({v, v+},X) // move non-partners into X14

return (I,X, B)
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Algorithm 3: FirstVertex(G, v, I, X, B)

Input: G, I, X, and B as defined in Algorithm PA(G, vfix, c),
vertex v ∈ V (G) colored last.

Output: First vertex of an uncolored component C to be
colored.

if v∗ is uncolored then return v∗

else
u← v−

while u 6= v and (u /∈ B or u∗ is colored) do
u← u−

1

if u 6= v then return u∗
2

else return w, where w is arbitrary uncolored vertex with
w∗ colored.3

(i) A color I is changed to X either in Line 10 or 14. In Line 10
we move partners to X, in Line 14 we move the last and first
vertex of a component into X.

(ii) In Line 9 the previously uncolored vertex v∗
fix receives color I.

Vertex vfix changes its color from X to B and v−
fix changes its

color from X to I.

(iii) In Line 13 the previously uncolored vertex v−
fix receives color I.

Vertex vfix changes its color from X to B and v∗
fix changes its

color from X to I.

Proof. It is easy to check that PA always assigns colors to the currently
processed vertex v, except in those lines stated in the Observation.

Note that there are only two lines, Line 10 and 14, when vertices are
placed into X . Part (i) is then immediate.

Let v be the currently processed vertex which is eventually colored
I in Line 9. Its partner, v∗ was colored to X at a point when v was
not yet colored. Hence v∗ was not colored with X in Line 10, where
partners together are colored with X , but it had to be colored in Line 14
where the first and last vertex of a component is colored with X . Thus
v∗ is either a first or a last vertex. If v∗ was a last vertex, then, since its
partner, v, is uncolored at the time, FirstVertex would select v as the
next first vertex and PA would color v in Line 4 and not in Line 9. So
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v∗ must be a first vertex. Unless v∗ is the very first vertex, according
to Observation 4.2(i), its partner, v, should have been colored already,
which it is not, a contradiction. Hence v∗ is the very first vertex and
part (ii) follows.

For part (iii), suppose that v is the currently processed vertex which
is eventually colored I in Line 13. We know that v+ is a first vertex,
which has color X right before v is processed. v+ had to receive its color
X in Line 10 together with its partner. This is a contradiction unless
v+ is the very first vertex, since, according to FirstVertex and Lines 4
or 5, a first vertex gets colored right after its partner with the opposite
color. Hence v+ is the very first vertex and part (iii) follows.

Let us collect some direct implications of Observation 4.3.

Corollary 4.1. (i) A B-vertex is never recolored.

(ii) An I-vertex can only change its color to X. In this case it had
an uncolored neighbor.

(iii) An X-vertex can be recolored to B only if it is the very first
vertex vfix and d(vfix) = 3.

(iv) An X-vertex can be recolored to I only if its X-neighbor is vfix

and d(vfix) = 3.

After these preparations we are ready to start the actual proof of
Lemma 4.3.

Property (i) The first property of Lemma 4.3 is certainly true at the
initialization of PA, we must check that the algorithm maintains it. A
vertex v can be added to I in Lines 3, 5, 7, 9, or 13. In each of these
cases it is easy to check that all the neighbors of v are in B or uncolored.
For Lines 9 and 13 note that first we distribute an X-edge between B
and I such that the neighbor of v in this X-edge gets color B. (That
is we call Distribute(v∗, B) for the X-edge {v∗, v∗−} in Line 9 and
Distribute(v+, B) for the X-edge {v+, v+∗} in Line 13). Distributing
an X-edge does not create any conflict with property (i), provided the
property was true up to that point. Then we put v into I knowing that
all its neighbors are in B or uncolored.

Vertices are put into X in Lines 10 and 14; always an uncolored
vertex v, together with one of its neighbors z. It is easy to check that
in both of these lines all neighbors of v except z are in B or uncolored.
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To maintain property (i) it is enough to verify that before processing v,
z was in I . In Line 10 we know that z is the partner of v and is colored
I or X , in fact Line 9 excludes that z ∈ X . In Line 14 we know that z
is equal to v+ and is colored I or X , and Line 13 excludes that z ∈ X .

In conclusion, property (i) is valid throughout the algorithm.

Property (ii) Why is property (ii) valid? The “triangle rule” on
Line 8 ensures that the vertices we move to X in Line 10 are not part
of the same triangle. In Line 14 we move the last and first vertices
v and v+, respectively, of a component of G −M into X . We must
check that neither {v, v+, v++} nor {v−, v, v+} induces a triangle in G.
If {v, v+, v++} was a triangle then, since no component of G −M is a
triangle, v++ has to be the partner of v. Then Line 11 ensures that v∗ =
v++ and v are not in the same triangle. Suppose now that {v−, v, v+}
induces a triangle. Again, since no component of G −M is a triangle,
v+ has to be the partner of v−. Unless v+ is the very first vertex, v−

cannot be the partner of v+, since, according to Observation 4.2(i), v+

and its partner has to be in a different component of G −M . Finally,
if v+ is the very first vertex, then according to the orientation of v+’s
component (see Line 1) {v−, v, v+} does not form a triangle. Hence
property (ii) is valid.

Property (iii) To derive the bound on the order of the B-components
we list the six reasons a vertex u is colored B. In the following we
emphasize some property of each, which follow immediately from PA and
Corollary 4.1. We will implicitly refer to these properties throughout
the remainder of this section.

• “very first”-B: it is given in Line 3; u is the very first vertex vfix,
u+ ∈ I ∪X .

• “first”-B: it is given in Line 4; u is the first vertex colored in its
cycle, u+, u∗ ∈ I ∪X

• “triangle”-B: it is given in Line 8; u and u∗ are in the same
triangle and u∗ is already colored with an I (by the end u∗ might
change its color to X).

• “last”-B: it is given in Line 12; u is the last vertex colored in its
cycle, whose coloring started with I or X , u+ ∈ I ∪X .
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• “special”-B: it is given in Lines 9 and 13; u is the very first vertex
vfix. u−, u∗ ∈ I , u+ ∈ B, u++ ∈ I ∪X .

• “standard”-B: it is given in Line 6; u− ∈ I ∪ X unless u− is a
“special”-B and u+ ∈ I ∪X .

Every B-colored vertex has a exactly one of these six reasons why
it is colored a B. Note that a B-colored last vertex is not necessarily a
“last”-B, it could be a “standard”- or “triangle”-B. Also, a B-colored
very first vertex is not necessarily a “very first”-B, but can also be a
“special”-B.

We call a B-component of a component C of G − M a segment.
Let C̃ be the component C together with the edges of G of the form
{v, v++} for v ∈ V (G) (such edges we call extended edges). Note that
every triangle contains an extended edge. We call a B-component of C̃
an extended segment.

Proposition 4.5. Any extended segment contains at most 4 vertices.

Proof. First let us show the following facts.

Claim 4.2. (i) Suppose u−, u, and u+ are all colored B for some
u ∈ V (G). Then u is a “triangle”-B. In particular its partner is
in I ∪X.

(ii) Let v1, v2, v3, v4, v5 be five distinct, consecutive vertices along some
component C in G−M which are colored B, B, I/X, B, B, in this
order. Then v2 cannot be adjacent to v4.

Proof. (i) For a vertex v which is a “standard”-B, “first”-B, “very
first”-B, “last”-B, or ”special”-B, either v− or v+ is in I ∪X .

(ii) Let us suppose that v2 is adjacent to v4 and the orientation
of the cycle is passing through these vertices from left to right (with
possibly starting/ending among them).

The vertex v2 is not a “triangle”-B since v∗
2 = v4 is not in I∪X . If v2

is a “standard”-B, then v1 has to be a “special”-B, since v1 /∈ I ∪X . In
any case, the first vertex colored in C is either v1, v2 or v3. This implies
that v5 is neither a “first”-B nor a “very first”-B nor a “special”-B. If
v5 was a “last”-B, then v+

5 ∈ I ∪X . Also, v+
5 is the first vertex of C so

v+
5 = v1 which has color B, a contradiction. If v5 was a “standard”-B,

then v4 should be in I ∪X or should be a “special”-B, neither of which
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is the case. Hence v5 is a “triangle”-B. Its partner cannot be v3, since
then {v2, v3, v4, v5} would induce a generalized diamond. So its partner
is v7 (the other vertex distance two away from v5 along C) which then
must have been colored already when we arrive to v5. Hence the first
vertex colored in C had to be either v6 or v7. Since v7, as the partner
of a “triangle”-B, is in I ∪ X , v7 6= v1, v2, v4. Also, v7 6= v3 since our
assumption about the vi’s being distinct. This contradicts that the first
vertex of C is among v1, v2, and v3.

Part (i) immediately implies that a segment of length 5 does not
exist.

Let S be an extended segment and classify the cases according to a
longest segment S′ it contains.

If S′ is of order 1 then obviously S is of order at most 2.

If S′ is of order two, then by part (ii) of Claim 4.2 S cannot contain
more segments of order two, only possibly two more segment of order
one. Hence its order is at most 1 + 2 + 1 = 4.

If S′ is of order 3, then again by part (ii) it cannot be joined to a
segment of order at least two. Moreover it cannot be joined to segments
of order one both ways, because, by part (i), at least one way it is closed
by a triangle (no generalized diamonds!).

If S′ is of order 4 then by part (i) both endpoints participate in a
triangle and they cannot extend the segment further, because G contains
no generalized diamonds.

A vertex v of an extended segment S is called a potential connector
if its partner v∗ exists, {v, v∗} is not an extended edge, and v∗ either has
color B or is uncolored at the time when the coloring of the component of
G−M containing S is concluded. Observe that two extended segments
can be connected only via their respective potential connectors.

Proposition 4.6. (i) If v is a potential connector of extended segment
S which does not contain a “special”-B then v− /∈ S.
Every extended segment contains at most one potential connector.
In particular, every extended segment is adjacent to at most one
other extended segment in G.

(ii) No extended segment of order at least three is adjacent to another
extended segment of order at least three.
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Proof. Let v be a potential connector of extended segment S, |S| ≥ 2.
We claim that v is a “standard”-B.

If v was a “first”-B, “triangle”-B, or “special”-B, then v∗ is in I∪X
right after we colored v with B, so v is not a potential connector.

If v was a “last”-B, then it is colored in Line 12. Since v∗ exists and
{v, v∗} is not part of a triangle, we have that v∗ ∈ I ∪X at the time of
the coloring. Hence v is not a potential connector.

If v = vfix was a “very-first”-B, then v+ ∈ I ∪ X . Since {v, v+} ∈
E(G) (see the orientation rule in Line 1), v∗

fix exists, and d(vfix) = 2
(see Line 2), we have that {v−, v} is not an edge of G. Since {v, v∗} is
not an extended edge, S consists only of a single vertex.

Let us now show Part (i) of Proposition 4.6. Let S be an extended
segment not containing a “special”-B with a potential connector v.
Since v is a “standard”-B and v− is not a “special”-B, v− ∈ I ∪ X
and in particular is not in S.
Suppose now that an arbitrary extended segment S contains two poten-
tial connectors u and w. In particular u∗, w∗ /∈ S. Then either u− or
w− has to be in S (otherwise u and w could not be in the same extended
segment). Assume that, say, u− ∈ B. In accordance with the above u
is a “standard”-B. Hence u− must be a “special”-B and u+ ∈ I ∪ X .
Moreover u−∗ and u−− are both contained in I ∪X . Thus S = {u, u−}
and u− is not a potential connector, a contradiction.
Let us now proceed with the proof of part (ii). Suppose there are two
distinct extended segments S and S ′, each of order at least 3, contained
in the same B-component C of G. If S contained a “special”-B vertex
v (which is the very first vertex) then v+ is the only neighbor of v which
is in B. Also, since v++ ∈ I ∪X and |S| ≥ 3, the partner of v+ has to
be v+++ and have color B. It is easy to see that v++++ ∈ I ∪X , so C
is equal to S = {v, v+, v+++}.

Hence we can assume that neither S nor S ′ contains a “special”-B
vertex. Suppose further that PA colors S prior to S ′. According to
(i), C does not contain any other vertex besides the vertices of S and
S′. Let us denote the potential connectors of S and S ′ by w and w′,
respectively. Hence w∗ = w′, w′∗ = w and {w, w′} ∈ E(G).

We will derive a contradiction by showing that w′ ∈ I ∪X .

Claim 4.3. Let S be an extended segment of order at least three, which
does not contain a “special”-B vertex. Then S contains a last vertex vl.
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We postpone the proof of this Claim 4.3 a little and continue with
the proof of (ii).

After having colored the last vertex vl ∈ S of a component of
G−M containing the extended segment S, FirstVertex(G, vl, I, X, B)
searches for a vertex u with an uncolored partner to continue the col-
oring with u∗. The potential connector w has an uncolored partner,
w′, and we claim that FirstVertex(G, vl, I, X, B) will arrive to w and
will output w∗ = w′ as the new first vertex. If v∗

l is uncolored then
vl is the unique potential connector of S, vl = w. Otherwise the al-
gorithm FirstVertex(G, vl, I, X, B) starts stepping backwards on C
looking for a vertex of color B with an uncolored partner (c.f. Line 1
of FirstVertex). We claim that the first such vertex is w. By Propo-
sition 4.6(i) we have that w− 6∈ S, and {w, w−−} /∈ E(G), since w
is a potential connector, so w−− /∈ S. Hence there is a vlw-path vl =
p1 · · · pm = w in S such that pi+1 = p−i or p−−

i for every i = 1, . . . , m−1.
FirstVertex(G, vl, I, X, B) will consider all vertices of C in a backward
direction from vl to w. Vertices pi with i < m are not eligible since they
have a colored partner. Other vertices between vl and w are outside of S
and thus are contained in I∪X . Eventually FirstVertex(G, vl, I, X, B)
reaches vertex w. According to our assumption w′ ∈ S′ has not yet been
colored, thus FirstVertex(G, vl, I, X, B) chooses w′ to be colored next.
Then w′ is colored I according to Line 5 of PA, a contradiction.

We thus concluded the proof of Proposition 4.6.

Proof of Claim 4.3. Suppose S with |S| ≥ 3 does neither contain a
“special”-B nor vl.

Then S certainly does not contain a “last”-B vertex.

If S contained a “very-first”-B vertex v, then v− = vl /∈ S and
v+ ∈ I ∪ X . Since |S| ≥ 3, v∗ ∈ S and at least one of v∗+ and v∗−

is in S. First assume that v∗ = v++. It is easy to check, that then
v∗+ ∈ I ∪ X , which is a contradiction since v∗− = v+ ∈ I ∪ X . Now
assume that v∗ = v−−. Obviously, v−− is not a “very-first”-B, not a
“first”-B, not a “special”-B and not a “last”-B. Also, v−− is not a
“triangle”-B since its partner, v, is not in I ∪X . Therefore v−− has to
be a “standard”-B. Then v−−− is in I ∪ X since it is certainly not a
“special”-B (it is not the very first vertex). This is then a contradiction
to |S| ≥ 3 since by our assumption v−−+ = v− ∈ I ∪X . We can thus
conclude that S does not contain a “very-first”-B.

S does not contain a “first”-B vertex v either, otherwise S = {v}.
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Indeed, v− = vl and v+ ∈ I ∪X and, according to Observation 4.2(i),
v∗ is contained in a different component of G−M .

From now on we assume that every vertex of S is either a “triangle”-
B or a “standard”-B. Suppose S contains a “triangle”-B vertex u,
such that u∗ = u++. Then u++ ∈ I ∪ X and u+ has to be in B
because property (i) and (ii) of Lemma 4.3 hold. It follows that u+ ∈ S,
but u+ neither can be a “standard”-B since its predecessor is not in
I∪X nor can be a “triangle”-B because {u, u+, u++, u+∗} would form a
generalized diamond. We conclude that S does not contain a “triangle”-
B vertex u, such that u∗ = u++. Suppose now that S contains a
“triangle”-B vertex v, such that v∗ = v−−. Then v∗ ∈ I∪X . Vertex v−∗

is not in S otherwise {v, v−, v−−, v−∗} would be a generalized diamond.
Since |S| ≥ 3, vertex v+ has to be in B. It cannot be a “standard”-B
because its predecessor is not in I ∪ X . Vertex v+ also cannot be a
“triangle”-B since we already saw that its partner cannot be v+++ and
if its partner was v− then {v−−, v−, v, v+} would form a generalized
diamond.

Thus the vertices in S are all “standard”-B vertices, each forming a
(not extended) segment of order 1. Each such segment can connect to
at most one other such segment via an extended edge. Thus |S| ≤ 2, a
contradiction.

Proposition 4.5 and Proposition 4.6 immediately imply part (iii) of
Lemma 4.3.

Property (iv) We can assume that d(vfix) = 2. The vertex vfix is
contained in c after Line 3. If c = B, then according to Corollary 4.1(i),
vfix is not recolored at all. If c = I , then according to Corollary 4.1(ii)
and (iii), vfix can be recolored to X , but not to B.

Note again that there are graphs with no 5-abmc 2-colorings, for
instance the graph in Figure 4.5.

4.1.4 Abmc 2-Colorings of Graphs G with ∆(G) > 3

Let abmc(∆, n) be the smallest integer f such that every n-vertex graph
of maximum degree ∆ is f -abmc 2-colorable. While every graph of
maximum degree at most three admits a C-abmc 2-coloring, with C =
22 being finite, the graph Gk,∆, which consists of k copies of K∆−1
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with the each vertex of the ith copy of K∆−1 being connected with the
corresponding vertex of the (i + 1)th copy of K∆−1, show that such
a statement is not possible for graphs with maximum degree larger
than three. Figure 4.6 provides an example for Gk,4. The graph Gk,∆

shows in a strong sense that the monochromatic component order is
non-finite, for ∆ > 3: in any asymmetric abmc 2-coloring of Gk,∆ there
is a monochromatic component whose order is linear in the number of
vertices.

v3,2

v2,3

v1,1

v1,3

v2,1 v3,1 vk−1,1 vk,1

v1,2 v2,2 vk−1,2 vk,2

v3,3
vk−1,3 vk,3

Figure 4.6: The graph Gk,4.

Proposition 4.7. For every independent set I of Gk,∆ it holds

(i) |I | ≤ k, and

(ii) the graph Gk,∆ − I is connected.
Therefore abmc(∆, n) ≥ ∆−2

∆−1n, for n = k(∆− 1).

Proof. We simply observe that from each of the k copies of K∆−1 we can
put at most one vertex into the independent set I . Thus G− I contains
one single component with at least |V (G)|−|I | ≥ k∆−k = ∆−2

∆−1n many
vertices.

Note that for ∆ = 4 this is in sharp contrast with Theorem 5.1 ap-
plied with k = 1 and l = 1 for which the monochromatic component
order is only logarithmic in the number of vertices. It would be inter-
esting to determine the exact asymptotics of the function abmc(∆, n);
we only know of the trivial upper bound abmc(∆, n) ≤ ∆−1

∆ n (since
every graph of maximum degree ∆, except K∆−1, has an independent
set containing at least n/∆ many vertices).

4.1.5 Hardness Results for Abmc 2-Colorings

In this subsection we show the existence of the “hardness jump” of the
decision problem whether a graph of maximum degree at most three
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admits a C-abmc 2-coloring.

Related work Similar hardness jumps of the k-SAT problem with
limited occurrences of each variable was shown by Tovey [63] for k = 3
and Kratochv́ıl, Savický, and Tuza [48] for arbitrary k. Let k, s be
positive integers. A Boolean formula in conjunctive normal form is
called a (k, s)-formula if every clause contains exactly k distinct variables
and every variable occurs in at most s clauses. Tovey showed that every
(3, 3)-formula is satisfiable while the satisfiability problem restricted
to (3, 4)-formulas is NP-complete. Kratochv́ıl, Savický, and Tuza [48]
generalized this by establishing the existence of a function f(k), such
that every (k, f(k))-formula is satisfiable while the satisfiability problem
restricted to (k, f(k)+1)-CNF formulas is NP-complete. By a standard

application of the Local Lemma they obtained f(k) ≥
⌊

2k

ek

⌋

. After

some development [48, 56] the most recent upper estimate on f(k) is
only a log-factor away from the lower bound and is due to Hoory and
Szeider [43]. Recently new bounds were also obtained on small values of
the function f(k) [42]. Observe that the monotonicity of the hardness
of the satisfiability problem for (k, s)-formulas is given by definition.

0/1-Colorings

In this subsubsection we present the main ingredient of our hardness
reduction, which is common to all our hardness proofs. Our plan is to
reduce our problems to 3-SAT. Given a 3-SAT formula F , we construct
(in polynomial time) a graph GF together with a constraint function
c = cF , such that (GF , c) has a so-called 0/1-coloring if and only if the
formula F is satisfiable.

Let G be a graph and c : V (G)→ N∪{∞} be a constraint function.
Then a mapping χ from V (G) to {0, 1} is called a 0/1-coloring of (G, c)
if the vertices with χ-value 1 induce an independent set and the order
of each component C induced by vertices of χ-value 0 is not larger than
the constraint of any of its vertices, that is, c(v) ≥ |C| for all v ∈ C.

We will assemble GF from various building blocks, pictured in Fig-
ure 4.7 and Figure 4.8. In the following, if the constraint of a vertex is
not specified than it is taken to be ∞.

The not-gadget NG is just a path vv̄ of length one, where v has
constraint 1.
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The copy-gadget CG(1) consists of just one vertex v1, which is called
both the root and the leaf of the gadget. Let P be a path of length two,
where the interior vertex is given constraint 1. For i ≥ 2, a copy-gadget
CG(i) is constructed from CG(i − 1) by identifying an arbitrary leaf
vi−1 of CG(i − 1) with one endpoint of each of two copies of P . Note
that vi−1 is no longer a leaf and we gained two new leaves - the other
endpoints of the two copies of P . Thus CG(i) contains exactly i leaves.
The root of CG(i) is the vertex v1 for every i. For more insight see
Figure 4.7. Let’s collect some simple facts about these gadgets.

v′′′′

v

1

v′′

b

v′

1a

v

v′

v

1

1

v′′

a

b

copy gadget CG(2)

1a′

1

b′

v′′′

copy gadget CG(3)

1

not gadget NG

v̄

Figure 4.7: Basic building blocks of the graph GF .

Proposition 4.8. (i) The not-gadget NG is 0/1-colorable. Moreover
in

any 0/1-coloring of the not-gadget the vertex v̄ is colored with a
different color than vertex v.

(ii) The copy gadget CG(i) is 0/1-colorable. Moreover in any
0/1-coloring of CG(i), all i leaves have identical colors with the
root of the gadget.

Proof. For each gadget a 0/1-coloring is indicated on Figure 4.7. All
the statements are easily verified.

For every clause D = (li1 ∨ li2 ∨ li3) in F we also construct a gad-
get. The clause-gadget G∗

D as shown in Figure 4.8 contains vertices
aD, bD, cD, dD and a vertex li,D corresponding to each literal li appear-
ing in the clause D. The constraints of li1,D and li2,D are 2 and the
constraints of li3,D and bD are 1.

Proposition 4.9. An 0/1-coloring χ of the vertices li1,D, li2,D, li3,D of
the clause-gadget G∗

D is extendable to a 0/1-coloring of G∗
D if and only

if at least one of li1,D, li2,D, li3,D received the color 1.
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`i3,D

aD

bD cD dD

`i1,D `i2,D

122

1

Figure 4.8: The clause-gadget G∗
D for clause D = (li1 ∨ li2 ∨ li3).

Proof. Let us first suppose that χ(lij ,D) = 0, for all j ∈ {1, 2, 3} and try
to extend χ to a 0/1-coloring of G∗

D. Then aD must be colored 1, since
li1,D and li2,D have constraint 2. Since 1-vertices form an independent
set, χ(bD) = 0. The constraint of bD implies that χ(cD) = 1, which then
implies that χ(dD) = 0. Hence li3,D is contained in a 0-component of
order at least 2, which contradicts that its constraint is 1. We conclude
that an extension to a 0/1-coloring of G∗

D is not possible.

Secondly, we show that an extension exists if some lij ,D is colored 1
in χ.

First suppose that χ(li1,D) = χ(li2,D) = 0 and χ(li3,D) = 1. Then
χ(aD) = χ(cD) = 1, χ(bD) = χ(dD) = 0 is a 0/1-coloring of G∗

D .

Now let (χ(li1,D), χ(li2,D)) 6= (0, 0). Then χ(aD) = 0, χ(bD) =
1, χ(cD) = 0 and either χ(dD) = 1 if χ(li3,D) = 0 or χ(dD) = 0 if
χ(li3,D) = 1 again results in a 0/1-coloring of G∗

D .

Now we are ready to define the graph GF together with its constraint
function cF . First for each clause D we construct the extended clause-
gadget GD by taking the clause-gadget G∗

D and identify each vertex li,D
corresponding to a negated variable x̄i in the clause D with the leaf xi,D

of a not-gadget. We call this the extended clause-gadget of the clause
D. See Figure 4.9 for an example.

Proposition 4.10. An assignment α satisfies the clause D if and only
if there is a 0/1-coloring of the extended clause-gadget GD such that the
vertices corresponding to the variables receive the colors the assignment
α gives them.

88



4.1. Asymmetric Bmc 2-Colorings 89

���
�

xi3,D

bD cD dD

aD

xi1,D

xi2,D

1

1

122

Figure 4.9: The extended clause-gadget GD for the clause D = (xi1 ∨
x̄i2 ∨ xi3).

Proof. It is easy to verify based on the properties of the not gadget
and the properties of the clause-gadget discussed in the previous two
proposition.

The graph GF is put together from these extended clause-gadgets of
the clauses of F with the help of one copy-gadget for each variable of
F . Formally GF is constructed as follows. We take the disjoint union
of one extended clause-gadget for each clause in F . Then we add one
copy-gadget Cx for each variable x. If the variable x occurs in ix clauses
than the leaves of the copy-gadget Cx

∼= CG(ix) are identified with the
vertices corresponding to the same variable x in the extended clause-
gadgets.

Obviously, the graph GF can be constructed in polynomial time in
the number of clauses and variables of F .

The main theorem of the section is now a simple consequence of the
above.

Theorem 4.3. (i) GF is 0/1-colorable if and only if F is satisfiable.

(ii) ∆(GF ) ≤ 3 and every vertex v of GF with c(v) <∞ has degree
at most 2.

Proof. Let α be a satisfying assignment of F . Then we start defining
a 0/1-coloring of GF by assigning color α(x) to the root of the copy-
gadget Cx corresponding to the variable x. This can be extended to an
0/1-coloring of the copy-gadgets by part (ii) of Proposition 4.8 where
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the leaves receive the same color as their respective roots. All these
leaves are identified with a vertex of an extended clause-gadget. Since
α satisfies all the clauses of F , these partial colorings of the extended
clause-gadgets can be extended to a 0/1-coloring of the whole gadget
(cf. Proposition 4.10) and thus the whole graph GF is 0/1-colored.

Let now χ be a 0/1-coloring of GF . We claim that the colors given to
the roots of the copy-gadgets corresponding to the variable is a satisfying
assignment of F . By part (ii) of Proposition 4.8 all the leaves are the
same color as their roots in the copy-gadget. By Proposition 4.10 every
extended copy gadget has a satisfying assignment, so we are done.

Part (ii) is straightforward.

Hard (3, C)-ABMCCol

We will use the core graph GF defined above to construct in polynomial
time a graph ABMCColGraph(F ) which is C-bmc 2-colorable if and
only if the formula F is satisfiable.

For a C-abmc 2-coloring we denote the color-class forming an inde-
pendent set by I and the color-class spanning components of order at
most C by B.

Definition 4.1. Let C ≥ 2 and ∆ ≥ 1 be integers. A graph G is called
(∆, C)-forcing with forced vertex f ∈ V (G) if

(i) ∆(G) ≤ ∆ and f has degree at most ∆− 1,

(ii) G is C-abmc 2-colorable, and

(iii) f is contained in I for every C-abmc 2-coloring of G.

Lemma 4.4. For any integer ∆ ≥ 1 and integer C ≥ 2 the de-
cision problem (∆, C)-ABMCCol is NP-complete provided a (∆, C)-
forcing graph exists.

Proof. We assume the existence of a (∆, C)-forcing graph H , hence
∆ ≥ 3. We will show that there is a polynomial time algorithm which,
given a 3-CNF formula F , produces a graph ABMCColGraph(F ) of
maximum degree at most ∆ such that F is satisfiable if and only
ABMCColGraph(F ) has a C-abmc 2-coloring.

The base-gadget BGl contains l disjoint copies H1, . . . , Hl of the
(∆, C)-forcing graph H , the forced vertex fi of copy Hi is joined to a
new vertex ti for i ∈ [l], and the vertices t1, t2, . . . , tl form a path. The
vertex t1 (of degree two) is called the sink of the base-gadget.
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H2H1 H3

t1 t2 t3

f1 f2 f3

Hl−1 Hl

fl−1 fl

tltl−1

Figure 4.10: The base gadget BGl

Proposition 4.11. The base gadget BGl is C-abmc 2-colorable for
every l ≤ C. Moreover in any C-abmc 2-coloring of BGl, l ≤ C, the
sink is contained in a B-component of order l.

Proof. A C-abmc 2-coloring of the base-gadget is indicated on Fig-
ure 4.10. In any C-abmc 2-coloring χ of the base-gadget BGl, χ(ti) = B,
since fi is forced to be contained in I . Thus the vertices ti for i ∈ [l]
form a B-component of order exactly l.

Now ABMCColGraph(F ) is obtained from GF by connecting each
vertex with constraint 1 to the sink of a base-gadget BGC−1, and
connect each vertex with constraint 2 to the sink of a base-gadget
BGC−2. Note that the obtained graph has maximum degree ∆, ac-
cording to part (ii) of Theorem 4.3. Note also that GF is 0/1-colorable
if and only if ABMCColGraph(F ) has a C-abmc 2-coloring. A C-
abmc 2-coloring of ABMCColGraph(F ) restricted to V (GF ) is a 0/1-
coloring if we exchange the color I to 1 and the color B to 0. Con-
versely a 0/1-coloring of GF can be extended to a C-abmc 2-coloring
of ABMCColGraph(F ) by identifying 1 with I , and 0 with B, and
extending this coloring to the base-gadgets appropriately (such coloring
exists by Proposition 4.11).

(3, C)-Forcing Graphs

Let GC denote the family of graphs with maximum degree at most three
that are not C-abmc 2-colorable.

Lemma 4.5. For all C ≥ 2, if GC 6= ∅ then there is a (3, C)-forcing
graph.
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Proof. Let us assume first that C ≥ 6. By Lemma 4.1 we can assume
that any member of GC contains a triangle.

Let us fix a graph G ∈ GC which is minimal with respect to deletion
of edges. Let T be a triangle in G with V (T ) = {t1, t2, u} and e = {u, v}
be the unique edge incident to u not contained in T . We split e into
e1, e2 with e1 = {u, f} and e2 = {f, v} and denote this new graph by H
(cf. Figure 4.11). We claim that H is (3, C)-forcing graph with forced
vertex f . H is C-abmc 2-colorable since the minimality of G ensures
that G−e has a C-abmc 2-coloring while the non C-abmc 2-colorability
of G ensures that the colors of u and v are the same on any C-abmc 2-
coloring of G−e. So any C-abmc 2-coloring χ of G−e can be extended
to a C-abmc 2-coloring of H by coloring f to the opposite of the color
of u and v. Moreover, any such extension is unique. If χ(u) = χ(v) = I ,
then obviously χ(f) = B. If χ(u) = χ(v) = B = χ(f) and χ is a C-
abmc 2-coloring of H , then χ restricted to V (G) is a C-abmc 2-coloring
of G, a contradiction.

Thus in any C-abmc 2-coloring χH of H , (χH(u), χH(f), χH(v)) is
either (I, B, I) or (B, I, B).

We denote by v1, v2 the neighbors of t1 and t2, respectively, not
contained in T (might be v1 = v2). Suppose the vertices (u, f, v) of H
can be colored with (I, B, I). But then χH(t1) = χH(t2) = B.

t1
G H

u f vvu

t1

t2 t2

Figure 4.11: Splitting e = {u, v} into e1 = {u, f} and e2 = {f, v}

Case (i): If χH(v1) = χH(v2) = I then we define a C-abmc 2-coloring
χG for G as follows:
χG(x) = χH(x) for all x ∈ V (G) \ {u} and χG(u) = B.
Case (ii): Without loss of generality χH(v1) = B. We define a C-abmc
2-coloring χG for G as follows:
χG(x) = χH(x) for all x ∈ V (G) \ {t1, u}, χG(t1) = I , and χG(u) = B.
Indeed, the B-component containing t2 did not increase, since χG(t1) =
χG(v) = I and in H χH(t1) = B.
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In both cases G would be C-abmc 2-colorable, a contradiction. Thus
in any C-abmc 2-coloring of H the vertices (u, f, v) are colored (B, I, B).
The vertex f is contained in I and is of degree 2, hence H is a (3, C)-
forcing graph with forced vertex f .

For 2 ≤ C ≤ 5 we explicitly construct (3, C)-forcing graphs. The
graph G in Figure 4.12 is (3, C)-forcing for C ∈ {2, 3}. First we observe
that G is indeed 2-abmc 2-colorable: just take I = {f, t′2, t

′′
3} and B =

V (G)\ I . It is also not hard to check that there is no 3-abmc 2-coloring
where vertex f is contained in B. Suppose there is a 3-abmc 2-coloring
of G in which f is contained in B. If t′1, t

′′
1 are contained in I then

no other vertex is contained in I and we have a B-component of order
four. On the other hand if t′1, t

′′
1 are both contained in B then we have

a B-component of order at least five. So without loss of generality t′1
is contained in I and t′′1 is contained in B. The B-components on both
triangles are connected, thus we have a B-component of order five again.

f

t′2 t′′2

t′′1

t′3 t′′3

t′1

Figure 4.12: (3, C)-forcing graph for C ∈ {2, 3}

Next we construct a graph H which is (3, C)-forcing for C ∈ {4, 5}.
First let us show that for the graph H∗ in Figure 4.13, (i) there is
a 4-abmc 2-coloring and (ii) there is no 5-abmc 2-coloring where u is
contained in I .

(i) The vertex-partition defined by I = {t1,2, t2,4, t3,1, t4,5, t5,3} and
B = V (H∗) \ I is a 4-abmc 2-coloring of H∗,

Note that in this coloring u = t1,1 is contained in a B-component of
order two.

(ii) The key observation is that in any 5-abmc 2-coloring of H∗, for
a triangle Ti with V (Ti) = {ti,j , ti,k, ti,l}, if ti,j is contained in I then
at least one of tk,i, tl,i is contained in I . Suppose not, then the at least
six B-vertices of the three triangles Ti, Tk, and Tl are contained in the
same B-component.
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Thus if t1,1 is contained in I in a 5-abmc 2-coloring of H∗, then
without loss of generality t3,1 is contained in I as well. This then implies
that one of t4,3 and t5,3, say t5,3 is in I . Hence t1,2, t5,2 ∈ B and
t3,4, t5,4 ∈ B. These, together with the key observation imply that
t2,4 ∈ B and t4,2 ∈ B, respectively. Finally, all neighbors of triangle T4

are in B, which together with the key observation imply that all vertices
of T4 are in B, so the B-component of T4 has order at least six.

u = t1,1

t3,4

t1,2 t1,3

t2,1

t2,4

t3,1

t3,5

t5,2

t5,3t5,4t4,2 t4,5

t2,5

t4,3

Figure 4.13: Graph H∗

The graph H is pictured on Figure 4.14. The subgraphs Hi, i ∈
{1, . . . , 4}, are copies of the graph H∗, with ui corresponding to vertex
u of H∗.

The coloring of part (i) can easily be extended to a 4-abmc 2-coloring
of H .

As we have seen, in any 5-abmc 2-coloring of H all ui ∈ B. Thus,
similarly to the key observation above, v and w are contained in B.
Hence if f was in B, then its B-component would be of order at least
seven, a contradiction. Thus in any 5-abmc 2-coloring of H the vertex

v wf
H3

u1

u2

u3

u4

H1

H2 H4

Figure 4.14: (3, C)-forcing graph for C ∈ {4, 5}
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f is contained in I , so H is (3, C)-forcing for C ∈ {4, 5}.

Note that (3, C)-ABMCCol is obviously trivial for all C with GC = ∅,
so Theorem 4.2 follows immediately from Lemma 4.5 and Lemma 4.4.

(4, C)-Forcing Graphs

Theorem 4.4. (4, C)-ABMCCol is NP-complete for every 2 ≤ C <∞.

In order to show the Theorem 4.4, we are going to show the existence
of (∆, C)-forcing graphs.

Lemma 4.6. For all ∆ ≥ 4 and all C ≥ 2 there is a (∆, C)-forcing
graph.

Proof. Suppose first that C = 2k − 2. Let us look at the graph Gk,4 in
Figure 4.6. This graph is not (2k − 1)-abmc 2-colorable, since in any
triangle vi,1, vi,2, vi,3 at most one vertex is contained in the independent
set I . The two other vertices are contained in B and since there are three
edges connecting this triangle to a neighboring triangle the components
in Gk,4[B] of all triangles of Gk,4 are connected and form one big compo-
nent in Gk,4[B]. Removing the edge e = {v1,1, v1,2} makes Gk,4 (2k−2)-
abmc 2-colorable and in any such coloring χ, χ(v1,1) = χ(v1,2) = I .
Thus Gk,4 − e is (4, 2k − 2)-forcing, with forced vertex v1,1 (or v1,2).

Similarly, Gk,4 with an additional vertex v adjacent to vk,1, vk,2, vk,3,
denote this graph by H , is not (2k)-abmc 2-colorable, hence H − e is
(v, 2k − 1)-forcing again with forcing vertex v1,1 or v1,2.

Combining Lemma 4.6 and Lemma 4.4 concludes the proof of The-
orem 4.4.

4.2 Symmetric Bmc 2-Colorings

Recall that a C-sbmc 2-coloring is a (C, C)-bmc 2-coloring.

Analogously to the asymmetric case we define (∆, C)-SBMCCol to
be decision problem whether a given graph G of maximum degree at
most ∆ allows a C-sbmc 2-coloring. Note here that (∆, 1)-SBMCCol is
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simply the problem of deciding whether a graph of maximum degree ∆
is bipartite.

We claim that every graph with maximum degree at most three
admits a 2-sbmc 2-coloring. In fact the two vertex classes V1 and V2

of a maximum edge-cut V = (V1, V2) of a graph G with ∆(G) ≤ 3
immediately yield a 2-sbmc 2-coloring of G. For that suppose there is
a vertex v, without loss of generality contained in V1, with dV1(v) ≥ 2.
This contradicts the maximality of (V1, V2), since the edge-cut (V1 \
{v}, V2 ∪ {v1}) obviously contains more edges.

Investigations about bmc colorings for the symmetric case were first
studied by Kleinberg, Motwani, Raghavan, and Venkatasubramanianby
in [46] and independently by Alon, Ding, Oporowski, and Vertigan [10].
The authors of [10] showed that any graph of maximum degree 4 has a
2-coloring such that each monochromatic component is of order at most
57. This was improved by Haxell, Szabó, and Tardos [39], who showed
that a 2-coloring is possible even with monochromatic components of
order 6, and such a 6-sbmc 2-coloring can be constructed in polynomial
time (the algorithm of [10] is not obviously polynomial). In [39] it is
also proved that the family of graphs of maximum degree 5 is 17617-
sbmc 2-colorable. Unfortunately the proof does not imply an efficient
algorithm for finding such a sbmc 2-coloring.

In Subsection 4.2.1 we improve on this results in two ways. On the
one hand we decrease the component order from 17, 617 to 1908, on the
other hand we derive a polynomial-time algorithm that finds a C-sbmc
2-colorings with some large constant C.

Theorem 4.5. For every n-vertex graph G of maximum degree 5 the
following holds:

(i) G is 1908-sbmc 2-colorable, and

(ii) a C-sbmc 2-coloring of G can be found in polynomial-time in n,
C ≤ 94371840.

The authors of [10] showed that a similar statement cannot be true
for the family of graphs of maximum degree 6, as for every constant C
there exists a (planar) 6-regular graph GC such that in any 2-coloring
of V (GC) there is a monochromatic component of order larger than C.

For the problem (∆, C)-SBMCCol we make progress in the direction
of establishing a sudden jump in hardness. We just saw that (3, C)-
SBMCCol is trivial already for C = 2, so the first interesting maximum
degree is ∆ = 4. From the result of [39] mentioned earlier it follows
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that (4, 6)-SBMCCol is trivial. Here we show that (4, C)-SBMCCol
is NP-complete for C = 2 and C = 3, and that (6, C)-SBMCCol is
NP-complete for C ≥ 2. We do not know about the hardness of the
problem (4, C)-SBMCCol for C = 4 and C = 5. Again, we do not
know any direct reason for the monotonicity of the problem. I.e., at
the moment it is in principle possible that (4, 4)-SBMCCol is in P while
(4, 5)-SBMCCol is again NP-complete.

Theorem 4.6. The problems (4, C)-SBMCCol, for C ∈ {2, 3} and
(6, C)-SBMCCol, for C ≥ 2 are NP-complete.

The proof of the theorem appears in Section 4.2.3.

4.2.1 Sbmc 2-Colorings of Graphs G with ∆(G) ≤ 5

In this section we start by proving Theorem 4.5(i) reusing ideas of Hax-
ell, Szabó, and Tardos [39]. We keep track of algorithmic aspects for
finding the structures whose existence we are showing along the proof.
On the way we improve the bound on the component order in Theo-
rem 4.5(i) from 17617 to 1908. Also we are going to make use of indepen-
dent transversals (instead of the Local Lemma as in [39]). Ultimately
this enables us to apply Theorem 2.1 instead of Theorem 1.1 in order
to find a 94371840-sbmc 2-coloring as promised in Theorem 4.5(ii).

Before we prove Theorem 4.5 we start with some initial observations
and propositions. An edge-cut is called k-maximal if switching the sides
of any at most k vertices does not increase the size of U .

Let G be a graph of maximum degree 5, and let U = (U1, U2)
be a 3-maximal edge-cut of G. Let G′(U) = G[U1] + G[U2], and let
C1, . . . , Cs be the components of G′(U). Further we define W (U) =
{v ∈ V (G) | dG′(U)(v) = 2} and we denote by H(U) the bipartite sub-
graph of G consisting of the vertices in W (U) and all the edges of G
with one endpoint in W (U)∩U1 and the other endpoint in W (U)∩U2.
The vertex sets of the components of H(U) are called ladders. If the
edge-cut U is obvious from the context, then we write G′, H and W
instead of G′(U), H(U) and W (U).

The following proposition states some properties of ladders in 3-
maximal edge-cuts. The same proposition but for maximum edge-cuts
has already been shown in [39].

Proposition 4.12 ([39]). Let U = (U1, U2) be a 3-maximal edge-cut.
Then we have
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(i) ∆(G′) ≤ 2, hence each component either forms a cycle or a path,

(ii) ∆(H) ≤ 3,

(iii) any two H-neighbors of a vertex w ∈ W are adjacent in G.

(iv) for each ladder L, L ∩ Uj consists of consecutive elements of
some (path or cycle) component Ck of G′, for each j = 1, 2.
In particular ladders, unless they consist of one vertex, have
nontrivial intersection with exactly one component of each side
of the partition (U1, U2).

(v) if dH (w) = 3, and w ∈ Uj ∩L for some ladder L, then U3−j ∩L
consists only of the three H-neighbors of w.
Furthermore |L| ≤ 6.

Proof. (i) If the degree of a vertex in G′ were at least 3, then putting
the vertex into the other class would increase the number of edges going
across.

(ii) This follows immediately from the definition of the vertex set
W and the maximum degree of G being at most five

(iii) Suppose on the contrary that w′, w′′ ∈W are two H-neighbors
of w that are not adjacent in G. Then switching the classes for w′, w′′, w
would increase the number of edges going across the partition.

(iv) Follows directly from (i) and (iii).

(v) by (iii), the three H-neighbors of w need to form a triangle in
G′, which is already a complete component of G′. Thus Uj ∩ L can
only contain 2 more vertices besides Ui, since any vertex in Uj ∩ L is a
neighbor of a neighbor if w, thus (again by (iii)) a neighbor of w in G′

as well. But w has only two G′-neighbors in Uj .

A main ingredient of the proof of Theorem 4.5 is the following
lemma:

Lemma 4.7. Let G be an n-vertex graph with ∆(G) ≤ 5. Then there is
a 3-maximal edge-cut Ū = (Ū1, Ū2) of the vertex set of G containing no
ladder of size larger than 12. Moreover, Ū can be found in polynomial-
time in n.

Proof. Let us consider a 3-maximal edge-cut U . The edge-cut U can
obviously be found in polynomial-time in n. We can assume that U
contains a ladder L with |L| > 12, otherwise we are done.
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By Proposition 4.12(ii) and (v), ∆(H [L]) ≤ 2. If H [L] forms a path,
then let v1 be a endpoint of the path. Otherwise H [L] is a cycle, and we
arbitrarily choose v1 ∈ L. Hence we find vertices v2, . . . , vk ∈ L, k ≥ 9
such that vi is adjacent to vi+1 in H for i ∈ [k − 1]. We may assume
that vi ∈ U1 for odd i and vi ∈ U2 for even i. By Proposition 4.12(iii)
we have that vi and vi+2 are adjacent in G (and thus also in G′) for
i ∈ [k − 2].

v1 v3 v5 v7

v2 v4 v6

v9

v8

x4

x5

Figure 4.15: The ladder L in U .

We define the edge-cut UL,i by switching the vertices vi and vi+1 of
ladder L, for i = 4, 5. For example for UL,4 = (UL,4

1 , UL,4
2 ):

UL,4
1 = (U1 \ {v5}) ∪ {v4} and UL,4

2 = (U2 \ {v4}) ∪ {v5}.
Subsequently the ladder L is always obvious from the context and

therefore we often write U i when we actually mean UL,i. If UL,i is again
3-maximal, then on the one hand Proposition 4.12 applies to UL,i as
well, and on the other hand UL,i contains at least as many edges as U .
The latter follows from the fact that UL,i contains all edges of U but a
subset of the at most four edges of W (U) incident to either vi or vi+1

and not to both. Additionally UL,i contains the four edges of G′(U)
incident to vi and vi+1.

We denote by 3-MaxCut(U) an efficient procedure that finds a 3-
maximal edge-cut starting at the edge-cut U . A possible implementation
for 3-MaxCut(U) proceeds iteratively as follows. If there is an edge-cut
U ′ that originates from U by switching the sides of at most three vertices
such that |U ′| > |U|, then replace U by U ′ and start over. Since in each
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iteration the number of edges in the edge-cut increases. Moreover in
each step one has to check for at most a polynomial number of edge-
cuts U ′. We require that if U is not provided, then 3-MaxCut() outputs
an arbitrary 3-maximal edge-cut of G.

Subsequently we call a ladder long if it contains more than 8 vertices.
For each 3-maximal edge-cut U we define l(U) =

∑

L is long(|L| − 8).

Let us analyze the Procedure EdgeCut(U).

Procedure EdgeCut(U)
Input: U ; 3-maximal edge-cut of G
Output: 3-maximal edge-cut of G with no ladder larger than 12

if U contains no ladder larger than 12 then return U ;
else

Select a ladder L with |L| > 12;
if exists i ∈ {4, 5} such that UL,i is not 3-maximal then

return EdgeCut(3-MaxCut(UL,i));1

else
Determine i ∈ {4, 5} such that l(UL,i) < l(U);
return EdgeCut(UL,i);2

Obviously the edge-cut returned by EdgeCut(U) contains no ladder
larger than 12. We say that an edge-cut V is larger than V ′ if and only
if either V contains more edges in the cut than V ′ does or both contain
the same number of edges, but l(V) < l(V ′). More formally

V � V ′ ⇐⇒ |V| > |V ′| or |V| = |V ′| and l(V) < l(V ′).

First we show that the recursive procedure EdgeCut(U) terminates in
polynomial-time because in each recursive call EdgeCut() is called with
input U ′ such that U ′ > U . Suppose that U contains a ladder L
with |L| > 12. We have seen that |UL,i| ≥ |U|, for i ∈ {4, 5}. If
therefore EdgeCut() is recursively called in Line 1, then with input
3-MaxCut(UL,i), an edge-cut containing strictly more edges than the
edge-cut U . If EdgeCut() is recursively called in Line 2, then with input
UL,i an edge-cut with l(UL,i) < U , whose existence is guaranteed under
these circumstances by the forthcoming lemma, Lemma 4.8. From the
two rather obvious facts that |V| ∈ {0, . . . , 5/2n} for every edge-cut V
of G and that l(V) ∈ {0, . . . , n} we indeed conclude that EdgeCut(U)
terminates after polynomially many steps.
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Lemma 4.8. Let U be a 3-maximal edge-cut of G containing a ladder
L with |L| > 12 and suppose that UL,4 and UL,5 are 3-maximal, then
mini∈{4,5} l(UL,i) < l(U).

Proof of Lemma 4.8. We assume that U contains a ladder L with |L| >
12 and all three edge-cut U ,U4, and U5 are 3-maximal.

We need some more observations about ladders in U i, for i ∈ {4, 5}.
Let us agree upon the following notation. We add a superscript to a
ladder L, e.g. Li, to denote that L “lives” in the edge-cut U i. We add a
subscript, e.g Lv, to denote the ladder L containing the vertex v. The
vertices vi and vi+1 have degree 2 in G(U i)

′
. We conclude that vi and

vi+1 are contained in one ladder in H(U i). Let us define this ladder in
H(U i) to be Li = Li

vi
. The two vertices vi−1 and vi+2 of L are contained

in Li as well. Here we note that Li contains at least 4 vertices. The
vertex adjacent to vj , j ∈ {3, . . . , k − 2} on the other side of U and not
contained in L (we know that dH(U)(vi) ≤ 2 from Proposition 4.12(v))
is denoted by xi (if it exists). Since xj 6∈ W, dG(U)′(xj) ≤ 1. If xj has
such a neighbor in G′(U), then we denote it by yj .

Note that the two vertices vi−2 and vi+3 of L are not contained
in W (U i) but in W (U). On the other hand xi and xi+1 gained one

neighbor (vi and vi+1, respectively) in G(U i)
′
and are thus candidates

to be contained in W (U i) \W (U), indeed W (U i) ⊆W (U)∪{xi, xi+1} \
{vi, vi+1}

Switching the sides of vi and vi+1 will change the set of ladders.

Let us call a ladder L′ new in U i if there is no ladder L in U such
that L′ = L. The following holds for each new ladder L′: either L′

contains a vertex from W (U i) \W (U) or is incident to a vertex from
W (U) \W (U i). The set of new ladders thus consists of a subset of the
not necessarily distinct ladders Li, Li

xi
, Li

xi+1
, and the two ladders Li

vi−3

and Li
vi+4

.

Similarly we call a ladder L old in U if there is no ladder L′ in U i

such that L′ = L. The following holds for each old ladder L: either L
contains a vertex from W (U) \W (U i) or is incident to a vertex from
W (U i) \ W (U). The set of old ladders consists certainly of L, and
possibly also of Lyi

and Lyi+1 .
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Proposition 4.13. Let U be a 3-maximal edge-cut of G containing a
ladder L with |L| > 12. Suppose that UL,4 and UL,5 are 3-maximal as
well, then the following is true:

(i) |Li| ≤ 4 + 2|{xi, xi+1} ∩ Li| for at least one i ∈ {4, 5}.
(ii) If Li 6= Li

xj
, then |Li

xj
| ≤ |Lyj

|+ 2|{xj ∩ Li
yj
|, for all i ∈ {4, 5}

and j ∈ {i, i + 1}.

Let us postpone the proof of Proposition 4.13 to the end of this sec-
tion. Also we want to observe that all ladders of UL,i besides Li, Li

xi

and Li
xi+1

are either not new or contained in L. We now want to con-
clude the proof of Lemma 4.7 by showing the existence of i∗ ∈ {4, 5}
with l(UL,i∗) < l(U). We choose i∗ ∈ {4, 5} such that |Li∗ | ≤ 4 +
2|{xi∗ , xi∗+1} ∩ Li∗ | (c.f. Proposition 4.13(i)). The ladder Li∗ does not
contribute to l(UL,i∗) since it is not long. The contribution of Li∗

xj
to

l(UL,i∗) is at most 2|{xj} ∩ Li∗

yj
| more than Lyj

contributes to l(U),

j ∈ {i∗, i∗ + 1}. Finally, the contribution to l(UL,i∗) of ladders subset
of L is at least 5 less than the contribution of L to l(U), as |L| − 8 ≥ 5.
We conclude with

l(UL,i∗) ≤ l(U) + 2|({xi∗} ∩ Li∗

xi∗
) ∪ ({xi∗+1} ∩ Li∗

xi∗+1
)}| − 5

≤ l(U) + 2 · 2− 5

< l(U).

Proof of Proposition 4.13. Again for ease of notation we define U i =
UL,i, for i ∈ {4, 5}.

(i) Suppose first that |L4| > 4+2|{x4, x5}∩L4|. If {x4, x5}∩L4 = ∅,
then L4 neither extends via v3 nor via v6 and L4 = {v3, v4, v5, v6}.

Suppose now that L4 contains x5 but not x4. Thus L4 extends by at
least 3 vertices via v3. It is not hard to check that x5 has to be adjacent
to v3 and v1 and that {x5, v1} ⊂ L4. Suppose first that H(U)[L] is a
cycle. Hence also the vertices of L ∩U2 induce a cycle component C in
G′(U), according to Proposition 4.12(iii). Therefore x5 is not adjacent
to any vertex of C and L4 cannot extend via v1. If H(U)[L] is a path,
then v1 is an endvertex of it. The only neighbor of v1 in U4

2 ∩ L4 is x5.
Therefore L4 can extend via x5 by at most 2 vertices. A contradiction.

Next suppose that L4 contains x4 (and possibly x5). Again according
to our assumptions and the observations just made L4 has to extend by
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x5

x4

v1 v3

v2 v6

v4

v5

v7

v8

v9

Figure 4.16: The ladder L4 in U4.

at least 3 vertices via v6. Hence x4 is adjacent to v6 and v8. Moreover we
assumed that U4 is 3-maximal, we conclude from Proposition 4.12(iii)
and the fact that v9 ∈ L4 that {x4, v9} ∈ E(G) as well, see Figure 4.16.

Let us now carry this information over to U5. Since {x4, v6} ∈
E(G) and thus x4 = x6, we conclude that x4 ∈ L5. Moreover since
the four vertices x4, v6, v7, v9 form a cycle component of U 5

1 , L5 ∩
U5

1 ⊆ {x4, v6, v7, v9}, see Figure 4.17. It remains to show that in this
case |L5| ≤ 6 + 2|x5 ∩ L5|. From Proposition 4.12(v) it follows that
dH(U5)(v) ≤ 2, for every vertex v ∈ L5. Due to Proposition 4.12(iii),
we observe that |L5 ∩U5

2 | ≤ |L5 ∩U5
1 | and thus |L5| ≤ 8. The vertex v9

is contained in L5 only if x5 ∈ L5.

(ii) If L4
x4
6= Li, then v4 6∈ L4

x4
. Thus L4

x4
can extend by at most

one vertex beyond x4. We conclude that the contribution of L4
x4

to
l(U4) is at most 2 more than the contribution of Ly4 to l(U). A similar
statement holds true for Li

xj
and Lyj

for i ∈ {4, 5} and j ∈ {i, i+1}.

We conclude the proof of Lemma 4.7.

Proof of Theorem 4.5. In order to finish the proof of Theorem 4.5 we
define the following graph HL according to an edge-cut U containing no
ladders with more than 12 vertices. Note here that U can be efficiently
obtained by a call to EdgeCut(3-MaxCut()) as shown in Lemma 4.7. Let
Li, i = 1, 2 be the set of ladders of U having at least on vertex in Ui and
V (HL) = L1 ∪ L2. Thus for each ladder of H that touches both parts
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v1 v3 v7

v2 v4

v6

v5

v9

v8

x5

x4 = x6

Figure 4.17: The ladder L5 in U5.

of U there are two vertices vL
1 , vL

2 ∈ V (HL) corresponding to L. Let
two vertices v1, v2 in HL be adjacent if they correspond to two distinct
ladders L1 and L2, such that they contain vertices u ∈ L1 and w ∈ L2

and either the two vertices u and w are adjacent in G or there is a
path P = u, v, w in G of length 2 with v being an endpoint of a path
component Ci of G′ (possibly of length 0).

Claim 4.4. ∆(HL) ≤ 64.

Proof. Each ladder L in H is incident to at most |L|+4 many edges with
exactly one endpoint in L, since an inner vertex of L is connected to at
least 4 vertices of L and an endpoint of L is connected to at least two
vertices of L in G. For a vertex u ∈ L and vertex v as before there are
at most 4 paths P = {u, v, w′} of length 2 with w′ ∈ L′ for some distinct
ladder L′. We conclude that ∆(HL) ≤ 4(|L|+ 4) = 4(16) = 64.

The crucial observation is that while switching several ladders si-
multaneously, vertices of degree 2 in G′ that do not switch sides, do not
receive any new neighbor. This is true simply because, if a vertex v ∈ Ui

has degree 2 in G′ and a neighbor in U3−i is selected for switching, then
v (being in the same ladder as w) is also selected for a switch. Thus, in
choosing a switch that breaks up large components of G′, we just need
to take care that the vertices of degree at most one in G′ do not join up
a lot of components via the newly switched vertices. This will be done
with the help of an independent transversal as follows.
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We define a vertex partition P of a subset of the vertex set of HL as
follows: Set l0 = 2 ·∆(HL) = 128. We partition each component Ci in
G′ into b|Ci|/l0c many parts of l0 consecutive ladders such that the |Ci|
(mod lo) many remaining ladders of Ci are evenly distributed between
these parts. Also these remaining vertices will not be contained in P .
For instance a component Ci with |Ci| = k ·l0−1, for some k > 2 will be
partitioned into k− 1 parts each containing l0 many ladders. Moreover
between each part there are at most

⌈

l0−1
k−1

⌉

many ladders. Then we
apply Theorem 1.1 to the multipartite subgraph of HL defined on the
vertices contained in P . Let T be such an independent transversal. We
switch the ladders in G corresponding to vertices of HL contained in
T and thereby, since vertices of degree 2 in G′ do not receive a new
vertex, breaking all large components of G′ into components of at most
(l0−1)+

⌈

l0−1
k−1

⌉

+(l0−1) = 127+64+127 = 318 ladders, since we easily
observe that k = 3 constitutes the worst case. Let U∗ be the new edge-
cut. According to Lemma 4.7 and Proposition 4.12(iii)-(iv) each ladder
contains at most 12/2 = 6 vertices in either U1 or U2. Note here that
since T is a set of independent ladders in HL, no degree 1 vertex of G′

receives more than one ladder. Hence a ladder L that has been switched
forms a component of order at most (|L|+|L|+4)/2 ≤ 14 in either U ∗

1 or
U∗

2 . In total each component in the new graph G[U ∗
1 ] + G[U∗

2 ] contains
at most 6(318) = 1908 many vertices concluding the proof of Theorem
4.5(i).

Let us now finish the proof of Theorem 4.5(ii). Partitioning the
components Ci of G′ into parts of order l1 = 20∆(HL)3 instead of
order l0 enables us to apply Theorem 2.1 instead of Theorem 1.1 in
the proof of Lemma 4.5. Thus we can find an independent transversal
in HL and moreover find a C-sbmc 2-coloring as in Theorem 4.5(ii),
C ≤ 6(3l1) ≤ 18 · 4 · 5 · 643 = 94371840 (here we plug the factor 3 in
front of l1 for simplicity, a more detailed analysis as above for the case
of Theorem 4.5(i) would be possible as well).

4.2.2 Sbmc 2-Colorings of Graphs G with ∆(G) > 5

Let sbmc(∆, n) be the smallest integer g such that every n-vertex graph
of maximum degree ∆ is g-sbmc 2-colorable. Motivated by the fact that
sbmc(5, n) = O(1) according to [39] or Theorem 2.1 and a result by
Linial, Matoušek, Sheffet, and Tardos in [49] showing that sbmc(7, n) =
Ω(n), we would be very curious to know the order of sbmc(6, n).
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The graph TC defined in the following yields a lower bound on
sbmc(6, n).

Definition 4.2. For a positive integer C, let TC be the graph whose
vertices are the triples (x, y, z) of nonnegative integers summing to C,
with an edge connecting two triples if they agree in one coordinate and
differ by one in the remaining two coordinates.

Note first that TC has maximum degree at most six. A Lemma by
Hochberg, McDiarmid, and Saks [41] shows the following property of
any 2-coloring of the graph TC . (This is also a direct consequence of
the so-called HEX-Lemma, see for instance [30].)

Lemma 4.9 ([41]). TC is not C-sbmc 2-colorable.

Hence we conclude that sbmc(6, n) = Ω(
√

n).

The value of sbmc(∆, n) has also been investigated for more re-
strictive graph classes. Matoušek and Př́ıvětivý [52] investigate sbmc
colorings of supergraphs of the grid graph. In [49] the authors ask for
the determination of sbmc(6, n) if the graphs under consideration are
restricted to being line graphs of 4-regular graphs. This problem is
motivated by the construction of the line graphs for Theorem 5.1.

4.2.3 Hardness Results for Sbmc Colorings

Let us start this section with a conjecture that the “hardness jump”
indeed also occurs for the symmetric case.

Conjecture 4.1. For ∆ ∈ {4, 5} there is an integer g(∆) ∈ N such
that

(i) (∆, C)-SBMCCol is NP-complete, for 2 ≤ C < g(∆), and

(ii) every graph with maximum degree at most ∆ admits a g(∆)-sbmc
2-coloring.

Towards a proof of Conjecture 4.1 we prove Theorem 4.6 by con-
structing the appropriate base gadgets and then defining the graph
SBMCColGraph(F ) which can be C-sbmc 2-colored if and only if the
formula F is satisfiable. We denote the two color-classes of a C-sbmc
2-coloring by B1 and B2.

106



4.2. Symmetric Bmc 2-Colorings 107

Definition 4.3. Let C ≥ 2 and ∆ ≥ 4 be integers. A graph G is called
(∆, C)-sym-forcing with a set F ⊆ V (G) of at most two forced vertices
if

(i) ∆(G) ≤ ∆ and
∑

f∈F (∆− d(f)) ≥ 2,

(ii) G is C-sbmc 2-colorable, and

(iii) for every C-sbmc 2-coloring of G there is a color-class c
such that every f ∈ F is contained in a c-component of order
at least C.

Lemma 4.10. For any two integers ∆ ≥ 4 and C ≥ 2 the deci-
sion problem (∆, C)-SBMCCol is NP-complete provided a (∆, C)-sym-
forcing graph exists.

Proof. Suppose a (∆, C)-sym-forcing graph H exists. We will reduce
our problem to 3-SAT. As in the asymmetric problem, the graph we
construct will be an extension of the core graph GF . But the base-
gadgets will be different from the ones in the previous subsection and
some of them will be connected to each other unlike in the asymmetric
problem.

We construct our base-gadget BGl by taking l copies H1, . . . , Hl of
the (∆, C)-sym-forcing graph H and l vertices s1, . . . , sl and connecting
them in a path-like fashion as depicted in Figure 4.18.

s1 s2 sl−2 sl

f1 f2 f3

H1 H2 H3H3H2H1

sl−1s3 s1 s2 s3

f ′

1 f1 f ′

2 f2 f ′

3 f3

Hl−1 Hl

flf ′

l

slsl−1sl−2

fl−1 fl

HlHl−1

Figure 4.18: Base gadget BGl using sym-forcing graphs with either one
or two forced vertices.

By property (i) of Definition 4.3, ∆(Bl) ≤ ∆. By property (iii), in
any C-sbmc 2-coloring of the base gadget BGl all the forced vertices fi

have the same color, which is different from the color of the vertices si.
Thus the vertices si form a monochromatic component of order l. We
call f1 and sl the source and sink of the base gadget, respectively.

We can conclude the following.
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Proposition 4.14. The base gadget BGl is C-sbmc 2-colorable for ev-
ery l ≤ C. Moreover, in any C-sbmc 2-coloring of BGl the sink is
contained in a monochromatic component of order exactly l whose color
is different from the color of the source.

Suppose now that we are given a 3-SAT formula F . We construct
the graph SBMCColGraph(F ) by connecting various base gadgets to
vertices of GF via an edge. First, we connect the sink of a base gadget

B
(1)
w
∼= BGC−2 to each vertex w of GF which has constraint 2 and the

sink of a base gadget B
(1)
w
∼= BGC−1 to each vertex w with a constraint

1. These we call the base-gadgets of the first-type. Further, we connect

the sink of a base-gadget B
(2)
w
∼= BGC−1 to every vertex w of GF . These

we call the base gadgets of the second-type. Note that by part (ii) of
Theorem 4.3, after adding these new edges the degree of each vertex of
GF is at most four. Also, the sink of each base-gadget now has degree
three, and the source has degree at most ∆− 1.

Then, by adding an edge between some sink and source vertices, we
connect all base gadgets of the first-type in a path-like fashion, pictured
on Figure 4.19. We act similarly for base gadgets of the second-type.
Finally, we add an edge between the source of the first base gadget of
the first-type and the source of the first base gadget of the second-type.
Let us denote this new graph by SBMCColGraph(F ). By the above, the
maximum degree of SBMCColGraph(F ) is clearly at most ∆. For an
insight about the connections between the base-gadgets, see Figure 4.19.

The following is an immediate corollary of Proposition 4.14

Proposition 4.15. In any C-sbmc 2-coloring of SBMCColGraph(F )
the sinks of base-gadgets of the first-type are all colored with the same
color, say B1. On the other hand the sinks of base-gadgets of the second-
type are all colored with the other color, B2.

We claim that there is a C-sbmc 2-coloring of SBMCColGraph(F )
if and only if the core GF has a 0/1-coloring. Via Theorem 4.3, this
will conclude the proof of Lemma 4.10.

Suppose χ is a C-sbmc 2-coloring of SBMCColGraph(F ). Suppose
the sinks of the base-gadgets of the first-type all received color B1. (We
know they are all the same from Proposition 4.15) Then all sinks of the
base-gadgets of the second-type must receive color B2. Changing color
B1 to 0 and color B2 to 1 gives us the the 0/1-coloring of GF which
observes all the constraints.
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first−type second−type

BGl2

f
(1)
1

s
(1)
1 s

(2)
1
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BGl1′
BGl2′

BGl1

Figure 4.19: Connecting base gadgets of the first- and second-type

Conversely, suppose we are given a 0/1-coloring of GF . We can
extend this to a (C, C)-sbmc 2-coloring of SBMCColGraph(F ) by ar-
bitrarily selecting either 0 or 1 to color the forced vertices of the base-
gadgets of the first-type and then extending this coloring to all vertices
of all base-gadgets.

(∆, C)-Sym-Forcing Graphs

We are able to show the existence of (4, C)-sym-forcing graphs with
C ∈ {2, 3} and (6, C)-sym-forcing graphs, for C ≥ 2. This will conclude
the proof of Theorem 4.6.

Proposition 4.16. The graph G in Figure 4.20 is (4, 2)-sym-forcing
with a forced set {f ′, f ′′}.

Proof. Adding the edge {f ′, v} to G yields a graph that is not 2-sbmc
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2-colorable. In order to not contradict this fact, f ′ and v must have
the same color in any 2-sbmc 2-coloring G, whereas the two common
neighbors of f ′ and v are contained in the other color-class. Hence also
f ′′ is contained in the same color-class as f ′ and v.

v

f ′

f ′′

Figure 4.20: (4, 2)-sym-forcing graph

To construct a (4, 3)-sym-forcing graph we introduce a weakened
concept of Definition 4.3 which makes it easier to construct (∆, C)-
sym-forcing graphs, and thus is interesting in its own right.

Definition 4.4. Let C ≥ D ≥ 2 and ∆ ≥ 4 be integers. A graph G is
called (∆, C, D)-sym-forcing with a set F ⊆ V (G) of at most two forced
vertices if

(i) ∆(G) ≤ ∆ and
∑

f∈F (∆− d(f)) ≥ 2,

(ii) G is C-sbmc 2-colorable, and

(iii) for every C-sbmc 2-coloring of G there is a color class c such
that every f ∈ F is contained in a c-monochromatic component
of order at least D.

Clearly, (∆, C, C)-sym-forcing is the same as (∆, C)-sym-forcing.

Proposition 4.17. The existence of a (∆, C,
⌈

C+1
2

⌉

)-sym-forcing graph
implies the existence of a (∆, C, D)-sym-forcing graph for every D,
⌈

C+1
2

⌉

≤ D ≤ C.

Proof. Let G1 and G2 be two copies of an (∆, C, i)-sym-forcing graph,
dC+1

2 e ≤ i ≤ C − 1. First assume that we have one forcing vertex in
Gi. We connect the forcing vertex f1 of G1 to the forcing vertex f2 of
G2. Also we add a new vertex v to the new graph, denote it by H ,
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and connect it to f1 and f2, see Figure 4.21. Suppose f1 and f2 are
contained in the same color-class in a C-sbmc 2-coloring of H , then the
two adjacent vertices f1 and f2 are contained in one monochromatic
component of order at least 2i ≥ C + 1, a contradiction. Thus without
loss of generality f1 ∈ B1 and f2 ∈ B2. We conclude that v is contained
in a monochromatic component of order i+1. The construction for the
case when the Gi’s have two forcing f ′

i and f ′′
i vertices is depicted in

Figure 4.21 as well. The proof is very similar to the former case.

v

f1 H1

H2

f ′′

2

f ′

2

f ′

1

f ′′

2

v

G1

G2 f2

Figure 4.21: Weakly forcing graphs

Proposition 4.18. The graph in Figure 4.22 is (4, 3, 2)-sym-forcing
with forced vertex f .

Proof. The graph is 3-sbmc 2-colorable. It is then sufficient to observe
that in a 3-sbmc 2-coloring the neighbors v1, v2 of f cannot have the
same color, so f participates in a monochromatic component of order
at least two. Let us assume to the contrary that v1 and v2 are both
contained in color-class B2. Obviously at least three out of the four
neighbors of v1 and v2 (not considering f) have to be contained in B1

in order to not span a B2-component of order 4. On the other hand
not all of the four vertices can be contained in B1. Hence the unique
common neighbor v of those four vertices is incident to a B1 component
and a B2-component, each of order 3. We conclude that v cannot be
colored. Hence one of v1 and v2 has a color identical to that of f , that
is, f is a forced vertex.

The previous two propositions imply the existence of a (4, 3)-sym-
forcing graph.

Recall the definition of the graph TC , see Definition 4.2. We de-
note by v, w and f the following three vertices, respectively: v =
(0, C, 0), w = (0, C − 1, 1) and f = (1, C − 1, 0). Let HC−1 denote
the graph TC with the edge {v, f} removed. The graph H4 is shown in
Figure 4.23
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f

Figure 4.22: (4, 3, 2)-forcing

v

f w

Figure 4.23: The graph H4

Proposition 4.19. HC−1 is (6, C)-sym-forcing for 2 ≤ C with forced
vertex f .

Proof. It is not hard to check that HC−1 is C-sbmc 2-colorable. The
following three properties of C-sbmc 2-colorings of HC−1 are immediate
consequences of the Lemma 4.9.

(i) v and f are contained in the same color-class.

(ii) w is contained in the other color-class than v and f .

(iii) The order of the union of the monochromatic component
containing v and containing f is at least C + 1.

According to (ii) and the fact that v has a unique neighbor w, v
is contained in a monochromatic component of order exactly 1. We
conclude due to (iii) that f is contained in a monochromatic component
of order C always.
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Chapter 5

Bmc k-Colorings with

k ≥ 3

Nichts ist Wahr, Alles ist Erlaubt.

Friedrich Nietzsche

Most of the results presented in the previous chapter can be generalized
to more than just two colors. In this chapter we will focus only on ex-
tremal graph theoretic aspects of bmc colorings. The first section deals
with asymmetric bmc k-colorings of graphs with bounded maximum
degree, the second section deals with symmetric bmc 2- and 3-colorings
of planar graphs with bounded maximum degree.

5.1 Abmc (k, l)-Colorings

We have seen in Proposition 0.1 that the chromatic number of a graph
G can be bounded by the maximum degree of G, i.e., χ(G) ≤ ∆(G)+1.
Or in other words every graph with maximum degree at most k− 1 can
be properly k-colored.

Recall that a (k + l)-coloring of a graph G is said to be a C-abmc
(k, l)-coloring if every of the first k color-classes forms an independent
set and every monochromatic component in the ith color-class contains
at most C vertices, i ∈ {k + 1, . . . , k + l}. We say that a family of
graphs F is abmc (k, l)-colorable if there exists a constant C > 0 such
that every graph G ∈ F admits a C-abmc (k, l)-coloring. We define
∆(k, l) to be the smallest integer ∆ such that the family of graphs with
maximum degree ∆ is not abmc (k, l)-colorable.

Hence similarly to Proposition 0.1 we want to determine ∆(k, l).
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Theorem 5.1. Let k, l > 0. For any constant C there exists a graph of
maximum degree ∆ = 2(k +2l−1) which is not C-abmc (k, l)-colorable.
That is, ∆(k, l) ≤ 2k + 4l− 2.

Proof. Erdős and Sachs [54] proved the existence of a (k + 2l)-regular
graph GC with girth C+1, for an arbitrary integer C. Our construction
is the line graph H of G = GC . Denote by n the number of vertices of
G and e the number of edges of G.

Obviously H is 2(k + 2l − 1)-regular and has e = (k+2l)n
2 ver-

tices. Suppose we have a C-abmc (k, l)-coloring of H , and V1, . . . , Vk ,
Vk+1, . . . , Vk+l are the appropriate color-classes. Then either

(i) ∃i ∈ {1, . . . , l} with |Vk+i| ≥ n, or

(ii) ∃j ∈ {1, . . . , k} with |Vj | ≥ bn
2 c+ 1.

Case (i). The set Vk+i corresponds to n edges in G. G has n vertices,
so some of these edges form a cycle K in G, whose length is at least
C + 1. The vertices of H corresponding to these edges in K also form a
cycle of the same length. In particular they induce a component of H
with order at least C + 1.

Case (ii). The set Vj corresponds to bn
2 c+1 edges in G. That is, two of

these edges will share an endpoint. The two vertices corresponding to
these two edges are adjacent in H , a contradiction to the independence
of Vj .

A construction by Alon, Ding, Oporowski and Vertigan in [10] is a
special case with k = 0 and l = 2. In Haxell, Szabó and Tardos [39] the
following theorem has been proved:

Theorem 5.2 ([39]). There exists a constant C such that the following
holds. Given a graph of maximum degree ∆ ≥ 3, it is possible to d(∆ +
1)/3e-partition the vertex set such that each part induces components of
size at most C.

This statement has immediate implications for abmc (k, l)-colorings.

Corollary 5.1. Let k, l be nonnegative integers. The family of graphs
of maximum degree at most k + 3l− 1 is abmc (k, l)-colorable. That is,
∆(k, l) > k + 3l − 1.

Proof. First suppose that l > 1. By a lemma of Lovász [51] one can
partition the vertex set of G into k +1 classes V0 ∪V1 ∪ . . .∪Vk = V (G)

114



5.2. Sbmc Colorings of Planar Graphs 115

such that ∆(G[Vi]) = 0, for all i ∈ [k] and ∆(G[V0]) ≤ ∆− k. Then we
apply Theorem 5.2 to l-partition V0

Next we consider the case when l = 1. Again we apply the same
lemma from [51] to partition the vertex set into k classes V1∪ . . .∪Vk =
V (G) such that ∆(G[Vi]) = 0, for all i ∈ {2..k} and ∆(G[V1]) ≤ 3.
Then we apply Theorem 4.1 to (1, 22)-bmc 2-color V1.

One would like to know more about the behavior of the function
∆(k, l) in general, or at least tighten the existing asymptotic gap. In
the following, we discuss the most intriguing special cases. As we men-
tioned before the main theorem of [39] states that ∆(0, 2) = 6. The
value of ∆(0, 3) is not known and is certainly worth determining. It is
known to be either 9 or 10 (see [39]). In other words, one has to decide
whether there is a constant C such that it is possible to color the vertex
set of any graph with maximum degree 9 by three colors such that every
monochromatic component is bounded by C. Also in [39] it is shown
that there exists δ > 0 such that for large l, 3 + δ < ∆(0, l)/l < 4. It
would be of great interest to determine asymptotically ∆(0, l). Theo-
rem 4.1 states that ∆(1, 1) = 4. By the results in this section the value
of ∆(2, 1) is either 5 or 6. Asymptotically, ∆(k, 1) is between k and 2k.
We conjecture the lower bounds are (closer to) the truth.

Finally, let us generalize here a problem raised in [39]. A natural
way to weaken the maximum degree condition is by rather bounding the
maximum average degree of the graph, which allows a few very large
degree vertices. Let µ(G) = max{2|E(G[W ])|/|W | : W ⊆ V (G)}. For
non-negative integers k, l what is the supremum value α(k, l) such that
every graph G with µ(G) < α(k, l) has a C-abmc (k, l)-coloring with
some constant C. Obviously α(k, l) ≤ ∆(k, l). In [39] the determination
of α(0, 2) was raised as a question. The wheel graph shows that α(0, 2) ≤
4, while Kostochka [47] proved a lower bound of 3. The greedy coloring
implies that α(k, 0) = k, for any k. We would be very much interested
interested in the value of α(1, 1).

5.2 Sbmc Colorings of Planar Graphs

In this section we investigate symmetric bmc colorings of planar graphs.
Due to the Four Color Theorem [13] (see Theorem 0.3) we know that
every planar graph G admits a proper 4-coloring, hence sbmc4(G) = 1.
On the other hand there are planar graphs which cannot be properly
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colored with only three colors. Moreover for a planar graph G the
determination whether G is properly 3-colorable is NP-complete, see
Theorem 0.1.

Nevertheless the following simple characterization of triangulations
that are properly 3-colorable has been shown by Heawood [40].

Theorem 5.3 ([40, 58]). The vertices of a triangulation G are properly
3-colorable if and only if G is Eulerian.

In contrast to the long and computer aided proof of the Four Color
Theorem, and even its simplification by Robertson, Sanders, Seymour,
and Thomas [55], there is a rather compact proof by Cowen, Cowen,
and Woodall [25] not assuming the truth of the Four Color Theorem
that sbmc4(G) ≤ 2 for every planar graph G.

In this chapter we restrict ourselves to 2-colorings and 3-colorings of
planar graphs and investigate sbmc2(G) and sbmc3(G) with G restricted
to subclasses of planar graphs.

As mentioned earlier amongst the many results of [10], the authors
show the existence of planar graphs H1 with arbitrarely many ver-
tices and with maximum degree at most six such that sbmc2(H1) =
Ω(

√

|V (H1)|). Linial, Matoušek, Sheffet, and Tardos [49] study bounded
monochromatic component colorings of minor closed classes of graphs.
They show for instance that for every planar graph G, sbmc2(G) =
O(|V (G)|2/3) and they construct planar graphs H2 with sbmc2(H2) =
Ω(|V (H2)|2/3). For 3-colorings Kleinberg, Motwani, Raghavan, and
Venkatasubramanianby in [46] construct planar graphs H3 such that
sbmc3(H3) = Ω(|V (H3)|1/3). These graphs H3 have large maximum
degree, that is, ∆(H3) = Ω(|V (H3)|). Motivated by this they ask for
the following which we want to formulate as a conjecture.

Conjecture 5.1. For any non-negative integer ∆ there is an integer
f(∆) such that sbmc3(G) ≤ f(∆) for every planar graph G of maximum
degree at most ∆.

As mentioned above a similar statement is not true if we restrict
ourselves to 2-colorings (the graph H1). According to the following
proposition it suffices to prove Conjecture 5.1 for triangulations.

Proposition 5.1. Every planar graph H of maximum degree ∆(H)
can be triangulated by adding edges to H such that for the resulting
triangulation H∗, ∆(H∗) ≤ 3∆(H).
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Proof. We process every face of H iteratively as follows. Let f be a
face of H with length k ≥ 4 and let v1, . . . , vk be the vertices of f in a
circular order. We connect the vertices v2, vk, v3, vk−1, . . . by a (zigzag-)-
path. Obviously the degree of each vertex in f increases by at most two.
We can conclude that ∆(H∗) ≤ 3∆(H) and H∗ is a triangulation.

In Subsection 5.2.2 we make a first step towards Conjecture 5.1 by
proving:

Theorem 5.4. For every triangulation G with maximum degree ∆ and
at most k many vertices of odd degree, sbmc3(G) ≤ 2k∆3.

Unfortunately Theorem 5.4 cannot directly be generalized from tri-
angulations to planar graphs. There exist planar graphs G with no
vertices of odd degree such that every triangulation of G contains a
linear number of vertices of odd degree.

Complementing Conjecture 5.1 we can construct planar graphs H4

(see Figure 5.3) for which sbmc3(H4) is large even with respect to
∆(H4). We show that sbmc3(H4) = Θ(

√

∆(H4)), thereby improving

on the implicitly given bound sbmc3(H3) = Θ(∆(H3)
1/3

).

Our proofs rely on the embedding of the planar graph. Hence even-
though we state our results for planar graph we actually assume that
an embedding of the graph into the plane is fixed. For every vertex
v ∈ V (G) the edges incident to v impose a circular ordering of the
neighbors of v as follows. Let e1, e2, . . . , ed(v) denote the set of edges
incident to v in clockwise order with some arbitrary first edge e1 and
let ei = {v, ui}, for i ∈ [d(v)]. Then N c(v) = (u1, u2, . . . , ud(v)) is the
corresponding circular ordering (the first vertex u1 is chosen arbitrarely
from all neighbors of v).

Before we prove Theorem 5.4 let us once more consider sbmc 2-
colorings. In the next subsection we show a statement similar to Con-
jecture 5.1 for sbmc 2-colorings of outerplanar graphs.

5.2.1 Outerplanar Graphs

Lemma 5.1. For every integer ∆ > 1 and every outerplanar graph
G with the property that all vertices have degree at most ∆ except one
vertex v with d(v) ≤ 2(∆ − 1) it holds that sbmc2(G) ≤ 2(∆ − 1).
Moreover, there exists such a (2(∆− 1))-sbmc 2-coloring for which v is
contained in a monochromatic component of order 1.
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118 Chapter 5. Bmc k-Colorings with k ≥ 3

Proof. We can assume that G is connected. The proof applies induc-
tion on |V (G)|. The base cases |V (G)| ≤ 2 are trivial. Let N c(v) =
(v1, v2, . . . , vd(v)) be given by the outerplanar embedding of G. Define
Vi ⊂ V (G), i ∈ [d(v)−1] to be the vertices v′ ∈ V (G)\(N(v)∪{v}) such
that every path from v′ to v contains one of the vertices vi, vi+1. Observe
here that by the outerplanarity of G it holds that Vi ∩ Vj = ∅, for i 6= j
and i, j ∈ [d(v) − 1]. Let Gi be the graph G[Vi], for i ∈ [d(v)− 1], with
one additional vertex v∗

i such that NGi
(v∗i ) = (NG(vi)∪NG(vi+1))∩Vi.

Note that dGi
(v∗i ) ≤ 2(∆ − 1). Let us show that Gi is outerplanar.

Starting with the outerplanar embedding of G and moving the vertex
vi along the edge {vi, v} towards v and the same with vi+1 until the two
vertices meet in one vertex v∗

i yields an outerplanar embedding of Gi.

By the induction hypothesis we can 2(∆ − 1)-sbmc 2-color every
outerplanar graph Gi such that v∗

i is colored differently than all its
neighbors in Gi and v∗i gets, say, color 2. Let χi be the respective 2(∆−
1)-bmc 2-coloring of Gi, for i ∈ [d(v)− 1]. We extend these colorings to
a 2(∆− 1)-sbmc 2-coloring of G in the following way. Color all vertices
but v, v1, . . . , vd(v) of G with the same color as in the corresponding
coloring χi. Color the vertices v1, . . . , vk by color 2 and finally, color
the vertex v with color 1.

Corollary 5.2. For every outerplanar graph G it holds that sbmc2(G) ≤
2(∆(G) − 1).

In contrast to Corollary 5.2 we consider the graph H ′
k in Figure 5.2.1.

H ′
k is a k-ary tree with all leaves at depth k − 1 and such that all the

children of each vertex are connected by a path. Hence ∆(H ′
k) = k + 3.

Proposition 5.2. sbmc2(H
′
k) = k = ∆(H ′

k)− 3.

Proof. Suppose that there is a 2-coloring of H ′
k with no monochromatic

component containing at least k vertices. Obviously for every vertex w
in H ′

k it holds that not all children of w receive the same color. Hence
there is a monochromatic path starting at the root of H ′

k and ending
at a leaf of H ′

k. Since every leaf in H ′
k has depth at least k − 1, this

monochromatic path contains at least k vertices, a contradiction.

On the other hand, we define a 2-coloring χ showing that sbmc2(H
′
k) ≤

k as follows. Set χ(v) = 1 and for every other vertex u ∈ V (H ′
k) \ {v}

set

χ(u) =

{

1, if dist(u, v) is even, and

2, if dist(u, v) is odd.
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vk

v

v1 v2 v3

Figure 5.1: Outerplanar graph H ′
k.

Obviously, the 2-coloring χ is a k-sbmc 2-coloring.

5.2.2 Bounded Number of Vertices with Odd De-

gree

Lemma 5.2. For every triangulation G with exactly two vertices u and
v having odd degree it holds that u and v are non-adjacent in G.

Proof. Suppose that {u, v} ∈ E(G). Let H denote the graph G without
the edge {u, v}. Obviously H contains exactly one 4-face and all other
faces of H are 3-faces. Denote by H∗ the dual graph of H . Since every
vertex degree of H is even and H originates from the triangulation G,
the vertices of every face of H∗ induce an cycle of even length. Thus
H∗ does not contain any cycle of odd length. It is well known that
this fact is equivalent to H∗ being bipartite. Let V1 and V2 be the
partite sets of H∗ and assume without loss of generality that the vertex
w of H∗ corresponding to the unique 4-face of H is contained in V2.
Every vertex of V (H∗) = V1 ∪ V2 has degree three except the vertex
w, which is of degree four. The number of edges of H∗ is on one hand
∑

x∈V1
dH∗(x) ≡ 0 (mod 3) and on the other hand

∑

x∈V2
dH∗(x) ≡ 1

(mod 3). A contradiction.

Some Vertices with Odd Degree

Let Odd(G) be the set of vertices of odd degree contained in G, and let
odd(G) = |Odd(G)|. For two adjacent vertices u, v ∈ V (G) we define
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120 Chapter 5. Bmc k-Colorings with k ≥ 3

N c(v, u) = (uj , . . . , ud(v), u1, . . . , uj−1) such that N c(v) = (u1, . . . , ud(v))
and uj = u. For a directed path P : v1, v2, . . . , vk we define for ev-
ery vertex vi the set of left-neighbors LNP (vi) = {u2, . . . , ul−1} with
N c(vi, vi−1) = (u1, . . . , ud(vi)) such that ul = vi+1, for i ∈ {2, . . . , k−1}.
Also we define dP (vi) = |LNP (vi)| and LNP =

⋃

i∈{2,...,k−1} LNP (vi).

A left-shortcut of a directed path P : v1, . . . , vk is an edge {vi, vj},
with 1 < i < j < k, (j − i) > 1, and vi ∈ LNP (vj) (hence also
vj ∈ LNP (vi)). A directed path P : v1, . . . , vk of G with k ≥ 3 and
dP (vk−1) > 0 is called propagating if P contains no left-shortcut.

Note here that every directed shortest path of G with length at least
two is a propagating path. For a propagating path P , we often refer to
vk−2 as wP , to vk−1 as xP , to vk as zP and to the common neighbor
of xP and zP in LNP (xP ) as yP such that the triangle formed by the
vertices xP , yP and zP contains no vertex of G. The set of the three
vertices {xP , yP , zP } induce the terminal triangle TP of the propagating
path P (see Figure 5.2).

For a propagating path P : v1, . . . , vk we define its exterior Ext(P ) =
LNP ∪ V (P ), and let ext(P ) = |Ext(P )|. Also we define the set of
missing edges ME(P ) = {{vi, u} | u ∈ LNP (vi), i ∈ {2, . . . , k − 1}}.

We now have all prerequesites at hand to state the key lemma for
proving Theorem 5.4.

Lemma 5.3. Let G be a triangulation and P : v1, . . . , vk be a propa-
gating path of G. Then there is a triangulation GP such that

(i) V (GP ) ⊇ V (G),

(ii) E(GP ) ⊇ (E(G) \ME(P )), and

(iii) Odd(GP ) ⊆ (Odd(G) \ Ext(P )) ∪ TP .

Proof. Let us first observe that if dP (vi) = 0, for some i ∈ {2, . . . , k−2},
then vi−1 ∈ LNP (vi+1) and also if dP (vk−1) = 0, then vk ∈ LNP (vk−2).

The proof applies induction on m(P ) = |V (P )|+ |ME(P )|. Clearly
since |V (P )| ≥ 3 and |ME(P )| ≥ 1 according according to the definition
of propagating paths, m(P ) ≥ 4.

For the base case m(P ) = 4 we first note that dP (v2) = 1 (let the
vertex l be defined such that LNP (v2) = {l}) and TP = {v2, l, v3}. Also
we note that if d(v1) is even, then Gp = G fulfills all three conditions
(i)− (iii). Suppose therefore that d(v1) is odd. We subdivide the edge
{v2, l} with a new vertex w and connect the three vertices v1, w, v3 with
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a path of length two. In the new graph GP , d(v1) and d(w) are even,
hence GP is as required.

Let us now assume that m(P ) > 4.

If dP (v2) = 0, then k > 3 again according to the definition of prop-
agating paths. For the propagating path Q : v2, v3, . . . , vk it holds that
|ME(Q) = |ME(P )| and |V (Q)| = |V (P )| − 1. Applying the induc-
tion hypothesis to G with propagating path Q yields a triangulation
GP = GQ that fulfills all three conditions (i)− (iii).

Suppose now that dP (v2) > 0. Let l1 and l2 be the first and second
vertex of the sequence N c(v2, v1) (possibly including the vertex v3). We
distinguish three cases:

• d(v1) is odd and d(l1) is even.
We subdivide the edge {v2, l1} by adding a new vertex w. Then we
connect v1, w, l2 by a path of length 2, resulting in a triangulation
H . The parity of the degrees of v1 and l2 changed, the one of l1
did not. We define a new propagating path Q. If dP (v2) > 2,
then set Q : l2, v2 . . . , vk. Hence |ME(Q)| = |ME(P )| − 1 and
|V (Q)| = |V (P )|. If dP (v2) ≤ 2, then set Q : v2, v3, . . . , vk and
observe that |ME(Q)| ≤ |ME(P )| and |V (Q)| = |V (P )| − 1.

Q forms a propagating path in H and GP = HQ is a triangulation
as required.

• d(v1) and d(l1) are both odd.
We add another edge to the pair of vertices v2, l1 and subdivide
both edges connecting v2, l1 by adding the vertices w1 and w2,
respectively. Then we connect v1, w1, w2, l2 by a path of length
3. Obviously, the parity of the degree of vertices v1, v2, l1 and
l2 changed in the new graph H and both w1 and w2 have even
degree. Again define a new propagating path Q. If dP (v2) > 2
then let Q : l2, v2, . . . , vk. Hence |ME(Q)| = |ME(P )| − 1 and
|V (Q)| = |V (P )|.
If dP (v2) ≤ 1, then set Q : v2, v3, . . . , vk and oberve that |ME(Q)| ≤
|ME(P )| and |V (Q)| = |V (P )| − 1.

The path Q forms a propagating path an GP = HQ is as required.

• d(v1) is even.
Let Q : l1, v2, . . . , vk. We observe that |ME(Q)| = |ME(P )| − 1
and |V (Q)| = |V (P )|.
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122 Chapter 5. Bmc k-Colorings with k ≥ 3

Again Q is propagating and GP = GQ is as required.

A d-left-common-neighbor of a propagating path P : v1, . . . , vk is a
vertex v contained in a path Q : vi, v, vj with v ∈ LNP (vi) ∩ LNP (vj),
1 < i < j < k and (j − i) ≥ d. Observe here that E(Q) ⊆ ME(P ).
The propagating path P is called left if it contains no 2-left-common-
neighbor.

Note that a directed shortest path does not contain any 3-left-
common-neighbor.

Corollary 5.3. Every triangulation G such that there is a left propa-
gating path P : v1, . . . , vk with Ext(P ) ⊇ Odd(G) has a vertex 3-coloring
V1, V2 and V3 such that each component C of G[Vi] containing at least
two vertices forms a star with center v ∈ {vi | i ∈ {2, . . . , k − 1}}. In
particular sbmc3(G) ≤ d∆(G)/2e − 1.

Proof. We apply Lemma 5.3 to G and propagating path P , resulting in
a triangulation GP with Odd(GP ) ⊆ TP . According to Lemma 5.2 and
the fact that every graph, and in particular G, has got an even number
of vertices of odd degree, Odd(GP ) = ∅. Due to Theorem 5.3 GP has a
proper 3-coloring χ. Let χG refer to χ restricted to the vertices of G.

Obviously every monochromatic of G in χG is contained in ME(P ).
Suppose χG contains a monochromatic path R : u1, u2, u3 of length two
with u2 ∈ Ext(P ) \ V (P ). Both u1 and u3 are in V (P ) with u1 = vi

and u3 = vj , 1 < i < j < k. Since P is left, u2 is not a 2-left-common-
neighbor of P and thus j = i+1, vivj ∈ E(G) and thus χG(vi) 6= χG(vj).
A contradiction.

Hence every monochromatic component in χG of size at least 2 forms
a star S with center vi ∈ V (P ) and leaves l ∈ LNP (vi). We conclude
the proof since dP (vi) ≤ ∆(G)− 2 and all edges of consecutive pairs of
vertices li, li+1 in LNP (vi) exist in GP .

Lemma 5.4. For every pair of vertices v1 and vk with dist(v1, vk) ≥
k − 1 ≥ 3 there is a left propagating path P : v1, . . . , vk in G. Moreover
P can be chosen such that there is no vertex v ∈ LNP (vk−2) ∩N(vk).

Proof. For two adjacent vertices {u, v} ∈ E(G) and a vertex w let
N c(v, u) = (u1 = u, u2, . . . , ud(v)) we define lnsw(v, u) to be the ver-
tex uj , j ∈ {1, . . . , d(v)} such that d(uj , w) ≤ d(v, w) − 1 (i.e., there is
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a shortest- path v, uj , . . . , w) and there is no vertex uj′ with 1 < j′ < j
and d(uj′ , w) = d(uj , w).

We start with a shortest path Q between v1 and vk. Let v2 be
the neighbor of v1 on that shortest path. Then we iteratively define
vi = lnsvk

(vi−1, vi−2), for 3 ≤ i ≤ k − 1, starting with v3 = lns(v2, v1).

Trivially by the choice of the initial shortest path Q and the defini-
tion of lnsw(v, u), P : v1, . . . .vk is a shortest path in G connecting v1

and vk and thus P is propagating, contains no 3-left-common-neighbor
and dP (vk−1) > 0 (refer to the observation made in the beginning of the
proof). Suppose for a moment that P contains either a 2-left-common-
neighbor or a path R : vk−2, w, vk, with w ∈ LNP (vk−2). We conclude
that there is an i ∈ {2, . . . k−1} with lnsvk

(vi, vi−1) 6= vi+1 (but possibly
lnsvk

(vi+1, vi) = w), a contradiction.

Corollary 5.4. For every triangulation G with at most two vertices of
odd degree, sbmc3(G) ≤ d∆(G)/2e − 1.

Proof. We can assume that G contains exactly two vertices of odd de-
gree. Let u, v be the two vertices of odd degree. Note that d(u, v) ≥ 2
according to Lemma 5.2. Choose a left propagating path P : u, . . . , v.
The existence of P follows from Lemma 5.4. Now we apply Corollary 5.3
with G and P .

Bounded Number of Vertices with Odd Degree

Let T = {P1, . . . , Pt} be a family of propagating paths. We define
Ext(T ) =

⋃t
i=1 Ext(P ), and E(T ) =

⋃t
i=1 E(G[Ext(Pi)]). Also define

Ti to be the set of paths {P1, . . . , Pi}.
Definition 5.1. A family T = {P1, . . . , Pt} of propagating paths is
called a propagating tree if for every i ∈ {2, . . . , t} the following three
conditions are fulfilled.

(i) TPi
⊆ Ext(Ti−1),

(ii) (Ext(Pi) ∩ Ext(Ti−1)) ⊆ (LNPi
(wPi

) ∪ LNPi
(xPi

) ∪ {xPi
, zPi
}),

(iii) (ME(Pi) ∩ E(Ti−1)) ⊆ {xPi
, yPi
}.

Let us call T a left propagating tree if every propagating path in T
is left.

Lemma 5.5. For every triangulation G there is a left propagating tree
T such that Ext(T ) ⊇ Odd(G) and |T | ≤ odd(G).
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124 Chapter 5. Bmc k-Colorings with k ≥ 3

Before we prove Lemma 5.5 let us see how it implies Theorem 5.4.

Proof of Theorem 5.4. Let T (G) = {P1, . . . , Pt} be a left propagating
tree of G with Ext(T (G)) ⊇ Odd(G) and t ≤ odd(G). In this proof we
iteratively propagate the odd-degree vertices of G along the paths Pi

(possibly with some minor modifications of Pi), starting with Pt and G,
and resulting in an Eulerian triangulation H .

More formally we refer to P (T (G)) as the propagating path Pt of
T (G). Let Ht = G, and define Hi to be the triangulation obtained
from an application of Lemma 5.3 with Hi+1 and P (T (Hi+1)). In the
propagation from Hi+1 to Hi with propagating path P = P (T (Hi+1))
no edge from E(T (Hi+1) \ P ) but possibly {xP , yP } of Hi+1 has been
subdivided, see Lemma 5.3(iii) and Definition 5.1(iii). If {xP , yP } has
not been subdivided, then define T (Hi) = T (Hi+1) \ {P}. Otherwise
if {xP , yP } has been subdivided, then we let Q be the set of propa-
gating paths Q in T (Hi+1) with {xP , yP } ⊆ E(Q). For every path
Q : u1, . . . , xP , yP , . . . , uk′ ∈ Q with {xP , yP } ∈ E(Q), define Q∗ of Hi

as follows, Q∗ : u1, . . . , xP , vP , yP , . . . , uk and let Q∗ be the set of these
paths Q∗. Set T (Hi) = (T (Hi+1) ∪ Q∗) \ ({P} ∪ Q). Note here that a
path Q∗ of Hi has no left-shortcut and no 3-left-common-neighbor but
possibly contains the 2-left-common-neighbor v with v ∈ NQ∗(xP ) and
v ∈ NQ∗(yP ).

Since TP (T (Hi+1)) ⊆ Ext(T (Hi)) by the definition of a propagating
tree and using Lemma 5.3, Odd(Hi) ⊆ Ext(T (Hi)).

Hence H = H1 is an Eulerian triangulation. Let χ be a proper 3-
coloring of H whose existence is assured by Theorem 5.3. Further we
refer to χG as the coloring χ restricted to the vertices of G.

Let R : u1, u2, u3, u4 be a monochromatic path in χG of length three
in G. Hence none of the edges ei = {ui, ui+1}, for 1 ≤ i ≤ 3, is con-
tained in H and therefore ei ∈ ME(Pl), for some j ∈ [t]. We claim that
either u2 or u3 is contained in

⋃

P∈T (G) LNP (wP )∪LNP (xP )∪{xP , zP }.
Suppose on contrary, that is, {u2, u3} ⊆ Ext(T ) \ (

⋃

P∈T LNP (wP ) ∪
LNP (xP )∪{xP , zP }). Thus according to Lemma 5.3(ii) the edge {u2, u3}
is such that without loss of generality u2 ∈ V (Pj) and u3 ∈ LNPj

(u2).
Since u3 is not a 2-left-common-neighbor of Pj , all neighbors w of u3

besides u2 are colored with a distinct color than u3 (because the edge
{u2, w} or the edge {u3, w} or the edge {u2, u3} exists in H). A con-
tradiction.

Every monochromatic component of diameter at most 2 contains at
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most ∆(G) + 1 many vertices. For a monochromatic component C of
diameter at least 3 we conclude that for every vertex v in C there is a ver-
tex u in

⋃

P∈T LNP (wP )∪ LNP (xP )∪ {xP , zP } with d(v, u) ≤ 2. Since
|⋃P∈T LNP (wP ) ∪ LNP (xP ) ∪ {xP , zP }| ≤ t2∆(G) ≤ odd(G)2∆(G),
every monochromatic component of G contains at most odd(G)2∆(G) ·
∆(G)2 = 2odd(G)∆(G)3 many vertices.

Proof of Lemma 5.5. We fix two vertices u, v ∈ Odd(G) and let P1 :
u = v1, v2, . . . , vk = v be a left propagating path connecting u and v,
c.f. Lemma 5.4. Let T1 = {P1} and for i > 1 let Ti be defined as follows.
We choose a vertex u′ ∈ Odd(G) \ Ext(Ti−1) and let x be a vertex in
Ext(Ti−1) of shortest distance to u′. If d(u′, x) > 1 then we choose the
left propagating path Q : u′ = u1, u2, . . . , ul = x with the additional
property that there is no vertex u with u ∈ NQ(ul−2). The existence of
Q is shown in Lemma 5.4. Otherwise (if d(u′, x) = 1) set Q : u′, x. Let
N c(x, ul−1) = (ul−1, w2, . . . , wd(x)) and denote by Pj , j < i the propa-
gating path of Ti−1 such that x ∈ Ext(Pj) and there are two vertices
wk , wk+1 ∈ N(x) ∩ Ext(Pj) such that there is no 1 < k′ < k for which
there is a propagating path P in Ti−1 with wk′ , wk′+1 ∈ N(x)∩Ext(P )
(wk , wk+1 are the first two neighbors of x in Ext(Ti−1) in clockwise
order that are incident to the same exterior of a propagating path),
see Figure 5.2. Note here that the path Pi with V (Pi) = V (Q) ∪ {z}
is a left propagating path with wPi

= ul−1, xPi
= x, yPi

= wk and
zPi

= wk+1. We claim that Ti = Ti−1 ∪ {Pi} is a left propagating
tree. Obviously by the definition of Pi, TPi

⊇ Ext(Ti−1). By the fact
that u′ = u1, . . . , ul = x is a shortest path, no vertex of Ext(Pi) \
(LNPi

(wPi
) ∪ LNPi

(xPi
) ∪ {xPi

, zPi
}) is contained in Ext(Ti−1). More-

over by the definition of Pi, ME(Pi) ∩ E(G[Ext(Ti−1)]) = {xPi
, zPi
}.

We terminate this procedure if for the current left propagating tree
Tt it holds that Ext(Tt) ⊇ Odd(G). Since in every iteration of the
procedure we add at least one vertex of G with odd degree to the current
left propagating tree it holds that t ≤ odd(G)

A Lower Bound

Proposition 5.3. For the graph Gk in Figure 5.3 it holds that sbmc3(Gk) =
Θ(

√

∆(Gk)).

A double fan Fk, see for instance the graph F
(1)
k in Figure 5.3, con-
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Pj

Pi

TPi

u′

yPi

zPi

xPi

wPi

Figure 5.2: Construction of Ti, with left propagating paths Pj and Pi.

sists of a path P : u1, . . . , uk and two non-adjacent vertices v1 and v2

connected to all vertices of P .

Lemma 5.6. Let k > 2c2 + c− 2, with c ≥ 1. In every 3-coloring of a
double fan Fk such that v1 and v2 are colored with distinct colors, there
is a monochromatic component of order larger than c.

Proof. Let χ be any such 3-coloring and suppose that there is no mono-
chromatic component containing more than c many vertices. Without
loss of generality χ(v1) = 1 and χ(v2) = 2. Hence there are at most
2(c− 1) many vertices of color either 1 or 2 on the vertices u1, . . . , uk.
Since every set of c + 1 many consecutive vertices of u1, . . . , uk has to
contain at least one vertex of color either 1 or 2, the vertices u1, . . . , uk

contain at most (2(c − 1) + 1)c = 2c2 − c vertices with color 3. We
conclude that k ≥ 2(c− 1) + 2c2 − c = 2c2 + c− 2, a contradiction.

Let us now prove Proposition 5.3 by constructing the graph Gk , see
Figure 5.3.
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k

u
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Figure 5.3: The graph Gk with double fans Fk.

Proof of Proposition 5.3. The graph Gk consists of a path P : v1, . . . , vk

of length k − 1 and k − 1 copies of double fans, F
(1)
k , . . . , F

(k)
k , where

the vertices v
(i)
1 of the ith copy of Fk is identified with vertex vi of P

and the vertex v
(i)
2 is identified with vertex vi+1 of P .

We claim that in every vertex 3-coloring of Gk there is a monochro-
matic component of order larger than c, provided k > 2c2 + c− 2.

Assume on the contrary that there is a 3-coloring χ with no monochro-
matic component of order larger than c. Hence there are two consecutive
vertices of the path P : v1, . . . , vk, say vi and vi+1 that are colored with

distinct colors. Applying Lemma 5.6 to F
(i)
k yields a contradiction. On

the other hand, if k ≤ 2c2 + c − 2, then we can define a c-sbmc 3-

coloring χ as follows. For every double-fan F
(i)
k we color the vertices

u
(i)
c+1, u

(i)
2(c+1), u

(i)
3(c+1), . . . alternatingly again with colors 1 and 2. Fi-

nally we color all vertices that have not yet been colored with color 3.
Let us check that every monochromatic componentcontains at most c
vertices. This is trivially true for the vertices with color 3. The number

of vertices u
(i)
1 , . . . , u

(i)
k of the double-fan F

(i)
k with color 1 is at most

k/(2(c + 1)) ≤ (c − 1) (the same holds true for color 2). Thus we can
conclude that sbmc3(Gk) = Θ(

√

∆(Gk)).

Let us remark that the graph Gk can be slightly modified into a
triangulation Tk with again sbmc3(Tk) = Ω(

√

∆(Tk)). Moreover Tk

contains only k − 1 vertices with odd degree.
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[48] J. Kratochv́ıl, P. Savický, and Zs. Tuza, One more occurrence of
variables makes satisfiability jump from trivial to NP-complete,,
SIAM J. Comput. 22, 1 (1993), 203–210.
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Maple Code

> with(Optimization);

> lps := proc(a1, b1, a2, b2, a3, b3)

description ”solve corresponding lp”;

local l1, l2, l3, dv4, dx12, dx13, dy12, dy13, dx21, dx23, dy21, dy23,

dx31, dx32, x1, x2, x3, y1, y2, y3, x12, x13, x21, x23, x31, x32, y12,

y13, y21, y23, y31, y32, a12, a13, a21, a23, a31, a32, b12, b13, b21,

b23, b31, b32;

unassign(′l1, l2, l3, dv4, dx12, dx13, dy12, dy13, dx21, dx23, dy21,

dy23, dx31, dx32, x1, x2, x3, y1, y2, y3, x12, x13, x21, x23, x31, x32,

y12, y13, y21, y23, y31, y32, a12, a13, a21, a23, a31, a32, b12, b13,

b21, b23, b31, b32′);

if a1 = 1 then assume(0 < x12, 0 < x13); a12 := 1; a13 := 1

elif a1 = 2 then assume(0 < x12); x13 := 0; a12 := 1; a13 := 0;

elif a1 = 3 then x12 := 0; assume(0 < x13); a12 := 0; a13 := 1

end if ;

if b1 = 1 then assume(0 < y12, 0 < y13); b12 := 1; b13 := 1;

elif b1 = 2 then assume(0 < y12); y13 := 0; b12 := 1; b13 := 0;

elif b1 = 3 then y12 := 0; assume(0 < y13); b12 := 0; b13 := 1;

end if ;

if a2 = 1 then assume(0 < x21, 0 < x23); a21 := 1; a23 := 1;

elif a2 = 2 then assume(0 < x21); x23 := 0; a21 := 1; a23 := 0;

elif a2 = 3 then x21 := 0; assume(0 < x23); a21 := 0; a23 := 1;

end if ;

if b2 = 1 then assume(0 < y21, 0 < y23); b21 := 1; b23 := 1;

elif b2 = 2 then assume(0 < y21); y23 := 0; b21 := 1; b23 := 0;

elif b2 = 3 then y21 := 0; assume(0 < y23); b21 := 0; b23 := 1;

end if ;
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if a3 = 1 then assume(0 < x31, 0 < x32); a31 := 1; a32 := 1;

elif a3 = 2 then assume(0 < x31); x32 := 0; a31 := 1; a32 := 0;

elif a3 = 3 then x31 := 0; assume(0 < x32); a31 := 0; a32 := 1;

endif ;

if b3 = 1 then assume(0 < y31, 0 < y32); b31 := 1; b32 := 1;

elif b3 = 2 then assume(0 < y31); y32 := 0; b31 := 1; b32 := 0;

elif b3 = 3 then y12 := 0; assume(0 < y32); b31 := 0; b32 := 1;

end if ;

l1 := {x1 + x2 + x3 <= dv4, 1 + y2 <= dx12, 1 + y3 <= dx13,

y2 + x21 + y31 + x31 <= dy12, y3 + x31 + y21 + x21 <= dy13,

1 + y1 <= dx21, 1 + y3 <= dx23, y1 + x12 + y32 + x32 <= dy21,

y3 + x32 + y12 + x12 <= dy23, 1 + y1 <= dx31, 1 + y2 <= dx32,

y1 + x13 + y23 + x23 <= dy31, y2 + x23 + y13 + x13 <= dy32};

l2 := {x1 <= x12 + x13, y1 <= y12 + y13, x1 + y1 = 1,

x2 <= x21 + x23, y2 <= y21 + y23, x2 + y2 = 1, x3 <= x31 + x32,

y3 <= y31 + y32, x3 + y3 = 1};

l3 := {dv4 <= d, a12 · dx12 <= d, a13 · dx13 <= d, b12 · dy12 <= d,

b13 · dy13 <= d, a21 · dx21 <= d, a23 · dx23 <= d, b21 · dy21 <= d,

b23 · dy23 <= d, a31 · dx31 <= d, a32 · dx32 <= d, b31 · dy31 <= d,

b32 · dy32 <= d};

return Minimize(d, l1 union l2 union l3, assume = nonnegative)[1];

end proc;

> ∆ := 2;

for i1 to 3 do

for j1 to 3 do

for i2 to 3 do

for j2 to 3 do

for i3 to 3 do

for j3 to 3 do

∆ := min(∆, lps(i1, j1, i2, j2, i3, j3));

end do

end do

end do

end do

end do

end do

print(∆);
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