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Abstract

The contributions of this thesis are twofold. We show two theoretical
results that are both related to quadratic programming.

The first one concerns the abstract optimization framework of viola-
tor spaces and the randomized procedure called Clarkson’s algorithm,
which is associated with solving violator spaces. Historically, Clark-
son’s algorithm was developed to solve linear programs, and provided
the earliest practical linear-time algorithm for linear programs. The
underlying concept of the problems solvable by this algorithm was
later expanded to LP-type problems, and finally to violator spaces.
Quadratic programming is also an LP-type problem. In a nutshell, the
algorithm randomly samples from a set of constraints, computes an
optimal solution subject to these constraints, and then checks whether
the ignored constraints agree with the solution. If not, some form of
re-sampling occurs, until an optimal solution is found that satisfies all
constraints. Originally, to make the analysis go through, there used
to be a preliminary test whether the random sample is good in some
sense. We show that this test is not necessary and we give evidence
that the modified version of Clarkson’s approach is the easiest version
that can still be analyzed successfully.

The second contribution concerns quadratic programming more di-

rectly. It is well-known that a simplex like procedure can be applied to



quadratic programming — similar to the simplex algorithm for linear
programming. The main computational effort in this algorithm comes
from solving a series of linear equation systems that change gradually.
We develop a method that allows for efficiently solving these systems
under the assumption that (i) we want to do exact computations us-
ing some arbitrary precision number type, and (ii) the input may be
sparse, and that should be exploited. In particular, the tool of choice
is the LU factorization of the matrix to invert, and we call our al-
gorithm the integral LU factorization. We also give an algorithm to
update the factorization subject to low rank changes of the original
matrix, which covers the gradual changes during simplex iterations
that we mentioned.

Last but not least, a considerable portion of the work included in
this thesis was devoted to implementing the integral LU factorization
in the framework of the existing quadratic programming solver in the
Computational Geometry Algorithms Library (CGAL). In the last
two chapters we describe our implementation and the experimental

results we obtained.
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Zusammenfassung

Der Beitrag dieser Arbeit ist zweigeteilt. Wir zeigen zwei theoretische
Resultate, die beide im Zusammenhang mit quadratischen Program-
men stehen.

Das erste betrifft die abstrakte Klasse von Optimierungsproble-
men, die wir Verletzerrdume nennen; insbesondere Clarkson’s Algo-
rithmus, der dazu verwendet wird, um Verletzerrdume zu 16sen. His-
torisch gesehen wurde Clarkson’s Algorithmus entwickelt, um lineare
Programme zu 16sen, und stellt den ersten praktikablen Linearzeit-
Algorithmus fiir ebendiese dar. Die zugrunde liegende Beschreibung
der Probleme, die durch diesen Algorithmus lésbar sind, wurde spéter
auf LP-Typ Probleme, und schliesslich auf Verletzerrdume ausgedehnt.
Quadratische Programme gehoren auch zu den LP-Typ Problemen.
Kurz gesagt, macht der Algorithmus Folgendes: Aus der Menge der
Nebenbedingungen wird eine zuféllige Auswahl getroffen. Dann wird
eine optimale Losung unter diesen Nebenbedingungen berechnet und
iiberpriift, ob eine der bislang vernachldssigten Nebenbedingungen
diese Losung verletzt. Falls dies der Fall ist, wird die zuféllige Auswahl
modifiziert, und eine neue Losung berechnet. Dies wird so lange
iteriert, bis alle Nebenbedingungen durch die aktuelle Lésung erfiillt
sind. Urspriinglich gab es bei jeder zufdlligen Auswahl einen Test, der

iiberpriift hat, ob die Auswahl in einem bestimmten Sinne gut sei.

vil



Dies wurde getan, um die Laufzeit erfolgreich zu analysieren. Wir
zeigen, dass diese Tests nicht nétig sind, und fiihren aus, dass der
resultierende Algorithmus vermutlich die einfachste Form von Clark-
son’s Algorithmus darstellt, die noch erfolgreich analysiert werden
kann.

Der zweite Beitrag betrifft quadratische Programme direkter. Es
ist bekannt, dass ein Simplex-artiger Algorithmus auf quadratische
Programme angewendet werden kann, analog zum Simplex Algorith-
mus fiir lineare Programme. Der grosste Berechnungsaufwand bei
dieser Methode entsteht aus der Notwendigkeit, eine Reihe von lin-
earen Gleichungssystemen zu 16sen, die sich graduell verdndern. Wir
entwickeln eine Methode, die diese Gleichungssysteme effizient 16st
unter der Annahme, dass wir (i) exakte Berechnungen mit einem
Zahlentyp durchfiithren wollen, der eine beliebige Prézision erlaubt,
und (i7) die Eingabe diinn sein kann, was ausgeniitzt werden soll.
Konkret stiitzen wir uns dabei auf die LU Zerlegung der Matrix, die es
zu invertieren gilt, und wir nennen unseren Algorithmus die integrale
LU Zerlegung. Zusétzlich geben wir einen Algorithmus an, mit dem
man die Zerlegung einer Matrix aktualisieren kann, angenommen die
Matrix habe sich durch einen additiven Term niedrigen Ranges veréan-
dert. Dies verwenden wir um die graduellen Verdnderungen wahrend
eines Iterationsschrittes des Simplex Algorithmus zu behandeln.

Zu guter Letzt besteht ein betrdchtlicher Teil des Aufwandes,
dessen Resultate in dieser Arbeit besprochen werden, daraus, die inte-
grale LU Zerlegung im Rahmengeriist des Losers fiir quadratische Pro-
gramme in der Computational Geometry Algorithms Library (CGAL)
zu implementieren. In den letzten beiden Kapiteln besprechen wir
diese Implementierung und die experimentellen Resultate, die wir er-
halten haben.

viii
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The left hand now knows what the
right hand is doing.

George W. Bush

Introduction

1.1. An Optimization Problem

1.1.1. Quadratic Programming

Optimization problems from different fields can be formulated as
quadratic programs, or as their even better studied specialization called
linear programs. A quadratic program asks to minimize a quadratic
objective function of several variables subject to a set of linear con-

straints on these variables. In its most general form it can be written



2 Introduction

as follows,
(QP) min 'z 42Dz

>
s.t. Ax = b (1.1)
{<x<wu,

where A is an m X n-matrix, D is an n X n-matrix, b is an m-vector,
¢ is an n-vector and ¢, u are n-vectors of bounds (where the entries
+o00 and —oo may occur). The matrix A is called the constraint
matriz. The symbol % indicates that each of the three relations <,
=, or > is admissible for a particular constraint. The n-vector x is
the solution vector, and consists of the variables that we have to find
optimal values for.

A solution vector z* = (z7,...,2%)7 is called feasible solution if it
satisfies all the constraints and bounds. If no feasible solution exists,
the problem is called infeasible. The region that is defined by the
constraint (in)equalities is called the feasible region. If the objective
function f(z) := ¢’z 427 Dz is bounded from below, we say that the
problem is bounded, otherwise we say that it is unbounded.

We will also consider the equality constrained formulation, which is

sometimes called the standard formulation

(EQP) min cl'x+ 2T Da
s.t. Az =10 (1.2)
x>0,

and the unconstrained formulation

(UQP) min e+ 27 Da

1.3
s.t. Az = b. (13

In a certain sense, all three forms are equivalent and can be con-
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verted into each other (possibly involving a change in the number of
variables and constraints). From an algorithmic point of view, the un-
constrained version UQP is strictly easier to solve using the method
of Lagrange multipliers. The different forms will serve us to highlight
different aspects of the problem description and the solution process.
Also note that the formulations for maximization are easily obtained
by multiplying f(xz) by —1. Throughout the thesis we will always
state optimization tasks as minimization problems.

If D = 0 then we have a linear program at hand. In the other case,
D # 0, we only consider positive semidefinite matrices in this thesis;
that is, 7 D2 > 0 holds for all vectors . This condition is equivalent
to saying that the objective function is convex (or strictly convex if D
is positive definite). In that case any local optimum of f(x) is also a
global optimum. While there exist (weakly) polynomial algorithms for
semidefinite quadratic programming |85, 155], it is NP-hard to find the
global minimum of a non-convex QP [127, 144]. Furthermore, finding
the local optimum of a non-convex QP — and under certain conditions
even checking local optimality — is NP-hard [109, 118]. Sometimes,
quadratically constrained quadratic programs are considered, where
the constraints on the variables may themselves be quadratic. This
variation is also NP-hard, because the constraint xj(x; — 1) = 0
requires the solution to attain a discrete value 1 € {0,1}. This,
in turn, means that quadratically constrained QPs are a generaliza-
tion of 0-1 integer programs, which belong to Karp’s 21 NP-complete
problems [78].

1.1.2. Applications

The array of applications for quadratic programming is vast, and we

will only give a brief overview. Most important, let us point out the
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website A Quadratic Programming Page', that is actively maintained
by Gould and Toint. It contains an up-to-date BIBTEX collection
of almost one thousand papers revolving around quadratic program-
ming, including many applications. To name a few areas, let us men-
tion portfolio analysis [20, 112, 32, 131, 97, 96], VLSI design |16, 87,
160, 79, 51, 52, 83|, discrete-time stabilization |17, 138, 93, 124], op-
timal and fuzzy control 77, 89, 15, 95, 104, 84, 81, 72|, finite impulse
control [114, 90, 91, 103], optimal power flow [105, 19, 146, 106, 111,
116], economic dispatch [50, 68, 73, 9, 24, 28, 121, 107|, and geometric
optimization. The latter problem class has been treated and surveyed
extensively by Schonherr in his PhD thesis [128]. In this exposition —
especially in the implementation part — we continue his work.

Some of these applications mentioned arise from the extension of
quadratic programming to non-linear (and generally non-quadratic)
optimization. The following optimization problem NLP is only re-
stricted by the condition that the objective function g : R® — R
and the constraint functions b and ¢ have to be twice continuously

differentiable. The nonlinear problem

(NLP) min g(x)
st. b(z)>0 (1.4)
e 0

8
~—
I

can be solved by iterating through a series of approximate solution
vectors rp. At every step, the search direction dj by which we
change the iterate is determined by a quadratic programming sub-
problem. This method is known as sequential quadratic program-
ming (SQP) [134, 64].

! http://www.numerical.rl.ac.uk/qp/qp.html, see also [66].
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Let us illustrate two examples of quadratic programming problems in
the following paragraphs, which will outline one of the main motiva-

tions for this thesis.

Problem 1.5 (Smallest Enclosing Ball).
Given a sets of points P = {p1,...,p,} € RY, determine the smallest

ball that contains all the points.

If we define the d x n-matrix C' := (p1,...,pn) to be the matrix that
contains the coordinates of the points as its columns, we can write

Problem 1.5 as the following quadratic program,
n
(SEB) min zTeTCr — Zp;fppixi
i=1

s.t. sz = (1.6)

It is not trivial to see but proved in Theorem 3.1 of [128] that any
optimal solution z* = (z%,...,2%)T to this problem determines the

center ¢ of the smallest enclosing ball,

n
*
c= Z%pz
i=1

Furthermore, the squared radius of the ball is given by the negative
value of the objective function at x*.
We notice that the quadratic part of the objective function, CTC,

is fully dense’. Even if it were not, there is always a translation of P,

2 Dense means that most of the entries of the matrix are nonzero. By contrast,
sparse means the opposite, namely that most of the entries are zero. Note
that there is no formal definition of what “most” means in this context.
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such that all its coordinates are nonzero (and positive). Obviously,
such a translate P’ results in a translated, but otherwise identical,
solution. So, except for specifically constructed cases, we have to
assume dense input. However, the matrix D := CTC also has the
convenient property that its rank is at most d. For fixed values of d,
this makes the problem tractable by Schonherr’s simplex algorithm,
even if the number of points is large — typically n > d. This is due
to Theorem 2.6 of [128| (restated as Theorem 3.5 in this thesis).

We are going to describe that algorithm in more detail in Chap-
ter 3. Sven Schonherr developed it together with Bernd Gértner [58],
and it was implemented in the Computational Geometry Algorithms
Library (CGAL)? by the aforementioned, Kaspar Fischer, and Franz
Wessendorp. A major part of the present thesis deals with extending
that implementation. We will get to that in Chapters 5 and 6. For

now, let us continue with our introduction.

The important point about the smallest enclosing ball example is,
that Schonherr’s simplex algorithm is specifically tuned to this type
of application that often arises in computational geometry optimiza-
tion problems. More precisely, it profits from min{m,n} being small,
but it is insensitive to the occurrence of nonzero entries in the in-
put. For completeness, we note that other efficient algorithms exist
for the smallest enclosing ball problem: a randomized algorithm by
Welzl [147|, approximation algorithms [157, 86], and a combinatorial

exact algorithm [53].

Now let us come to the second problem we announced earlier on.
Consider a chemical plant. The plant can produce n different products

that sell at a price p; each and come at a cost of ¢j. The contribution

3 http://www.cgal.org/
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margin for each product is defined as d; := p; — ¢;. The plant has
a set of m machines whose workings are described by the production
coefficients a; j. For each product j the value a; ; describes how much
of the capacity of machine ¢ is used to produce a unit of product j.

The production coefficients can be aggregated in a matrix

FEach machine also comes with a maximal capacity b;. The managers
of the plant would like to maximize their profits through maximizing

the sum of production margins.

Problem 1.7 (Maximizing Contribution Margins).
Given the vector of contribution margins d = (di,...,dy), the vector
of mazimal capacities b = (by,...,by), and the coefficient matriz A,

minimize —d* z.

Maximizing d”z is of course equivalent to minimizing —d’z. We

readily arrive at the following linear programming formulation,

(MCM) min —dl'z
s.t. Az <b (1.8)
x> 0.

The crucial point here is that for a large plant that produces a large
number of products, the matrix A can be expected to be extremely
sparse, because a particular machine (or process) is likely to be able to
produce only a small number of products. This example illustrated a

setting that is typically encountered in large scale optimization prob-
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lems from operations research.

Of course, this is not a proper quadratic program, but actual large-
scale applications for quadratic programming often come from SQP*
formulations, which do not lend themselves to an easy description. For
another relatively simple example with a (proper) sparse quadratic
programming formulation consider the problem of tabular data pro-
tection; also known as statistical exposure control [25].

Above examples outline one of the main goals of this thesis. Schon-
herr’s implementation is not suited for the operations research setting,
where both m and n are large, usually in the hundreds if not thou-
sands. Implementations that are able to solve such large problems
need to be tackled differently. We need to take advantage of the large
number of zeros in the problem input. To see how it is possible to
incorporate this into Schonherr’s approach, let us first give a general

overview of the methods that have been developed to solve QPs.

1.1.3. Solution Methods

Essentially there are two different classes of algorithms to solve a
quadratic program in its general form (1.1): interior-point and active-
set methods. Another method that can be employed is the trust-
region approach; for a survey see [156]. We will restrict our discussion
to the former two. Also, as we have said earlier, we only consider
convex problems, i.e., D is assumed to be positive definite.

At their heart both of these methods — active-set as well as interior-
point — are based on the Karush-Kuhn-Tucker conditions for con-
vex optimization (see any standard textbook on convex optimization,

e.g., [21]). Without going into too much detail for now, both methods

4 Recall that SQP stands for sequential quadratic programming.
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go through a series of iterations in each of which a linear system of
equations has to be solved. We will call this the KKT system. The

relevant matrix looks as follows,

0 A
( . ) (19)

where Ay and Dy are sub-matrices of A and D respectively.

Interior-point methods maintain an approximate solution that lies
strictly within the feasible region. In each iteration we have to solve
a KKT system that depends on all constraints and variables, i.e.,
Dy, = D+ AW and A, = A, where the diagonal matrix A®*) changes
from iteration to iteration. The number of iterations, however, is

usually low and almost independent of the problem size.

By contrast, active-set methods try to reduce the amount of work
necessary during each iteration by reducing the size of the KKT sys-
tem considered. They do this by distinguishing between the inequality
constraints that are satisfied exactly and those that are not. A con-
straint of the form o’z < f is said to be active if a’z = B, inactive
if a2 < 8, and wiolated if a”x > . The motivation for this ap-
proach is that — if the set of active constraints and relevant variables
were known a prior: — the problem reduces to a smaller equality con-
strained sub-problem like (1.2). The KKT system for that reduced
system is considered to identify a search direction; and the iterate
is modified by this search direction within the feasible region, until
some inactive constraint becomes active. The constraint is replaced
in the KKT system, and this is possible at considerably less effort
(O(N?)) as opposed to re-factoring the whole system (O(N?)), where
N is the size of matrix (1.9). One distinguishes between primal and

dual active set methods.
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Barring interior-point methods, quadratic programs that are in
standard form (1.2) are usually solved by an extension of the famous
simplex method for linear programming by Dantzig [33|. Early con-
siderations of this method are found in [152, 117]. More recently, we
note Schonherr’s algorithm and an extension to piece-wise quadratic
programming [125]. The simplex method is also an iterative method
that runs through a series of intermediate solutions. The main idea
of this approach is to keep track of the variables that have a nonzero
value in some iteration. Generally speaking, one can even allow arbi-
trary upper and lower bounds in place of the standard bounds. If a
variable is nonzero (more generally, different from any of its bounds)
it is called basic. Otherwise, a variable is called non-basic. The KKT
system (1.9) is reduced to consider only the basic variables. While
going through successive iterations, variables are entered and removed
from the current basis. The rule by which those variables are chosen
is known as (simplex) pivot rule. Even though the simplex method
proved to be efficient in practice, it can lead to exponential-time be-
havior on certain constructed problems [82]. This is true for almost all
variations of pivoting rules known up to date. It is still a major open
question whether there exists a pivot rule that leads to polynomial

bounds.

A common practice to make the simplex method applicable to linear
and quadratic programs having inequality constraints is to add slack
variables (see for example [26]). An inequality constraint e’z < S8
is transformed into an equality constraint by adding the nonnegative
variable s, such that a’z + s = 8. Of course, if there are a lot
of inequality constraints (m > n), this invariably leads to a blow
up in the number of variables that have to be considered for the

intermediate solution.
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In order to retain the favorable setup for the algorithm when m > n,
Schonherr combines the simplex approach with the properties of a pri-
mal active-set method, namely that a large number of slack variables
does not slow down the algorithm unduly. This is achieved by consid-
ering the active constraints only. The KKT system — which is called
basis matriz in the context of the simplex algorithm — is reduced to
the relevant variables as well as to a set of active constraints. We
arrive at an algorithm that performs well when min{m,n} is small,
as we have mentioned earlier.

Last, let us point out that the solution methods described above
are theoretically inferior to the ellipsoid method for solving convex
optimization problems. This method can solve convex quadratic pro-
gramming problems in weakly polynomial time [85]. This celebrated
result was initially proved in 1979 by Khachiyan for linear program-
ming [80]. In practice, however, interior-point and simplex methods
prove to be much more successful. For a short primer about algo-
rithm complexity — in particular what weak polynomiality means —

see Appendix A.2.

1.1.4. Integral Factorization

There is another issue that has to be considered; that is the one of
numerical accuracy. Obviously, LP and QP solvers should always
compute the correct result, and even more so, they should not crash
because of numerical singularities. Paraphrasing Schonherr [128] and
Gértner [56], the two extreme approaches a solver can take to address
this problem are to either expect the worst or otherwise hope for the
best. The former means that all computations are performed using
exact arithmetic by employing an exact number type. Of course, this

imposes a (possibly severe) performance penalty. It is always correct,
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but also always slow. The latter approach is to do all operations using
standard floating point arithmetic and hoping that no instabilities
arise. This is always fast and usually correct. In CGAL’s QP solver a
mixed strategy is employed. The original representation of the basis
matrix is kept in exact arithmetic, but when it comes to deciding
which variable is to enter the basis — a process that is known as
pricing — this exact representation is converted to a floating point
representation. Safety bounds on the computations with this inexact
matrix are derived by Gértner [56]. Using these bounds, it is possible
to know in which cases one has to revert to exact arithmetic. This
approach has the advantage of being always correct and usually fast.
The fact remains, however, that the basis matrix (or more specifically

its inverse) has to be computed and kept in exact arithmetic.

One of the main goals of this thesis is to expand the possibilities of
CGAL’s QP solver to a wider range of the parameters m and n. To do
that, it becomes necessary to take advantage of the sparse structure of
some inputs. This poses a limitation to the current implementation,
because the basis matrix is explicitly kept as its inverse. In general,
the inverse of a sparse matrix is dense. Therefore, we need another
method. We will use LU factorization to obtain a sparse “inverse”.
Once the LU factorization of a matrix is known, it can be used to
solve a linear system of equations in O(N?), where N is the size of
the matrix. This is in alignment with the expense that is necessary
to solve the same equation system if we have the actual inverse at
hand (matrix-vector multiplication). The complexity of computing
either the inverse or the LU factorization from scratch is O(N?3). Of
course, these computational expenses concern the dense case, and do
not factor in the advantage we hope to gain by considering sparse

systems (this will be addressed in Sections 4.4 and 5.2). First, we
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develop an LU procedure that works on an integral domain and does
only use integral divisions. This is desirable if the input comes as
elements of an integral domain such as the integers. Furthermore, we
give an upper bound on the encoding size of the numbers involved in
the factorization. The bound depends on the encoding size of det(A),
where A is the input matrix. This is best possible in the sense that
it corresponds to the same magnitude that is asserted for the final

result by Cramer’s rule.

Robleda conducted preliminary tests in his master’s thesis [123]| and
was able to show that a speed-up for sparse instances seems within
reach. His implementation was not free of divisions, however, and
there was no bound on the size of the numbers. An interesting fact
that was found by Robleda, is that if one attempts to solve the linear
KKT systems by the method of conjugate gradients the blow-up in
number size during the computation seems unmanageable. Therefore,

that approach had to be abandoned.

We derive the result mentioned above independently of a similar
result that has already been published in a slightly different context.
The latest of a series of papers about that topic is [158] by Zhou and
Jeffrey. They call the horse by a different name, and therefore we
have only recently become aware of this parallel track of research. A
more detailed discussion and references are found in Chapter 4, where

we derive our result.

A topic that — to the best of our knowledge — has not yet been
discussed in the context of integral factorizations is the one of an effi-
cient update. This is a vital ingredient for the successful application
of the CGAL QP solver to most instances. The update mirrors the
changes in the basis matrix from iteration to iteration. Typically,

these changes are small (constant rank updates) of the basis matrix.
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Therefore, it should be possible — as it is in the case of the basis in-
verse — to update the factorization with less effort than it takes to do
the computation from scratch. And indeed it is possible — as we show
in Chapter 4 — under certain circumstances. A difficulty arises from
the fact that unlike the inverse of a matrix, the LU factorization is
not unique. In particular, one usually applies reordering techniques
to maintain sparsity as well as possible. When performing an up-
date on a matrix that has already been factored we have to stick to
the initial ordering. This sometimes triggers a breakdown of the up-
date procedure. Ironically, this difficulty becomes more pronounced
the sparser the matrix is. We describe heuristics how the problem
can be overcome, sometimes, but we still lack an adaptive reordering

mechanism.

1.1.5. An Abstract View

The second major contribution of this thesis concerns a seemingly un-
related result about abstract optimization frameworks. In Chapter 2
we outline that violator spaces [57] exactly characterize the problems
that can be solved by Clarkson’s randomized algorithm® [27]. Violator
spaces are an abstract class of optimization problems that operate on
a finite ground set H, and the goal is to find a subset of S C H such
that S “solves” the violator space. The only basic operation allowed
is the wviolation test, i.e., checking whether some h € H\S violates S.
If there are no violators in H\S, we say that S is a basis of H and
therefore solves the violator space. We develop the arguably simplest
variant of Clarkson’s algorithm that can still be successfully analyzed.

We arrive at the essence of Clarkson’s approach — unencumbered by

5 Clarkson’s algorithm is introduced in Section 2.1.
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artificial tools that had previously been employed in the algorithm to
make the analysis go through.

Now, where is the connection to quadratic programming, one might
ask? It lies in the fact that the simplex algorithm for quadratic and
linear programming can be formulated in terms of wviolation tests.

Consider an equality constrained linear program,

(LP) min T
st. Az =b (1.10)

x>0,

where the number of variables n is as least as large as the number of
constraints m.

It is well known [26] that in the non-degenerate case the optimal
solution is uniquely defined by a subset of the variables called the
basic variables or simply basis. These are the variables that have a
nonzero value in the solution. In fact, let us consider the index sets
B,N € [n| with |B| = m, |[N| = n—m, and BUN = [n]. Using
these index sets, we can select the appropriate entries from x, ¢, and
A. For example, Ap consists only of the columns of A whose indices
are contained in B. If Agl exists, we can derive the following formula

for the values of g and the objective function z in terms of xy,

rp :Aglb*AélAN:L’N, (1.11)

z=cp AR+ (e — ch AR ANn)zN. (1.12)

If an assignment of 0 to all variables in zy yields a nonnegative so-
lution for xp, we say that the variables indexed by B are a basis of
LP (note the identical terminology as in the case of violator spaces).

The whole set of assignments of values to zp and xy is then called a



16 Introduction

basic feasible solution.

Assuming that we have a basic feasible solution to start with, and
by considering the vector of reduced costs, v = ck — cBA LAn, we
are able to identify variables from N that may improve the solution.
In particular, if 7; < 0, we may improve the value of z by increasing
the value of variable j. Variable j is called the entering variableS.
If v > 0 we have already found the optimal solution.

We can increase the value of the entering variable j until the value
of some other variable ¢ drops to zero. Once that variable has been
identified, we can replace ¢ by j in the basis. The variable 7 is therefore
called the leaving variable. The whole process of finding i is called
ratio test.

The important realization here is that we can regard the variables
as the ground set H of a violator space. The LP pricing takes the
role of the violation test and ratio test amounts to a re-computation
of the basis of some subset of H. These are exactly the primitives
employed in Clarkson’s algorithm. As soon as we will have arrived
at a vector v > 0 (no more violators), we will have found a basis for
the whole violator space, or in other words, the optimal solution of
the LP.

The same analogy also holds for quadratic programs, but the con-
cept of a quadratic programming basis is more complicated and left
to be defined in Section 3.2.

In fact, we have an even stronger definition than required for vi-
olator spaces, because the violation is quantifiable. We know that

increasing the value of the entering variable x; by o will reduce the

6 Note that we say “variable 57 when we really mean variable xj. The reader may
excuse that we will use this slight abuse of notation in some places throughout
the whole thesis.
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objective value by —v;a. This specialization of a violator space is

called LP-type problem, and historically had been developed before

the concept of violator spaces [100].

1.2.

Statement of Results

The main results of this thesis are the following:

(1)

(iii)

In Chapter 2 we introduce Theorem 2.17 and Theorem 2.30,
which prove results about Clarkson’s algorithm”. In particular,
the former extends a previously known result about Clarkson’s
first stage to violator spaces. The latter proves a similar result

for Clarkson’s second stage.

In Chapter 4 we introduce and describe Algorithm 4 (diLU)
and Algorithm 6 (udiLU), which can be used to compute and
update the integral LU factorization.

Last but not least, a considerable portion of the work that was
conducted for this thesis consisted of establishing an imple-
mentation of the integral factorization methods in the existing
quadratic programming solver of CGAL. Theoretical aspects
of this part are described in Chapter 3. Technical aspects are
described in Chapter 5, and experimental results, finally, are

presented in Chapter 6.

" Clarkson’s algorithm is going to be introduced in Section 2.1, where we also
explain the meaning of the “first” and “second” stage.






Oh, many a shaft at random sent
Finds mark the archer little meant!
And many a word at random spoken

May soothe, or wound, a heart that’s broken!

Sir Walter Scott

Violator Spaces®

In this chapter we are going to describe simplifications of and theoretic
results about Clarkson’s randomized algorithm, which is the generic
tool for solving violator spaces. Note that, in this chapter, we are
going to adopt a slightly different nomenclature from the one that we
used in the introduction and the rest of the text. We consistently used
to call the number of constraints m and the number of variables of a
quadratic program n. Because the term of combinatorial dimension —

which we will introduce later in this chapter — naturally suggests d as

8 The contents of this chapter have already been published in Computational
Geometry journal of Elsevier [22]. According to the publishers copyright poli-
cies reprint and archiving are permitted. We only make slight modifications
in structure and content for better integration with this thesis.

19
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a variable name, we let this override the previous convention. It will

always be indicated, however, which variable denotes which quantity.

2.1. Introduction

Clarkson’s algorithm. Clarkson’s randomized algorithm [27] is the
earliest practical linear-time algorithm for linear programming with a
fixed number of variables. Combined with a later algorithm by Ma-
tousek, Sharir and Welzl [100], it yields the best (expected) worst-case
bound in the unit cost model that is known today. The combined algo-
rithm can solve any linear program with d variables and n constraints
with an expected number of O(d?n + exp(O(v/dlogd))) arithmetic
operations [59].

Clarkson’s algorithm consists of two primary stages, and it requires
as a third stage an algorithm for solving small linear programs with
O(d?) constraints. The first two stages are purely combinatorial and
use little problem-specific structure. One consequence of this fact
is the the algorithm smoothly extends to the larger class of LP-type
problems [100]. The bound on the running time is the same as above,
for concrete problems in this class, like finding the smallest enclosing
ball of a set of n points in dimension d [59].

Both primary stages of Clarkson’s algorithm are based on random
sampling and are conceptually simple. The main idea behind the use
of randomness is that we can solve a sub-problem subject to only a
small number of (randomly chosen) constraints, but still have only
few (of all) constraints that are violated by the solution of the sub-
problem. However, some extra machinery was originally needed to
make the analysis go through. More precisely, in both stages there

needed to be a check that the each individual random choice was
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good in a certain sense. Then in the analysis one needed to make
the argument that the bad cases do not occur too often. For the
first stage it was already shown by Gartner and Welzl that these
extra checks can be removed [60]. The result is what we call the
German algorithm below. In this chapter we do the removal also
for the second stage, resulting in the Swiss algorithm. (The names
come from certain aspects of German and Swiss mentality that are
reflected in the respective algorithms.) We believe that the German
and the Swiss algorithm together represent the essence of Clarkson’s

approach.

Violator spaces. Girtner, Matousek, Riist, and Skovroii proved that
Clarkson’s original algorithm is applicable in a still broader setting
than that of LP-type problems: It works for the class of wiolator
spaces [57|. At first glance, this seems to be yet another generalization
to yet another abstract problem class, but as Skovroii has shown, it
stops here: The class of violator spaces is the most general one for
which Clarkson’s algorithm is still guaranteed to work [132]. In a
nutshell, the difference between LP-type problems and violator spaces
is that, for the latter, the following trivial algorithm may cycle even
in the non-degenerate case: maintain the optimal solution subject to
a subset B of the constraints; as long as there is some constraint h
that is violated by this solution, replace the current solution by the
optimal solution subject to B U {h}, and repeat. Examples of such
cyclic violator spaces can be found in [132]|. For a easy and intuitive
example see also [57].

It was unknown whether the analysis of the German algorithm (the
stripped-down version of Clarkson’s first stage) also works for violator

spaces. For LP-type problems the analysis is nontrivial and constructs
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a composite LP-type problem. Here we show that this can still be
done for violator spaces in essentially the same way. For the Swiss
algorithm (the stripped-down version of Clarkson’s second stage), we
provide the first analysis at all. The fact that it works in the fully
general setting of violator spaces comes naturally.

The main difference of the German and the Swiss algorithm com-
pared to their original formulations is the following. In both stages,
at some point, Clarkson’s algorithm checks how many violated con-
straints some random sample of constraints produces. If there are too
many, then the algorithm discards the sample and re-samples. The
reason for this is that the analysis requires a bound on the number of
violators in each step. We essentially show that this bound only needs
to hold in expectation (and does so) for the analysis to go through.
The checks that we mentioned before are only an analytic tool and
not necessary for the algorithms to work.

Let us point out that no sub-exponential algorithm for finding the
basis (that is the “solution”) of a violator space is known. Therefore,
we can only employ brute force to “solve” small violator spaces. Note
that, e.g., in the context of linear programming, finding a basis means
identifying the constraints which are tight at an optimal point. We
call this the Brute Force Algorithm (BFA). Hence, the resulting best
worst-case bound known degrades to O(d?n + f(d)), where f is some
exponential function of d. In this paper, we will not investigate this

point further and use BFA as a black box.

The German Algorithm (GA). Let us explain the algorithm for the
problem of finding the smallest enclosing ball of a set of n points in R?
(this problem fits into the violator space framework). The algorithm

proceeds in rounds and maintains a working set G, initialized with a
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subset R of r points drawn at random. In each round the smallest
enclosing ball of G is being computed (by some other algorithm). For
the next round the points that are unhappy with this ball (the ones
that are outside) are added to G. The algorithm terminates as soon
as all points are happy with the smallest enclosing ball of G.

The crucial fact that we reprove below in the violator space frame-
work is this: The number of rounds is at most d+2, and for r ~ d/n,
the expected maximum size of G is bounded by O(dy/n). This means
that GA reduces a problem of size n to d+ 2 problems of expected size
O(d+/n). We call this the German algorithm, because it takes — typi-
cally German — one decision in the beginning which is then efficiently

pulled through.

The Swiss Algorithm (SA). Like GA, this algorithm proceeds in
rounds, but it maintains a voting box that initially contains one slip
per point. In each round a set of r slips is drawn at random from the
voting box, and the smallest enclosing ball of the corresponding set R
is computed (by some other algorithm). For the next round all slips
are put back, and on top of that, the number of slips of the unhappy
points is doubled. The algorithm terminates as soon as all points are
happy with the smallest enclosing ball of the sample R.

Below we will prove the following: If r ~ d?, the expected number
of rounds is O(logn). This means that SA reduces a problem of size n
to O(logn) problems of size O(d?). We call this the Swiss algorithm,
because it takes — typically Swiss — many independent local decisions

that magically fit together in the end.

Hypercube partitions. A hypercube partition is a partition of the

vertices of the hypercube such that every element of the partition is
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the set of vertices of some sub-cube. It was known that every non-
degenerate violator space induces a hypercube partition [101, 99]. We
prove here that also the converse is true, meaning that we obtain an
alternative characterization of the class of violator spaces. While this
result is not hard to obtain, it may be useful in the future for the
problem of counting violator spaces. The initial bounds provided by

Skovro are still the best known ones [132].

Applications. We would love to present a number of convincing ap-
plications of the violator space framework, and in particular of the
German and the Swiss algorithm for violator spaces. Unfortunately,
we cannot. There is one known application of Clarkson’s algorithm
that really requires it to work for violator spaces and not just LP-type
problems [57]; this application (solving generalized P-matrix linear
complementarity problems with a fixed number of blocks) benefits
from our improvements in the sense that now also the German and
the Swiss algorithm are applicable to it (with less random resources

than Clarkson’s algorithm).

Our main contributions are therefore theoretical: We show that
Clarkson’s second stage can be simplified (resulting in the Swiss al-
gorithm), and this result is new even for LP-type problems and linear
programming. The fact that Clarkson’s first stage can be simplified
(resulting in the German algorithm) was known for LP-type prob-
lems; we extend it to violator spaces, allowing the German algorithm
to be used for solving generalized P-matrix linear complementarity

problems with a fixed number of blocks.

We believe that our version of Clarkson’s algorithm is the most

simple variant that can still successfully be analyzed.
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2.2. Prerequisites

2.2.1. The Sampling Lemma

The following lemma is due to Gértner and Welzl in [60] and was
adapted to violator spaces in [57]. We repeat it here for the sake of
completeness, and because its proof and formulation are concise. Let
S be a set of size n, and ¢ : 25 — R a function that maps any set
R C S to some value ¢(R). Define

<
=
i

{s€S\R | p(RU{s}) # »(R) }, (2.1)
X(R) = {s€ R | p(R\{s}) # ¢(R) }. (2.2)

V(R) is the set of wiolators of R, while X(R) is the set of extreme

elements in R. Obviously,
s violates R < s is extreme in RU {s}.

For a random sample R of size r, i.e., a set R chosen uniformly at
random from the set (f ) of all r-element subsets of S, we define ran-
dom variables V, : R — |V(R)| and X, : R — |X(R)|, and we consider

the expected values

v = E[V,],
x, = E[X;].

Lemma 2.3 (Sampling Lemma, [60, 57]). For 0 <r <n,

Ur  Tr41

n—r r4+1

Proof. Using the definitions of v, and z, 1 as well as (2.2.1), we can
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argue as follows,
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Here, [-] is the indicator variable for the event in brackets. Finally,

()/ () = (n=7)/(r+1). O

2.2.2. Definition of Violator Spaces

Definition 2.4. A violator space is a pair (H,V), where H is a fi-
nite set and V is a mapping 22 — 27 such that the following two
conditions are fulfilled.

Consistency: G NV(G) =0 holds for all G C H, and
Locality: for all F C G C H, where GNV(F) =1,
we have V(G) = V(F).
Lemma 2.5 (Lemma 17, [57]). Any violator space (H,V) satisfies
monotonicity defined as follows:
Monotonicity: V(F) = V(G) implies V(E) = V(F) = V(G)
forall sets F C ECGCH.

Proof. Assume that V(E) # V(F),V(G). Then locality yields () #
ENV(F)= EnNV(G) which contradicts consistency. O
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Definition 2.6. Consider a violator space (H,V).

(i) We say that B C H is a basis if for all proper subsets F C B
we have BNV(F) # 0. For G C H, a basis of G is a minimal
subset B of G with V(B) = V(G). A basis in (H,V) is a basis
of some set G C H.

(i) The combinatorial dimension of (H,V), denoted by dim(H,V),
is the size of the largest basis in (H,V).

(i1i) (H,V) is non-degenerate if every set G C H, |G| > dim(H, V),

has a unique basis. Otherwise (H,V) is degenerate.

Observe that a minimal subset B C G with V(B) = V(G) is indeed
a basis: Assume for contradiction that there is a set F' C B such
that BN V(F) = (. Locality then yields V(B) = V(F) = V(G),
which contradicts the minimality of B. Also, note that, because of
consistency, any basis B of H has no violators V(H) = V(B) = 0.

Corollary 2.7 (of Lemma 2.3). Let (H,V) be a violator space of com-
binatorial dimension d, and |H| = n. If we choose a subset R C H,

|R| = r < n, uniformly at random, then

E[V(R)|] < dr4_—1'

Proof. The corollary follows from the Sampling Lemma 2.3, with the
observation that | X (R)| < d, VR C H. O

2.3. Clarkson’s Algorithm Revisited

Clarkson’s algorithm can be used to compute a basis of some violator

space (H,V), n = |H|. Tt consists of two separate stages and the
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Brute Force Algorithm (BFA). The results about the running time
and the size of the sets involved are summarized in Theorem 2.17 and
Theorem 2.30.

The main idea of both stages (GA and SA) is the following: We
draw a random sample R C H of size r = |R| and then compute a
basis of R using some other algorithm. The crucial point here is that
r < n hopefully. Obviously, such an approach may fail to find a basis
of H, and we might have to reconsider and enter a second round.
That is the point at which GA and SA most significantly differ.

In both stages we assume that the size of the ground set n is larger
than r, such that we can actually draw a sample of that size. We can
assume this w.l.o.g., because it is easy to incorporate an if statement
at the beginning that directly calls the other algorithm should n be

too small.

2.3.1. The German Algorithm (GA)

This algorithm works as follows. Let (H, V) be a violator space, |H| =
n, and dim(H,V) = d. We draw a random sample R C H, r =
d\/n/2, only once, and initialize our working set G with R. Then we
enter a repeat loop, in which we compute a basis B of G and check
whether there are any violators in H. If no, then we are done and
return the basis B. If yes, then we add those violators to our working

set G and repeat the procedure.

The analysis will show that (i) the number of rounds is bounded
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by d+ 1, and (éi) the size of G in any round is bounded by O(dy/n).

Algorithm 1: German Algorithm (GA)
Input : Violator space (H,V), with |H| =n and dim(H,V) =d
Output: A basis B of (H,V)

1 T dy/n/2;

2 Choose R C H u.a.r., with |R| =r;

3 G+« R;

4 repeat

5 B < SA(G, V|s);
6 G+ GUV(B);

7 until V(B) = 0;

s return B

We will adopt some useful notations which we will use in the following
proofs. First, let us point out that the notation V| refers to the

violator mapping restricted to some set F' C H.

Definition 2.8. Fori > 0, by
Bg), V}(;), and G%)

we denote the sets B, V(B), and G computed in round i of the repeat
loop above. Furthermore, we set Ggg) = R, while Bj(g) and ngo) are

) is a basis of G%_l), and

undefined. In particular, we have that Bg
V]g) = V(G%fl)). If the algorithm performs exactly £ rounds, sets

with indices i > £ are defined to be the corresponding sets of round £.

The next one is an auxiliary lemma that we will need further on
in the analysis. It is a generalization of the fact that there is at least
one element of the basis of H found as a violator in every round (see

also Lemma 2.21).
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Lemma 2.9. For j <i < (, BY NV #0.
Proof. Assume that Bg) N Vlgj) = (). Together with consistency,
Ggfl) N V]g) = (), this implies
(BY UGy Nnvy =o.
Now, applying locality and the definition of basis, we get
vBY uai )y = v = v(BY). (2.10)

On the other hand, since V,Sf) = V(Bl(é)) and Bg) - Bg) U G%_l) -

Ggfl), we can apply monotonicity and derive
v =v(BY) =v(BYuci). (2.11)

Note that V(Bg)) - Gg_l), because G always contains the violators
from previous rounds. Additionally, by equations (2.10) and (2.11)
we have that ng) = V(Bl(é) U Gg_l)) = V(Bg)). Thus, we can build

a contradiction of consistency,
anvy ovBD) nvy =v(BY) £ 10.

The last inequality holds because j is not the last round. O

The following lemma is the crucial result that lets us interpret the
development of the set G in the German Algorithm (Algorithm 1) as

a violator space itself.

Lemma 2.12. Let (H,V) be a violator space of combinatorial dimen-
sion d. For any subset R C H define

T(R) = V&, ... v, (2.13)
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Using this we can define a new violator mapping as follows,
V(R):={he€ H\R | T(R) # T(RU{h}) }. (2.14)

Then the following statements are true:

(i) (H,V') is a violator space of combinatorial dimension
at most (“31).

(i) The set V'(R) is given by
V(R)=VV U uv® = GY\R.
(ii) If (H,V) is non-degenerate, then so is (H,V').

To prove Lemma 2.12 we first need an auxiliary claim. Note that the

symbol U denotes disjoint union.

Claim 2.15. Let Q be any set with Q= RUT C H andi < d. If

vt =Vt <,
then
Gy =GPur,  j<i+l

Proof of Claim 2.15. We prove the claim by induction on ¢. First, if
i = 0 the precondition reads V(Q) = V(R). It follows that G(Ql) =
QUV(Q)=(RUT)UV(R) =GW UT.

Suppose the claim is true for j < 4. From

y U+ G

Q =Vr we can

deduce

Got =P uvit =@ urnuvit =ci o
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Before we proceed to the proof of Lemma 2.12 let us first state the
consequences, which we obtain by applying Lemma 2.3 to the violator

space that we constructed.

Theorem 2.16 (Theorem 5.5 of [60]). For R C H with |H| = n, and

a random sample of size r,

d d+1\n—r

Choosing r = dy/n/2 yields

B[\ < 2(d + 1)\/§

Proof of Theorem 2.16. The first inequality directly follows from the
sampling lemma (Lemma 2.3), applied to the violator space (H, V'),
together with part (7i) of Lemma 2.12. The second inequality follows

from plugging in the value for r. O
Let us now come back to the previous lemma.

Proof of Lemma 2.12.
Proof of (i). We first need to check consistency and locality as defined
in Definition 2.4.

Consistency is easy, by the definition of V'. Since the violators
of R C H are chosen from H\R exclusively, we can be sure that
RNV/(R) =0 for all R.

Let us recall what locality means. For sets R C @ C H, if @ N
V/(R) = 0, then V/(Q) = V/(R). This we are going to prove by
induction on the size of Q\R. If |Q\R| = 0, then the two sets are the
same, and locality is obviously fulfilled. Now, suppose that |Q\R| =

7 and locality is true for any smaller value j < 4. Consider some
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set S fulfilling R € S C Q and Q = S U {q}. First note that, if
QNV'(R) =0, then also SN V/(R) = (). Therefore, the precondition
for the induction hypothesis is fulfilled, and we can conclude that
V/(R) = V/(S). Bearing this in mind, we can make the following

derivation,

QNV'(R) =0 = QNV(S)=10
2 geVv(s)
Y () =T(S U {g}) =T(Q)
TET V() = V(@)
= V(R) =V'(Q).

That shows the locality of the violator space (H,V').
We still have to show that (H,V’) has combinatorial dimension at
most (d;rl). To this end we prove that V/(Bg) = V/(R), where

d
Br:=Rn|JBY.

=1
Note that Bg, as we will show in (iii), is in fact the unique basis of
the set R C H. By bounding the size of Br we therefore bound the
combinatorial dimension of (H,V’). Equivalent to V/(Br) = V'(R)
we show that VéjR) = Igj ), for 1 < j < d, using induction on j. For
7 =1 we get

V(R) = V(Br U (R\Bg)) = V(BRr),

because R\ Bp, is disjoint from Bg), the basis of R. Therefore, R\Br =
R\ UL, Bg) can be removed from R without changing the set of vi-
olators.

Now assume that the statement holds for 7 < d — 1 and consider
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the case j = d. By Claim 2.15, we get Gg_l) = Gg};l) U (R\BR).
Since R\Bp is disjoint from the basis Bg) of Gg_l) it follows that

Vi =V(GH) = V(GE, D U (R\Br)) = V(G ) = V).

R
To bound the size of Br, we observe that
IRNBY| <d+1—1i,

for all ¢ < ¢ (the number of rounds in which V(B) # ). This follows

from Lemma 2.9. Bg) has at least one element in each of the ¢ — 1

sets Vb, ..., Vlg_l), which are in turn disjoint from R. Hence we get

l
(4) d—l—l
B <§ RN By | < .
|R’—i:1‘ R|< 92

Proof of (ii). We show that if some constraint ¢ € H is in V/(R) then
it is also in Vlg) for some 1 < i < d. On the other hand if ¢ & V'(R)
then ¢ is not in any of the V(i), 1 < ¢ < d. This proves the statement
of (i7).

Assume ¢ € V/(R) and let @Q := R U {q}. Consider the largest
index ¢ < d — 1, such that

Ve =v§t <
Note that such an index i must exist, because V/(R) # V/(Q), which
simply follows from ¢ € V/(R) and ¢ ¢ V'(Q). Then, from Claim 2.15
it follows that G(ZH) = Ggﬂ) U {q}, and by assumption on i we
know that VRH_2 # Vo (i+2) Therefore, by the contrapositive of lo-

cality, we conclude (G(ZH) U{qh)n V( (t+1) ) # (). This means that
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q € V(Ggﬂ)) = VgH), because otherwise the consistency of G%H)

would be violated.

On the other hand, if ¢ ¢ V/(R), then V/(R) = V/(Q), or equiva-
lently Vlg) = (5), for 1 < i < d. However, because (H,V) is consis-
tent it follows that ¢ ¢ Vg), and therefore q & Vlgf), for 1 <i<d.

Proof of (iii). Non-degeneracy of (H,V’) follows if we can show that
every set R C H has the set Bgr as its unique basis. To this end
we prove that whenever we have L C R with V(L) = V/(R), then
Bp C L.

Fix L C R with V/(L) = V/(R), i.e.,
v =v 1<i<d
Claim 2.15 then implies
GY =a U(R\L), 0<i<d,

and the non-degeneracy of (H,V) yields that G%) and G(Li) have the
same unique basis Bgﬂ), for all 0 < 7 < d. Note that Bgﬂ) is indeed
contained in G(Li), because V(G(Li)) = V(Gg)) = V(G(Li)U(R\L)) =
V(Bgﬂ)) for 0 < i < d. That means, if there exists a basis of G(Li),
which by definition is also a basis of Gg), but distinct from Bgﬂ),

non-degeneracy is violated.

It follows that G(Ld_l) contains

BY,

d
=1

7
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so L contains . .
Ln|JBY =Rrn|JBY.
i=1 i=1
The latter equality holds because R\L is disjoint from G(d), thus in

particular from the union of the Bg). O

Theorem 2.17. Let (H,V) be a violator space of combinatorial di-
mension d, and n = |H|. Then the algorithm GA computes a basis of
(H,V) with at most d + 1 calls to SA, with an expected number of at
most O(d\/n) constraints each.

Proof. According to Lemma 2.9 (and maybe more intuitively accord-
ing to Lemma 2.21), in every round except the last one we add at least
one element of any basis of (H,V) to G. Since the size of the basis
is bounded by d we get that the number of rounds is at most d + 1.
Furthermore, according to Theorem 2.16, and our choice r = d\/m,
the expected size of G will not exceed 2(d+1) \/m in any round. [

2.3.2. The Swiss Algorithm (SA)

The algorithm SA proceeds similar as the first one. Let the input be
a violator space (H,V), |H| = n, and dim(H,V) = d.

First, let us (re)introduce the notation R®, B® and V' for i > 1,
similar as in Definition 2.8, for the sets R, B and V(R) of round ¢
respectively. The set B® is a basis of R and V() = V(R®) =
V(B®). Since we draw a random sample in every round it does not
make sense to index the sets B® and V) by R, so we drop this
subscript.

After the initialization, we enter the first round and choose a ran-
dom sample R of size r = 2d? uniformly at random from H.

Then we compute an intermediate basis B of the violator space
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(R, V|ra)) by using BFA as a black box. In the next step, we com-
pute the set of violated constraints V1), So far, it is the same thing as
the first stage. But now, instead of enforcing the violated constraints
by adding them to the active set, we increase the probability that the
violated constraints are chosen in the next round. This is achieved by

means of the multiplicity or weight variable p.

Algorithm 2: Swiss Algorithm (SA)
Input : Violator space (H,V), |H| =n, and dim(H,V) =d
Output: A basis B of (H,V)

1 pup <+ 1forall h € H;

2 1 2d7

3 repeat

4 choose random R from H according to u;
5 B+ BFA(R, V|g);

6 wn < 2up, for all h € V(B);

7 until V(B) =0

8 return B

Definition 2.18. With every h € H we associate the multiplicity
ur € N. For an arbitrary set F C H we define the cumulative multi-
plicity as

W(E) = .

heF
For the analysis we also need to keep track of this value across different
iterations of the algorithm. Fori > 0 we will use ug) (and p (F)) to
denote the (cumulative) multiplicity at the end of round i. We define
NELO) =1 for any h € H, and therefore pO (F) = |F|.

Now back to the algorithm. To increase the probability that a

constraint h € V@ is chosen in the random sample of round i + 1 we
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double the multiplicity of h, i.e., ,ugf) = Q;Lg_l).

The multiplicities determine how the random sample R(U*Y is cho-
sen. To this end we construct a multiset H*1 to which we add ,u;f)
copies of every element h € H. To simplify notation, let us for a
moment fix the round ¢ + 1 and drop the corresponding superscript.

We define the function ¢ : 27 — 98 a5 the function that maps a
set of elements from H to the set of corresponding elements in H ,1.e.,

for F C H,
o(F) = (J{h1, . hy, ), (2.19)

heF
where the hj, 1 < j < pp, are the distinct copies of h. For exam-
ple, H = ¢(H). Conversely, let 1 : 28—, 92H he the function that
collapses a given subset of H to their original elements in H, i.e., for
FCH,
G(E) = {h € H | ({h}) " F #0}. (2.20)

Reintroducing the superscript ¢ + 1 we can simply say that we con-
struct HH) = ¢(H) using the multiplicities from round i. The
sample RU+D is then chosen w.a.r. from the r-subsets of H(+1, In
the following the multiset property will not be important any more
and we can discard multiple entries to obtain R(+D = ¢(RU+D).
Note that 1 < |RG+D| < 7. Then we continue as in round 1. Note
that in the first round this is in fact equivalent to choosing an r-subset
u.a.r. from H, because Mgo) =1forallhe H.

The algorithm terminates as soon as V) = () for some round ¢ > 1
and returns the basis B(®).

Let us first discuss an auxiliary lemma similar to Lemma 2.9.

Lemma 2.21 (Observation 22 in [57]). Let (H,V) be a violator space,
FCGCH, and GNV(F) # 0. Then GNV(F) contains at least one

element from every basis of G.
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Proof. Since the proof is short we repeat it here. Let B be some basis
of G and assume that BNGNV(F) = BNV(F') = ). From consistency
we get FNV(F) = (. Together this implies

(BUF)NV(F) =1.
Applying locality and monotonicity, we get
V(F)=V(BUF)=V(G),

meaning that GNV(G) = GNV(F) = 0, a contradiction. O

The analysis of SA will show that the elements in any basis B
of H will increase their multiplicity so quickly that they are chosen
with high probability after a logarithmic number of rounds. This, of
course, means that the algorithm will terminate, because there will
be no violators. Formally, we will have to employ trick though. We
will consider a modification of SA that runs forever, regardless of the
current set of violators. Let us call the modified algorithm SA-forever.
We call a particular round i controversial if V(%) = (. Furthermore, let

Cy be the event that the first £ rounds are controversial in SA-forever.
Lemma 2.22. Let (H,V) be a violator space, |H| = n, dim (H,V) = d,
B any basis of H, and k € N some positive integer. Then, in SA-

forever, the following holds for the expected cumulative multiplicity
of B after kd rounds,

28 Pr(Cg) < E[p*(B)].

Proof. In any controversial round, Lemma 2.21 asserts that BNV () £
(). So, in every controversial round, the multiplicity of at least one ele-

ment in B is doubled. Therefore, by conditioning on the event that the
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first kd rounds are controversial, there must be a constraint in B that
has been doubled at least k times (recall that |B| < d). It follows that
E[u(B)] = Eluh)(B)| Cra] Pr(Cha] + B[k (B) | Cg] Pr{Cha] >
2k PI‘[de] . O

Lemma 2.23. Let (H,V) be a violator space, |H| = n, dim (H,V) = d,
B any basis of H, and k € N some positive integer. Then, in SA-
forever, the following holds for the expected cumulative multiplicity of
B after kd rounds,

B (B)] < n (1 + f)kd.

Proof. Let us point out first, that the following analysis goes through
for SA-forever as well as for SA, but to make it match Lemma 2.22 we

formulated it using the former.

Note that E[u*®)(B)] < E[u*9) (H)], because B C H. Therefore, if
we show the upper bound for the latter expectation we are done. Let
¢ := kd be the number of rounds, and AW (F) := p®(F) — u0-D(F)
the increase of multiplicity from one round to another, for any ¢ > 1
and F' C H. We write the expected weight of H after ¢ rounds as the
sum of the initial weight plus the expected increase in weight in every

round from 1 to ¢,

B = O] + Y EAOm). (229)
=1

The first term is easy, E[u(?)(H)] = n, and the second term we write

as a conditional expectation, assuming that the weight in round ¢ — 1
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ij sz fj E[A =U(H) = ] Pr[ul—Y (H) = 1].
(2.25)

Now comes the crucial step. According to Lemma 2.3 we can upper
bound E[A® (H)|u~V(H) = t] by interpreting it as the expected
number of violators of a multiset extension of (H,V). To this end
we construct a violator space (H® V), where H® = ¢(H) using
the multiplicities from round 7 — 1. Let us fix round ¢ and drop the

superscript for the moment. For any F C H we define

V(F) := o(V(¥(F)))- (2.26)

We observe that (H,V) is indeed a violator space. For F C H,
Consistency is preserved, because from consistency of (H, V) it follows

that ¢(4(F)) N (V(¥(F))) = O, and knowing F' C ¢(4(F)), we can
conclude consistency of (H V) Slmllarly, for FC G CH, locality of

(H,V) tells us that if ¢(4(G)) N G(V (W 7)) = 0 then ¢(V((F))) =
d(V((@))), and knowing G C ¢((G)), locality of (H, V) follows.

The violator space we just constructed has the same ground set H
by means of which we draw the random sample R in every round.
By supplying a valid violator mapping we asserted that we can apply
the sampling lemma to that process. Some thinking reveals that d =
dim(H, V) = dim(H, V) (even though we introduced degeneracy), and

we can conclude that

BIAO(H) D (H) = 1] = BV(RO)] < d (2.27)

Therefore we get the simplified expression
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{ oo

BpO()] < nt 305 ot Prlu= () =

i=1t=0

= n—i—Z(r_i_litPr U(H) = 1]

1=1

S P ) = t])
t=0

¢ ’ dr

S B -

= n+
r+1i:1

The first line is derived from (2.24), (2.25), and (2.27). The rest
is routine. Dropping the last term we get the following recursive

equation,

E[u(H)] <n +— Z Elu

which easily resolves to the claimed bound. O

Using ¢ = kd, and combining Lemma 2.22 and 2.23, we now know
that

k d ¢
2 Pr[CdSn(l—i—;) .

This inequality gives us a useful upper bound on Pr[Cy], because the
left-hand side power grows faster than the right-hand side power as a
function of ¢, given that r is chosen large enough.
Let us choose r = cd? for some constant ¢ > logye ~ 1.44. We
obtain .
Pricd <n (14 ) /2¢ < nallmaried



Clarkson’s Algorithm Revisited 43

using 1+ z < % = 2%1982€ for all . This further gives us
Pr[Cy] < nat, (2.28)
a:=a(d,c) = gllogz e=c)/(ed) 7

This implies the following tail estimate.

Lemma 2.29. For any S > 1, the probability that SA-forever starts

with at least [Blogy ;o n| controversial rounds is at most

nt=>8,

Proof. The probability for at least this many leading controversial

rounds is at most

Pr(C|5 logy o a1l < nalfloganl < poblogijan — pp=6 _ p1-8

We can also bound the expected number of leading controversial
rounds in SA-forever, and this bounds the expected number of rounds
in SA, because SA terminates upon the first non-controversial round

1t encounters.

Theorem 2.30. Let (H,V) be a wiolator space, |H| = n, and
dim (H,V) = d. Then the algorithm SA computes a basis of H with
an expected number of at most O(dInn) calls to BFA, with at most

O(d?) constraints each.

Proof. By definition of Cy, the expected number of leading controver-
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sial rounds in SA-forever is

Z Pr[Cy].

>1

For any 8 > 1, we can use (2.28) to bound this by

[B IOgl/a n]—1 00 ' a(ﬁ 10g1/a n]
(=1 (=[Blogy /o 1]
ni=P
< BIOgl/an+1_a
= Blogl/an—i_o(l)’

This upper bounds the expected number of rounds in SA. In every
round of SA one call to BFA is made, using cd? constraints, where

¢ > log, e is constant. O

2.4. Hypercube Partitions

What follows in this section is a small piece about the structure of
violator spaces. It concerns the uniqueness of what we call anti-bases,
and is unrelated to previous sections.

Let H be a finite set. Consider the graph on the vertices 277,
where two vertices F,G are connected by an edge if they differ in
exactly one element, i.e., G = FU{h}, h € H. This graph is a
hypercube of dimension n = |H|. For the sets A C B C H, we define
[A,B]:={C C H| ACC C B} and call any such [A, B] an interval.
A hypercube partition is a partition P of 27 into (disjoint) intervals.
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Let (H,V) be a violator space. We call two sets F,G C H equivalent
if V(F) = V(G), and let H be the partition of 2/ into equivalence
classes with respect to this relation. We call H the violation pattern
of the violator space (H,V).

Before we formulate and prove the hypercube partition theorem, we
need to introduce some notation. We extend the notion of violator

spaces by the concept of anti-basis.

Definition 2.31. Consider a violator space (H,V). We say that B C H
is an anti-basis if we have V(B)NF # () for all proper supersets
F > B . An anti-basis of G C H is a maximal superset B of G
with V(B) = V(Q).

Note that a maximal superset B of G such that V(B) = V(G) is
indeed an anti-basis of G. Suppose that there is a set B’ D B with
V(B)N B" = (). Locality then decrees that V(B) = V(B'), but this

contradicts the maximality of B.

Lemma 2.32. Consider the violator space (H,V). For any G C H

there is a unique anti-basis Bg of G.

Proof. Suppose that there exist two distinct anti-bases B and B’ of
G. Because of V(B) = V(B’) and consistency we have that (BUB’)N
V(B) = (BUB')NV(B') = 0. Therefore, by locality, V(B U B') =
V(B') = V(B). Since B and B’ are distinct, it cannot be that B\ B’ =
) and B'\B = ) at the same time. Then, in any case, |BU B’| > | B|
or |[BU B'| > |B| holds, which contradicts the maximality of the

anti-bases. O

Corollary 2.33. Let (H,V) be a violator space, G C H, Bg any basis
of G, and Bg the unique anti-basis of G. Then for any set F, Bg C
F C Bg, F and G are equivalent, i.e., V(F) = V(G).
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Proof. This is an immediate consequence of monotonicity (Lemma 2.5).

O
Lemma 2.34. H completely determines (H,V).

Proof. Let G C H. There is a unique anti-basis Bg of G, meaning
that in H, there is a unique inclusion-maximal superset of G in the
same class of the partition. This implies that V(G) = V(Bg) =
H \ Bg, so (H,V) is reconstructible from #. O

Lemma 2.35. If (H,V) is non-degenerate (unique bases), then H is a

hypercube partition.

Proof. We first show that V(B) = V(B’) implies V(BN B') = V(B U
B’) = V(B). The latter has been shown for the existence of a unique
anti-basis. For the former, we argue as follows. Let A be the unique
basis of BU B’. Then V(A) = V(B) = V(B’). But then A is also the
unique basis of B and B’. Tt follows that A C BN B’, and by locality
we get V(A) = V(BN B') =V(B).

This argument implies that any partition class C is contained in the
interval [Noee C, Ucee C]. On the other hand, the whole interval is

contained in C by locality, so we are done. O

Lemma 2.34 and 2.35 together imply that there is an injective map-
ping from the set of non-degenerate violator spaces to the set of hy-

percube partitions. It remains to show that the mapping is surjective.

Theorem 2.36. Any hypercube partition P is the violation pattern of

some non-degenerate violator space (H,V)

Proof. Let G C H, and let [B, B’] be the interval containing G. We
define V(G) = H \ B’ and claim that this is a non-degenerate violator
space with violation pattern P. The latter is clear, since V(F') = V(G)
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if and only if F,G C [B,B’]. To see the former, we observe that
consistency holds because of G C B’. To prove locality, choose G C G’
with H\ B’ =V(G)NG' = 0. In particular, G’ C B’, so G’ is also in
[B, B'] and we get V(G) = V(G’) by definition of V.

It remains to show that the violator space thus defined is non-
degenerate. Let B, B’ be two sets with V(B) = V(B'), meaning that
they are in the same partition class of P. But then B N B’ is also in
the same class, and we get V(B) = V(BN B’). This implies existence

of unique bases. O

2.5. Conclusion

We analyzed Clarkson’s algorithm in what we believe to be its most
general as well as natural setting. Additionally, we have given the
equivalence between non-degenerate violator spaces and hypercube
partitions, which could help identifying further applications in com-
putational geometry as well as other fields of computer science. An-
other major challenge is to develop a sub-exponential algorithm for
the third stage, BFA, in the framework of violator spaces (as there
already exists for LP’s and LP-type problems), or to prove that such

an algorithm cannot exist.






The present is a little raft,

floating on the ocean of the past.

Simplex Algorithm for

Quadratic Programming

This chapter is not going to present original work. It is going to be
a summary of the simplex algorithm for quadratic programming that
was developed [128| and implemented in CGAL [58] by Gértner and
Schonherr. At later stages Lutz and Wessendorp also contributed
to the implementation. The work of Wessendorp is documented in
three technical reports. He makes significant improvements, adding
support for degeneracies [148], upper bounding [150], and for dealing
with a previously unnoticed singularity in the essential linear equation
system [149]. Those references are unpublished technical reports that

are part of the CGAL documentation. To appreciate the chapters to

49
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come, we have to understand how the algorithm works.

For simplicity, let us assume that we are dealing with a non-
degenerate quadratic program in standard form (1.2). A problem
with inequalities is turned into an equality constrained program by
virtue of slack variables. The non-degeneracy assumptions are that
(1) the rows of A are linearly independent, and (ii) the subsystem
Agxa = b has only solutions for sets G C [n] with |G| > m. As men-

tioned above, the report [148] treats the degenerate case.

3.1. Karush-Kuhn-Tucker Conditions

The foundation for checking whether a feasible solution is optimal
are the Karush-Kuhn-Tucker (KKT) conditions, which are derived for
general convex optimization problems by requiring that the gradient
vanishes at an optimal point [21]|. For convex quadratic programs the

conditions are necessary and sufficient.

Theorem 3.1 (KKT conditions for EQP). A feasible solution x* € R"
of an equality constrained quadratic program EQP (see (1.2)) is op-
timal if and only if there exists A € R™ and p € R™, p > 0, such
that

A +20TD = —ATA+ 47,
plz* = 0.

In the algorithm we will consider unconstrained problems of the
form (1.3). The following version of the KKT conditions is also known

as the method of Lagrange multipliers.

Theorem 3.2 (KKT conditions for UQP). A feasible solution z* € R"
to unconstrained quadratic program UQP (see (3.4)) is optimal if and
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only if there exists A € R™ such that

oD = —\TA,

3.2. Basic Solutions

The linear constraints of (1.2) together with the nonnegativity con-
straints x; > 0 define a polytope P = {p € R" | Ap = b, p > 0}. In
linear programming it can be shown that the optimal solution will be
found at one of the vertices of P, which are called basic feasible solu-
tions. If a vertex is not an optimal solution, then the constraints at
that vertex define a simplicial cone, at least one edge of which leads to
a better solution. Hence, the method of pursuing the optimal solution
along one of these edges is called simpler algorithm. A variable i is
called basic if x; > 0 in the current solution, and non-basic otherwise.

In quadratic programming the optimal solution does not necessarily
lie at one of the vertices. Therefore, the definition of a basis is more
complicated, but it is still characterized by a subset B of the variables
that take on a nonzero value in the current solution. All the non-basic
variables N := [n]\ B will have zero value. Using this assignment for
N we can extend any solution to the following problem UQP(B) into
a feasible solution of the QP.

Definition 3.3 (QP-Basis). A subset B of the variables of a quadratic
program in standard form (1.2) defines a QP-basis if and only if

(i) the unconstrained sub-problem

(UQP(B)) min cng +$EDB,B$B

(3.4)
s.t. Apxzp = 0.
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has a unique optimal solution x; > 0, and
(ii) Ap has full (row) rank, i.e., rank(Ag) = m,

where cg, Dp g, and Ap are the entries of ¢, D, and A relevant for

the variables in B, respectively.

The following theorem gives an upper bound on the basis size. It is
crucial to many of the geometric applications described by Schonherr,

because it limits the influence of D.

Theorem 3.5 (Theorem 2.6 of [128]). Every QP-basis B of a quadratic

program in standard form (1.2) satisfies
|B| < m + rank(D).

Contrary to the traditional way of incorporating the matrix D into
the KKT system [152], the previous theorem is the key to reduce the
size of the basis matriz Mp. This matrix represents the KKT system
of the current iteration and consists of a selection of rows and columns
from the matrices A and D. With the help of Mp we will be able to
perform all the operations necessary during a particular iteration, e.g.,
checking the optimality conditions or deciding on a search direction.

The basis matrix Mp looks as follows,

Mp = (3.6)

We are going to see in the next section how to arrive at this formula-

tion.
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3.3. Simplex Pivot Step

Here we describe how simplex pivoting works. It is the process of go-
ing from one basic solution to another and essentially consists of three
steps. The pricing is the step in which we check for optimality of the
current solution. If that check is negative, it is decided which variable
is to enter the basis. This is followed by the ratio test, which is to
decide which variable has to leave the basis. Finally, in the last step
we do the actual update, that is, changing our data structures to re-
flect the change in basis. Most important, we make the corresponding
updates to the basis matrix.

In the following paragraphs we will remain brief and restrict our-
selves to the essentials. For a more detailed description we refer to
Schonherr [128] and Wessendorp [149].

Pricing

Assume that we are at an iteration with the current basis B, and we
would like to check whether adding variable j to the basis can improve
the solution. This is done by considering a quadratic program that is
restricted to the variables B U {j}. Drawing from the KKT conditions

in Theorem 3.1, we derive the following formula for ;,
¢j + 205" Dpj+205Dj5 = =N Auj + p, (3.7)

. .th
where Dp ; is the jt column of Dp,. The vectors A and z7 are

obtained by solving the equation system

Mg = , (3.8)

if we assume Mp as in equation (3.6).
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We solve equation (3.7) for uj;, and if p; < 0, adding the variable j
can indeed improve the solution. Only if p; > 0 for all j € [n]\B we

have arrived at an optimal solution.

To sum up, in the pricing step we have to compute the inverse of
Mg, in order to solve equation (3.8), and then evaluate a possibly
large number of equations of the form (3.7) involving vector products

with the vectors 7 and A.

Ratio Test

At this point we have identified a variable j that is going to enter the
basis. Now we would like to find some variable ¢ that will leave the
basis while we increase the value of variable j. So we go from basis
B, from the previous iteration, to the basis BU{j}\{i}. The non-
degeneracy conditions that we postulated at the beginning of this
chapter guarantee that the basis matrix is regular for every proper
basis according to Definition 3.3, and according to Lemma 2.7 of [128]
this is the case. The determination of the leaving variable is done
by considering the following unconstrained quadratic program of the

form (1.3). Let B := BU{j}.

(UQP;(E)) min 07: l'Be +:L'£ DB,BxB

B
s.t. A* BTp = b (39)
T; = t,

where ¢ = 0 is initially zero, and the unique solution z* 4(t) to equa-

tion (3.9), for each value of ¢, is determined by the equation

A Y (v L[ Ay
() () E)
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or equivalently by the equations

At Y
U ) -2 ), (3.11)
xB(t) ;] qx
A
ST P Vi [ (3.12)

The goal is to increase t until some basic variable becomes zero. With-
out going into further detail, we can see that — similarly to the pricing
step — it becomes necessary to compute matrix vector products with
the inverse of Mp (see equation (3.12)).

In reality the situation is more complicated for two reasons. First,
instead of a basic variable dropping out, it might also happen that
the objective function of (UQP} (B)) will reach a minimum. If this
is the case we have to continue with a second step of the ratio test
(see [128], page 27-28). Second, it might be that — even if the basis
matrix for BU{j}\{i} is regular — both Mp,;y as well as Mg\ ;3
are singular. In this case both update scenarios to get to the new basis
matrix by growing and shrinking updates are blocked. This requires

a replacement step of variables as described in [149].

Reduced Basis Matrix

We are now going to describe the role of slack variables. Recall that
slack variables are introduced to turn inequalities into equalities in the
quadratic programming formulation. A crucial ingredient in Schoén-
herr’s simplex algorithm is the fact that we can reduce the number of
rows and columns considered in the basis matrix. This is described in
Section 2.4 of [128]. Let E and S be the sets of indices of equality and

inequality constraints respectively. For every constraint in S a slack
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variable is introduced. Furthermore, let Bo and Bg be the sets of
original and slack basic variables, such that B = Bp U Bg. Also, let
Sy and Sp be the sets of non-basic and basic slack variables respec-
tively. These definitions at hand, we can can analyze equation (3.8)

again and arrive at the reduced formulation

0 ARuSy.Bo

Mp = (3.13)

T
AEUSN,BO 2DB,,Bo

Note that this definition replaces equation (3.6) in the presence of

slack variables and reduces the maximal size of the basis matrix to
[E|+ |Sx] + Bo| < minfn,m} +n,

which is a big improvement for the case m > n. Of course, this
condensed formulation has implications for the update procedures, as

we will see in Section 3.4.

The Need to Solve Transposed Systems

The last remark that we include in this section concerns the need for
solving equation systems determined by the transpose of A. From the
previous discussion it should be clear that — in the case of a linear

program — the basis matrix looks as follows,

Mp = 0 4 3.14
b= ). (3.14)

where we left out the selection of particular rows and columns for sim-
plicity. Instead of keeping this matrix as is, the simplex algorithm may

only store the matrix A (that is the factorization of A). Therefore,
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the need arises to solve systems A\ = b as well as AT rp = —cpB.
Traditionally, in the context of the linear programming simplex al-
gorithm, the former is called FTRAN (Forward TRANsformation),
while the latter is called BTRAN (Backward TRANsformation). We
will adopt the same nomenclature.

Note that these operations are necessary even for a proper quadratic
program. The reason for this is that every quadratic program goes
through a first phase in order to find an initial feasible solution. This
phase I problem is a purely linear optimization problem. At any rate,

only A needs to be kept instead of the basis matrix.

3.4. Basis Matrix Updates

After reviewing the course of the simplex algorithm in the last section,
let us describe the different types of updates of the basis matrix in
this section. In total there are twelve different types of updates. To
start, let us list them all (see also Section 6.3.2 of [128], and Section 4
of [149]):

Uy (QP) An original variable enters the basis, i.e., B is increased

by one element.

Uz (QP) An original variable leaves the basis, i.e., Bo is decreased

by one element.

Us (QP) A slack variable enters the basis, i.e., Sy is decreased

by one element.

Uy (QP) A slack variable leaves the basis, i.e., Sn is increased by

one element.

Us (LP) An original variable replaces an original variable in the
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basis, i.e., one element of By is replaced.

Us (LP) A slack variable replaces a slack variable in the basis,

i.e., one element of Sy is replaced.

Uy (LP) An original variable replaces a slack variable in the basis,

i.e., Bp and Sy are both increased by one element.

Us (LP) A slack variable replaces an original variable, i.e., Bo

and Sy are both decreased by one element.

Uz, (QP) An original variable replaces an original variable in the

basis, i.e., one element of Bp is replaced.

Uz, (QP) A slack variable replaces an original variable, i.e., Bo

and Sy are both decreased by one element.

Uz, (QP) An original variable replaces a slack variable in the basis,

i.e., Bo and Sy are both increased by one element.

Uz, (QP) A slack variable replaces a slack variable in the basis,

i.e., one element of Sy is replaced.

Note that we differentiate between LP and QP updates. In fact,
the first eight updates (U;-Ug) are already described by Schonherr.
The idea was that the replacement type updates (Us-Ug) are only
necessary in the LP case. For the QP case the growing and shrinking
updates (U;-Uy) are sufficient. It was later found by Wessendorp
that — also in the QP case — we need a kind of replacement type
updates (Ug,-Ugz,).

Recall that the stored matrix in the LP case is Apyg, p,, while in
the QP case we store Mp as in equation (3.13). Figure 3.15 shows the
growing and shrinking updates U;-Uy. The gray elements are the en-
tries to be inserted /deleted respectively. Note that in sub-figure 3.15b
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AEUSN,B : 2‘Z)BOvBO AEUSN B : 2DBO>BO
(a) Updates U; and U, (b) Updates Us and Uy

Figure 3.15.: The growing and shrinking QP updates (U;-Uy) are shown.

zero elements are also inserted in the upper left part of Mp. This is

indicated by the white elements that are adjoining the gray areas.

Figure 3.16 depicts the replacement updates for the QP case. Note
that the replacement areas show a striped pattern in white and gray.
This is indicating that those rows and columns are not removed or
deleted but replaced. We notice that we do not have to change any
entries in the upper left part of sub-figure 3.16b, because they are

already zero.

Figure 3.17 compiles updates from QP (3.17a) as well as LP (3.17b).
These updates do change the size of the matrix. Updates Uz, and
Uz, are the most complicated updates in terms of the basis matrix,

because they add/delete two rows and two columns each.

Finally, in Figure 3.18 we see the relatively simple LP updates Us
and Ug. They consist of replacing a row or a column respectively.

In summary, these are all the necessary updates that are used in
Schonherr’s quadratic programming algorithm. Not all of the up-

dates are equally important, however. Our own experiments indicate
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0 Apisy.s 0 ' Apusy.s
? {
| F
T | T |
AEUSN,B | 2DBO Bo AEUSN B | QDBOvBO
(a) Update Uy, (b) Update Uy,

Figure 3.16.: QP updates Uz, and Uy, are shown. The striped pattern
indicates that those elements are replaced.

that — without giving a detailed account — updates involving original
variables are a lot more likely than updates involving slack variables.
This depends on the particular instance, of course. In an LP prob-
lem we do not have any updates of the QP type”’. As rule of thumb,
updates Uyq, Ug, Us, and Uy, are the ones that are executed the most.

9 The converse is not true, however, because for every QP we need to solve an
LP to find an initial feasible solution.
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Figure 3.17.: LP update U7 and Usg.
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(a) Update Uy
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Figure 3.18.: LP update Us and Us.
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LU factorization

As we have outlined in the previous chapters, the LU factorization
is the tool we are going to use to solve linear equation systems that

come in two different forms,

Ax = b,

. (4.1)
and Atz =0b.

The rest of this chapter is structured as follows. First, we are going
to give an introduction into the topic of LU factorization in the fol-
lowing section. In Section 4.2 we discuss some classical algorithms
and basic properties. This will set the stage for introducing the inte-

gral LU factorization in Section 4.3. Following up on that, we discuss

63
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the issue of sparse matrices in more detail in Section 4.4, and we de-
velop an efficient update procedure for the integral LU factorization in
Section 4.5.

4.1. Introduction

LU factorization is a well studied topic in linear algebra. It is a key
component in several numerical applications, such as solving systems
of linear equations (our application), inverting a matrix, or computing
the determinant of a matrix. It is closely related to and based on
Gaussian elimination. It was first introduced in 1948 by the famous
Alan Turing [141]. For a comprehensive treatment see any basic text
on linear algebra or matrix computations, such as [119] or [65]. LU
factorizations in the context of sparse matrices are considered in an
excellent textbook by Davis [37] and another one by Duff, Erisman,
and Reid [43].

The tool is in fact so important in practical applications that a great
deal of research has been conducted to improve the performance of
LU factorizations. One line of work is concerned with conserving the
sparsity of matrices, that is, efficiency is boosted by trying to minimize
the fill-in of new nonzero elements during the factorization. We are
going to have a closer look at this topic in Section 4.4. References are
included there.

Another important concern is memory management in systems that
have a hierarchical memory layout'’. This topic is closely related to
the question of parallelism in the computation. The matrices to fac-

torize can be huge, so they do not fit into memory as a whole. As soon

10 We omit any mention of literature for vector supercomputers; a topic that has
also been studied.
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as paging starts to occur, memory oblivious algorithms usually grind
to a virtual standstill. This is also noticeable in our implementation,
and it is definitely an interesting direction for future research. A pa-
per that investigates the locality of reference of LU factorizations is,
for example, Toledo [140]. Building on the frontal approach by Irons
[75], whose most important feature is that the computation occurs in
only a small part of the matrix (and that only that part of the ma-
trix needs to be kept in memory), the multifrontal approach has been
developed by Duff and Reid [44]. This method ideally lends itself to
parallelization and has been popular in the research community, see
for example [35, 36, 38, 39, 92, 76, 5].

A similar approach is to try to reorder the (sparse) matrix such
that it consists of blocks that can be independently factored. See for
example the paper by Maurer and Wieners [102]. Two recent (and
consecutive) PhD theses by Huynh |74] and Maes [94] treat this topic

in the context of quadratic programming.

The above considerations of memory locality and parallelism are
out of the scope of this thesis, however. Our focus is going to be on
the integrality of the computations and a suitable update procedure.
Our main goal is to do all the computations over integral domains.
This is desirable if we want to be able to facilitate efficient and exact
computations. If the input to a quadratic programming problem is
integer, we want to stay in this realm to avoid doing too many compu-
tations over the rationals, which are more expensive. There are other
applications for factorizations over integral domains, such as factoring
matrices over rings of polynomials, for example. We will introduce
the integral LU factorization (diLU) and the corresponding routine for
solving linear equation systems (sdiLU) in Section 4.3. For more expla-

nations about the number domains considered see Section 4.2.6. As
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we have found recently, similar results have already been published,
but our methods carry some unique traits. For more details see the
section about related work concerning the integral LU factorization,
Section 4.3.1.

Following up on the integral LU factorization, we develop an effi-
cient update procedure (udiLU) in Section 4.3, that allows us recover
the factorization subject to low-rank changes of the original matrix.
To the best of our knowledge this is the first result in the realm of in-
tegral factorizations. We are building our algorithm on methods that
have been developed for the general case. For more details about
that, see 