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Abstract

The contributions of this thesis are twofold. We show two theoretical
results that are both related to quadratic programming.

The first one concerns the abstract optimization framework of viola-
tor spaces and the randomized procedure called Clarkson’s algorithm,
which is associated with solving violator spaces. Historically, Clark-
son’s algorithm was developed to solve linear programs, and provided
the earliest practical linear-time algorithm for linear programs. The
underlying concept of the problems solvable by this algorithm was
later expanded to LP-type problems, and finally to violator spaces.
Quadratic programming is also an LP-type problem. In a nutshell, the
algorithm randomly samples from a set of constraints, computes an
optimal solution subject to these constraints, and then checks whether
the ignored constraints agree with the solution. If not, some form of
re-sampling occurs, until an optimal solution is found that satisfies all
constraints. Originally, to make the analysis go through, there used
to be a preliminary test whether the random sample is good in some
sense. We show that this test is not necessary and we give evidence
that the modified version of Clarkson’s approach is the easiest version
that can still be analyzed successfully.

The second contribution concerns quadratic programming more di-
rectly. It is well-known that a simplex like procedure can be applied to
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quadratic programming – similar to the simplex algorithm for linear
programming. The main computational effort in this algorithm comes
from solving a series of linear equation systems that change gradually.
We develop a method that allows for efficiently solving these systems
under the assumption that (i) we want to do exact computations us-
ing some arbitrary precision number type, and (ii) the input may be
sparse, and that should be exploited. In particular, the tool of choice
is the LU factorization of the matrix to invert, and we call our al-
gorithm the integral LU factorization. We also give an algorithm to
update the factorization subject to low rank changes of the original
matrix, which covers the gradual changes during simplex iterations
that we mentioned.

Last but not least, a considerable portion of the work included in
this thesis was devoted to implementing the integral LU factorization
in the framework of the existing quadratic programming solver in the
Computational Geometry Algorithms Library (CGAL). In the last
two chapters we describe our implementation and the experimental
results we obtained.
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Zusammenfassung

Der Beitrag dieser Arbeit ist zweigeteilt. Wir zeigen zwei theoretische
Resultate, die beide im Zusammenhang mit quadratischen Program-
men stehen.

Das erste betrifft die abstrakte Klasse von Optimierungsproble-
men, die wir Verletzerräume nennen; insbesondere Clarkson’s Algo-
rithmus, der dazu verwendet wird, um Verletzerräume zu lösen. His-
torisch gesehen wurde Clarkson’s Algorithmus entwickelt, um lineare
Programme zu lösen, und stellt den ersten praktikablen Linearzeit-
Algorithmus für ebendiese dar. Die zugrunde liegende Beschreibung
der Probleme, die durch diesen Algorithmus lösbar sind, wurde später
auf LP-Typ Probleme, und schliesslich auf Verletzerräume ausgedehnt.
Quadratische Programme gehören auch zu den LP-Typ Problemen.
Kurz gesagt, macht der Algorithmus Folgendes: Aus der Menge der
Nebenbedingungen wird eine zufällige Auswahl getroffen. Dann wird
eine optimale Lösung unter diesen Nebenbedingungen berechnet und
überprüft, ob eine der bislang vernachlässigten Nebenbedingungen
diese Lösung verletzt. Falls dies der Fall ist, wird die zufällige Auswahl
modifiziert, und eine neue Lösung berechnet. Dies wird so lange
iteriert, bis alle Nebenbedingungen durch die aktuelle Lösung erfüllt
sind. Ursprünglich gab es bei jeder zufälligen Auswahl einen Test, der
überprüft hat, ob die Auswahl in einem bestimmten Sinne gut sei.
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Dies wurde getan, um die Laufzeit erfolgreich zu analysieren. Wir
zeigen, dass diese Tests nicht nötig sind, und führen aus, dass der
resultierende Algorithmus vermutlich die einfachste Form von Clark-
son’s Algorithmus darstellt, die noch erfolgreich analysiert werden
kann.

Der zweite Beitrag betrifft quadratische Programme direkter. Es
ist bekannt, dass ein Simplex-artiger Algorithmus auf quadratische
Programme angewendet werden kann, analog zum Simplex Algorith-
mus für lineare Programme. Der grösste Berechnungsaufwand bei
dieser Methode entsteht aus der Notwendigkeit, eine Reihe von lin-
earen Gleichungssystemen zu lösen, die sich graduell verändern. Wir
entwickeln eine Methode, die diese Gleichungssysteme effizient löst
unter der Annahme, dass wir (i) exakte Berechnungen mit einem
Zahlentyp durchführen wollen, der eine beliebige Präzision erlaubt,
und (ii) die Eingabe dünn sein kann, was ausgenützt werden soll.
Konkret stützen wir uns dabei auf die LU Zerlegung der Matrix, die es
zu invertieren gilt, und wir nennen unseren Algorithmus die integrale
LU Zerlegung. Zusätzlich geben wir einen Algorithmus an, mit dem
man die Zerlegung einer Matrix aktualisieren kann, angenommen die
Matrix habe sich durch einen additiven Term niedrigen Ranges verän-
dert. Dies verwenden wir um die graduellen Veränderungen während
eines Iterationsschrittes des Simplex Algorithmus zu behandeln.

Zu guter Letzt besteht ein beträchtlicher Teil des Aufwandes,
dessen Resultate in dieser Arbeit besprochen werden, daraus, die inte-
grale LU Zerlegung im Rahmengerüst des Lösers für quadratische Pro-
gramme in der Computational Geometry Algorithms Library (CGAL)
zu implementieren. In den letzten beiden Kapiteln besprechen wir
diese Implementierung und die experimentellen Resultate, die wir er-
halten haben.
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The left hand now knows what the
right hand is doing.

George W. Bush

1
Introduction

1.1. An Optimization Problem

1.1.1. Quadratic Programming

Optimization problems from different fields can be formulated as
quadratic programs, or as their even better studied specialization called
linear programs. A quadratic program asks to minimize a quadratic
objective function of several variables subject to a set of linear con-
straints on these variables. In its most general form it can be written
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2 Introduction

as follows,
(QP) min cTx+ xTDx

s.t. Ax ⪌ b

ℓ ≤ x ≤ u,
(1.1)

where A is an m× n-matrix, D is an n× n-matrix, b is an m-vector,
c is an n-vector and ℓ, u are n-vectors of bounds (where the entries
+∞ and −∞ may occur). The matrix A is called the constraint
matrix. The symbol ⪌ indicates that each of the three relations ≤,
=, or ≥ is admissible for a particular constraint. The n-vector x is
the solution vector, and consists of the variables that we have to find
optimal values for.

A solution vector x∗ = (x∗1, . . . , x
∗
n)

T is called feasible solution if it
satisfies all the constraints and bounds. If no feasible solution exists,
the problem is called infeasible. The region that is defined by the
constraint (in)equalities is called the feasible region. If the objective
function f(x) := cTx+xTDx is bounded from below, we say that the
problem is bounded, otherwise we say that it is unbounded.

We will also consider the equality constrained formulation, which is
sometimes called the standard formulation

(EQP) min cTx+ xTDx

s.t. Ax = b

x ≥ 0,

(1.2)

and the unconstrained formulation

(UQP) min cTx+ xTDx

s.t. Ax = b.
(1.3)

In a certain sense, all three forms are equivalent and can be con-
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verted into each other (possibly involving a change in the number of
variables and constraints). From an algorithmic point of view, the un-
constrained version UQP is strictly easier to solve using the method
of Lagrange multipliers. The different forms will serve us to highlight
different aspects of the problem description and the solution process.
Also note that the formulations for maximization are easily obtained
by multiplying f(x) by −1. Throughout the thesis we will always
state optimization tasks as minimization problems.

If D = 0 then we have a linear program at hand. In the other case,
D ̸= 0, we only consider positive semidefinite matrices in this thesis;
that is, xTDx ≥ 0 holds for all vectors x. This condition is equivalent
to saying that the objective function is convex (or strictly convex if D
is positive definite). In that case any local optimum of f(x) is also a
global optimum. While there exist (weakly) polynomial algorithms for
semidefinite quadratic programming [85, 155], it is NP-hard to find the
global minimum of a non-convex QP [127, 144]. Furthermore, finding
the local optimum of a non-convex QP – and under certain conditions
even checking local optimality – is NP-hard [109, 118]. Sometimes,
quadratically constrained quadratic programs are considered, where
the constraints on the variables may themselves be quadratic. This
variation is also NP-hard, because the constraint x1(x1 − 1) = 0

requires the solution to attain a discrete value x1 ∈ {0, 1}. This,
in turn, means that quadratically constrained QPs are a generaliza-
tion of 0-1 integer programs, which belong to Karp’s 21 NP-complete
problems [78].

1.1.2. Applications

The array of applications for quadratic programming is vast, and we
will only give a brief overview. Most important, let us point out the
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website A Quadratic Programming Page1, that is actively maintained
by Gould and Toint. It contains an up-to-date BibTEX collection
of almost one thousand papers revolving around quadratic program-
ming, including many applications. To name a few areas, let us men-
tion portfolio analysis [20, 112, 32, 131, 97, 96], VLSI design [16, 87,
160, 79, 51, 52, 83], discrete-time stabilization [17, 138, 93, 124], op-
timal and fuzzy control [77, 89, 15, 95, 104, 84, 81, 72], finite impulse
control [114, 90, 91, 103], optimal power flow [105, 19, 146, 106, 111,
116], economic dispatch [50, 68, 73, 9, 24, 28, 121, 107], and geometric
optimization. The latter problem class has been treated and surveyed
extensively by Schönherr in his PhD thesis [128]. In this exposition –
especially in the implementation part – we continue his work.

Some of these applications mentioned arise from the extension of
quadratic programming to non-linear (and generally non-quadratic)
optimization. The following optimization problem NLP is only re-
stricted by the condition that the objective function g : Rn → R
and the constraint functions b and c have to be twice continuously
differentiable. The nonlinear problem

(NLP) min g(x)

s.t. b(x) ≥ 0

c(x) = 0

(1.4)

can be solved by iterating through a series of approximate solution
vectors xk. At every step, the search direction dk by which we
change the iterate is determined by a quadratic programming sub-
problem. This method is known as sequential quadratic program-
ming (SQP) [134, 64].

1 http://www.numerical.rl.ac.uk/qp/qp.html, see also [66].

http://www.numerical.rl.ac.uk/qp/qp.html
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Let us illustrate two examples of quadratic programming problems in
the following paragraphs, which will outline one of the main motiva-
tions for this thesis.

Problem 1.5 (Smallest Enclosing Ball).
Given a sets of points P = {p1, . . . , pn} ∈ Rd, determine the smallest
ball that contains all the points.

If we define the d× n-matrix C := (p1, . . . , pn) to be the matrix that
contains the coordinates of the points as its columns, we can write
Problem 1.5 as the following quadratic program,

(SEB) min xTCTCx−
n

i=1

pTi pixi

s.t.
n

i=1

xi = 1

x ≥ 0.

(1.6)

It is not trivial to see but proved in Theorem 3.1 of [128] that any
optimal solution x∗ = (x∗1, . . . , x

∗
n)

T to this problem determines the
center c of the smallest enclosing ball,

c =
n

i=1

x∗i pi.

Furthermore, the squared radius of the ball is given by the negative
value of the objective function at x∗.

We notice that the quadratic part of the objective function, CTC,
is fully dense2. Even if it were not, there is always a translation of P ,

2 Dense means that most of the entries of the matrix are nonzero. By contrast,
sparse means the opposite, namely that most of the entries are zero. Note
that there is no formal definition of what “most” means in this context.
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such that all its coordinates are nonzero (and positive). Obviously,
such a translate P ′ results in a translated, but otherwise identical,
solution. So, except for specifically constructed cases, we have to
assume dense input. However, the matrix D := CTC also has the
convenient property that its rank is at most d. For fixed values of d,
this makes the problem tractable by Schönherr’s simplex algorithm,
even if the number of points is large – typically n ≫ d. This is due
to Theorem 2.6 of [128] (restated as Theorem 3.5 in this thesis).

We are going to describe that algorithm in more detail in Chap-
ter 3. Sven Schönherr developed it together with Bernd Gärtner [58],
and it was implemented in the Computational Geometry Algorithms
Library (CGAL)3 by the aforementioned, Kaspar Fischer, and Franz
Wessendorp. A major part of the present thesis deals with extending
that implementation. We will get to that in Chapters 5 and 6. For
now, let us continue with our introduction.

The important point about the smallest enclosing ball example is,
that Schönherr’s simplex algorithm is specifically tuned to this type
of application that often arises in computational geometry optimiza-
tion problems. More precisely, it profits from min{m,n} being small,
but it is insensitive to the occurrence of nonzero entries in the in-
put. For completeness, we note that other efficient algorithms exist
for the smallest enclosing ball problem: a randomized algorithm by
Welzl [147], approximation algorithms [157, 86], and a combinatorial
exact algorithm [53].

Now let us come to the second problem we announced earlier on.
Consider a chemical plant. The plant can produce n different products
that sell at a price pj each and come at a cost of cj . The contribution

3 http://www.cgal.org/

http://www.cgal.org/
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margin for each product is defined as dj := pj − cj . The plant has
a set of m machines whose workings are described by the production
coefficients ai,j . For each product j the value ai,j describes how much
of the capacity of machine i is used to produce a unit of product j.
The production coefficients can be aggregated in a matrix

A =

á
a1,1 . . . a1,n
...

...

am,1 . . . am,n

ë
.

Each machine also comes with a maximal capacity bi. The managers
of the plant would like to maximize their profits through maximizing
the sum of production margins.

Problem 1.7 (Maximizing Contribution Margins).
Given the vector of contribution margins d = (d1, . . . , dn), the vector
of maximal capacities b = (b1, . . . , bm), and the coefficient matrix A,
minimize −dTx.

Maximizing dTx is of course equivalent to minimizing −dTx. We
readily arrive at the following linear programming formulation,

(MCM) min − dTx
s.t. Ax ≤ b

x ≥ 0.

(1.8)

The crucial point here is that for a large plant that produces a large
number of products, the matrix A can be expected to be extremely
sparse, because a particular machine (or process) is likely to be able to
produce only a small number of products. This example illustrated a
setting that is typically encountered in large scale optimization prob-
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lems from operations research.
Of course, this is not a proper quadratic program, but actual large-

scale applications for quadratic programming often come from SQP4

formulations, which do not lend themselves to an easy description. For
another relatively simple example with a (proper) sparse quadratic
programming formulation consider the problem of tabular data pro-
tection; also known as statistical exposure control [25].

Above examples outline one of the main goals of this thesis. Schön-
herr’s implementation is not suited for the operations research setting,
where both m and n are large, usually in the hundreds if not thou-
sands. Implementations that are able to solve such large problems
need to be tackled differently. We need to take advantage of the large
number of zeros in the problem input. To see how it is possible to
incorporate this into Schönherr’s approach, let us first give a general
overview of the methods that have been developed to solve QPs.

1.1.3. Solution Methods

Essentially there are two different classes of algorithms to solve a
quadratic program in its general form (1.1): interior-point and active-
set methods. Another method that can be employed is the trust-
region approach; for a survey see [156]. We will restrict our discussion
to the former two. Also, as we have said earlier, we only consider
convex problems, i.e., D is assumed to be positive definite.

At their heart both of these methods – active-set as well as interior-
point – are based on the Karush-Kuhn-Tucker conditions for con-
vex optimization (see any standard textbook on convex optimization,
e.g., [21]). Without going into too much detail for now, both methods

4 Recall that SQP stands for sequential quadratic programming.
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go through a series of iterations in each of which a linear system of
equations has to be solved. We will call this the KKT system. The
relevant matrix looks as follows,

0 Ak

AT
k Dk


, (1.9)

where Ak and Dk are sub-matrices of A and D respectively.

Interior-point methods maintain an approximate solution that lies
strictly within the feasible region. In each iteration we have to solve
a KKT system that depends on all constraints and variables, i.e.,
Dk = D+∆(k) and Ak = A, where the diagonal matrix ∆(k) changes
from iteration to iteration. The number of iterations, however, is
usually low and almost independent of the problem size.

By contrast, active-set methods try to reduce the amount of work
necessary during each iteration by reducing the size of the KKT sys-
tem considered. They do this by distinguishing between the inequality
constraints that are satisfied exactly and those that are not. A con-
straint of the form aTx ≤ β is said to be active if aTx = β, inactive
if aTx < β, and violated if aTx > β. The motivation for this ap-
proach is that – if the set of active constraints and relevant variables
were known a priori – the problem reduces to a smaller equality con-
strained sub-problem like (1.2). The KKT system for that reduced
system is considered to identify a search direction; and the iterate
is modified by this search direction within the feasible region, until
some inactive constraint becomes active. The constraint is replaced
in the KKT system, and this is possible at considerably less effort
(O(N2)) as opposed to re-factoring the whole system (O(N3)), where
N is the size of matrix (1.9). One distinguishes between primal and
dual active set methods.
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Barring interior-point methods, quadratic programs that are in
standard form (1.2) are usually solved by an extension of the famous
simplex method for linear programming by Dantzig [33]. Early con-
siderations of this method are found in [152, 117]. More recently, we
note Schönherr’s algorithm and an extension to piece-wise quadratic
programming [125]. The simplex method is also an iterative method
that runs through a series of intermediate solutions. The main idea
of this approach is to keep track of the variables that have a nonzero
value in some iteration. Generally speaking, one can even allow arbi-
trary upper and lower bounds in place of the standard bounds. If a
variable is nonzero (more generally, different from any of its bounds)
it is called basic. Otherwise, a variable is called non-basic. The KKT
system (1.9) is reduced to consider only the basic variables. While
going through successive iterations, variables are entered and removed
from the current basis. The rule by which those variables are chosen
is known as (simplex) pivot rule. Even though the simplex method
proved to be efficient in practice, it can lead to exponential-time be-
havior on certain constructed problems [82]. This is true for almost all
variations of pivoting rules known up to date. It is still a major open
question whether there exists a pivot rule that leads to polynomial
bounds.

A common practice to make the simplex method applicable to linear
and quadratic programs having inequality constraints is to add slack
variables (see for example [26]). An inequality constraint aTx ≤ β

is transformed into an equality constraint by adding the nonnegative
variable s, such that aTx + s = β. Of course, if there are a lot
of inequality constraints (m ≫ n), this invariably leads to a blow
up in the number of variables that have to be considered for the
intermediate solution.
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In order to retain the favorable setup for the algorithm when m≫ n,
Schönherr combines the simplex approach with the properties of a pri-
mal active-set method, namely that a large number of slack variables
does not slow down the algorithm unduly. This is achieved by consid-
ering the active constraints only. The KKT system – which is called
basis matrix in the context of the simplex algorithm – is reduced to
the relevant variables as well as to a set of active constraints. We
arrive at an algorithm that performs well when min{m,n} is small,
as we have mentioned earlier.

Last, let us point out that the solution methods described above
are theoretically inferior to the ellipsoid method for solving convex
optimization problems. This method can solve convex quadratic pro-
gramming problems in weakly polynomial time [85]. This celebrated
result was initially proved in 1979 by Khachiyan for linear program-
ming [80]. In practice, however, interior-point and simplex methods
prove to be much more successful. For a short primer about algo-
rithm complexity – in particular what weak polynomiality means –
see Appendix A.2.

1.1.4. Integral Factorization

There is another issue that has to be considered; that is the one of
numerical accuracy. Obviously, LP and QP solvers should always
compute the correct result, and even more so, they should not crash
because of numerical singularities. Paraphrasing Schönherr [128] and
Gärtner [56], the two extreme approaches a solver can take to address
this problem are to either expect the worst or otherwise hope for the
best. The former means that all computations are performed using
exact arithmetic by employing an exact number type. Of course, this
imposes a (possibly severe) performance penalty. It is always correct,
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but also always slow. The latter approach is to do all operations using
standard floating point arithmetic and hoping that no instabilities
arise. This is always fast and usually correct. In CGAL’s QP solver a
mixed strategy is employed. The original representation of the basis
matrix is kept in exact arithmetic, but when it comes to deciding
which variable is to enter the basis – a process that is known as
pricing – this exact representation is converted to a floating point
representation. Safety bounds on the computations with this inexact
matrix are derived by Gärtner [56]. Using these bounds, it is possible
to know in which cases one has to revert to exact arithmetic. This
approach has the advantage of being always correct and usually fast.
The fact remains, however, that the basis matrix (or more specifically
its inverse) has to be computed and kept in exact arithmetic.

One of the main goals of this thesis is to expand the possibilities of
CGAL’s QP solver to a wider range of the parameters m and n. To do
that, it becomes necessary to take advantage of the sparse structure of
some inputs. This poses a limitation to the current implementation,
because the basis matrix is explicitly kept as its inverse. In general,
the inverse of a sparse matrix is dense. Therefore, we need another
method. We will use LU factorization to obtain a sparse “inverse”.
Once the LU factorization of a matrix is known, it can be used to
solve a linear system of equations in O(N2), where N is the size of
the matrix. This is in alignment with the expense that is necessary
to solve the same equation system if we have the actual inverse at
hand (matrix-vector multiplication). The complexity of computing
either the inverse or the LU factorization from scratch is O(N3). Of
course, these computational expenses concern the dense case, and do
not factor in the advantage we hope to gain by considering sparse
systems (this will be addressed in Sections 4.4 and 5.2). First, we
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develop an LU procedure that works on an integral domain and does
only use integral divisions. This is desirable if the input comes as
elements of an integral domain such as the integers. Furthermore, we
give an upper bound on the encoding size of the numbers involved in
the factorization. The bound depends on the encoding size of det(A),
where A is the input matrix. This is best possible in the sense that
it corresponds to the same magnitude that is asserted for the final
result by Cramer’s rule.

Robleda conducted preliminary tests in his master’s thesis [123] and
was able to show that a speed-up for sparse instances seems within
reach. His implementation was not free of divisions, however, and
there was no bound on the size of the numbers. An interesting fact
that was found by Robleda, is that if one attempts to solve the linear
KKT systems by the method of conjugate gradients the blow-up in
number size during the computation seems unmanageable. Therefore,
that approach had to be abandoned.

We derive the result mentioned above independently of a similar
result that has already been published in a slightly different context.
The latest of a series of papers about that topic is [158] by Zhou and
Jeffrey. They call the horse by a different name, and therefore we
have only recently become aware of this parallel track of research. A
more detailed discussion and references are found in Chapter 4, where
we derive our result.

A topic that – to the best of our knowledge – has not yet been
discussed in the context of integral factorizations is the one of an effi-
cient update. This is a vital ingredient for the successful application
of the CGAL QP solver to most instances. The update mirrors the
changes in the basis matrix from iteration to iteration. Typically,
these changes are small (constant rank updates) of the basis matrix.
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Therefore, it should be possible – as it is in the case of the basis in-
verse – to update the factorization with less effort than it takes to do
the computation from scratch. And indeed it is possible – as we show
in Chapter 4 – under certain circumstances. A difficulty arises from
the fact that unlike the inverse of a matrix, the LU factorization is
not unique. In particular, one usually applies reordering techniques
to maintain sparsity as well as possible. When performing an up-
date on a matrix that has already been factored we have to stick to
the initial ordering. This sometimes triggers a breakdown of the up-
date procedure. Ironically, this difficulty becomes more pronounced
the sparser the matrix is. We describe heuristics how the problem
can be overcome, sometimes, but we still lack an adaptive reordering
mechanism.

1.1.5. An Abstract View

The second major contribution of this thesis concerns a seemingly un-
related result about abstract optimization frameworks. In Chapter 2
we outline that violator spaces [57] exactly characterize the problems
that can be solved by Clarkson’s randomized algorithm5 [27]. Violator
spaces are an abstract class of optimization problems that operate on
a finite ground set H, and the goal is to find a subset of S ⊆ H such
that S “solves” the violator space. The only basic operation allowed
is the violation test, i.e., checking whether some h ∈ H\S violates S.
If there are no violators in H\S, we say that S is a basis of H and
therefore solves the violator space. We develop the arguably simplest
variant of Clarkson’s algorithm that can still be successfully analyzed.
We arrive at the essence of Clarkson’s approach – unencumbered by

5 Clarkson’s algorithm is introduced in Section 2.1.
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artificial tools that had previously been employed in the algorithm to
make the analysis go through.

Now, where is the connection to quadratic programming, one might
ask? It lies in the fact that the simplex algorithm for quadratic and
linear programming can be formulated in terms of violation tests.
Consider an equality constrained linear program,

(LP) min cTx

s.t. Ax = b

x ≥ 0,

(1.10)

where the number of variables n is as least as large as the number of
constraints m.

It is well known [26] that in the non-degenerate case the optimal
solution is uniquely defined by a subset of the variables called the
basic variables or simply basis. These are the variables that have a
nonzero value in the solution. In fact, let us consider the index sets
B,N ∈ [n] with |B| = m, |N | = n − m, and B ∪̇N = [n]. Using
these index sets, we can select the appropriate entries from x, c, and
A. For example, AB consists only of the columns of A whose indices
are contained in B. If A−1

B exists, we can derive the following formula
for the values of xB and the objective function z in terms of xN ,

xB = A−1
B b−A−1

B ANxN , (1.11)

z = cTBA
−1
B b+ (cTN − cTBA−1

B AN )xN . (1.12)

If an assignment of 0 to all variables in xN yields a nonnegative so-
lution for xB, we say that the variables indexed by B are a basis of
LP (note the identical terminology as in the case of violator spaces).
The whole set of assignments of values to xB and xN is then called a
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basic feasible solution.

Assuming that we have a basic feasible solution to start with, and
by considering the vector of reduced costs, γ = cTN − cTBA−1

B AN , we
are able to identify variables from N that may improve the solution.
In particular, if γj < 0, we may improve the value of z by increasing
the value of variable j. Variable j is called the entering variable6.
If γ ≥ 0 we have already found the optimal solution.

We can increase the value of the entering variable j until the value
of some other variable i drops to zero. Once that variable has been
identified, we can replace i by j in the basis. The variable i is therefore
called the leaving variable. The whole process of finding i is called
ratio test.

The important realization here is that we can regard the variables
as the ground set H of a violator space. The LP pricing takes the
role of the violation test and ratio test amounts to a re-computation
of the basis of some subset of H. These are exactly the primitives
employed in Clarkson’s algorithm. As soon as we will have arrived
at a vector γ ≥ 0 (no more violators), we will have found a basis for
the whole violator space, or in other words, the optimal solution of
the LP.

The same analogy also holds for quadratic programs, but the con-
cept of a quadratic programming basis is more complicated and left
to be defined in Section 3.2.

In fact, we have an even stronger definition than required for vi-
olator spaces, because the violation is quantifiable. We know that
increasing the value of the entering variable xj by α will reduce the

6 Note that we say “variable j” when we really mean variable xj . The reader may
excuse that we will use this slight abuse of notation in some places throughout
the whole thesis.



Statement of Results 17

objective value by −γjα. This specialization of a violator space is
called LP-type problem, and historically had been developed before
the concept of violator spaces [100].

1.2. Statement of Results

The main results of this thesis are the following:

(i) In Chapter 2 we introduce Theorem 2.17 and Theorem 2.30,
which prove results about Clarkson’s algorithm7. In particular,
the former extends a previously known result about Clarkson’s
first stage to violator spaces. The latter proves a similar result
for Clarkson’s second stage.

(ii) In Chapter 4 we introduce and describe Algorithm 4 (diLU)
and Algorithm 6 (udiLU), which can be used to compute and
update the integral LU factorization.

(iii) Last but not least, a considerable portion of the work that was
conducted for this thesis consisted of establishing an imple-
mentation of the integral factorization methods in the existing
quadratic programming solver of CGAL. Theoretical aspects
of this part are described in Chapter 3. Technical aspects are
described in Chapter 5, and experimental results, finally, are
presented in Chapter 6.

7 Clarkson’s algorithm is going to be introduced in Section 2.1, where we also
explain the meaning of the “first” and “second” stage.





Oh, many a shaft at random sent
Finds mark the archer little meant!
And many a word at random spoken
May soothe, or wound, a heart that’s broken!

Sir Walter Scott

2
Violator Spaces8

In this chapter we are going to describe simplifications of and theoretic
results about Clarkson’s randomized algorithm, which is the generic
tool for solving violator spaces. Note that, in this chapter, we are
going to adopt a slightly different nomenclature from the one that we
used in the introduction and the rest of the text. We consistently used
to call the number of constraints m and the number of variables of a
quadratic program n. Because the term of combinatorial dimension –
which we will introduce later in this chapter – naturally suggests d as

8 The contents of this chapter have already been published in Computational
Geometry journal of Elsevier [22]. According to the publishers copyright poli-
cies reprint and archiving are permitted. We only make slight modifications
in structure and content for better integration with this thesis.

19
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a variable name, we let this override the previous convention. It will
always be indicated, however, which variable denotes which quantity.

2.1. Introduction

Clarkson’s algorithm. Clarkson’s randomized algorithm [27] is the
earliest practical linear-time algorithm for linear programming with a
fixed number of variables. Combined with a later algorithm by Ma-
toušek, Sharir and Welzl [100], it yields the best (expected) worst-case
bound in the unit cost model that is known today. The combined algo-
rithm can solve any linear program with d variables and n constraints
with an expected number of O(d2n + exp(O(√d log d))) arithmetic
operations [59].

Clarkson’s algorithm consists of two primary stages, and it requires
as a third stage an algorithm for solving small linear programs with
O(d2) constraints. The first two stages are purely combinatorial and
use little problem-specific structure. One consequence of this fact
is the the algorithm smoothly extends to the larger class of LP-type
problems [100]. The bound on the running time is the same as above,
for concrete problems in this class, like finding the smallest enclosing
ball of a set of n points in dimension d [59].

Both primary stages of Clarkson’s algorithm are based on random
sampling and are conceptually simple. The main idea behind the use
of randomness is that we can solve a sub-problem subject to only a
small number of (randomly chosen) constraints, but still have only
few (of all) constraints that are violated by the solution of the sub-
problem. However, some extra machinery was originally needed to
make the analysis go through. More precisely, in both stages there
needed to be a check that the each individual random choice was
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good in a certain sense. Then in the analysis one needed to make
the argument that the bad cases do not occur too often. For the
first stage it was already shown by Gärtner and Welzl that these
extra checks can be removed [60]. The result is what we call the
German algorithm below. In this chapter we do the removal also
for the second stage, resulting in the Swiss algorithm. (The names
come from certain aspects of German and Swiss mentality that are
reflected in the respective algorithms.) We believe that the German
and the Swiss algorithm together represent the essence of Clarkson’s
approach.

Violator spaces. Gärtner, Matoušek, Rüst, and Škovroň proved that
Clarkson’s original algorithm is applicable in a still broader setting
than that of LP-type problems: It works for the class of violator
spaces [57]. At first glance, this seems to be yet another generalization
to yet another abstract problem class, but as Škovroň has shown, it
stops here: The class of violator spaces is the most general one for
which Clarkson’s algorithm is still guaranteed to work [132]. In a
nutshell, the difference between LP-type problems and violator spaces
is that, for the latter, the following trivial algorithm may cycle even
in the non-degenerate case: maintain the optimal solution subject to
a subset B of the constraints; as long as there is some constraint h
that is violated by this solution, replace the current solution by the
optimal solution subject to B ∪ {h}, and repeat. Examples of such
cyclic violator spaces can be found in [132]. For a easy and intuitive
example see also [57].

It was unknown whether the analysis of the German algorithm (the
stripped-down version of Clarkson’s first stage) also works for violator
spaces. For LP-type problems the analysis is nontrivial and constructs
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a composite LP-type problem. Here we show that this can still be
done for violator spaces in essentially the same way. For the Swiss
algorithm (the stripped-down version of Clarkson’s second stage), we
provide the first analysis at all. The fact that it works in the fully
general setting of violator spaces comes naturally.

The main difference of the German and the Swiss algorithm com-
pared to their original formulations is the following. In both stages,
at some point, Clarkson’s algorithm checks how many violated con-
straints some random sample of constraints produces. If there are too
many, then the algorithm discards the sample and re-samples. The
reason for this is that the analysis requires a bound on the number of
violators in each step. We essentially show that this bound only needs
to hold in expectation (and does so) for the analysis to go through.
The checks that we mentioned before are only an analytic tool and
not necessary for the algorithms to work.

Let us point out that no sub-exponential algorithm for finding the
basis (that is the “solution”) of a violator space is known. Therefore,
we can only employ brute force to “solve” small violator spaces. Note
that, e.g., in the context of linear programming, finding a basis means
identifying the constraints which are tight at an optimal point. We
call this the Brute Force Algorithm (BFA). Hence, the resulting best
worst-case bound known degrades to O(d2n+ f(d)), where f is some
exponential function of d. In this paper, we will not investigate this
point further and use BFA as a black box.

The German Algorithm (GA). Let us explain the algorithm for the
problem of finding the smallest enclosing ball of a set of n points in Rd

(this problem fits into the violator space framework). The algorithm
proceeds in rounds and maintains a working set G, initialized with a
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subset R of r points drawn at random. In each round the smallest
enclosing ball of G is being computed (by some other algorithm). For
the next round the points that are unhappy with this ball (the ones
that are outside) are added to G. The algorithm terminates as soon
as all points are happy with the smallest enclosing ball of G.

The crucial fact that we reprove below in the violator space frame-
work is this: The number of rounds is at most d+2, and for r ≈ d√n,
the expected maximum size of G is bounded by O(d√n). This means
that GA reduces a problem of size n to d+2 problems of expected size
O(d√n). We call this the German algorithm, because it takes – typi-
cally German – one decision in the beginning which is then efficiently
pulled through.

The Swiss Algorithm (SA). Like GA, this algorithm proceeds in
rounds, but it maintains a voting box that initially contains one slip
per point. In each round a set of r slips is drawn at random from the
voting box, and the smallest enclosing ball of the corresponding set R
is computed (by some other algorithm). For the next round all slips
are put back, and on top of that, the number of slips of the unhappy
points is doubled. The algorithm terminates as soon as all points are
happy with the smallest enclosing ball of the sample R.

Below we will prove the following: If r ≈ d2, the expected number
of rounds is O(log n). This means that SA reduces a problem of size n
to O(log n) problems of size O(d2). We call this the Swiss algorithm,
because it takes – typically Swiss – many independent local decisions
that magically fit together in the end.

Hypercube partitions. A hypercube partition is a partition of the
vertices of the hypercube such that every element of the partition is
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the set of vertices of some sub-cube. It was known that every non-
degenerate violator space induces a hypercube partition [101, 99]. We
prove here that also the converse is true, meaning that we obtain an
alternative characterization of the class of violator spaces. While this
result is not hard to obtain, it may be useful in the future for the
problem of counting violator spaces. The initial bounds provided by
Škovroň are still the best known ones [132].

Applications. We would love to present a number of convincing ap-
plications of the violator space framework, and in particular of the
German and the Swiss algorithm for violator spaces. Unfortunately,
we cannot. There is one known application of Clarkson’s algorithm
that really requires it to work for violator spaces and not just LP-type
problems [57]; this application (solving generalized P -matrix linear
complementarity problems with a fixed number of blocks) benefits
from our improvements in the sense that now also the German and
the Swiss algorithm are applicable to it (with less random resources
than Clarkson’s algorithm).

Our main contributions are therefore theoretical: We show that
Clarkson’s second stage can be simplified (resulting in the Swiss al-
gorithm), and this result is new even for LP-type problems and linear
programming. The fact that Clarkson’s first stage can be simplified
(resulting in the German algorithm) was known for LP-type prob-
lems; we extend it to violator spaces, allowing the German algorithm
to be used for solving generalized P -matrix linear complementarity
problems with a fixed number of blocks.

We believe that our version of Clarkson’s algorithm is the most
simple variant that can still successfully be analyzed.
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2.2. Prerequisites

2.2.1. The Sampling Lemma

The following lemma is due to Gärtner and Welzl in [60] and was
adapted to violator spaces in [57]. We repeat it here for the sake of
completeness, and because its proof and formulation are concise. Let
S be a set of size n, and φ : 2S → R a function that maps any set
R ⊆ S to some value φ(R). Define

V(R) := { s ∈ S\R | φ(R ∪ {s}) ̸= φ(R) }, (2.1)

X(R) := { s ∈ R | φ(R\{s}) ̸= φ(R) }. (2.2)

V(R) is the set of violators of R, while X(R) is the set of extreme
elements in R. Obviously,

s violates R⇔ s is extreme in R ∪ {s}.

For a random sample R of size r, i.e., a set R chosen uniformly at
random from the set

S
r


of all r-element subsets of S, we define ran-

dom variables Vr : R →→ |V(R)| and Xr : R →→ |X(R)|, and we consider
the expected values

vr := E[Vr],

xr := E[Xr].

Lemma 2.3 (Sampling Lemma, [60, 57]). For 0 ≤ r < n,

vr
n− r =

xr+1

r + 1
.

Proof. Using the definitions of vr and xr+1 as well as (2.2.1), we can
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argue as follows,Ç
n

r

å
vr =


R∈(Sr)


s∈S\R

[s violates R]

=


R∈(Sr)


s∈S\R

[s is extreme in R ∪ {s}]

=


Q∈( S
r+1)


s∈Q

[s is extreme in Q]

=

Ç
n

r + 1

å
xr+1.

Here, [·] is the indicator variable for the event in brackets. Finally, n
r+1


/
n
r


= (n− r)/(r + 1).

2.2.2. Definition of Violator Spaces

Definition 2.4. A violator space is a pair (H,V), where H is a fi-
nite set and V is a mapping 2H → 2H such that the following two
conditions are fulfilled.

Consistency: G ∩ V(G) = ∅ holds for all G ⊆ H, and
Locality: for all F ⊆ G ⊆ H, where G ∩ V(F ) = ∅,

we have V(G) = V(F ).

Lemma 2.5 (Lemma 17, [57]). Any violator space (H,V) satisfies
monotonicity defined as follows:

Monotonicity: V(F ) = V(G) implies V(E) = V(F ) = V(G)

for all sets F ⊆ E ⊆ G ⊆ H.

Proof. Assume that V(E) ̸= V(F ),V(G). Then locality yields ∅ ̸=
E ∩ V(F ) = E ∩ V(G) which contradicts consistency.
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Definition 2.6. Consider a violator space (H,V).

(i) We say that B ⊆ H is a basis if for all proper subsets F ⊂ B

we have B ∩ V(F ) ̸= ∅. For G ⊆ H, a basis of G is a minimal
subset B of G with V(B) = V(G). A basis in (H,V) is a basis
of some set G ⊆ H.

(ii) The combinatorial dimension of (H,V), denoted by dim(H,V),
is the size of the largest basis in (H,V).

(iii) (H,V) is non-degenerate if every set G ⊆ H, |G| ≥ dim(H,V),
has a unique basis. Otherwise (H,V) is degenerate.

Observe that a minimal subset B ⊆ G with V(B) = V(G) is indeed
a basis: Assume for contradiction that there is a set F ⊂ B such
that B ∩ V(F ) = ∅. Locality then yields V(B) = V(F ) = V(G),
which contradicts the minimality of B. Also, note that, because of
consistency, any basis B of H has no violators V(H) = V(B) = ∅.

Corollary 2.7 (of Lemma 2.3). Let (H,V) be a violator space of com-
binatorial dimension d, and |H| = n. If we choose a subset R ⊆ H,
|R| = r ≤ n, uniformly at random, then

E[|V(R)|] ≤ dn− r
r + 1

.

Proof. The corollary follows from the Sampling Lemma 2.3, with the
observation that |X(R)| ≤ d, ∀R ⊆ H.

2.3. Clarkson’s Algorithm Revisited

Clarkson’s algorithm can be used to compute a basis of some violator
space (H,V), n = |H|. It consists of two separate stages and the
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Brute Force Algorithm (BFA). The results about the running time
and the size of the sets involved are summarized in Theorem 2.17 and
Theorem 2.30.

The main idea of both stages (GA and SA) is the following: We
draw a random sample R ⊆ H of size r = |R| and then compute a
basis of R using some other algorithm. The crucial point here is that
r ≪ n hopefully. Obviously, such an approach may fail to find a basis
of H, and we might have to reconsider and enter a second round.
That is the point at which GA and SA most significantly differ.

In both stages we assume that the size of the ground set n is larger
than r, such that we can actually draw a sample of that size. We can
assume this w.l.o.g., because it is easy to incorporate an if statement
at the beginning that directly calls the other algorithm should n be
too small.

2.3.1. The German Algorithm (GA)

This algorithm works as follows. Let (H,V) be a violator space, |H| =
n, and dim(H,V) = d. We draw a random sample R ⊆ H, r =

d
»
n/2, only once, and initialize our working set G with R. Then we

enter a repeat loop, in which we compute a basis B of G and check
whether there are any violators in H. If no, then we are done and
return the basis B. If yes, then we add those violators to our working
set G and repeat the procedure.

The analysis will show that (i) the number of rounds is bounded



Clarkson’s Algorithm Revisited 29

by d+ 1, and (ii) the size of G in any round is bounded by O(d√n).

Algorithm 1: German Algorithm (GA)
Input : Violator space (H,V), with |H| = n and dim(H,V) = d

Output: A basis B of (H,V)

1 r ← d

n/2;

2 Choose R ⊆ H u.a.r., with |R| = r;
3 G← R;
4 repeat
5 B ← SA(G, V|G);
6 G← G ∪ V(B);
7 until V(B) = ∅;
8 return B

We will adopt some useful notations which we will use in the following
proofs. First, let us point out that the notation V|F refers to the
violator mapping restricted to some set F ⊆ H.

Definition 2.8. For i ≥ 0, by

B
(i)
R , V (i)

R , and G(i)
R

we denote the sets B, V(B), and G computed in round i of the repeat
loop above. Furthermore, we set G(0)

R := R, while B(0)
R and V (0)

R are
undefined. In particular, we have that B(i)

R is a basis of G(i−1)
R , and

V
(i)
R = V(G

(i−1)
R ). If the algorithm performs exactly ℓ rounds, sets

with indices i > ℓ are defined to be the corresponding sets of round ℓ.

The next one is an auxiliary lemma that we will need further on
in the analysis. It is a generalization of the fact that there is at least
one element of the basis of H found as a violator in every round (see
also Lemma 2.21).
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Lemma 2.9. For j < i ≤ ℓ, B(i)
R ∩ V

(j)
R ̸= ∅.

Proof. Assume that B
(i)
R ∩ V

(j)
R = ∅. Together with consistency,

G
(j−1)
R ∩ V (j)

R = ∅, this implies

(B
(i)
R ∪G

(j−1)
R ) ∩ V (j)

R = ∅.

Now, applying locality and the definition of basis, we get

V(B
(i)
R ∪G

(j−1)
R ) = V

(j)
R = V(B

(j)
R ). (2.10)

On the other hand, since V (i)
R = V(B

(i)
R ) and B

(i)
R ⊆ B

(i)
R ∪ G

(j−1)
R ⊆

G
(i−1)
R , we can apply monotonicity and derive

V
(i)
R = V(B

(i)
R ) = V(B

(i)
R ∪G

(j−1)
R ). (2.11)

Note that V (B
(j)
R ) ⊆ G(i−1)

R , because G always contains the violators
from previous rounds. Additionally, by equations (2.10) and (2.11)
we have that V (i)

R = V(B
(i)
R ∪G

(j−1)
R ) = V(B

(j)
R ). Thus, we can build

a contradiction of consistency,

G
(i−1)
R ∩ V (i)

R ⊇ V(B
(j)
R ) ∩ V (i)

R = V(B
(j)
R ) ̸= ∅.

The last inequality holds because j is not the last round.

The following lemma is the crucial result that lets us interpret the
development of the set G in the German Algorithm (Algorithm 1) as
a violator space itself.

Lemma 2.12. Let (H,V) be a violator space of combinatorial dimen-
sion d. For any subset R ⊆ H define

Γ(R) := (V
(1)
R , . . . , V

(d)
R ). (2.13)
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Using this we can define a new violator mapping as follows,

V′(R) := {h ∈ H\R | Γ(R) ̸= Γ(R ∪ {h}) }. (2.14)

Then the following statements are true:

(i) (H,V′) is a violator space of combinatorial dimension
at most

d+1
2


.

(ii) The set V′(R) is given by

V′(R) = V
(1)
R ∪ . . . ∪ V (d)

R = G
(d)
R \R.

(iii) If (H,V) is non-degenerate, then so is (H,V′).

To prove Lemma 2.12 we first need an auxiliary claim. Note that the
symbol ∪̇ denotes disjoint union.

Claim 2.15. Let Q be any set with Q = R ∪̇ T ⊆ H and i < d. If

V
(j+1)
Q = V

(j+1)
R , j ≤ i,

then
G

(j)
Q = G

(j)
R ∪̇ T, j ≤ i+ 1.

Proof of Claim 2.15. We prove the claim by induction on i. First, if
i = 0 the precondition reads V(Q) = V(R). It follows that G(1)

Q =

Q ∪ V(Q) = (R ∪̇ T ) ∪ V(R) = G
(1)
R ∪̇ T .

Suppose the claim is true for j ≤ i. From V
(i+1)
Q = V

(i+1)
R we can

deduce

G
(i+1)
Q = G

(i)
Q ∪ V

(i+1)
Q = (G

(i)
R ∪̇ T ) ∪ V

(i+1)
R = G

(i+1)
R ∪̇ T.
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Before we proceed to the proof of Lemma 2.12 let us first state the
consequences, which we obtain by applying Lemma 2.3 to the violator
space that we constructed.

Theorem 2.16 (Theorem 5.5 of [60]). For R ⊆ H with |H| = n, and
a random sample of size r,

E[|G(d)
R |] ≤

Ç
d+ 1

2

å
n− r
r + 1

+ r.

Choosing r = d
»
n/2 yields

E[|G(d)
R |] ≤ 2(d+ 1)

…
n

2
.

Proof of Theorem 2.16. The first inequality directly follows from the
sampling lemma (Lemma 2.3), applied to the violator space (H,V′),
together with part (ii) of Lemma 2.12. The second inequality follows
from plugging in the value for r.

Let us now come back to the previous lemma.

Proof of Lemma 2.12.
Proof of (i). We first need to check consistency and locality as defined
in Definition 2.4.

Consistency is easy, by the definition of V′. Since the violators
of R ⊆ H are chosen from H\R exclusively, we can be sure that
R ∩ V′(R) = ∅ for all R.

Let us recall what locality means. For sets R ⊆ Q ⊆ H, if Q ∩
V′(R) = ∅, then V′(Q) = V′(R). This we are going to prove by
induction on the size of Q\R. If |Q\R| = 0, then the two sets are the
same, and locality is obviously fulfilled. Now, suppose that |Q\R| =
i and locality is true for any smaller value j < i. Consider some
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set S fulfilling R ⊆ S ⊂ Q and Q = S ∪̇ {q}. First note that, if
Q ∩ V′(R) = ∅, then also S ∩ V′(R) = ∅. Therefore, the precondition
for the induction hypothesis is fulfilled, and we can conclude that
V′(R) = V′(S). Bearing this in mind, we can make the following
derivation,

Q ∩ V′(R) = ∅ ⇒ Q ∩ V′(S) = ∅
q∈Q⇒ q ̸∈ V′(S)
Def. (2.1)⇒ Γ(S) = Γ(S ∪̇ {q}) = Γ(Q)
Def. (2.1)⇒ V′(S) = V′(Q)

⇒ V′(R) = V′(Q).

That shows the locality of the violator space (H,V′).
We still have to show that (H,V′) has combinatorial dimension at

most
d+1

2


. To this end we prove that V′(BR) = V′(R), where

BR := R ∩
d

i=1

B
(i)
R .

Note that BR, as we will show in (iii), is in fact the unique basis of
the set R ⊆ H. By bounding the size of BR we therefore bound the
combinatorial dimension of (H,V′). Equivalent to V′(BR) = V′(R)

we show that V (j)
BR

= V
(j)
R , for 1 ≤ j ≤ d, using induction on j. For

j = 1 we get

V(R) = V(BR ∪ (R\BR)) = V(BR),

becauseR\BR is disjoint fromB
(1)
R , the basis ofR. Therefore, R\BR =

R \d
i=1B

(i)
R can be removed from R without changing the set of vi-

olators.
Now assume that the statement holds for j ≤ d − 1 and consider
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the case j = d. By Claim 2.15, we get G(j−1)
R = G

(j−1)
BR

∪̇ (R\BR).
Since R\BR is disjoint from the basis B(j)

R of G(j−1)
R it follows that

V
(j)
R = V(G

(j−1)
R ) = V(G

(j−1)
BR

∪̇ (R\BR)) = V(G
(j−1)
BR

) = V
(j)
BR
.

To bound the size of BR, we observe that

|R ∩B(i)
R | ≤ d+ 1− i,

for all i ≤ ℓ (the number of rounds in which V(B) ̸= ∅). This follows
from Lemma 2.9. B(i)

R has at least one element in each of the i − 1

sets V 1
R, . . . , V

(i−1)
R , which are in turn disjoint from R. Hence we get

|BR| ≤
ℓ

i=1

|R ∩B(i)
R | ≤

Ç
d+ 1

2

å
.

Proof of (ii). We show that if some constraint q ∈ H is in V′(R) then
it is also in V

(i)
R for some 1 ≤ i ≤ d. On the other hand if q ̸∈ V′(R)

then q is not in any of the V (i)
R , 1 ≤ i ≤ d. This proves the statement

of (ii).

Assume q ∈ V′(R) and let Q := R ∪ {q}. Consider the largest
index i < d− 1, such that

V
(j+1)
R = V

(j+1)
Q , j ≤ i.

Note that such an index i must exist, because V′(R) ̸= V′(Q), which
simply follows from q ∈ V′(R) and q ̸∈ V′(Q). Then, from Claim 2.15
it follows that G(i+1)

Q = G
(i+1)
R ∪̇ {q}, and by assumption on i we

know that V (i+2)
R ̸= V

(i+2)
Q . Therefore, by the contrapositive of lo-

cality, we conclude (G
(i+1)
R ∪̇ {q}) ∩ V(G

(i+1)
R ) ̸= ∅. This means that
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q ∈ V(G
(i+1)
R ) = V

(i+2)
R , because otherwise the consistency of G(i+1)

R

would be violated.

On the other hand, if q ̸∈ V′(R), then V′(R) = V′(Q), or equiva-
lently V (i)

R = V
(i)
Q , for 1 ≤ i ≤ d. However, because (H,V) is consis-

tent it follows that q ̸∈ V (i)
Q , and therefore q ̸∈ V (i)

R , for 1 ≤ i ≤ d.

Proof of (iii). Non-degeneracy of (H,V′) follows if we can show that
every set R ⊆ H has the set BR as its unique basis. To this end
we prove that whenever we have L ⊆ R with V′(L) = V′(R), then
BR ⊆ L.

Fix L ⊆ R with V′(L) = V′(R), i.e.,

V
(i)
R = V

(i)
L , 1 ≤ i ≤ d.

Claim 2.15 then implies

G
(i)
R = G

(i)
L ∪̇ (R\L), 0 ≤ i ≤ d,

and the non-degeneracy of (H,V) yields that G(i)
R and G

(i)
L have the

same unique basis B(i+1)
R , for all 0 ≤ i ≤ d. Note that B(i+1)

R is indeed
contained in G

(i)
L , because V(G

(i)
L ) = V(G

(i)
R ) = V(G

(i)
L ∪̇(R\L)) =

V(B
(i+1)
R ) for 0 ≤ i ≤ d. That means, if there exists a basis of G(i)

L ,
which by definition is also a basis of G(i)

R , but distinct from B
(i+1)
R ,

non-degeneracy is violated.

It follows that G(d−1)
L contains

d
i=1

B
(i)
R ,
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so L contains

L ∩
d

i=1

B
(i)
R = R ∩

d
i=1

B
(i)
R .

The latter equality holds because R\L is disjoint from G
(d)
L , thus in

particular from the union of the B(i)
R .

Theorem 2.17. Let (H,V) be a violator space of combinatorial di-
mension d, and n = |H|. Then the algorithm GA computes a basis of
(H,V) with at most d+ 1 calls to SA, with an expected number of at
most O(d√n) constraints each.

Proof. According to Lemma 2.9 (and maybe more intuitively accord-
ing to Lemma 2.21), in every round except the last one we add at least
one element of any basis of (H,V) to G. Since the size of the basis
is bounded by d we get that the number of rounds is at most d + 1.
Furthermore, according to Theorem 2.16, and our choice r = d

»
n/2,

the expected size of G will not exceed 2(d+1)
»
n/2 in any round.

2.3.2. The Swiss Algorithm (SA)

The algorithm SA proceeds similar as the first one. Let the input be
a violator space (H,V), |H| = n, and dim(H,V) = d.

First, let us (re)introduce the notation R(i), B(i), and V (i) for i ≥ 1,
similar as in Definition 2.8, for the sets R, B and V(R) of round i

respectively. The set B(i) is a basis of R(i) and V (i) = V(R(i)) =

V(B(i)). Since we draw a random sample in every round it does not
make sense to index the sets B(i) and V (i) by R, so we drop this
subscript.

After the initialization, we enter the first round and choose a ran-
dom sample R(1) of size r = 2d2 uniformly at random from H.
Then we compute an intermediate basis B(1) of the violator space
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(R(1), V|R(1)) by using BFA as a black box. In the next step, we com-
pute the set of violated constraints V (1). So far, it is the same thing as
the first stage. But now, instead of enforcing the violated constraints
by adding them to the active set, we increase the probability that the
violated constraints are chosen in the next round. This is achieved by
means of the multiplicity or weight variable µ.

Algorithm 2: Swiss Algorithm (SA)
Input : Violator space (H,V), |H| = n, and dim(H,V) = d

Output: A basis B of (H,V)

1 µh ← 1 for all h ∈ H;
2 r ← 2d2;
3 repeat
4 choose random R from H according to µ;
5 B ← BFA(R, V|R);
6 µh ← 2µh for all h ∈ V(B);
7 until V (B) = ∅;
8 return B

Definition 2.18. With every h ∈ H we associate the multiplicity
µh ∈ N. For an arbitrary set F ⊆ H we define the cumulative multi-
plicity as

µ(F ) :=

h∈F

µh.

For the analysis we also need to keep track of this value across different
iterations of the algorithm. For i ≥ 0 we will use µ(i)h (and µ(i)(F )) to
denote the (cumulative) multiplicity at the end of round i. We define
µ
(0)
h := 1 for any h ∈ H, and therefore µ(0)(F ) = |F |.

Now back to the algorithm. To increase the probability that a
constraint h ∈ V (i) is chosen in the random sample of round i+ 1 we
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double the multiplicity of h, i.e., µ(i)h := 2µ
(i−1)
h .

The multiplicities determine how the random sample R(i+1) is cho-
sen. To this end we construct a multiset Ĥ(i+1) to which we add µ(i)h

copies of every element h ∈ H. To simplify notation, let us for a
moment fix the round i+ 1 and drop the corresponding superscript.

We define the function ϕ : 2H → 2Ĥ as the function that maps a
set of elements from H to the set of corresponding elements in Ĥ, i.e.,
for F ⊆ H,

ϕ(F ) :=

h∈F
{h1, . . . , hµh

}, (2.19)

where the hj , 1 ≤ j ≤ µh, are the distinct copies of h. For exam-
ple, Ĥ = ϕ(H). Conversely, let ψ : 2Ĥ → 2H be the function that
collapses a given subset of Ĥ to their original elements in H, i.e., for
F̂ ⊆ Ĥ,

ψ(F̂ ) := {h ∈ H | ϕ({h}) ∩ F̂ ̸= ∅}. (2.20)

Reintroducing the superscript i + 1 we can simply say that we con-
struct Ĥ(i+1) = ϕ(H) using the multiplicities from round i. The
sample R̂(i+1) is then chosen u.a.r. from the r-subsets of Ĥ(i+1). In
the following the multiset property will not be important any more
and we can discard multiple entries to obtain R(i+1) = ψ(R̂(i+1)).
Note that 1 ≤ |R(i+1)| ≤ r. Then we continue as in round 1. Note
that in the first round this is in fact equivalent to choosing an r-subset
u.a.r. from H, because µ(0)h = 1 for all h ∈ H.

The algorithm terminates as soon as V (ℓ) = ∅ for some round ℓ ≥ 1

and returns the basis B(ℓ).
Let us first discuss an auxiliary lemma similar to Lemma 2.9.

Lemma 2.21 (Observation 22 in [57]). Let (H,V) be a violator space,
F ⊆ G ⊆ H, and G∩V(F ) ̸= ∅. Then G∩V(F ) contains at least one
element from every basis of G.
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Proof. Since the proof is short we repeat it here. Let B be some basis
of G and assume that B∩G∩V(F ) = B∩V(F ) = ∅. From consistency
we get F ∩ V(F ) = ∅. Together this implies

(B ∪ F ) ∩ V(F ) = ∅.

Applying locality and monotonicity, we get

V(F ) = V(B ∪ F ) = V(G),

meaning that G ∩ V(G) = G ∩ V(F ) = ∅, a contradiction.

The analysis of SA will show that the elements in any basis B
of H will increase their multiplicity so quickly that they are chosen
with high probability after a logarithmic number of rounds. This, of
course, means that the algorithm will terminate, because there will
be no violators. Formally, we will have to employ trick though. We
will consider a modification of SA that runs forever, regardless of the
current set of violators. Let us call the modified algorithm SA-forever.
We call a particular round i controversial if V (i) ̸= ∅. Furthermore, let
Cℓ be the event that the first ℓ rounds are controversial in SA-forever.

Lemma 2.22. Let (H,V) be a violator space, |H| = n, dim (H,V) = d,
B any basis of H, and k ∈ N some positive integer. Then, in SA-
forever, the following holds for the expected cumulative multiplicity
of B after kd rounds,

2k Pr[Ckd] ≤ E[µ(kd)(B)].

Proof. In any controversial round, Lemma 2.21 asserts that B∩V (i) ̸=
∅. So, in every controversial round, the multiplicity of at least one ele-
ment inB is doubled. Therefore, by conditioning on the event that the
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first kd rounds are controversial, there must be a constraint in B that
has been doubled at least k times (recall that |B| ≤ d). It follows that
E[µ(kd)(B)] = E[µ(kd)(B) |Ckd] Pr[Ckd] + E[µ(kd)(B) |Ckd] Pr[Ckd] ≥
2k Pr[Ckd].

Lemma 2.23. Let (H,V) be a violator space, |H| = n, dim (H,V) = d,
B any basis of H, and k ∈ N some positive integer. Then, in SA-
forever, the following holds for the expected cumulative multiplicity of
B after kd rounds,

E[µ(kd)(B)] ≤ n
Å
1 +

d

r

ãkd
.

Proof. Let us point out first, that the following analysis goes through
for SA-forever as well as for SA, but to make it match Lemma 2.22 we
formulated it using the former.

Note that E[µ(kd)(B)] ≤ E[µ(kd)(H)], because B ⊆ H. Therefore, if
we show the upper bound for the latter expectation we are done. Let
ℓ := kd be the number of rounds, and ∆(i)(F ) := µ(i)(F )− µ(i−1)(F )

the increase of multiplicity from one round to another, for any i ≥ 1

and F ⊆ H. We write the expected weight of H after ℓ rounds as the
sum of the initial weight plus the expected increase in weight in every
round from 1 to ℓ,

E[µ(ℓ)(H)] = E[µ(0)(H)] +
ℓ

i=1

E[∆(i)(H)]. (2.24)

The first term is easy, E[µ(0)(H)] = n, and the second term we write
as a conditional expectation, assuming that the weight in round i− 1
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was t,

ℓ
i=1

E[∆(i)(H)] =
ℓ

i=1

∞
t=0

E[∆(i)(H)|µ(i−1)(H) = t] Pr[µ(i−1)(H) = t].

(2.25)

Now comes the crucial step. According to Lemma 2.3 we can upper
bound E[∆(i)(H)|µ(i−1)(H) = t] by interpreting it as the expected
number of violators of a multiset extension of (H,V). To this end
we construct a violator space (Ĥ(i), V̂), where Ĥ(i) = ϕ(H) using
the multiplicities from round i − 1. Let us fix round i and drop the
superscript for the moment. For any F̂ ⊆ Ĥ we define

V̂(F̂ ) := ϕ(V(ψ(F̂ ))). (2.26)

We observe that (Ĥ, V̂) is indeed a violator space. For F̂ ⊆ Ĥ,
consistency is preserved, because from consistency of (H,V) it follows
that ϕ(ψ(F̂ )) ∩ ϕ(V(ψ(F̂ ))) = ∅, and knowing F̂ ⊆ ϕ(ψ(F̂ )), we can
conclude consistency of (Ĥ, V̂). Similarly, for F̂ ⊆ Ĝ ⊆ Ĥ, locality of
(H,V) tells us that if ϕ(ψ(Ĝ)) ∩ ϕ(V(ψ(F̂ ))) = ∅ then ϕ(V(ψ(F̂ ))) =
ϕ(V(ψ(Ĝ))), and knowing Ĝ ⊆ ϕ(ψ(Ĝ)), locality of (Ĥ, V̂) follows.

The violator space we just constructed has the same ground set Ĥ
by means of which we draw the random sample R in every round.
By supplying a valid violator mapping we asserted that we can apply
the sampling lemma to that process. Some thinking reveals that d =

dim(H,V) = dim(Ĥ, V̂) (even though we introduced degeneracy), and
we can conclude that

E[∆(i)(H)|µ(i−1)(H) = t] = E[|V̂(R̂(i))|] ≤ d t− r
r + 1

. (2.27)

Therefore we get the simplified expression
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E[µ(ℓ)(H)] ≤ n+
ℓ

i=1

∞
t=0

d
t− r
r + 1

Pr[µ(i−1)(H) = t]

= n+
ℓ

i=1


d

r + 1

∞
t=0

tPr[µ(i−1)(H) = t]

− dr

r + 1

∞
t=0

Pr[µ(i−1)(H) = t]



= n+
d

r + 1

ℓ
i=1

E[µ(i−1)(H)]− ℓ dr

r + 1
.

The first line is derived from (2.24), (2.25), and (2.27). The rest
is routine. Dropping the last term we get the following recursive
equation,

E[µ(ℓ)(H)] ≤ n+
d

r + 1

ℓ−1
i=0

E[µ(i)(H)],

which easily resolves to the claimed bound.

Using ℓ = kd, and combining Lemma 2.22 and 2.23, we now know
that

2k Pr[Cℓ] ≤ n
Å
1 +

d

r

ãℓ
.

This inequality gives us a useful upper bound on Pr[Cℓ], because the
left-hand side power grows faster than the right-hand side power as a
function of ℓ, given that r is chosen large enough.

Let us choose r = c d2 for some constant c > log2 e ≈ 1.44. We
obtain

Pr[Cℓ] ≤ n
Å
1 +

1

c d

ãℓ
/ 2k ≤ n 2(ℓ log2 e)/(c d)−k,
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using 1 + x ≤ ex = 2x log2 e for all x. This further gives us

Pr[Cℓ] ≤ nαℓ, (2.28)

α := α(d, c) = 2(log2 e−c)/(c d) < 1.

This implies the following tail estimate.

Lemma 2.29. For any β > 1, the probability that SA-forever starts
with at least ⌈β log1/α n⌉ controversial rounds is at most

n1−β.

Proof. The probability for at least this many leading controversial
rounds is at most

Pr[C⌈β log1/α n⌉] ≤ nα⌈β log1/α n⌉ ≤ nαβ log1/α n = nn−β = n1−β.

We can also bound the expected number of leading controversial
rounds in SA-forever, and this bounds the expected number of rounds
in SA, because SA terminates upon the first non-controversial round
it encounters.

Theorem 2.30. Let (H,V) be a violator space, |H| = n, and
dim (H,V) = d. Then the algorithm SA computes a basis of H with
an expected number of at most O(d lnn) calls to BFA, with at most
O(d2) constraints each.

Proof. By definition of Cℓ, the expected number of leading controver-



44 Violator Spaces

sial rounds in SA-forever is


ℓ≥1

Pr[Cℓ].

For any β > 1, we can use (2.28) to bound this by

⌈β log1/α n⌉−1
ℓ=1

1 + n
∞

ℓ=⌈β log1/α n⌉
αℓ = ⌈β log1/α n⌉ − 1 + n

α⌈β log1/α n⌉

1− α

≤ β log1/α n+
n1−β

1− α

= β log1/α n+ o(1).

This upper bounds the expected number of rounds in SA. In every
round of SA one call to BFA is made, using c d2 constraints, where
c > log2 e is constant.

2.4. Hypercube Partitions

What follows in this section is a small piece about the structure of
violator spaces. It concerns the uniqueness of what we call anti-bases,
and is unrelated to previous sections.

Let H be a finite set. Consider the graph on the vertices 2H ,
where two vertices F,G are connected by an edge if they differ in
exactly one element, i.e., G = F ∪̇ {h}, h ∈ H. This graph is a
hypercube of dimension n = |H|. For the sets A ⊆ B ⊆ H, we define
[A,B] := {C ⊆ H | A ⊆ C ⊆ B} and call any such [A,B] an interval.
A hypercube partition is a partition P of 2H into (disjoint) intervals.



Hypercube Partitions 45

Let (H,V) be a violator space. We call two sets F,G ⊆ H equivalent
if V(F ) = V(G), and let H be the partition of 2H into equivalence
classes with respect to this relation. We call H the violation pattern
of the violator space (H,V).

Before we formulate and prove the hypercube partition theorem, we
need to introduce some notation. We extend the notion of violator
spaces by the concept of anti-basis.

Definition 2.31. Consider a violator space (H,V ). We say that B̄ ⊆ H
is an anti-basis if we have V(B̄) ∩ F ̸= ∅ for all proper supersets
F ⊃ B̄ . An anti-basis of G ⊆ H is a maximal superset B̄ of G
with V(B̄) = V(G).

Note that a maximal superset B̄ of G such that V(B̄) = V(G) is
indeed an anti-basis of G. Suppose that there is a set B̄′ ⊃ B̄ with
V(B̄) ∩ B̄′ = ∅. Locality then decrees that V(B̄) = V(B̄′), but this
contradicts the maximality of B̄.

Lemma 2.32. Consider the violator space (H,V). For any G ⊆ H

there is a unique anti-basis B̄G of G.

Proof. Suppose that there exist two distinct anti-bases B̄ and B̄′ of
G. Because of V(B̄) = V(B̄′) and consistency we have that (B̄∪ B̄′)∩
V(B̄) = (B̄ ∪ B̄′) ∩ V(B̄′) = ∅. Therefore, by locality, V(B̄ ∪ B̄′) =

V(B̄′) = V(B̄). Since B̄ and B̄′ are distinct, it cannot be that B̄\B̄′ =

∅ and B̄′\B̄ = ∅ at the same time. Then, in any case, |B̄ ∪ B̄′| > |B̄|
or |B̄ ∪ B̄′| > |B̄′| holds, which contradicts the maximality of the
anti-bases.

Corollary 2.33. Let (H,V) be a violator space, G ⊆ H, BG any basis
of G, and B̄G the unique anti-basis of G. Then for any set F , BG ⊆
F ⊆ B̄G, F and G are equivalent, i.e., V(F ) = V(G).
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Proof. This is an immediate consequence of monotonicity (Lemma 2.5).

Lemma 2.34. H completely determines (H,V).

Proof. Let G ⊆ H. There is a unique anti-basis B̄G of G, meaning
that in H, there is a unique inclusion-maximal superset of G in the
same class of the partition. This implies that V(G) = V(B̄G) =

H \ B̄G, so (H,V) is reconstructible from H.

Lemma 2.35. If (H,V) is non-degenerate (unique bases), then H is a
hypercube partition.

Proof. We first show that V(B) = V(B′) implies V(B ∩B′) = V(B ∪
B′) = V(B). The latter has been shown for the existence of a unique
anti-basis. For the former, we argue as follows. Let A be the unique
basis of B ∪B′. Then V(A) = V(B) = V(B′). But then A is also the
unique basis of B and B′. It follows that A ⊆ B ∩B′, and by locality
we get V(A) = V(B ∩B′) = V(B).

This argument implies that any partition class C is contained in the
interval [


C∈C C,


C∈C C]. On the other hand, the whole interval is

contained in C by locality, so we are done.

Lemma 2.34 and 2.35 together imply that there is an injective map-
ping from the set of non-degenerate violator spaces to the set of hy-
percube partitions. It remains to show that the mapping is surjective.

Theorem 2.36. Any hypercube partition P is the violation pattern of
some non-degenerate violator space (H,V)

Proof. Let G ⊆ H, and let [B,B′] be the interval containing G. We
define V(G) = H \B′ and claim that this is a non-degenerate violator
space with violation pattern P. The latter is clear, since V(F ) = V(G)
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if and only if F,G ⊆ [B,B′]. To see the former, we observe that
consistency holds because ofG ⊆ B′. To prove locality, chooseG ⊆ G′

with H \B′ = V(G) ∩G′ = ∅. In particular, G′ ⊆ B′, so G′ is also in
[B,B′] and we get V(G) = V(G′) by definition of V.

It remains to show that the violator space thus defined is non-
degenerate. Let B,B′ be two sets with V(B) = V(B′), meaning that
they are in the same partition class of P. But then B ∩ B′ is also in
the same class, and we get V(B) = V(B ∩B′). This implies existence
of unique bases.

2.5. Conclusion

We analyzed Clarkson’s algorithm in what we believe to be its most
general as well as natural setting. Additionally, we have given the
equivalence between non-degenerate violator spaces and hypercube
partitions, which could help identifying further applications in com-
putational geometry as well as other fields of computer science. An-
other major challenge is to develop a sub-exponential algorithm for
the third stage, BFA, in the framework of violator spaces (as there
already exists for LP’s and LP-type problems), or to prove that such
an algorithm cannot exist.





The present is a little raft,
floating on the ocean of the past.

3
Simplex Algorithm for

Quadratic Programming

This chapter is not going to present original work. It is going to be
a summary of the simplex algorithm for quadratic programming that
was developed [128] and implemented in CGAL [58] by Gärtner and
Schönherr. At later stages Lutz and Wessendorp also contributed
to the implementation. The work of Wessendorp is documented in
three technical reports. He makes significant improvements, adding
support for degeneracies [148], upper bounding [150], and for dealing
with a previously unnoticed singularity in the essential linear equation
system [149]. Those references are unpublished technical reports that
are part of the CGAL documentation. To appreciate the chapters to
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come, we have to understand how the algorithm works.
For simplicity, let us assume that we are dealing with a non-

degenerate quadratic program in standard form (1.2). A problem
with inequalities is turned into an equality constrained program by
virtue of slack variables. The non-degeneracy assumptions are that
(i) the rows of A are linearly independent, and (ii) the subsystem
AGxG = b has only solutions for sets G ⊆ [n] with |G| ≥ m. As men-
tioned above, the report [148] treats the degenerate case.

3.1. Karush-Kuhn-Tucker Conditions

The foundation for checking whether a feasible solution is optimal
are the Karush-Kuhn-Tucker (KKT) conditions, which are derived for
general convex optimization problems by requiring that the gradient
vanishes at an optimal point [21]. For convex quadratic programs the
conditions are necessary and sufficient.

Theorem 3.1 (KKT conditions for EQP). A feasible solution x∗ ∈ Rn

of an equality constrained quadratic program EQP (see (1.2)) is op-
timal if and only if there exists λ ∈ Rm and µ ∈ Rn, µ ≥ 0, such
that

cT + 2x∗TD = −λTA+ µT ,

µTx∗ = 0.

In the algorithm we will consider unconstrained problems of the
form (1.3). The following version of the KKT conditions is also known
as the method of Lagrange multipliers.

Theorem 3.2 (KKT conditions for UQP). A feasible solution x∗ ∈ Rn

to unconstrained quadratic program UQP (see (3.4)) is optimal if and
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only if there exists λ ∈ Rm such that

cT + 2x∗TD = −λTA.

3.2. Basic Solutions

The linear constraints of (1.2) together with the nonnegativity con-
straints xi ≥ 0 define a polytope P = {p ∈ Rn | Ap = b, p ≥ 0}. In
linear programming it can be shown that the optimal solution will be
found at one of the vertices of P, which are called basic feasible solu-
tions. If a vertex is not an optimal solution, then the constraints at
that vertex define a simplicial cone, at least one edge of which leads to
a better solution. Hence, the method of pursuing the optimal solution
along one of these edges is called simplex algorithm. A variable i is
called basic if xi > 0 in the current solution, and non-basic otherwise.

In quadratic programming the optimal solution does not necessarily
lie at one of the vertices. Therefore, the definition of a basis is more
complicated, but it is still characterized by a subset B of the variables
that take on a nonzero value in the current solution. All the non-basic
variables N := [n]\B will have zero value. Using this assignment for
N we can extend any solution to the following problem UQP(B) into
a feasible solution of the QP.

Definition 3.3 (QP-Basis). A subset B of the variables of a quadratic
program in standard form (1.2) defines a QP-basis if and only if

(i) the unconstrained sub-problem

(UQP(B)) min cTBxB + xTBDB,BxB

s.t. ABxB = b.
(3.4)
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has a unique optimal solution x∗B > 0, and

(ii) AB has full (row) rank, i.e., rank(AB) = m,

where cB, DB,B, and AB are the entries of c, D, and A relevant for
the variables in B, respectively.

The following theorem gives an upper bound on the basis size. It is
crucial to many of the geometric applications described by Schönherr,
because it limits the influence of D.

Theorem 3.5 (Theorem 2.6 of [128]). Every QP-basis B of a quadratic
program in standard form (1.2) satisfies

|B| ≤ m+ rank(D).

Contrary to the traditional way of incorporating the matrix D into
the KKT system [152], the previous theorem is the key to reduce the
size of the basis matrix MB. This matrix represents the KKT system
of the current iteration and consists of a selection of rows and columns
from the matrices A and D. With the help of MB we will be able to
perform all the operations necessary during a particular iteration, e.g.,
checking the optimality conditions or deciding on a search direction.
The basis matrix MB looks as follows,

MB :=

Ü
0 A∗,B

AT
∗,B 2DB,B

ê
. (3.6)

We are going to see in the next section how to arrive at this formula-
tion.
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3.3. Simplex Pivot Step

Here we describe how simplex pivoting works. It is the process of go-
ing from one basic solution to another and essentially consists of three
steps. The pricing is the step in which we check for optimality of the
current solution. If that check is negative, it is decided which variable
is to enter the basis. This is followed by the ratio test, which is to
decide which variable has to leave the basis. Finally, in the last step
we do the actual update, that is, changing our data structures to re-
flect the change in basis. Most important, we make the corresponding
updates to the basis matrix.

In the following paragraphs we will remain brief and restrict our-
selves to the essentials. For a more detailed description we refer to
Schönherr [128] and Wessendorp [149].

Pricing
Assume that we are at an iteration with the current basis B, and we
would like to check whether adding variable j to the basis can improve
the solution. This is done by considering a quadratic program that is
restricted to the variables B ∪̇ {j}. Drawing from the KKT conditions
in Theorem 3.1, we derive the following formula for µj ,

cj + 2x∗B
TDB,j + 2x∗jDj,j = −λTA∗,j + µj , (3.7)

where DB,j is the jth column of DB,∗. The vectors λ and x∗B are
obtained by solving the equation system

MB

Ñ
λ

x∗B

é
=

Ñ
b

−cB

é
, (3.8)

if we assume MB as in equation (3.6).
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We solve equation (3.7) for µj , and if µj < 0, adding the variable j
can indeed improve the solution. Only if µj ≥ 0 for all j ∈ [n]\B we
have arrived at an optimal solution.

To sum up, in the pricing step we have to compute the inverse of
MB, in order to solve equation (3.8), and then evaluate a possibly
large number of equations of the form (3.7) involving vector products
with the vectors x∗B and λ.

Ratio Test
At this point we have identified a variable j that is going to enter the
basis. Now we would like to find some variable i that will leave the
basis while we increase the value of variable j. So we go from basis
B, from the previous iteration, to the basis B ∪̇ {j}\{i}. The non-
degeneracy conditions that we postulated at the beginning of this
chapter guarantee that the basis matrix is regular for every proper
basis according to Definition 3.3, and according to Lemma 2.7 of [128]
this is the case. The determination of the leaving variable is done
by considering the following unconstrained quadratic program of the
form (1.3). Let B̂ := B ∪̇ {j}.

(UQPt
j(B̂)) min cT

B̂
xB̂ + xT

B̂
DB̂,B̂ xB̂

s.t. A∗,B̂ xB̂ = b

xj = t,

(3.9)

where t = 0 is initially zero, and the unique solution x∗B̂(t) to equa-
tion (3.9), for each value of t, is determined by the equation

MB

Ñ
λ(t)

x∗B(t)

é
=

Ñ
b

−cB

é
− t
Ñ

A∗,j

2DB,j

é
, (3.10)
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or equivalently by the equationsÑ
λ(t)

x∗B(t)

é
=

Ñ
λ

x∗B

é
− t
Ñ

qλ

qx

é
, (3.11)Ñ

qλ

qx

é
:=M−1

B

Ñ
A∗,j

2DB,j

é
. (3.12)

The goal is to increase t until some basic variable becomes zero. With-
out going into further detail, we can see that – similarly to the pricing
step – it becomes necessary to compute matrix vector products with
the inverse of MB (see equation (3.12)).

In reality the situation is more complicated for two reasons. First,
instead of a basic variable dropping out, it might also happen that
the objective function of (UQPt

j(B̂)) will reach a minimum. If this
is the case we have to continue with a second step of the ratio test
(see [128], page 27-28). Second, it might be that – even if the basis
matrix for B ∪̇ {j}\{i} is regular – both MB ∪̇ {j} as well as MB \{i}

are singular. In this case both update scenarios to get to the new basis
matrix by growing and shrinking updates are blocked. This requires
a replacement step of variables as described in [149].

Reduced Basis Matrix
We are now going to describe the role of slack variables. Recall that
slack variables are introduced to turn inequalities into equalities in the
quadratic programming formulation. A crucial ingredient in Schön-
herr’s simplex algorithm is the fact that we can reduce the number of
rows and columns considered in the basis matrix. This is described in
Section 2.4 of [128]. Let E and S be the sets of indices of equality and
inequality constraints respectively. For every constraint in S a slack
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variable is introduced. Furthermore, let BO and BS be the sets of
original and slack basic variables, such that B = BO ∪̇BS . Also, let
SN and SB be the sets of non-basic and basic slack variables respec-
tively. These definitions at hand, we can can analyze equation (3.8)
again and arrive at the reduced formulation

MB :=

Ü
0 AE∪̇SN ,BO

AT
E∪̇SN ,BO

2DBO,BO

ê
. (3.13)

Note that this definition replaces equation (3.6) in the presence of
slack variables and reduces the maximal size of the basis matrix to

|E|+ |SN |+ |BO| ≤ min{n,m}+ n,

which is a big improvement for the case m ≫ n. Of course, this
condensed formulation has implications for the update procedures, as
we will see in Section 3.4.

The Need to Solve Transposed Systems
The last remark that we include in this section concerns the need for
solving equation systems determined by the transpose of A. From the
previous discussion it should be clear that – in the case of a linear
program – the basis matrix looks as follows,

MB =

Ñ
0 A

AT 0

é
, (3.14)

where we left out the selection of particular rows and columns for sim-
plicity. Instead of keeping this matrix as is, the simplex algorithm may
only store the matrix A (that is the factorization of A). Therefore,
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the need arises to solve systems Aλ = b as well as AT x∗B = −cB.
Traditionally, in the context of the linear programming simplex al-
gorithm, the former is called FTRAN (Forward TRAN sformation),
while the latter is called BTRAN (Backward TRAN sformation). We
will adopt the same nomenclature.

Note that these operations are necessary even for a proper quadratic
program. The reason for this is that every quadratic program goes
through a first phase in order to find an initial feasible solution. This
phase I problem is a purely linear optimization problem. At any rate,
only A needs to be kept instead of the basis matrix.

3.4. Basis Matrix Updates

After reviewing the course of the simplex algorithm in the last section,
let us describe the different types of updates of the basis matrix in
this section. In total there are twelve different types of updates. To
start, let us list them all (see also Section 6.3.2 of [128], and Section 4
of [149]):

U1 (QP) An original variable enters the basis, i.e., BO is increased
by one element.

U2 (QP) An original variable leaves the basis, i.e., BO is decreased
by one element.

U3 (QP) A slack variable enters the basis, i.e., SN is decreased
by one element.

U4 (QP) A slack variable leaves the basis, i.e., SN is increased by
one element.

U5 (LP) An original variable replaces an original variable in the
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basis, i.e., one element of BO is replaced.

U6 (LP) A slack variable replaces a slack variable in the basis,
i.e., one element of SN is replaced.

U7 (LP) An original variable replaces a slack variable in the basis,
i.e., BO and SN are both increased by one element.

U8 (LP) A slack variable replaces an original variable, i.e., BO

and SN are both decreased by one element.

UZ1 (QP) An original variable replaces an original variable in the
basis, i.e., one element of BO is replaced.

UZ2 (QP) A slack variable replaces an original variable, i.e., BO

and SN are both decreased by one element.

UZ3 (QP) An original variable replaces a slack variable in the basis,
i.e., BO and SN are both increased by one element.

UZ4 (QP) A slack variable replaces a slack variable in the basis,
i.e., one element of SN is replaced.

Note that we differentiate between LP and QP updates. In fact,
the first eight updates (U1-U8) are already described by Schönherr.
The idea was that the replacement type updates (U5-U8) are only
necessary in the LP case. For the QP case the growing and shrinking
updates (U1-U4) are sufficient. It was later found by Wessendorp
that – also in the QP case – we need a kind of replacement type
updates (UZ1-UZ4).

Recall that the stored matrix in the LP case is AE∪̇SN ,BO
, while in

the QP case we store MB as in equation (3.13). Figure 3.15 shows the
growing and shrinking updates U1-U4. The gray elements are the en-
tries to be inserted/deleted respectively. Note that in sub-figure 3.15b
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0 AE∪̇SN ,B

2DBO,BOAT
E∪̇SN ,B

(a) Updates U1 and U2

0 AE∪̇SN ,B

2DBO,BOAT
E∪̇SN ,B

(b) Updates U3 and U4

Figure 3.15.: The growing and shrinking QP updates (U1-U4) are shown.

zero elements are also inserted in the upper left part of MB. This is
indicated by the white elements that are adjoining the gray areas.

Figure 3.16 depicts the replacement updates for the QP case. Note
that the replacement areas show a striped pattern in white and gray.
This is indicating that those rows and columns are not removed or
deleted but replaced. We notice that we do not have to change any
entries in the upper left part of sub-figure 3.16b, because they are
already zero.

Figure 3.17 compiles updates from QP (3.17a) as well as LP (3.17b).
These updates do change the size of the matrix. Updates UZ2 and
UZ3 are the most complicated updates in terms of the basis matrix,
because they add/delete two rows and two columns each.

Finally, in Figure 3.18 we see the relatively simple LP updates U5

and U6. They consist of replacing a row or a column respectively.

In summary, these are all the necessary updates that are used in
Schönherr’s quadratic programming algorithm. Not all of the up-
dates are equally important, however. Our own experiments indicate
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0 AE∪̇SN ,B

2DBO,BOAT
E∪̇SN ,B

(a) Update UZ1

0 AE∪̇SN ,B

2DBO,BOAT
E∪̇SN ,B

(b) Update UZ4

Figure 3.16.: QP updates UZ1 and UZ4 are shown. The striped pattern
indicates that those elements are replaced.

that – without giving a detailed account – updates involving original
variables are a lot more likely than updates involving slack variables.
This depends on the particular instance, of course. In an LP prob-
lem we do not have any updates of the QP type9. As rule of thumb,
updates U1, U2, U5, and UZ1 are the ones that are executed the most.

9 The converse is not true, however, because for every QP we need to solve an
LP to find an initial feasible solution.
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0 AE∪̇SN ,B

2DBO,BOAT
E∪̇SN ,B

(a) Update UZ2 and UZ3

AE∪̇SN ,B

(b) Updates U7 and U8

Figure 3.17.: LP update U7 and U8.

AE∪̇SN ,B

(a) Update U5

AE∪̇SN ,B

(b) Update U6

Figure 3.18.: LP update U5 and U6.
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This is the War Room.

President Merkin Muffley,
from Dr. Strangelove
by Stanley Kubrick.

4
LU factorization

As we have outlined in the previous chapters, the LU factorization
is the tool we are going to use to solve linear equation systems that
come in two different forms,

Ax = b,

and ATx = b.
(4.1)

The rest of this chapter is structured as follows. First, we are going
to give an introduction into the topic of LU factorization in the fol-
lowing section. In Section 4.2 we discuss some classical algorithms
and basic properties. This will set the stage for introducing the inte-
gral LU factorization in Section 4.3. Following up on that, we discuss
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the issue of sparse matrices in more detail in Section 4.4, and we de-
velop an efficient update procedure for the integral LU factorization in
Section 4.5.

4.1. Introduction

LU factorization is a well studied topic in linear algebra. It is a key
component in several numerical applications, such as solving systems
of linear equations (our application), inverting a matrix, or computing
the determinant of a matrix. It is closely related to and based on
Gaussian elimination. It was first introduced in 1948 by the famous
Alan Turing [141]. For a comprehensive treatment see any basic text
on linear algebra or matrix computations, such as [119] or [65]. LU
factorizations in the context of sparse matrices are considered in an
excellent textbook by Davis [37] and another one by Duff, Erisman,
and Reid [43].

The tool is in fact so important in practical applications that a great
deal of research has been conducted to improve the performance of
LU factorizations. One line of work is concerned with conserving the
sparsity of matrices, that is, efficiency is boosted by trying to minimize
the fill-in of new nonzero elements during the factorization. We are
going to have a closer look at this topic in Section 4.4. References are
included there.

Another important concern is memory management in systems that
have a hierarchical memory layout10. This topic is closely related to
the question of parallelism in the computation. The matrices to fac-
torize can be huge, so they do not fit into memory as a whole. As soon

10 We omit any mention of literature for vector supercomputers; a topic that has
also been studied.
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as paging starts to occur, memory oblivious algorithms usually grind
to a virtual standstill. This is also noticeable in our implementation,
and it is definitely an interesting direction for future research. A pa-
per that investigates the locality of reference of LU factorizations is,
for example, Toledo [140]. Building on the frontal approach by Irons
[75], whose most important feature is that the computation occurs in
only a small part of the matrix (and that only that part of the ma-
trix needs to be kept in memory), the multifrontal approach has been
developed by Duff and Reid [44]. This method ideally lends itself to
parallelization and has been popular in the research community, see
for example [35, 36, 38, 39, 92, 76, 5].

A similar approach is to try to reorder the (sparse) matrix such
that it consists of blocks that can be independently factored. See for
example the paper by Maurer and Wieners [102]. Two recent (and
consecutive) PhD theses by Huynh [74] and Maes [94] treat this topic
in the context of quadratic programming.

The above considerations of memory locality and parallelism are
out of the scope of this thesis, however. Our focus is going to be on
the integrality of the computations and a suitable update procedure.
Our main goal is to do all the computations over integral domains.
This is desirable if we want to be able to facilitate efficient and exact
computations. If the input to a quadratic programming problem is
integer, we want to stay in this realm to avoid doing too many compu-
tations over the rationals, which are more expensive. There are other
applications for factorizations over integral domains, such as factoring
matrices over rings of polynomials, for example. We will introduce
the integral LU factorization (diLU) and the corresponding routine for
solving linear equation systems (sdiLU) in Section 4.3. For more expla-
nations about the number domains considered see Section 4.2.6. As
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we have found recently, similar results have already been published,
but our methods carry some unique traits. For more details see the
section about related work concerning the integral LU factorization,
Section 4.3.1.

Following up on the integral LU factorization, we develop an effi-
cient update procedure (udiLU) in Section 4.3, that allows us recover
the factorization subject to low-rank changes of the original matrix.
To the best of our knowledge this is the first result in the realm of in-
tegral factorizations. We are building our algorithm on methods that
have been developed for the general case. For more details about
that, see the related work section concerning the update procedure,
Section 4.5.1.

Finally, we are trying to link our results to methods that are used
to deal with sparse matrices. This is discussed in Section 4.4. In
the case of the integral LU factorization it is possible to incorporate
any of the known methods that are used to optimize the factorization
procedures. We demonstrate this by applying the Markowitz rule to
our factorization. However – as we will discuss in Section 4.5.3 – in
the case of the update procedure, it is still an open question whether
sparse matrices can be accommodated satisfactorily. Sometimes up-
dates do fail. This problem is more pronounced in the case of sparse
matrices.

Let us begin with a discussion of some basic properties of and al-
gorithms for the general LU factorization.

4.2. General

In this section we are going to introduce the LU factorization in-
cluding some basic facts, review different approaches to compute LU
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factorizations, and close by talking about the number domains that
we do our computations in.

4.2.1. Definition

Let Mn(R) be the set of square matrices of order n over the field of the
real numbers. Furthermore, let Ln(R) ⊂ Mn(R) and Un(R) ⊂ Mn(R)
be the set of square lower triangular and upper triangular matrices
respectively. Lower triangular (upper triangular) means, that the
matrix has only zero entries above (below) the diagonal. Using this
we can formulate the following definition.

Definition 4.2. Let A ∈ Mn(R). The matrix A is said to have an LU
factorization if there exist matrices L ∈ Ln(R) and U ∈ Un(R), such
that

A = LU.

See Figure 4.3 for an illustration. In general, if such a decomposition
exists, it is not unique, but if we prescribe the diagonal elements
of, say, L to be equal to 1 then the decomposition is unique (and
this is always possible). Furthermore, note that we call a triangular
matrix with ones on the diagonal unit lower triangular or unit upper
triangular matrix respectively.

4.2.2. Existence

Let us denote by Ai..j, k..ℓ the sub-matrix that consists of rows i to
j of matrix A, but only considering the columns k to ℓ. Writing
Ai..j we mean the square matrix Ai..j, i..j . If the range of columns or
rows represented is the whole range, we may simply write a star, for
example, A∗, 1 to denote the first column of A. We could also write
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A L U

= ·

1

1

1

1

1

1

1

0

0

Figure 4.3.: This is an illustration of the matrices L and U of an LU fac-
torization. The dots represent arbitrary elements. Note that
L is unit lower triangular.

A∗, ∗ to denote the full matrix. And naturally, a single element is
denoted by Ai, j .

The exact conditions for which an LU factorization of A exists, are
given in [115]. Note that the following theorem does not only consider
square matrices. Even though this is not necessary for our purposes
we include it here, because it leads to the conditions for the square
case.

Theorem 4.4 (Theorem 1 of [115]). An arbitrary matrix A ∈ Rm×n

has an LU factorization if and only if it satisfies the following condi-
tions,

rank(A1..k) + k ≥ rank(A1..k, ∗) + rank(A∗, 1..k),

for all k ∈ {1, . . . , n}.

If the matrix is square and invertible, i.e., it has full rank, then the
previous theorem reduces to the following well-known fact.

Corollary 4.5. An invertible matrix A ∈ Mn(R) has an LU factor-
ization if and only if all principal leading sub-matrices of A have full
rank.
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Proof. Since A is invertible we have

rank(A1..k, ∗) = rank(A∗, 1..k) = k,

for all k ∈ {1, . . . , n}. Then – by Theorem 4.4 – A has an LU factor-
ization if and only if

rank(A1..k) = k,

for all k ∈ {1, . . . , n}.

4.2.3. Uniqueness

The title of this section is something of a misnomer. In fact, the
LU factorization is not unique in general. If we require the diagonal
elements of the matrix L to be equal to one, as it is usually done in
the standard definition, we get the following theorem.

Theorem 4.6 (Theorem 3.2.1 of [65]). Let A ∈ Mn(R). If the LU
factorization exists, A is non-singular, and the diagonal elements of
L are equal to 1, then the LU factorization is unique.

Proof. Suppose there are two distinct LU factorizations A = L1U1 =

L2U2. We get that L−1
2 L1 = U2U

−1
1 . Note that L−1

2 is unit lower
triangular and U−1

1 is upper triangular. This means that L−1
2 L1 is

unit lower triangular as well, and U2U
−1
1 is upper triangular. Equality

between these two terms is only possible if L−1
2 L1 = In. Therefore,

also U2U
−1
1 = In, and hence, L1 = L2 and U1 = U2, which is a

contradiction.

As we will see in Section 4.2.5, there is another source of variability.
While the conditions of Corollary 4.5 may not be fulfilled for an in-
vertible matrix A, they still can be for some permutation of the rows
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of A. For all permutations of A that fulfill the conditions we get a
different factorization, from which we can recover A. For a simple
illustration of this fact, consider the matrix

A =

á
0 α

. ..

α 0

ë
.

It clearly has an LU factorization if we just invert the order of the
rows.

4.2.4. Computation

In this section we will review a few basic methods to transform a
matrix into an LU factorization. We will see several methods that are
closely related, and try to analyze their suitability for our purposes.

Parts of the following treatment are taken from a summary of ma-
trix algorithms by Timothy Vismor [145]. Furthermore, for more de-
tailed explanations, see the following textbooks [65, 29, 133, 37, 43].

For the rest of this section, let A = (ai,j)
n
i,j=1 be the input matrix,

consisting of the elements ai,j . This is the matrix that we want to
factorize,

A =

á
a1,1 . . . a1,n
...

...

an,1 . . . an,n

ë
.

Gaussian Elimination
Arguably the most straightforward way of computing the LU factor-
ization is the Gaussian elimination process. This is also the method
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upon which the integral LU factorization in Section 4.3 is based. The
main idea is to eliminate the sub-diagonal elements of the input ma-
trix A column by column by adding a multiple of a previous row to
later rows of the matrix. This procedure is carried out over n − 1

iteration steps. The matrix U is completed row by row and L is com-
pleted column by column, but in every iteration we update a number
of elements in the lower right part of the original A. To see this,
consider the following inductive step,

l11

l21 L22


u11 u12

U22


=


a11 a12

a21 A22


, (4.7)

where l11 = 1 is a scalar. All three matrices are square and partitioned
identically. Equation (4.7) implies the following equations,

u11 = a11,

u12 = a12,

l21u11 = a21,

l21u12 + L22U22 = A22.

These equations readily yield the values for u11, u12, and l21. Re-
member that u11 is just a scalar. For the lower right part A22 we get
the following modification,

L22U22 = A22 − l21u12.

All elements in the lower right part of the matrix are subjected to a
rank-1 update, A22 − l21u12. We can see that by recursing on that
part we ultimately get the full factorization. See Figure 4.8 for an
intuitive illustration.
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A

Stable
part of L

Stable
part of U

Figure 4.8.: Computational sequence of Gaussian elimination. The crosses
indicate elements that are still subject to change. The boxes
represent the the pivot row, a multiple of which is going to
be subtracted from later rows. The gray arrow represents the
progress of the computation. Finally, disks and circles are the
final elements of L and U respectively.

If we formulate the update rule of the kth iteration step on an element
by element basis, we derive

a
(k+1)
i,j ← a

(k)
i,j −

Ñ
a
(k)
i,k

a
(k)
k,k

é
a
(k)
k,j , (4.9)

where i, j > k. This assumes that we have initialized U ← A. The
term a

(k)
i,k /a

(k)
k,k describes the effect of eliminating the sub-diagonal el-

ements a(k)i,k for i > k. In fact, these multipliers are the elements of
the matrix L,

li,k =
a
(k)
i,k

a
(k)
k,k

,

and we store those elements in the lower left part of A(k+1), because
that space is not needed any more. At the end, we can extract the
matrix L from there.
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Algorithm 3: Gaussian LU factorization
Input: A ∈ Mn(F )

Output: L ∈ Ln(F ), U ∈ Un(F ), s.t. LU = A.
1 for k = 1 to n− 1 do
2 for i = k + 1 to n do
3 αi,k ← ai,j

ak,k
;

4 ai,k ← αi,k;
5 for j = k + 1 to n do
6 ai,j ← ai,j − αi,k ak,j ;
7 end
8 end
9 end

10 L← In + tril(A,−1);
11 U ← triu(A);

Writing everything down we get Algorithm 3, which operates over a
field F and does all computations in situ. The instructions in lines
10 and 11 extract L and U from the original space of matrix A. We
only have to remember that L has ones on the diagonal. These last
operations are optional.

Note the use of the operators tril(·) and triu(·). These operators
extract the lower or upper triangular part of a matrix respectively.
If a second argument is provided it selects the first diagonal that
will be extracted, counting the main diagonal as 0, lower diagonals
with negative and upper diagonals with positive integer values. As in
the algorithm, tril(A,−1) therefore selects the lower triangular part,
leaving out the main diagonal, because −1 indicates that the first
sub-diagonal is the first one to be considered.
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Other Computation Schemes
Let us mention two popular schemes for computing the LU factoriza-
tion, which are similar to (yet different from) Gaussian elimination.

If we assume that L is unit lower triangular and U is upper trian-
gular, we can simply apply the definition of matrix multiplication to
obtain

ai,j =

min{i,j}
p=1

li,pup,j , (4.10)

where 1 ≤ {i, j} ≤ n. If we rearrange the terms in this equation we
get

li,j =
1

uj,j

Ñ
ai,j −

j−1
p=1

li,pup,j

é
, (4.11)

for i > j, and

ui,j = ai,j −
i−1
p=1

li,pup,j , (4.12)

for j ≥ i. Using these two equations in the correct order, we can
compute all elements in closed from, that is, without doing multiple
updates on the unstable elements of the matrix. We include the im-
plementation of this algorithm that is known as Doolittle’s algorithm
in Appendix A.4. Briefly speaking, the algorithm computes one row
after another. For a quick intuition of the computation order, please
refer to Figure 4.15a. Note that Doolittle’s algorithm can handle ma-
trices that are not invertible. The resulting matrix L will always be
a matrix of full rank with ones on the diagonal, whatever the rank of
A may be. If the rank of A is not full, then this fact is only exhibited
by the matrix U that will have the same rank as A. In particular U
will have n− rank(A) trailing zero rows.

Similarly, if we assume that U is a unit upper triangular and L is
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A

* * * * * * *
* * * * * * *

(a) Doolittle’s algorithm

A

* * * *
* * * *
* * * *
* * * *

(b) Crout’s algorithm

Figure 4.15.: Computational sequences of Crout’s and Doolittle’s algo-
rithms. As in Figure 4.8 the circles and disks represent stable
parts of L and U respectively. The crosses are the elements
that are computed in the current iteration. The stars are
original elements of A. They are completely untouched, up
to this stage.

a lower triangular matrix, we get a similar procedure, based on the
formulas

li,j = ai,j −
i−1
p=1

li,pup,j , (4.13)

for i ≥ j, and

ui,j =
1

lj,j

Ñ
ai,j −

i−1
p=1

li,pup,j

é
, (4.14)

for i < j. This results in an algorithm that is known as Crout’s
algorithm. Again, for the implementation see Appendix A.5 and for
the computational sequence see Figure 4.15b. In a nutshell, Crout’s
algorithm computes one column of L and one row of U after another.

These two algorithms, Crout’s and Doolittle’s algorithms, have an
important advantage. They require less intermediate precision to get
more accurate results using floating point arithmetic. To substantiate
this seemingly obscure claim, consider how the elements are computed
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in Crout’s and Doolittle’s algorithm. In (4.11) and (4.12) we can see,
for example, that the major share of the work is done by computing
an inner product between two vectors. If we keep adding products of
corresponding elements of the two vectors to a variable of twice the
precision of the input numbers, we can easily obtain the numerically
accurate result. Rounding that is applied at the end of this process
is unlikely to result in a large numerical error. This way of accru-
ing numerical errors is sometimes called inner product accumulation,
and generally leads to better numerical stability [133]. By contrast,
looking at the Gaussian elimination process, we realize that the final
value of an element is modified over the course of several iterations.
Even if we compute the intermediate results exactly, we must always
round the result at the end of each update if we want to keep it in
the same precision that is used for the input. This process that we
might call by the name of partial sum accumulation therefore suffers
from potentially bad numerical behavior.

There are disadvantages to Crout’s and Doolittle’s algorithms too,
however. First, it is more difficult to implement row and column in-
terchanges (LU pivoting, see Section 4.2.5), which is an essential tool
for stability and efficiency in the case of sparse inputs [69]. Second,
and this is the more severe restriction for us – as we will see later –
the elements of the result that we are computing share common di-
visors across rows. This means that all the elements of some row
i are expressed as rational numbers with the same common divisor.
Elements from different rows do not have the same common divisor.
Implementing the formulas of Crout and Doolittle, we therefore have
to compute common divisors. This is either inefficient, or leads to
increased growth of the numbers, or both. We want to avoid this.
Furthermore, since we will compute our results with arbitrary pre-
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cision over the fraction field of an integral domain, we will also be
able to avoid the problem of accruing errors from which partial sum
accumulation usually suffers.

Eta File
In the context of the simplex method, the eta file – more expressively
known as the product form of the inverse [34] – used to be a popular
tool for keeping the matrix L as a sequence of extremely sparse elim-
ination matrices. The advantage of this method is that a matrix in
this form is trivial to invert and – at least conceptually – lends itself
well to updates of the matrix that has to be factored. If that happens
the eta file simply grows, accounting for the changed elements. If the
eta file gets too large, one can attempt a re-factorization. It has been
proved that the LU factorization of a sparse matrix is usually sparser
than the product form. For a more detailed discussion see also [137].
Nevertheless, we are briefly going to review whether this method is
suitable for our purposes. For that we need to define a few tools.

If x = (x1, . . . , xn)
T is an arbitrary vector, we define the n × n

matrix Lk(x) to be the matrix that has ones on the diagonal, and
fulfills the equation

Lk(x) x = (x1, . . . , xk, 0, . . . , 0)
T ,

where 1 ≤ k ≤ n. In other words, multiplying x with Lk(x) leaves
the first k entries of x unchanged and renders the remaining entries
equal to 0. It is easy to see that

Lk(x) = In − lk(x) eTk ,

where ek is the kth unit vector, and lk(x) = 1
xk
(0, . . . , 0, xk+1, . . . , xn)

T .
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We call a matrix of this form Gaussian elimination matrix. Of course,
this definition is only sound if xk ̸= 0. One can check that the inverse
of Lk(x) is

(Lk(x))
−1 = In + lk(x) e

T
k ,

which is easy to compute, of course. Note that a Gaussian elimination
matrix as well as its inverse are lower triangular. For example, Lk(x)

is of the form

Lk(x) =
1

xk



xk
. . .

xk

xk+1

...
. . .

xn xk


, (4.16)

where all missing entries are equal to 0. Only the kth column is filled
below the diagonal.

We can now express Gaussian elimination in terms of these elimina-
tion matrices. We successively multiply A with Gaussian elimination
matrices. Each of these multiplications removes the nonzero elements
below the diagonal in one column of A. So, the first step is computing

A(2) := L1(A∗, 1) A,

where the Gaussian elimination matrix depends on the first column
of A. Let us call this intermediate result A(2), which is the input to
the second elimination round (we silently assumed A(1) := A). Note
that A(2) has only zero entries below the diagonal in the first column.
For this first step to go through we need a11 ̸= 0.
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The second step does the following,

A(3) := L2(A
(2)

∗, 2) A
(2),

where A(2)
∗, 2 is the second column of the matrix A(2). For this to

work, we need a(2)22 ̸= 0. If we do this for all the first n−1 columns of A,
we finally arrive at an upper triangular matrix U := A(n). Since there
is no ambiguity, let us write Lk := Lk(A

(k)
∗, k). Then the elimination

procedure can be conveniently written as

Ln−1 · . . . · L1 A = U,

under the requirement that a(i)ii ̸= 0 for 1 ≤ i < n. Finally, if we
define L̂ := Ln−1 · . . . · L1 and L := L̂−1, we get the desired equality
A = LU .

Unfortunately, this popular method in linear programming is not
suited for our purposes, because it seems unlikely that the growth of
numbers can be bounded in the context of the increasing number of
elimination matrices.

4.2.5. Pivoting

In practice Theorem 4.4 and Corollary 4.5 are of little interest, be-
cause they assume that we are not allowed to permute the rows and
columns of the matrix. The following theorem is much more useful.

Theorem 4.17. An invertible matrix A ∈ Mn(R) allows for a LUP-
decomposition, i.e.,

PA = LU,

where P is a permutation matrix.
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Proof. Applying Gaussian elimination with row interchanges achieves
the desired result.

Using the same definitions as above, we may find ourselves in elim-
ination step i, in which a

(i)
i, i = 0. The problem is, of course, that the

Gaussian elimination matrix for this column is not well defined.

Since A is invertible, there must be some element a(i)j, i ̸= 0 for
i < j ≤ n. We have to exchange row i with row j in the matrix A(i).
Assume that this is achieved by multiplying (from the left) with the
permutation matrix Pi. Note that the sub-matrix A(i)

i..n, 1..i−1 is the
zero matrix, so applying Pi does not disturb the work we have done
so far.

At the end, the elimination procedure leaves us with

Ln−1Pn−1 · . . . · L1P1 A = U,

where the Pi are permutation matrices and the Li are Gaussian elim-
ination matrices. One can invest five minutes of thought to see that
we can move the Pi to the right, commuting with the Li. To be more
precise, PL = L′P , where L′ has the elements of its active column
permuted according to P , though the diagonal remains unchanged.
Note that L′ is still lower triangular. Therefore, we have

L′
n−1 · . . . · L′

1 Pn−1 · . . . · P1 A = U,

and we can set L := (L′
n−1 · . . . ·L′

1)
−1 and P := Pn−1 · . . . ·P1 in order

to get the statement of the theorem. The matrix L′
n−1 · . . . ·L′

1 is lower
triangular and invertible, because the individual L′

i are. Therefore,
also L is lower triangular. Also, Pn−1 · . . . ·P1 is a permutation matrix,
because the product of permutation matrices is always a permutation
matrix.
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Note that P is an orthogonal matrix, and therefore P−1 = P T , and
thus A = P TLU . Whether we view P to be a permutation that
acts on A or on LU is really just a matter of definition. Note that
multiplying A by a permutation matrix from the left corresponds
to row permutations. Therefore, what this type of decomposition
procedure does is, go through the ith column of the matrix A(i) and
select one of the yet unchosen rows to find the pivot element for the
next elimination step. This is called partial pivoting. Note that this
type of pivoting is even sufficient to factorize singular matrices if we
take a little more care about the computation order. The result will
be a regular lower triangular matrix L and a singular upper triangular
matrix U (including zero rows at the bottom).

Full Pivoting
Partial LU pivoting can be enhanced by considering the columns that
have not yet been handled as well. This means that, in the kth step of
the elimination procedure, there are (n−k+1)2 potential elements to
choose the pivot element from. This is an enhancement in the sense
that it allows for more sophisticated pivoting strategies, which do not
generate as much fill-in for sparse matrices. The fill-in minimizing
techniques described in Sections 4.4.3 and 4.4.4 will make use of full
pivoting. Also, it can help to improve numerical stability. It is not
necessary, however, for the existence of a LUP factorization according
to Theorem 4.17.

Solving an Equation System with LU
Suppose that we want to solve for the vector x in the equation sys-
tem Ax = b, where x and b are vectors of length n. Using the LUP-
decomposition of A we can divide this task into two steps. The equa-
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tion now reads P TLUx = b and can be split up,

U x = y, (4.18)

P TL y = b. (4.19)

Both equations can be solved efficiently because of the diagonal struc-
tures of L and U . The operation of solving an equation system as
above is called FTRAN (Forward TRANsformation). This term has
developed historically and is used in the literature.

Similarly, we will also have to consider equation systems of the
following type, xTA = bT . This is equivalent to xTP TLU = bT , and
therefore

xTP TL = yT , (4.20)

yT U = bT . (4.21)

These equations give us an efficient way to solve this problem. This
operation is called BTRAN (Backward TRANsformation).

4.2.6. Number Types

Numerical errors are a real concern in practical implementations of
LU factorization. In the mathematical description of a factorization
routine we do not have to care about errors, because computations
are assumed to be exact (usually over the real numbers). In real-
world implementations on actual computer hardware, however, the
most natural way – and fast for that matter – of doing computations
is to use one of the built-in finite precision number types such as
float or double. In other words, one uses floating-points arithmetic
that adheres to a standard like the IEEE standard 754 [2]. The main
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problem with that course of action is that we will make mistakes in
our computations due to the finite precision of those number types.

In our treatment and implementation of the LU factorization we
take a different approach. Since one of the main features of the
quadratic programming solver of CGAL is its ability to be instan-
tiated with a custom number type, and to do computations exactly,
we will investigate this aspect further. In simple terms, our goal is
to provide a factorization procedure that does not need divisions (at
least not in the general sense).

Even though most of the implementation details will be discussed
in Chapter 5, the following paragraphs will anticipate certain aspects.
We hope that this ordering of topics delivers clarity and motivation
to our exposition, to outweigh the deficits in consistency. Let us
therefore embark on a little excursion about algebraic number types,
group theory and their practical counterparts in CGAL.

Algebraic Number Types
In abstract algebra, we can distinguish the following (incomplete)
chain of class inclusions:

Commutative rings ⊃ integral domains

⊃ unique factorization domains

⊃ Euclidean domains

⊃ fields

(4.22)

We assume that the definitions of these terms are known to the reader.
They can be looked up in any standard book on abstract algebra.
Here, we will be satisfied by stating the key properties and differences
between these structures.
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Briefly speaking, a commutative ring is a set R equipped with two
binary operations + and · that combine any two elements from the
ring. These operations are called addition and multiplication. The
structure (R,+) is required to be an Abelian group, and (R, ·) a
commutative monoid (more descriptively, it is a commutative group
without an inverse). If we additionally require that there are no non-
trivial zero divisors, i.e., no two elements a, b ∈ R, a ̸= 0 and b ̸= 0

such that a · b = 0 (where 0 is the identity element of addition) we
get an integral domain. This is the structure that we base our LU
factorization on. That is, we require division a ÷ b only when it is
known that there exists an element q ∈ R such that b · q = a. The
integer numbers Z are the prototypical example of an integral domain.
The division as described before corresponds to integral division.

In fact, the integer numbers also belong to the classes of unique fac-
torization domains and Euclidean domains. The former distinguishes
itself by the existence of a unique factorization within the structure,
e.g., prime factorization. The latter assumes the existence of a well-
defined division with remainder.

The integer numbers are not a field though. What sets fields apart
from all of the above is that they do allow for a general division
operation. The structure is closed under division. Among the most
common examples for fields are the set of real numbers R and the set
of rational numbers Q.

Let us round up the algebraic description by saying that all the
inclusions of equation (4.22) are proper, even though, for a practical
realization of some number type, the only distinction we will have to
make is between fields and Euclidean domains, of which rational and
integer numbers are examples of, respectively.
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CGAL Number Types
In a practical implementation of some algorithm, it is essential which
operations are actually implemented for a certain number type. So,
it still makes sense to talk about such a fine grained distinction as
the above. In CGAL these structures are present as concepts. Fig-
ure 4.23 shows the dependencies between the concepts. For exam-
ple, the concept IntegralDomain requires the implementation of a
function integral_division. Since the two concepts Field and
UniqueFactorizationDomain refine the concept of IntegralDomain

they also need to postulate that function. Basically, that is what the
arrows in the figure indicate. Realizations of these concepts are called
models, i.e., we say that some number type t is a model of some con-
cept c if it implements all the postulated data members and functions
of c. If c refines some parent concept p, naturally, t is also a model
of p by transitivity.

IntegralDomain

Field UniqueFactorizationDomain

EuclideanRingFieldWithSqrt

IntegralDomainWithoutDivision

Figure 4.23.: Algebraic structure concepts implemented in CGAL.

We can notice a difference between the algebraic description and
the concepts in CGAL. In particular, Field is not a refinement of
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EuclideanRing but of IntegralDomain directly. This is not to say
that the algebraic interpretation of equation (4.22) is faulty. The dif-
ference in CGAL is simply a practical design decision. Some of the
properties and tools of unique factorization domains and Euclidean
rings are not worth implementing for fields, because they can be re-
placed by division to provide more efficient algorithms. In the words
of the CGAL manual, algebraic foundations package11:

... this is because most ring-theoretic notions like great-
est common divisors become trivial for Fields. Hence we
see Field as a refinement of IntegralDomain and not as
a refinement of one of the more advanced ring concepts. If
an algorithm wants to rely on greatest common divisor or
remainder computation, it is trying to do things it should
not do with a Field in the first place.

We did not talk about the gray items in the figure yet, because
they are not of major importance for us but shown for com-
pleteness. IntegralDomainWithoutDivision postulates an integral
domain in the algebraic sense, but it has no implementation of
integral_division. Also, there are several refinements of Field,
the first of which is FieldWithSqrt that, naturally, postulates an
operation for taking square roots. Others are omitted here.

These concepts need actual realizations, of course. Let us therefore
mention the most important number types that we will be working
with. Note that we restrict ourselves to the programming language
C++. We have already mentioned the finite-precision types float and
double, which are standardized in IEEE 754 [2].

11 Section 4.2 of http://www.cgal.org/Manual/latest/doc_html/cgal_manual/
Algebraic_foundations/Chapter_main.html

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Algebraic_foundations/Chapter_main.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Algebraic_foundations/Chapter_main.html
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Other than that, CGAL offers its own number types and wrapper for
several well-known external arithmetic libraries. Most of the experi-
mental results in Section 6 were conducted with the wrapper classes
for the GNU Multiple Precision Arithmetic Library (GMP) types.
The most important wrappers for us are the types Gmpzf and Gmpq.
The former is an arbitrary-precision floating point type that is based
on the type mpz, which is an GMP arbitrary size integer type, to rep-
resent the mantissa and the exponent. Of course, Gmpz, as the name
suggests, is also based on mpz but only needs one integer to store
its contents. Both Gmpfz and Gmpz are models of EuclideanRing.
The type Gmpq is a model of Field. Instances are kept as a rational
number, where nominator and denominator have arbitrary size.

Other Number Types
There is one more GMP type that is supported by CGAL. There
is Gmpfr, which is a fixed-precision floating point type. This is no
better that float or double in some sense, because – if we want to
allow for exact computations – we need to assure that the precision
is sufficient that no rounding will take place. Given Theorem 4.50,
which asserts item (iii) of Claim 4.24 in particular, we are in a position
to give a sensible upper bound on the size of the numbers. But the
main purpose of a type like Gmpfr would be defeated. We would
have to make all instances of Gmpfr large enough to accommodate the
largest numbers occurring during the computation. This would ensure
exact computations, but it would also mean that many computations
take place using too much precision. For determining the necessary
precision as tightly as possible we have to do preprocessing steps,
i.e., compute the determinant of the matrix to be factored. This is
not only of the same order of complexity than computing the desired
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factorization; it amounts to essentially doing the same thing.
There is also a set of exact number types provided by CGAL itself.

Among those are Quotient, which can be used to represent rational
numbers given any number type that can represent integers. Also,
similar to Gmpzf, there is the internal type MP_float. These internal
types are generally less efficient than the GMP types. They are there
to provide the possibility of exact computations independent on any
external libraries.

Last but not least, other external number type libraries supported
by CGAL are LEDA12 and CORE13. Let us, however, not get into
any detail about these, because we did not do any testing using these
types.

Summary
In this section we took a glimpse ahead into some of the underly-
ing implementation details of the factorization algorithm we are go-
ing to present in the next section. We have outlined the tools that
are necessary to do exact computations, and we have explained how
those number types correspond to their algebraic counterparts. In
this spirit, we hope to have set the stage, and explained the motiva-
tions for an integral LU factorization, which does all computations
over an integral domain.

12 http://www.algorithmic-solutions.com/as_html/products/leda/
products_leda.html

13 http://www.cs.nyu.edu/exact/core/

http://www.algorithmic- solutions.com/as_html/products/leda/products_leda.html
http://www.algorithmic- solutions.com/as_html/products/leda/products_leda.html
http://www.cs.nyu.edu/exact/core/
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4.3. Integral LU factorization

In this section we describe a way to efficiently factorize a matrix over
an integral domain into a form which enables integral computations
as well as sparse optimization. Let us start by listing the properties
that we want this decomposition to have.

Claim 4.24. A matrix A ∈ Mn(I) over some integral domain I can
be factored into matrices L, Uı, Lı, and U , such that the following
properties hold:

(i) A = LU−1
ı = L−1

ı U , where L and Lı are lower triangular, and
U and Uı are upper triangular.

(ii) During the computation only integral division is used. That is,
the only division operation we need is dividing two numbers α
and β, already knowing that the result will be integer. In the
language of group theory, we might say that there has to be an
integral element γ such that γ · β = α.

(iii) The entries of L, Uı, Lı, and U are given as rational numbers,
where the denominators are never larger than det(A). The
encoding size of any number computed during the factorization
is bounded by O(⟨det(A)⟩).

(iv) The decomposition pair Lı and U caters to the FTRAN op-
eration (equations (4.18) and (4.19)) in such a way that the
entries of the final solution vector are given as rational num-
bers with a common denominator of det(A).

(v) The decomposition pair (L,Uı) caters to the BTRAN opera-
tion (equations (4.20) and (4.21)) in the same way as the pair
(Lı, U) caters to FTRAN (see previous item).

The notation ⟨·⟩ designates the encoding size of a number; it is de-
scribed in Appendix A.1.
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When doing Gaussian elimination on a matrix, it is not difficult to
modify the standard algorithm so as not to use divisions. This usually
leads to rapid growth of the entries though, as discussed in [67, 142].
One of the main concerns of the algorithm that we are going to pro-
pose is to prevent this growth in the entries.

4.3.1. Related Work

We have developed our work based on an exposition by Grötschel,
Lovász, and Schrijver, in which they argue that the Gauss-Jordan
elimination process14 of a rational matrix can be executed in strongly
polynomial time (see [67], Section 1.4). This was originally proved by
Edmonds [47].

In summary, our procedure differs from the one described in [67]
insofar as the latter does not give an explicit formulation for the
matrix L. It implicitly computes the same matrix U but then carries
on with a summary argument that A−1b can be computed by following
through with the Gauss-Jordan elimination. There is no provision to
extract L from this procedure.

There is a series of papers, however, that essentially derives the
same result as we do. Therein, the properties that we describe in
Claim 4.24 are subsumed by the term fraction-free LU factorization.
We have become aware of this work only after developing our own
results.

There are slight differences in our objectives and algorithms. Let
us give an overview of those publications and point out some issues.

14 The Gauss-Jordan elimination process is an extension of regular Gaussian
elimination, where we also eliminate the elements above the diagonal in A.
This basically amounts to computing A−1b, except for the fact that we still
have to divide by the diagonal elements.
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The main motivation for that parallel line of work comes from having
to solve linear algebra systems over some integral domain, arising
from computations with polynomials or differential equations. The
paper [110] gives a good overview of some applications. Two of the
first publications in this direction were written by Bareiss [11, 12],
proposing greatest common divisor reduction on the elements of the
matrix. While this prevents the growth of elements, it leads to an
increased number of operations. Later the topic was picked up again
in several papers [143, 88, 31, 159, 108] in the context of applications
in threat detection and robot control.

Most recently, the subject is treated in [46] and [159, 158]. The
former discusses the case when the matrix to factorize is singular.
The latter is similar to our own. Essentially, the same algorithm
is derived, but the elements on the diagonal are chosen differently.
Also, the algorithm proposed by Zhou and Jeffrey [158] does compute
L and not L−1, which requires a little more work when doing the
forward substitution. In particular, an integral LD−1U factorization
is derived. While it is also possible to solve for A and for AT with
this setup, the numbers that are computed during the solution process
(see equations (4.18)-(4.21)) get larger than in our procedure. On the
downside, in our approach, we have to spend a little more time to
compute the factorization of AT along the way15.

4.3.2. Algorithm (diLU)

In this section we are going to present our own factorization algo-
rithm. Basically, the algorithm is straight-forward Gauss elimination

15 Note that the effort for computing the factorization of A and AT is consider-
ably less than twice what we have to spend to obtain either individually; see
Section 4.3.5.
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Algorithm 4: Double-Integral-LU (diLU)
Input: A ∈ Mn(I)
Output: (Lı, U), (L,Uı) ∈ Ln(I)×Un(I),

s.t. L−1
ı U = LU−1

ı = A.
1 P ← [A, In];
2 q1 ← 1;
3 for k = 1 to n− 1 do
4 qk+1 ← P[k,k];
5 for i = k + 1 to n do
6 for j = k + 1 to n+ k do
7 P[i,j] ← (qk+1P[i,j] − P[i,k]P[k,j])÷ qk;
8 end
9 for j = 1 to k do

10 P[j,n+i] ← (qk+1P[j,n+i] − P[k,i]P[j,n+k])÷ qk;
11 end
12 P[i,n+i] ← qk+1;
13 end
14 end
15 Lı ← tril


P[∗, n+1..2n]


;

16 U ← triu

P[∗, 1..n]


;

17 L← tril

P[∗, 1..n]


;

18 Uı ← triu

P[∗, n+1..2n]


;

with some modifications. One could say that we apply it twice, once
to the matrix A and once more to the matrix AT . Conceptually, the
two decomposition pairs (Lı, U) and (L,Uı) are derived from decom-
posing A and AT independently, but as we will show one can make
considerable savings by deriving the two factorizations at the same
time.

To keep things simple, let us assume that all the principal leading
sub-matrices of A have full rank. In other words, A is invertible and
according to Corollary 4.5 it allows for an LU factorization without
pivoting. We will come back to this topic of pivot rules in Section 4.4.
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(a) Initial setup

Lı

UıU
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(b) Final setup

Figure 4.25.: An illustration of the initial and the final setup of the working
matrix in the diLU algorithm.

A

1

1

1

0 0

0

0 0

0

I

Figure 4.26.: Computational sequence of the diLU algorithm. The
crosses indicate elements that subject to change in the
current iteration. The boxes are the pivot elements.
The disks and circles are final elements of Lı, Uı, L,
and U . The decomposition pair (Lı, U) is represented
in black, and the decomposition pair (L,Uı) is repre-
sented in gray. Figure 4.25 shows the initial and final
setup.
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The same assertions also apply to the matrix AT , because it has the
same principal leading sub-matrices only transposed, which does not
affect the rank, of course. Having established this precondition, we
can easily formulate the algorithm without burdening it by row and
possibly column permutations.

Recall that ÷ denotes integral division. Let us have a closer look
at how the algorithm works. It follows the Gaussian elimination steps
closely. First however, we initialize a n × 2n matrix P as a working
matrix. The left part of P is the matrix A and the right part is the
identity matrix of order n. In the end P will contain the factorizations
(Lı, U) and (L,Uı); see Figure 4.25. We save space by overwriting the
contents of A, but in order to store both factorizations we need the
additional space on the right-hand side, of course. For an illustration
of the computational sequence, see Figure 4.26.

For simplicity, we continue describing the governing rules of the
factorization of A into (Lı, U) only, that is, we disregard the factor-
ization of AT for the time being. It should be clear that the algorithm
is symmetric in the sense that we obtain the same decomposition pairs
if we start out with AT (with the roles of lower and upper triangular-
ity reversed), and that all the following arguments apply equally. We
will come back to the complexity – and in particular the savings – of
computing both factorization pairs at the same time in Section 4.3.5.

In any iteration, at the beginning of the outer loop (line 3 to 14),
we have the following invariant,

A = (L(k)
ı )−1U (k), (4.27)

where L(k)
ı is the right part of P , and U (k) is the left part of P . These
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two matrices have the following form,

L(k)
ı :=

Ö
L
(k)
11 0

L
(k)
21 L

(k)
22

è
=



q1

∗ q2
...

. . .
. . .

∗ . . . ∗ qk−1

0

∗ . . . ∗
...

...

∗ . . . ∗

qk
. . .

0 qk



,

and

U (k) :=

Ö
U

(k)
11 U

(k)
12

0 U
(k)
22

è
=



q2 ∗ . . . ∗

q3
. . .

...

. . . ∗
qk

∗ . . . ∗

...
...

∗ . . . ∗

0

∗ . . . ∗
...

...

∗ . . . ∗



,

where ∗ stands for an unnamed entry. That is, an entry designated
by ∗ could still be zero, but it is not inherently zero, like the off-
diagonal entries in the identity matrix, for example. Note that, for
k = 1 we have U (1)

22 = A and L(1)
22 = In.

For k > 1, the parts L(k)
11 , U (k)

11 , and U
(k)
12 are already stable. In

particular, L(k)
11 is lower triangular, and U (k)

11 is upper triangular. The
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contents of L(k)
21 , L(k)

22 , and U
(k)
22 are still to be manipulated in the

remaining iterations. Ultimately, L(n)
11 and U

(n)
11 contain the full fac-

torization Lı and U . To understand what happens in one iteration of
the outer loop, consider U (k)

22 ,

U
(k)
22 =

á
u
(k)
1,1 . . . u

(k)
1,n−k+1

...
...

u
(k)
n−k+1,1 . . . u

(k)
n−k+1,n−k+1

ë
.

The next step will be to eliminate the nonzero entries in the first col-
umn below u

(k)
1,1. In regular Gauss elimination we subtract a multiple

of the first row from all the other rows, according to

u
(k+1)
i,j ← u

(k)
i,j −

u
(k)
i,1

u
(k)
1,1

u
(k)
1,j , (4.28)

for all i, j = 2, . . . , n − k + 1. Let us assume for a moment that this
is exactly what we are doing. Consider the equation system

U (k)x = L(k)
ı b, (4.29)

for some arbitrary vector b and vector of unknowns x. According to
invariant (4.27), this system has the same solution as Ax = b. If we
add multiples of one equation to another equation, we do not change
the solution of the system. This is what the Gaussian update rule
(4.28) is based on. An important consequence is that we can get rid
of the unwanted division operation. Multiplying by u1,1 gives the
following rule,

u
(k+1)
i,j ← u

(k)
1,1 u

(k)
i,j − u

(k)
i,1 u

(k)
1,j . (4.30)

Note that this operation keeps invariant (4.27) intact for the next
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iteration, because we can relay the changes in the equation system to
the right hand side L(k)

ı b by implementing the same kind of update
to the matrices

L
(k)
21 =

á
l
(k)
1,1 . . . l

(k)
1,k−1

...
...

l
(k)
n−k+1,1 . . . l

(k)
n−k+1,k−1

ë
,

and

L
(k)
22 =

á
qk 0

. . .

0 qk

ë
.

The update for L(k)
21 is analogue to equation (4.30),

l
(k+1)
i,j ← u

(k)
1,1 l

(k)
i,j − u

(k)
i,1 l

(k)
1,j , (4.31)

for all i = 2, . . . , n− k + 1 and j = 1, . . . , k − 1. For L(k)
22 we get the

update rules

(L
(k+1)
22 )i, 1 ← −u(k)i,1 qk,

(L
(k+1)
22 )i, i ← u

(k)
1,1 qk,

for all i = 2, . . . , n − k + 1. In principle, this is the same as equa-
tion (4.31), but it simplifies due to the special structure of L(k)

22 .

The only thing left out yet are the integral division operations that
are applied in lines 7, 10, and 12 of diLU (Algorithm 4). We will defer
this discussion to Section 4.3.3. For now, let us assume that all of
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those divisions are integral. Then we get the final update formulas

u
(k+1)
i,j ←

u
(k)
1,1 u

(k)
i,j − u

(k)
i,1 u

(k)
1,j

qk
, (4.32)

l
(k+1)
i,j ←

u
(k)
1,1 l

(k)
i,j − u

(k)
i,1 l

(k)
1,j

qk
, (4.33)

for all i, j = 2, . . . , n− k + 1 (the latter also holds for j = 1), and

(L
(k+1)
22 )i, 1 ← −u(k)i,1 , (4.34)

(L
(k+1)
22 )i, i ← u

(k)
1,1, (4.35)

for all i = 2, . . . , n− k + 1. In the case of (4.34) and (4.35) it is even
obvious that there is an integral division involved. Finally, we realize
that qk+1 = u

(k)
1,1. The updates (4.32), (4.33), and (4.34) are done in

lines 6 to 8. The update (4.35) is done in line 12.
Note that the lines 9 to 11 are part of computing the second factor-

ization pair (L,Uı) for AT . Part of the computations done in lines 6
to 8 pertain to that as well. We are not going to go into further detail
why Algorithm 4 computes the second factorization pair as well. Let
us just say that the preceding arguments also apply in the transposed
context of AT .

Lemma 4.36. The factorizations computed by Algorithm 4 are cor-
rect, i.e., A = LU−1

ı = L−1
ı U , where L and Lı are lower triangular,

and U and Uı are upper triangular. This lemma corresponds to prop-
erty (i) of Claim 4.24.

Proof. Except the fact that we have not proved yet that all the divi-
sions used during the reduction process are integral, it should be clear
from the previous description that the proposed algorithm is a scaled
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form of the Gaussian elimination process, and that it does therefore
compute a correct factorization. If the integral domain is actually
a field, we have completely proved the lemma already, because we
can just carry out the divisions in field arithmetic. That is the case
for the rational numbers, for example. The other case is covered by
Lemma 4.37.

4.3.3. Integrality

In Claim 4.24 we have listed a number of properties that we wish
to confer on the diLU factorization. In the sections to come those
properties are going to be derived. Property (i) basically just says
that the decomposition is correct and that we can compute it with
the algorithm given. We have argued that point in Section 4.3.2
already, Lemma 4.36, except for the fact that the divisions applied
should be integral. Therefore, our next target is property (ii).

Property (ii) of Claim 4.24 states that the only divisions executed
are integral division. This concerns lines 7 and 10 of Algorithm 4
where we divide by qk.

Lemma 4.37. For any invertible matrix A ∈ Mn(I), all divisions
executed by Algorithm 4 are integral (property (ii) of Claim 4.24 is
fulfilled). Furthermore, the encoding size of any number computed
during the factorization is bounded by O(⟨det(A)⟩).

Proof. Recall the matrices U22 and L21 from iteration k,

U (k) =

Ö
U

(k)
11 U

(k)
12

0 U
(k)
22

è
,
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L(k)
ı =

Ö
L
(k)
11 0

L
(k)
21 L

(k)
22

è
,

U
(k)
22 =

á
u
(k)
1,1 . . . u

(k)
1,n−k+1

...
...

u
(k)
n−k+1,1 . . . u

(k)
n−k+1,n−k+1

ë
,

L
(k)
21 =

á
l
(k)
1,1 . . . l

(k)
1,n−k+1

...
...

l
(k)
n−k+1,1 . . . l

(k)
n−k+1,n−k+1

ë
.

The main idea is to express the elements of U (k)
22 as follows,

u
(k)
i,j =

p
(k)
i,j

s(k)
, (4.38)

where s(k) = det(U
(k)
11 ). This should hold inductively for all values

k = 1, . . . , n. Naturally, we initialize with p
(1)
i,j := ai,j and q(1) := 1.

The claim is that both p
(k)
i,j and s(k) are elements from the integral

domain, i.e., we do not need to extend our computations to the field
of fractions of the integral domain. In fact, we claim that the values
encountered are minors of the original matrix A. Let us use the
following index sets K := {1, . . . , k−1}, I := {1, . . . , k−1, k+ i−1},
and J := {1, . . . , k−1, k+j−1}. It is easy to see that U (k)

K,K = U
(k)
11 ,

as per our definition. Also, note that U (k)
I,J is an upper triangular

matrix with the entry u
(k)
i,j in the lower right-hand corner and U

(k)
11

in the upper left part. Therefore, we can develop the determinant
of U (k)

I,J as

det
Ä
U (k)

I,J

ä
= u

(k)
i,j det

Ä
U (k)

K,K

ä
.
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Rearranging we get

u
(k)
i,j =

det
Ä
U (k)

I,J

ä
det


U (k)

K,K
 . (4.39)

Now, assume that we are doing the standard Gaussian elimination
update as described by update rule (4.28), and the analogue extension
of that rule to the right-hand side part of our working matrix,

l
(k+1)
i,j ← l

(k)
i,j −

u
(k)
i,1

u
(k)
1,1

l
(k)
1,j .

In other words, the updates we are doing amount to adding multiples
of earlier rows to later rows. If we recall that the determinant of a
matrix does not change if we add multiples of one row to another row,
we conclude that

det
Ä
U (k)

I,J

ä
= det (AI,J) ,

det
Ä
U (k)

K,K

ä
= det (AK,K) .

That simplifies our target formula (4.39) for the representation of the
elements to

u
(k)
i,j =

det (AI,J)

det (AK,K)
. (4.40)

Note that this already tells us – if we manage to express the elements
of our factorization as in equation (4.40) – the encoding size of num-
bers computed will be bounded by O(⟨det(A)⟩). This takes care of
the second statement of the lemma.

To finish the proof about the integrality of the division, consider
plugging equation (4.38) into the update rule (4.28). We derive the
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following formulas for p(k+1)
i,j and s(k+1),

p
(k+1)
i,j =

p
(k)
i,j p

(k)
1,1 − p

(k)
i,1 p

(k)
1,j

s(k)
, (4.41)

s(k+1) = p
(k)
1,1. (4.42)

Note that p(k)1,1 = det(A{1,...,k+1}, {1,...,k+1}) = s(k+1). This is the reason
why we know that (4.41) holds. Because we know that p(k+1)

i,j is itself
an integer number, we may conclude that the division is an integral
division.

This concludes the proof. Let us point out a few more things
though. First, we have omitted the last few steps for deriving the
formulas for Lı. It should be clear, however, that the same argu-
ments apply. Second, note that we have basically derived the update
rule (4.32) again. The values s(k) are the same as the values that we
have designated by qk before. We intentionally named them differ-
ently, because we wanted to make the point that that was not clear a
priori. Last, note that in our algorithm we are only explicitly storing
the values p(k+1)

i,j of representation (4.38). The values qk are implicitly
stored on the diagonal (of U as well as Lı).

4.3.4. Solving Linear Systems (sdiLU)

To make our treatment of the integral LU factorization complete we
have to describe the final step – and ultimate goal – of the elimi-
nation process. That is, we have to describe how to solve a linear
equation system using the factorization that we have obtained in pre-
vious sections. What we are going to show in this section corresponds
to the items (iv) and (v) of Claim 4.24. For simplicity, we will only
discuss item (iv) in detail. The case of the transposed matrix in (v)
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is completely analogous with the roles of L and U exchanged. For
convenience, let us gather all the relevant equations that are neces-
sary to find the solution to Ax = b. To start with let us assume full
LU pivoting, so there is a row permutation matrix P and a column
permutation matrix C,

P A C = L−1
ı U, (4.43)

P TL−1
ı y = b, (4.44)

U CT x = y. (4.45)

Equation (4.43) describes the output we get from our factorization
algorithm diLU (Algorithm 4), that is the factorization pair Lı and U ,
and also the permutation matrices P and C. Note that the L−1

ı exists
over the field of fractions of our input domain Frac(I), but we will not
really have to compute it. This is because equation (4.44) transforms
to y = Lı P b, where y is an intermediate vector that we have to
compute. This equation is analogous to equation (4.19) but tuned
to our particular factorization. Finally, equation (4.45) is analogous
to equation (4.18) but with column permutation added. This is the
second step we have to take. By doing a backward substitution on U
we can obtain the solution vector x. Note that the two permutation
matrices can be easily absorbed by the intermediate vector y and the
solution vector x. So, for clarity we will drop them, or in other words
assume that P = C = In. After transformations and dropping the
permutations, the two equations (4.44) and (4.45) simplify to

y = Lı b, (4.46)

x = U−1 y. (4.47)
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These two equation are what we compute in the following algorithm.

Algorithm 5: Solve-Double-Integral-LU (sdiLU)
Input: Lı ∈ Ln(I), U ∈ Un(I) (obtained from diLU(A)), b ∈ In
Output: x ∈ In, d ∈ I, s.t. Ax/d = b on Frac(I)

1 y ← Lıb; ▷ Handle equation (4.46)
2 q ← diag(U); ▷ Extract qi’s
3 d← qn; ▷ d = det(A)

4 xn ← yn; ▷ Last entry of solution
5 for i = n− 1 to 1 by −1 do ▷ Handle equation (4.47)
6 t← yid;
7 for j = i+ 1 to n do
8 t← t− xjUi,j ;
9 end

10 xi ← t÷ qi; ▷ Divide by qi’s

11 end

Equation (4.46) is handled in line 1, while the backward substitution
of equation (4.47) is dealt with in the for loop starting at line 5, and
the one instruction just before the loop (line 4). Note that this latter
instruction could seamlessly be integrated into the loop itself. Due to
the fact that the inner loop is empty for i = n, however, we would
bluntly multiply with d and then divide by d again. We can save
us that trouble. In the remaining initialization, lines 2 and 3, we
extract the common denominators from the diagonal of U in line 2,
the last one of which deserves a special variable because it is part of
the output. Recall that the last diagonal entry of U is the determinant
of A, and it will be the the common denominator for the elements of
the solution vector x. We call this value d and extract it in line 3.

As the final output we get the vector x ∈ In and d ∈ I, such
that x̃ := x

d ∈ Frac(I) is the unique solution to Ax̃ = b (recall that
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we assume A to be invertible in Frac(I)). Of course, all of this is
standard lore in linear algebra if we were to use arithmetic operations
over a field. In particular, if the division in line 10 of Algorithm 5
were a field operation. Here, however, the division is integral, and it is
the main goal of the remainder of this section to prove this. Consider
the following lemma.

Lemma 4.48. In Algorithm 10, assuming input from an integral do-
main I, and preprocessing by the diLU procedure (Algorithm 4), all
arithmetic operations employed are over I, in particular all division
operations are integral.

Proof. As for all the additions, subtractions, and multiplications, it
is clear that the integral domain provides these operations. We only
have to prove that t is always a multiple of qj in line 10 of the al-
gorithm. To see this consider Cramer’s rule. It states that we can
express the solution to the system Ax̃ = b as ratios of determinants.
For the values of x̃ it follows that

x̃i =
det(Ai)

det (A)
, (4.49)

for i = 1, . . . , n, where Ai is the matrix formed by replacing the ith

column of A by the vector b. From Lemma 4.36, Lemma 4.37, and the
above discussion we have already convinced ourselves that the result
we compute is correct over Frac(I), and that so far we have only
operated over I. Now, we start to compute the values for x̃ one by
one using a representation that assumes d := det(A) as the common
denominator for the entries. Looking at the formula for one particular
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value,

x̃i =
yi −

n
j=i+1

xj

d Ui, j

qi

=
d yi −

n
j=i+1 xjUi, j

d qi

we realize that
xi :=

d yi −
n

j=i+1 xjUi, j

qi

must be an integral value, and that this is in fact exactly the com-
putation that we are doing in the algorithm. Here, we assume that
all values of xj for j > i are already known. This concludes the
proof.

4.3.5. Complexity of diLU and sdiLU

Computing the factorization (diLU)
Computing the complexity of Algorithm 4 is straightforward. Let us
count the number of multiplications, the number of subtractions, and
the number of integral divisions. We do not care about the initializing
statements or the final assignment operations, because they can be
implemented efficiently without any effort. The whole algorithm can
be executed in situ, overwriting the input matrix. Of course, the caller
needs to provide twice the space of the input matrix, but if he does
that, the initializing and finalizing statements are purely conceptual.

Let us get back to the number of multiplications N∗ then. Summa-
tion over the nested loops yields
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N∗ =
n

k=2

n
i=k

Ñ
n+k−1
j=k

2 +
k−1
j=1

2

é
= 2

n
k=2

n
i=k

(n+ k − 1)

= 2

Å
2

3
n3 − 1

2
n2 − 1

6
n

ã
.

The number of divisions N÷ and the number of subtractions N− is
the same, because each of the two innermost loops contains exactly
one of these operations. Therefore we get

N÷ = N− =
n

k=2

n
i=k

Ñ
n+k−1
j=k

1 +
k−1
j=1

1

é
=

2

3
n3 − 1

2
n2 − 1

6
n.

Computing the total number of operations we get

N = N∗ +N− +N÷ =
8

3
n3 − 2n2 − 2

3
n,

for doing the factorization of both A and AT in the fashion we de-
scribed.

This has to be contrasted with the expense it takes to independently
compute both factorization pairs (Lı, U) and (L,Uı). In fact, the
respective counts are obtained by omitting the second loop on the
innermost level in Algorithm 4. That gives 2n3 +O(n2) for the total
number of operations for one factorization pair. Hence, the savings
we are making by using the proposed procedure are 4

3n
3 +O(n2), or
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roughly one third of the total number of operations.

In 1974 it was shown by Bunch and Hopcroft [23] that LU factoriza-
tion (as well as matrix inversion) can be achieved substantially faster
if one employs fast matrix multiplication algorithms. To be concrete,
if we are given an algorithm that can multiply two matrices of size
n×n in time O(nω) for some ω < 3, then we can theoretically get the
same result for LU factorization. At the time of writing this thesis, the
fastest known matrix multiplication algorithm seems to be the yet un-
published algorithm by Virginia Williams [151], which constitutes an
incremental improvement upon the famous Coppersmith-Winograd
algorithm [30]. The reported running time depends on ω ≈ 2.3727.
The constants hidden in the Landau notation are so large, however,
that this type of algorithm does not lend itself to a practical imple-
mentation. The asymptotic advantage will only play out for matrices
that are too large to be handled by modern day computers. Therefore,
this algorithm can be of no further interest to us at this point.

There is a relatively simple yet clever algorithm by Volker Strassen
that is successfully used in practice, however. It was the first algo-
rithm to achieve a running time of o(n3) for matrix multiplication.
In his original paper [135] Strassen derives a running time of 4.7nlog2 7

arithmetic operations. In the terminology of the previous paragraph
that means ω = log2 7 ≈ 2.8. Compared to the roughly 2n3 opera-
tions that straightforward matrix multiplication needs, we conclude

that Strassen’s algorithm starts paying off when n > 2
log2 4.7−1

3−log2 7 ≈ 84.

On the one hand, this threshold is already quite large for our ap-
plication where the real computational effort comes from iterating
through a large number of bases of moderate size, and not necessarily
from solving huge systems. On the other hand, our algorithm does
not really rely on multiplicative schemes such as the application of eta



Integral LU factorization 109

files16. Also, it has been reported that factorization schemes that rely
on Strassen’s algorithm suffer from loss of numerical stability [10].

In conclusion, incorporating the method of Strassen is not likely to
give a big performance boost, given the size of the matrices involved,
and even more important, it is not clear in any way how the integral
methods could be adapted to work with such a scheme.

Solving the equation system (sdiLU)
In the same way as in the previous paragraph, we can easily obtain the
number of multiplications, divisions, and subtractions by analyzing
Algorithm 5,

N∗ =
n−1
j=1

Ñ
1 +

n
k=j+1

1

é
=

1

2
n2 +

1

2
n− 1.

The number of subtractions is N− = 1
2n

2 − 1
2n and the number of

divisions is N÷ = n− 1. The total count of operations is therefore

N = N∗ +N− +N÷ = n2 + n− 2.

This is less than what we need if we have to multiply the right-hand
side by an explicit inverse, which gives 2n2 − n multiplications and
additions. There are no divisions involved in the latter, however.

16 Recall that Section 4.2.4 introduces eta files.
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4.3.6. Summary

Theorem 4.50. The double integral LU factorization, as computed
by diLU (Algorithm 4) for some matrix A ∈ Mn(I) over an integral
domain I, det(A) ̸= 0, fulfills all the properties listed in Claim 4.24.

Proof. Item (i) (correctness) was implicitly proved by deriving the
factorization from a scaled version of the Gaussian elimination scheme
in Section 4.3.2. Item (ii) (integrality of the factorization) and (iii)
(bound on the encoding size of numbers) have been established in
Lemma 4.37. Item (iv) (solving linear systems) is shown to be possible
using only integral divisions in Lemma 4.48.

Finally, item (v) (decomposition pair forAT ) is not explicitly proved,
but is treated implicitly in all the expositions we mentioned above.

4.4. Sparse Matrices

So far we have disregarded one of the major design goals of the integral
LU factorization, in favor of the numerical and algorithmic consider-
ations. We will make up for that in the present section. As we have
already stated, one of the main reasons for replacing the inverse of the
basis matrix with an LU factorization is to allow for better treatment
of sparse inputs. While the inverse of a sparse matrix is not sparse
in general, there are much better techniques available to keep the LU
factorization sparse. For an excellent in-depth treatment of the topics
mentioned in this chapter, see Chapters 6 and 7 of the textbook by
Davis [37].

Note that there is no formal definition of a sparse matrix. It simply
designates a matrix that has mostly zero entries.
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4.4.1. Fill-In

One of the main characteristic of the quality of a sparse factorization
method is the amount of fill-in it generates.

Assume that the matrix A is uniquely factorized by partial pivoting
into PA = LU , where P is a permutation matrix. Recall that we
can enforce uniqueness of the factorization by requiring that all the
diagonal elements of L be 1.

Definition 4.51. Let PA = LU be the unique LU factorization of A,
where L is unit lower triangular. The fill-in is defined as the set of
nonzero elements of L+ U that are zero in PA.

Let us give an example. Consider the matrix A,

A =

â
2 2 1 1

1 2 0 0

1 0 2 0

1 0 0 4

ì
, (4.52)

and the following factorization,

PA =

â
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ìâ
2 2 1 1

1 2 0 0

1 0 2 0

1 0 0 4

ì

=

â
1 0 0 0
1
2 1 0 0
1
2 −1 1 0
1
2 −1 −1 1

ìâ
2 2 1 1

0 1 −1
2 −1

2

0 0 1 −1
0 0 0 2

ì
= LU.

(4.53)
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We can see that P is the identity matrix. No pivoting was necessary
to obtain the given factorization. We can also see that L + U is a
fully dense matrix,

L+ U =



3 2 1 1

1
2 2 −1

2 −1
2

1
2 −1 2 −1
1
2 −1 −1 3


.

If we compare the circled elements with the respective positions in A,
we notice that these are exactly the new nonzeros, and therefore con-
stitute the fill-in of factorization (4.53). With the help of matrix A

we can show that the elimination order matters when it comes to
fill-in. Using a different elimination order, we obtain the following
factorization,

P2A =

â
0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

ìâ
2 2 1 1

1 2 0 0

1 0 2 0

1 0 0 4

ì

=

â
1 0 0 0

1 1 0 0

1 0 1 0

2 1 1
2 1

ìâ
1 0 0 4

0 2 0 −4
0 0 2 −4
0 0 0 −1

ì
= L2U2.

We have exchanged the last row with the first row in the elimination
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order. Conveniently, that reduced the amount of fill-in, as we can see
from L2 + U2,

L2 + U2 =



2 0 0 4

1 3 0 −4

1 0 3 −4

2 1 1
2 0


.

Only two elements are still encircled. Note that we have to compare
the entries with P2A to reflect the changed pivot order. Also note
that there is one new zero entry on the diagonal. Let us disregard
this, however, for two reasons. First, we are not interested in the
diagonal elements at any rate. If the factorization exists (which we
may assume), we will have nonzero elements on the diagonal of both
L2 and U2, because those are exactly the pivot positions. In the cur-
rent example, we get an accidental cancellation in L2 + U2 because
(L2)4, 4 = −(U2)4, 4, but this is not of interest when considering the
fill-in. Second, we have to attest that sometimes cancellations may
happen during the elimination process. So, elements that were origi-
nally nonzero may become zero. This phenomenon is relatively rare,
however, and compared to the occurrence of fill-in it is negligible.

Now, to draw on our example one last time, let us demonstrate that
perfect elimination is possible – if we allow not only for the rows but
also the columns to be permuted. Consider inverting both the order
of the rows and the columns in matrix A. This is easily achieved by
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applying the permutation matrix

P3 =

â
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

ì
from both sides. That is, we obtain the factorization

P3AP
T
3 =

â
4 0 0 1

0 2 0 1

0 0 2 1

1 1 2 2

ì

=

â
1 0 0 0

0 1 0 0

0 0 1 0
1
4

1
2 1 1

ìâ
4 0 0 1

0 2 0 1

0 0 2 1

0 0 0 1
4

ì
= L3U3.

The remarkable realization is that no fill-in is generated at all by
this ordering. Indeed, matrices with a sparsity pattern such as we
find in A are sometimes referred to as arrow matrices. They are the
prototypical example of how elimination order matters when it comes
to fill-in. If a matrix (with a fixed ordering) does not produce any
fill-in, we call it a perfect elimination matrix.
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4.4.2. Minimizing Fill-In

As we have seen in Section 4.4.1, we can considerably reduce the size
of our factorization by permuting the original matrix in such a way
that fill-in is minimized. By size we mean the number of nonzero ele-
ments that we have to store. In the example we have seen, the right
permutation makes a big difference. If we generalize the example of
the arrow matrix in equation (4.52) to size n × n, we end up with
the difference between having to store n2 or only 3n− 2 entries. So a
natural question is this: Can we always find the pivot ordering that
minimizes the fill-in efficiently? The answer to that question is neg-
ative (unless P=NP), because the problem is NP-complete. In this
section we are briefly going to review what is known about hardness,
before we go on to techniques that handle the problem well in prac-
tice. Note that there is a comprehensive chapter about fill-reducing
orderings in [37].

For the symmetric realm – that is for the Cholesky factorization – it
was proved in 1981 by Yannakakis [154] that computing the minimum
fill-in is NP-complete. The proof is a reduction from the optimal
linear arrangement problem, that was shown to be NP-complete by
Garey and Johnson [55]. The reduction takes a few intermediate
graph theoretic steps that are interesting in their own right. Most
important, the minimum fill-in problem is shown to be equivalent to
determining the minimum number of edges that have to be added to
make a given graph chordal. Note that perfect elimination matrices
as well as chordal graphs can be recognized in linear time [126].

Since this problem is difficult to solve in general, we may revert to
heuristics that are successful in practice. Let us briefly describe some
of those in the following two sections.
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4.4.3. Markowitz Pivot Rule

One of the earliest elimination reducing heuristics was proposed by
Markowitz [98]. It is particularly noteworthy that Markowitz received
the Nobel prize17 for economics for his seminal contributions to port-
folio theory in 1990 (see also [96]), part of which is his fill-in reducing
work on LU factorizations.

The rule is easily formulated as follows. Consider the first Gaus-
sian elimination step during the factorization of the matrix A. The
rule states that we should choose the element ai, j that minimizes the
Markowitz count

(ri − 1)(cj − 1), (4.54)

where ri is the number of nonzero entries in row i, and cj is the number
of nonzero entries in column j. Ties may be resolved arbitrarily.
The matrix is permuted such that the element ai, j is moved to the
uppermost leftmost position.

Even though this rule is not optimal in all instances, it proves to
be very successful and efficient in practice. It is implemented as the
LU pivoting strategy in our implementation as well.

Duff, Erisman, and Reid give a more detailed investigation of this
pivoting rule [43]. Most of those considerations are of minor interest
to us, however, because they deal with increasing numerical stability,
which we have less trouble maintaining using exact arithmetic.

17 http://www.nobelprize.org/nobel_prizes/economics/laureates/1990/
markowitz-autobio.html

http://www.nobelprize.org/nobel_prizes/economics/laureates/1990/markowitz-autobio.html
http://www.nobelprize.org/nobel_prizes/economics/laureates/1990/markowitz-autobio.html
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4.4.4. Other Heuristics

A large body of research has been devoted to find more elaborate
pivoting strategies than the one described in the previous section.
Most of them are based on the elimination tree of a matrix A, which
is derived from the graph representation GA. The graph GA is simply
defined as V (GA) := [n], and E(GA) := {(i, j) | ai, j ̸= 0}. The
elimination tree depends on the elimination order, and is not easily
defined. Roughly speaking, we remove all edges from GA that do not
lead to fill-in. See Davis [37] for a comprehensive treatment.

Two of the most popular methods are minimum degree and nested
dissection. The former is a greedy strategy, trying to unravel the elim-
ination tree from its leaves (always picking a vertex of minimum de-
gree). The Markowitz rule can also be seen as such a degree minimiz-
ing method. For more advanced algorithms, see [139, 3, 4, 41, 40], for
example. The latter method called nested dissection tries to cleverly
cut up the elimination tree starting from its root; see [61, 62, 42, 120].
These methods are particularly successful in factorizing matrices that
arise from 2D or 3D finite element formulations. For more explana-
tions and references see Chapter 7 of [37].

It might be of interest to investigate some of these techniques in the
context of our own factorization methods. For the present implemen-
tation we were satisfied with the results of the Markowitz rule. We
did see a marked improvement stepping from partial pivoting (which
only guarantees the existence of a factorization) to Markowitz pivot-
ing. These experiments are undocumented.
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4.5. Update of Integral LU factorization

One of the major concerns when solving linear equation systems in
the context of linear and quadratic programming as well as in other
applications is a fast update procedure. Assume that we have already
computed the solution to the system

Ax = b,

where A ∈ Mn(I). The question is whether and how we can exploit
the work that has been done already to solve a system

A′x = b,

where A′ is a matrix that only slightly differs from A. This will be
the topic of the current section. Most prominently, we will show
and explain an algorithm (see Algorithm 6, which we will denote
by udiLU) to efficiently update the integral factorization diLU, that
we have introduced in Section 4.3.2. This allows us to recover the
factorization of a matrix

A′ = A+ yzT , (4.55)

where y, z ∈ In, if we already have the integral factorization of the
matrix A. This type of update amounts to an arbitrary change of
rank-1 to the matrix A.

We will use this to implement the different basis matrix updates
that were described in Section 3.4. If we study the different updates
U1-U8 and UZ1-UZ4 , we notice that all of them can be expressed as
low-rank updates of the basis matrix. An update of type U5 (see
Figure 3.18a), for example, can be expressed as follows, A′ = A +
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(cnew− cold)e
T
j , where cnew is the column vector replacing the column

vector cold at position j, and ej is the jth unit vector.
Even though some of the updates cannot be directly expressed as

a rank-1 update, we can always compose a rank-r update from r

successive rank-1 updates. The rank of the most complicated types
of updates (UZ2 and UZ3) is at most four. Also, note that it is possible
to add or remove unit rows and columns from the back of the matrix,
thus growing or shrinking the factorization. Doing this, and then
adjusting the entries of the last row/column by the update procedure
lets us implement the updates of types U1-U4.

The udiLU update procedure needs O(n2) elementary operations.
This is cheaper than computing the diLU factorization from scratch,
which uses O(n3) elementary operations.

There is one catch with this procedure, however. Our procedure
does not allow for re-pivoting. The pivot order that was determined
to factorize A has to be adopted for A′ as well. This may lead to
the undesirable situation that some element that was previously used
as a pivot element becomes zero. In that case the update procedure
fails. In Section 4.5.3, we are briefly going to sketch a heuristic that
can be used to attempt recovery from such a pivot failure. It remains
an open question, however, whether we can regenerate an arbitrary
pivot order, and if yes, whether we can do that efficiently.

4.5.1. Related Work

There exists a considerable body of research dealing with different
matrix factorization update procedures over the real numbers. To
the best of our knowledge, in the realm of integral factorizations, our
work presents the first result.

The closely related problem of updating the inverse of a matrix
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is surveyed by Hager [70]. The rank-1 update formula is known as
the Sherman-Morrison formula [130, 129]. Independently, it was also
given by Bartlett [14]. The formula for arbitrary rank changes is
attributed to Woodbury [153]. Updating of the inverse in the context
of the Schönherr’s exact quadratic programming algorithm [128] is
based on methods described by Gärtner [56], going back to Edmonds
and Maurras [48]. Wessendorp [149] later added additional methods.

Similarly to the case of the inverse, methods have been developed
to modify the LU factors of a matrix. Most notably, Bennet [18] and
Gill, Golub, Murray, and Saunders [63]. The latter is not suitable for
our purposes, because it relies on Householder reflections and Givens
rotations to restore the factorization. The former, however, is the
starting point for our own procedure.

In the context of sparse linear programming there has been a num-
ber of publications that deal with updating the basis matrix. Suhl
and Suhl [137] describe an efficient method for restoring the triangular
factors. They also describe earlier methods by Bartels and Golub [13],
Forrest and Tomlin [54], and Reid [122]. Transcending the regular LU
update as referred to in the previous paragraph, these methods try to
reduce the number of necessary operations by exploiting the sparsity
of the matrices involved. They do this by employing different permu-
tation strategies in order to arrive at a favorable form for the update.
Unfortunately, these methods are not easily adopted in the integral
realm. As we have mentioned in the introduction to this chapter, it
is not even clear how to apply any type of pivoting. Therefore, it
also remains an open question whether we can employ any of these
sparsity preserving techniques.

Let us go on to describing our update procedure.
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4.5.2. Algorithm (udiLU)

For a detailed implementation of the algorithm udiLU see Algorithm 6.
Here we will give a mathematical description of the principles behind
it. The algorithm strives to recover the diLU factorization of A′ =

A + yzT if the factorization of A →→ (Lı, U, L, Uı) is already known.
Here A,A′ ∈ Mn(I) and y, z ∈ In.

For simplicity let us assume that we will not have to deal with LU
pivoting, that is, we will not have to concern ourselves with permut-
ing any rows or columns of the matrices involved. For that we have
to assume that the integral LU factorizations of A as well as A′ exist,
as defined in Section 4.3. In this case the restriction is more severe
than before though. The update procedure described here does not
lend itself to adaptive reordering. That is, even though there might
be a pivot order for which the matrix A′ has a valid integral factoriza-
tion, this is not necessarily the case for an ordering that successfully
factorized the matrix A. In a manner of speaking, the first matrix A
to be factorized fixes the pivot order for all the updates that follow.
This is undesirable for several reasons, and it can readily lead to a
failed update attempt if one of the fixed pivot positions happens to
become zero. This problem becomes especially pronounced for sparse
matrices, which contain a lot of zero entries that are not suitable to
serve as pivots. We will come back to this topic in Section 4.5.3. For
now, let us assume that these problems are not of our concern.

The following equation will be the starting point of the description
of the update process,

LıA = U. (4.56)

It it is clear that this holds if (Lı, U) is a proper diLU factorization
pair of A; see invariant (4.27). Considering the matrix LıA

′ we get
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the following,

LıA
′ = LıA+ Lı y z

T = U + Lı y z
T .

Similar to equation (4.29) we can therefore look at our current prob-
lem as

(U + Lı y z
T )x = (U + yı z

T )x = Lı b,

for some arbitrary vector b ∈ Rn and solution vector x. Note the
introduction of the simplifying variable yı := Lıy. Exactly this kind
of preprocessing is also done by Algorithm 6 in line 2. Now, the first
important realization is that we could just apply the diLU process to
that pair of matrices, U + yız

T and Lı. That is, we bring the former
matrix into upper triangular form again by scaling and subtracting
of rows. Instead of starting with a right-hand side In we shall start
with the right-hand side Lı instead. This will give the desired result,
because ultimately the left-hand side will be reduced to upper trian-
gular form again, and the right-hand side will be in lower triangular
form. The latter is easy to see if we consider the changes made to
the right-hand side and the fact that Lı is lower triangular to start
with. In particular, subtracting row i from row j, for i < j, does
not introduce any nonzero elements above the diagonal. Also, scaling
(with anything except 0) does not change the nonzero pattern of the
matrix. This will give us (L′

ı, U
′), but the number of necessary com-

putations is in the order of O(n3), of course. In the following we will
be concerned with explaining how to reduce the number of necessary
computations to the order of O(n2).

The important realization is that we have an almost upper trian-
gular matrix U + yız

T to start with. The property of being upper
triangular is only disturbed by the rank-1 additive term yız

T . We
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can treat this case more efficiently than the general case. Let us see
how. The algorithm goes row by row, treats each row exactly once,
and in the end will have computed the factorization of A′. Again, for
simplicity, we are only looking at the factorization pair (Lı, U) and
omit the argument for the (L,Uı) part.

As was done in Section 4.3.2 we are going to claim an invariant
that will hold at the beginning of each iteration of the outer loop of
Algorithm 6 (lines 7 to 26),

A′ = (L′(k)
ı )−1U ′(k), (4.57)

where L′(k)
ı and U ′(k) are defined in a similar fashion as well. They

are the left and the right part of P , the matrix used as a working
space by the algorithm,

L′(k)
ı =

Ñ
L′
11 0

L′
21 L′

22

é
=



q′1

∗ q′2
...

. . .
. . .

∗ . . . ∗ q′k−1

0

∗ . . . ∗
...

...

∗ . . . ∗

qk
...

. . .

∗ . . . qn



,

and
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U ′(k) =

Ñ
U ′
11 U ′

12

0 U ′
22

é
=



q′2 ∗ . . . ∗

q′3
. . .

...

. . . ∗
q′k

∗ . . . ∗

...
...

∗ . . . ∗

0

∗ . . . ∗
...

...

∗ . . . ∗



.

Note that the structure has slightly changed. First of all, the ele-
ments below the diagonal in L′

22 are nonzero, because we do not start
with In. Second, the diagonal of L′

22 is still initialized with the origi-
nal diagonal elements of Lı. The symbol ∗ still stands for an unnamed
nonzero entry. L′

11, U ′
11, and U ′

12 are stable in the current iteration.
Let us consider

U ′
22 =

á
u′1,1 . . . u′1,n−k+1
...

...

u′n−k+1,1 . . . u′n−k+1,n−k+1

ë
.

again. There is s a second invariant that will help us to prove the
correctness of Algorithm 6. It is that U ′

22 will always have the special
property that it is the sum of an upper triangular matrix and a rank-1
matrix,

U
′(k)
22 = Uk..n, k..n + yık..n(z

(k)
k..n)

T . (4.58)

Note that the first summand is a sub-matrix of the input matrix U .
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In the second summand, the left side of the outer product is part of
the vector yı, which we have right from the start. Both of these only
depend on k in the sense that we select a different range of entries
in each iteration, but the entries themselves will always remain the
same. Therefore, all the bookkeeping is left to the vector z(k)k..n, and
as of now it is still a claim that such a vector exists. Let us have a
look at the update rule for elements in U ′

22 that we should be using
(recall equation (4.32)),

u′i,j ←
u′1, 1u

′
i, j − u′i, 1u′1, j
q′k

, (4.59)

for all k = 2, . . . , n and i, j = 2, . . . , n − k + 1. Note that we have
formulated the update rule for k = 2, . . . , n even though the outer
loop of Algorithm 6 runs for k = 1, . . . , n. The reason for this shift in
starting indices is that, in udiLU, the first iteration is used to add yı1zT

to the first row, and then the z vector is updated to accommodate the
second iteration. While we modify the elements of row k in iteration
k, the update of succeeding rows is prepared in the current iteration.
In other words, the update of row k was prepared in iteration k−1 by
updating z(k−1)

j . Turning back to the update equation, we can replace
the variables by the original values according to invariant (4.58), e.g.,
u′i, j = ui, j + yıiz

(k)
j . We will drop the superscript k for a moment

and only look at the numerator of the update rule. Then we get

u′1, 1(ui, j + yıizj)− (ui, 1 + yıiz1)(u1, j + yı1zj) =

u′1, 1ui, j + yıi(u1, 1zj − u1, jz1)− ui, 1(u1, j + y1zj) =

u′1, 1ui, j + yıi(u1, 1zj − u1, jz1). (4.60)

The first equality follows by expanding the appropriate terms and
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standard manipulation. The second equality follows because ui,1 = 0.
Recall that this denotes an original entry of U and for i > 1 this is 0

because U is upper triangular.
We have derived the update that is implemented in line 22 of Al-

gorithm 6. The last term of (4.60) (in parentheses) corresponds to
the instructions of the algorithm. Note that k in the algorithm cor-
responds to 1 in our formula, and that the z of the formula is really
called z1 in the algorithm. That is, in the formula the subscript des-
ignates accessing the first element, while in the algorithm it is just a
label. Unfortunately, this confusion of nomenclature is necessary, be-
cause in the algorithm we have to deal with two different variables z
because of the second factorization pair. Furthermore, in the algo-
rithm, the variables u and ur are used to store the original values of
the factorization.

The update of z in line 22 is then applied to the entries of the next
row to be updated in the next iteration of the loop, in lines 12 to 14,
which concludes the implementation of formula (4.60).

Unfortunately, we are not able to give the formal argument at this
point, why the divisions by q in the algorithm are integral.

4.5.3. Pivot Failure

We have already mentioned that the update procedure udiLU will fail
if any of the q′k computed happens to be zero. Especially in the case
of sparse vectors this is likely to happen. Consider replacing a column
that only contains one nonzero entry with another that only contains
one nonzero entry, but in a different position. Since the pivot is linked
to a particular position in that column, we will encounter a zero pivot.

Unfortunately, we are not able to provide a systematic escape plan
in this situation. Changing the pivot order of an established integral
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LU factorization is possible but computationally expensive (up to the
point of having to do a complete re-factorization).

We did, however, implement a heuristic in the quadratic program-
ming solver, which we call the swap trick. This heuristic is able to
avoid pivot failures sometimes. To sketch it briefly, suppose we are
trying to replace column cold residing in position j by column cnew.
Furthermore, assume that the position of the pivot in column j is i.

(i) Check beforehand whether cnew contains a nonzero element
at position i. If yes, everything should be fine; abort this
heuristic, carry out the rank-1 update using udiLU. If not, go
to the next item.

(ii) Find a replacement column crep in the matrix that does contain
a nonzero element in position i. Suppose the replacement’s
position is j′ and its pivot is found at position i′. If cnew has
a nonzero element at i′ go to the next item, if not continue
looking for another replacement column. If none is found,
abort and report a pivot failure.

(iii) Carry out the swap. Using a rank-1 update, replace the col-
umn crep by cnew. Then, using another rank-1 update, replace
cold by crep. Swap j and j′ in the column permutation of the
factorization.

So, it may be possible to modify the permutation of a diLU factoriza-
tion. In the general dense case, this is always possible. However, it
is not efficient if we have to do several changes to the column permu-
tation, and it is not adaptive within the udiLU update. In fact, we
are using the udiLU update to achieve the modification. Therefore,
one swap of the type described above needs O(n2) operations. This
is alright if we try to find a quick fix for one particular pivot failure,
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but if we have to establish a completely new permutation, this will
be more expensive than re-factorization.

Finally, note that this applies to rows as well as to columns, of
course. Also, it is possible to execute the swap trick for more com-
plicated situations like the different basis matrix updates (see Sec-
tion 3.4), but the procedure for these situations is more complicated
because of the interdependence between the rows and columns to be
exchanged. In the quadratic programming solver, we did implement
provisions for the swap trick for some of the more complicated types
of updates, with varying degree of success.

4.5.4. Complexity of udiLU

Let us derive the number of multiplications N∗ of the udiLU update
procedure first. We sum over the loops of Algorithm 6,

N∗ =
n

k=1

Ñ
n+k
j=k

2 +
n

j=k+1

2 +
k−1
j=1

2 +
n+k

j=k+1

4

é
= 2

n
k=1

4n

= 8n2.

The number of divisions N÷ and the number of subtractions N− is
the same, because each of inner loops contains an equal number of
these. Therefore, we get
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N÷ = N− =
n

k=1

Ñ
n+k
j=k

1 +
n

j=k+1

1 +
k−1
j=1

1 +
n+k

j=k+1

2

é
= 4n2.

Computing the total number of operations we get

N = N∗ +N− +N÷ = 16n2.

As we have claimed this is more efficient than computing the factor-
ization from scratch.
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Algorithm 6: Update-diLU (udiLU)
Input: (Lı, U), (L,Uı) the diLU factorization of A; y, z ∈ In.
Output: (L′

ı, U
′), (L′, U ′

ı) the diLU factorization of A+ yzT .
1 P ← [L+ triu1(U) , Lı + triu1(Uı)];
2 y1 ← Lıy;
3 z1 ← [z;0n];
4 y2 ← UT

ı z
T ;

5 z2 ← [y;0n];
6 q′1 ← 1;
7 for k = 1 to n do
8 q ← Pk, k+n;
9 u← Pk, k;

10 ur ← Pk, k+1..n+k;
11 uc ← [Pk+1..n, k;P1:k, n+k];
12 for j = k to n+ k do ▷ Update U and Lı

13 Pk, j ← (q′kPk, j + y1kz1j)÷ q;
14 end
15 for j = k + 1 to n do ▷ Update L
16 Pj, k ← (q′kPj, k + y2kz2j)÷ q;
17 end
18 for j = 1 to k − 1 do ▷ Update Uı

19 Pj, n+k ← (q′kPj, n+k + y2kz2n+j)÷ q;
20 end
21 for j = k + 1 to n+ k do ▷ Update z1 and z2
22 z1j ← (uz1j − z1kurj−k)÷ q;
23 z2j ← (uz2j − z2kucj−k)÷ q;
24 end
25 q′k+1 ← Pk, k;
26 end
27 Lı ← tril


P[∗, n+1..2n]


;

28 U ← triu

P[∗, 1..n]


;

29 L← tril

P[∗, 1..n]


;

30 Uı ← triu

P[∗, n+1..2n]


;



I gots a TI-82
and I’m comin fa you.
All 32k baby–all 32k!
All 32k baby–all 32k!
Spittin out programs through every episode.
I drop sucka MC’s wit my dope source code.
I’m suckin up your whole RAM
With my phat quadratic program.

c⃝ 1996 Clark Freifeld and Ian Bagley

5
Implementation

After having discussed the theoretical aspects of the combination of
the LU factorization and the simplex quadratic programming algo-
rithm in the previous chapters, this chapter will be concerned with the
practical implementation thereof. Many explanations in this chapter
assume that the reader is familiar with the C++ programming language
and the Standard Template Library (STL). In particular, concepts like
classes, templates, containers, and iterators should be known. See
[136], for example, or any of the numerous online resources.

The quadratic programming solver is realized as a package of the
Computational Geometry Algorithms Library18 (CGAL) [49]. CGAL

18 http://www.cgal.org/
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is written in C++ and available under open source as well as commer-
cial licenses. At the time of writing this thesis, the sparse features
have not been added to the official distribution yet. Excerpts from
the planned documentation are added in the Appendix A.6. In this
chapter we are going to give a general overview and highlight some
interesting implementation details.

Section 5.1 describes CGAL in general and gives an overview of
the Linear and Quadratic Programming package in particular. Sec-
tion 5.2 introduces the data structures used for sparse computations.
Section 5.2.4 discusses the diLU factorization and the udiLU update.
Finally, Section 5.3 discusses the linear and quadratic programming
solver in more detail.

5.1. CGAL

The CGAL project was started in 1996 as a collaboration between
several research institutions in Europe and Israel. Among these is also
ETH Zürich. Quoting the introductory statement from its homepage
is the most straightforward way of introducing it:

The goal of the CGAL Open Source Project is to pro-
vide easy access to efficient and reliable geometric al-
gorithms in the form of a C++ library. CGAL is used
in various areas needing geometric computation, such
as: computer graphics, scientific visualization, computer
aided design and modeling, geographic information sys-
tems, molecular biology, medical imaging, robotics and
motion planning, mesh generation, numerical methods...

CGAL offers a solid set of basic data types and data structures and a
wide range of packages for more specialized problems that are mainly
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geometric in nature. The complete overview of packages can be found
in the online manual19. To name a few examples, there are algo-
rithms for computing convex hulls, Delaunay triangulations, Voronoi
diagrams, arrangements, envelopes, meshes, and many other things.
Up to today, there is quite a number of papers published containing
CGAL in their title or abstract20. This is to say that, on the one hand,
CGAL provides great tools to researchers to implement and test their
ideas and algorithms. On the other hand, this is testimony to the
fact that CGAL employs the newest and most efficient algorithms in
many areas and is still actively being developed.

Last but not least, there are some packages that are not primar-
ily geometric in nature, such as the Linear and Quadratic Program-
ming Solver package. In the following sections we will focus on this
package. Even though the relationship with geometry might not be
immediately apparent, it was the main motivation for adding this
package. Many geometric problems can be formulated in terms of
linear or quadratic programs. In fact, two applications within CGAL
already depend on the linear and quadratic programming solver; and
there is another one being prepared. Those three packages are mini-
mum annulus, polytope distance, and extreme points. The former two
are already available in the distribution but the latter, at the time
of writing this thesis, is still in the review process. Let us give a
short explanation of those three applications, which are illustrated in
Figure 5.1.

Minimum annulus is the problem of finding the (unique) pair of
radii r and R, r ≤ R, and center c, respectively, such that a given set

19 http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.
html

20 One example is [58]. We refrain from adding any other references.

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html
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(a) Minimum annulus (b) Polytope distance (c) Extreme points

Figure 5.1.: Illustrations of the packages and features in CGAL that di-
rectly rely on the linear and quadratic programming solver.

of points is contained in the region between two concentric spheres
that are placed at c with radii r and R, and such that R2 − r2 is
minimized. See Figure 5.1a for an illustration. A formal description
of this problem and the associated linear program is given in Section
5.5, where we also discuss the adaptions in the implementation that
became necessary to comply with the sparse version of the solver.

The polytope distance problem asks to find the minimum distance
between two polytopes, that are implicitly given by two sets of points
respectively (the convex hull of the points defines the polytope); see
Figure 5.1b. Similar as in the case of the minimum annulus problem,
we will give the formal definition in a separate section, Section 5.4,
where we discuss implementation details.

Finally, in the extreme points problem, one is again given a point
set to start with; see Figure 5.1c. The task is to identify the points in
this set that lie on the boundary of the convex hull of the whole point
set. These points are called extreme points. Since this package did
not need any particular adaptions in the context of the sparse version
of the solver, we are going to defer the formal definition to the next
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chapter, Section 6.5.

The former two problems are also going to be featured in Chap-
ter 6, where we discuss experimental results. Those two problems
were introduced to CGAL by Schönherr [128]. The latter problem
was implemented as a CGAL package by Helbling [71].

5.2. Sparse Tools

In this section we describe the implementation of a vector class
QP_sparse_vector and a matrix class QP_sparse_matrix, that pro-
vide containers for matrix computations with a focus on exploit-
ing sparsity, and their application in the framework of the CGAL
quadratic programming solver.

5.2.1. Introduction

The main goal when dealing with sparse matrices is, of course, to
avoid storing all those zero entries21, while still keeping adequate ac-
cessibility and efficiency for the required operations. There are several
different approaches of storing a sparse matrix.

Let us look at a simple example of a sparse matrix,

A =

â
4.5 0 3.2 0

3.1 2.9 0 0.9

0 1.7 3.0 0

3.5 0 0 1.0

ì
.

21 More generally, sparse matrices can be based on an arbitrary default value, not
necessarily zero. For the rest of this chapter, whenever we speak of a nonzero
entry, we could substitute non-default entry.
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A straight-forward idea for storing matrix A is to keep triplets of
the form (row_index, column_index, value) for all the nonzero
entries. The above matrix could therefore be stored as an array of
triplets,

[(0,0,4.5), (0,2,3.2), (1,0,3.1),

(1,1,2.9), (1,3,0.9), (2,1,1.7),

(2,2,3.0), (3,0,3.5), (3,3,1.0)]

(5.2)

Note that, as it is customary in the C++ language, we use zero based
indexing here, i.e., the first element of a structure is assigned the
index 0. This method of triplets, however, is somewhat cumbersome
when implementing algorithms. We will therefore use STL containers
to store the columns (or rows) of a matrix in a compressed format.
This is not a novel idea (e.g. [113]). The above matrix can be stored
as a set of four compressed row vectors,

[ [(0,4.5), (2,3.2)],

[(0,3.1), (1,2.9), (3,0.9)],

[(1,1.7), (2,3.0)],

[(0,3.5), (3,1.0)] ]

(5.3)

Each row in (5.3) now represents one row of the matrix. Note that
the triples were reduced to pairs, because the row index of an entry
is implicit in the storage format. This is the basic idea of our data
structures. Chapter 2 of [37] discusses some variations in more detail.

To close, let us mention that there are open source implementations
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of sparse matrix tools available, such as Eigen22, SparseLib++23, or
TAUCS 24, for example. It should be kept in mind, that some of
these implementations might be more efficient than ours, and that the
adoption of an external library must not be ruled out in the future.
What made us decide for our own implementation, ultimately, are
the special requirements of the integral LU factorization. These are
integral factorization, updating a factorization, and templatization for
custom number types. None of the libraries known to us features all
these characteristics.

5.2.2. Vector Class

The data structure QP_sparse_vector that we are going to present
will provide single element access in O(log nnz) and iterator access to
all elements in O(nnz), where nnz is the number of nonzero elements
of the vector. The former means that we can read, write, or modify
an element of the vector, while the latter means that we sequentially
visit all the elements of a vector and read, write, or modify them.
What follows is the technical description.

The vector class QP_sparse_vector is implemented as a template,
to be instantiated with an arbitrary number type NT. In addition to
this number type, an instance of the vector class QP_sparse_vector

is equipped with a size n_ and a default entry nt0_. The default entry
is used as the value of all those entries that are not specifically set to
some other value. Usually nt0_ is set to NT(0), the zero element of
the number type. The nonzero elements of the vector are stored in a

22 http://eigen.tuxfamily.org/
23 http://math.nist.gov/sparselib++/
24 http://www.tau.ac.il/~stoledo/taucs/

http://eigen.tuxfamily.org/
http://math.nist.gov/sparselib++/
http://www.tau.ac.il/~stoledo/taucs/
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map, pairing indices with values; see Listing 5.4.

template <typename NT>
class QP_sparse_vector {

// Types
typedef int key_type;
typedef NT value_type;
typedef typename std::map <key_type , NT > map_t;

// data members
int n_;
NT nt0_;
map_t entries_;

};

Listing 5.4: Basic class members of QP_sparse_vector.

Internally, the elements are stored in a std::map. For the client of
the class, direct element access is provided by member functions such
as the ones in Listing 5.5. However, note that – even though this is
the conceptually easiest form of access – one should rely on iterator
manipulations if possible and appropriate, for reasons described later.

// Getter & setter methods
const NT& get_entry(key_type n) const;
void set_entry(key_type n, NT val);

Listing 5.5: Getter and setter methods of QP_sparse_vector.

The problematic aspect of these functions is that they rely on the
respective element manipulation functions of the std::map, i.e., their
complexity is O(log nnz).

Conveniently, std::map supports bidirectional iteration through its
elements in sorted order of its keys. We can utilize this to provide the
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following iterator interface to QP_sparse_vector; see Listing 5.6.

// Types
typedef typename map_t :: iterator sparse_iterator_t;
// Accessors
sparse_iterator_t begin ();
sparse_iterator_t end();

Listing 5.6: Iterator access to QP_sparse_vector.

As should be clear from those declarations we do nothing else than
relay the std::map::iterator to the user of QP_sparse_vector

through its own interface. According to the standard semantics, an in-
stance it of type QP_sparse_vector<NT>::sparse_iterator_t can
be incremented (++it), decremented (–-it), and dereferenced (*it).
The type of the latter is std::pair<key_type, value_type>. That
is, we can access the index of an entry by it->first and the value
by it->second.

If some operation reads or manipulates all the elements of a vector,
it is more efficient to do this through iterators and not through the
getter and setter methods. Let us assume that we have a vector
v ∈ Nn, and that we want to compute αv for some α ∈ N. Listing 5.7
illustrates this situation.

QP_sparse_vector <int > v;
int a;
...

// Manipulate entries through iterator access
for (QP_sparse_vector <int >:: sparse_iterator_t it = v.

begin(); it != v.end(); ++it) {
it ->second *= a;

}



140 Implementation

// Inefficient way , using the setter method
for (QP_sparse_vector <int >:: sparse_iterator_t it = v.

begin(); it != v.end(); ++it) {
v.set_entry(it->first , a * it->second);

}

Listing 5.7: Example of element access using QP_sparse_vector.

Both loops in the Listing 5.7 achieve the same thing. The second one
is less efficient though, because for every nonzero entry one call to
set_entry is issued. The complexity is therefore O(nnz log nnz). The
first loop runs in linear time O(nnz). There are situations, of course,
where the methods get_entry and set_entry still make sense. If we
only have to read or set one particular entry, for example. In that
case, iterator access is less efficient, since we have to spend O(nnz)

only to get to the entry. This is why the implementation provides
both methods.

For completeness, and because we will use it when describing the
implementation of a sparse matrix, let us also mention the implemen-
tation of operator[]; see Listing 5.8.

template <typename NT>
const NT& operator [] (const key_type& n) const {

return get_entry(n);
}

Listing 5.8: Implementation of operator[] for QP_sparse_vector<NT>.

Note that we do not provide a non-const version of operator[]. For
std::map, which is the underlying data structure here after all, the
C++ standard [1] defines in Section 23 that a reference NT& should be
returned in that case. This means, if we tried to access an element
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whose key does not exist yet, we have to insert std::pair<key_type,
NT>(n, nt0_) into the vector. In our case this behavior is not desired,
because it fills up the vector with de facto zero entries for every read
access to a zero element.

5.2.3. Matrix Class

Building on the sparse vectors from the preceding section, the sparse
matrix data structure QP_sparse_matrix provides access to a single
element inO(log nri

nz), and iteration over its rows or columns inO(nri
nz)

and O(ncj
nz) respectively. Here nri

nz is the number of nonzero entries in
row i, and ncj

nz is the number of nonzero entries in column j.
The matrix class QP_sparse_matrix is used to keep the basis ma-

trix in the quadratic programming solver. It is the main data struc-
ture upon which the LU factorization builds.

template <typename NT>
class QP_sparse_matrix {

// data members
int m_; // row dimension
int n_; // column dimension
NT nt0_;
std::vector <QP_sparse_vector <int > > rows_ , columns_;
std::vector <NT> data_;
int next_index_;

};

Listing 5.9: Basic data members of QP_sparse_matrix.

Listing 5.9 requires some explanations. First of all – as in the case
of sparse vectors – there are data elements that indicate the size of
the matrix, such as m_ and n_ for the number of rows and columns
respectively. Also, there is a default entry nt0_, which will usually
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be zero.

The remaining data elements are used to store the nonzero elements
of the matrix. The main idea is that we separate the logical index
structure, which is stored in the two variables rows_ and columns_,
from the actual data elements, which are stored in an array data_.
See Figure 5.10 for an illustration of the index structure. As you
can see in the declaration of rows_ and columns_ these two arrays
store sparse vectors containing integer variables. These are the actual
indices into data_. The reason for this setup is that we want to be
able to do manipulations without having to drag around numerous
instances of NT. Only when we are sure about accessing an entry do
we use the integer index to actually access it. The data member
next_index_ indicates the next free cell in the array data_.

There is one redundant element in the implementation of
QP_sparse_matrix. That is, it has a structure that keeps track of
the rows and the columns of the matrix. In fact, each of the arrays
rows_ or columns_ is sufficient to reconstruct the whole matrix. The
reason why we have both of these structures is that we want to be
able to efficiently iterate over the rows as well as the columns of the
matrix. This is a consequence of the fact that we want to be able to
compute the LU factorization of some matrix A as well as of its trans-
pose AT (see Section 4.3). Unfortunately though, we do not have any
control over the template number type NT, in general. In particular,
QP_sparse_matrix is going to be instantiated with an exact number
type in the course of the LU factorization. Hence it seems reasonable
to minimize the number of instances of and operations on variables
of type NT. We do not know how NT is implemented, and the numbers
during the LU factorization may grow large.

For these reasons the entries of the matrix are stored in the one di-



Sparse Tools 143

mensional array data_. In rows_ and columns_ we only store indices
into that array. To be consistent, it must always hold that

rows_[i][j] == columns_[j][i],

for all 0 ≤ i < m_ and 0 ≤ j < n_. This is an invariant of
QP_sparse_matrix. Note that, in the above formulation, the first ap-
plication of operator[] is simple index arithmetic on a std::vector,
while the second application is a call to get_entry as described in
Section 5.2.2.
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Figure 5.10.: Shows an example of the logical indexing structure of the
class QP_sparse_matrix. The cells contain integer indices
that point to an array (not shown) of values. The dotted lines
indicate the individual rows and columns. The solid arrows
represent iterator access for one particular row or column,
and the small boxes represent the past-the-end iterators. Note
that not every index needs to be present, as index 2 is missing,
for example.
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Irrespective of these considerations, QP_sparse_matrix offers a simi-
lar set of operations and access routines as QP_sparse_vector. The
straight-forward single element access is provided by methods like the
ones in Listing 5.11.

// Getter & setter
const NT& get_entry(int m, int n) const;
bool set_entry(int m, int n, const NT& val);

Listing 5.11: Getter and setter methods of QP_sparse_matrix.

As in Section 5.2.2, where we discussed access to a sparse vector, we
also want iterator access which is more tuned towards sparse inputs.
This is provided by a set of begin and end functions to obtain iter-
ators for single rows and columns. See Listing 5.12 for an example.
There is a distinction between index_iterator and value_iterator.
The former is normally not needed by a user of QP_sparse_matrix,
because it iterates over the internal indices into the array data_, while
the latter is the standard way of iterating over the entries of the ma-
trix.

// Types
typedef typename QP_sparse_vector <int >:: sparse_iterator_t

index_iterator;
typedef typename boost :: transform_iterator <Index_to_NT ,

index_iterator > value_iterator;
// Iterator access
value_iterator begin_column_value(int i);
value_iterator end_column_value(int i);

Listing 5.12: Iterator access to QP_sparse_matrix.

The functor Index_to_NT (see Listing 5.13) is used to, roughly
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speaking, turn an instance of index_iterator into an instance of
value_iterator. Note that this returns pointers to the entries, that
is, if it is of type value_iterator, it->first provides an index (of
the matrix) while *it->second provides the value. Note that the sec-
ond element of result_type is a pointer to NT. Therefore, we have to
dereference once more to get to the value.

struct Index_to_NT {
typedef typename std::pair <int ,int > input_type;
typedef typename std::pair <int , NT*> result_type;

Index_to_NT (): data_pointer_ (0) {}
Index_to_NT(std::vector <NT >* p): data_pointer_(p) {}

result_type operator () (const input_type& p) const {
return result_type(p.first , &( data_pointer_ ->at(p.

second)));
}

private:
std::vector <NT >* data_pointer_;

};

Listing 5.13: Helper object that provides pointers to the entries of the
matrix when given an index.

5.2.4. LU Factorization

The integral LU factorization is implemented as a stand-alone class
but access to it is greatly tuned to the needs of the quadratic program-
ming solver. It is parameterized by a pointer to the Matrix_provider
class that is required to provide the matrix to be factorized on de-
mand.
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template <..., typename Matrix_Provider >
class QP_LU_factorization {

public:
template < typename InIt , typename OutIt >
void solve(InIt v_l_it , InIt v_x_it ,

OutIt y_l_it , OutIt y_x_it);
bool rank_1_update(QP_sparse_vector <ET > y,

QP_sparse_vector <ET> z);

private:
void compute_factorization ();

template < class InIt , class OutIt > // QP case
void solve_QP( InIt v_l_it , InIt v_x_it ,

OutIt y_l_it , OutIt y_x_it);
template < class InIt , class OutIt > // LP case
void solve_LP( InIt v_l_it , InIt v_x_it ,

OutIt y_l_it , OutIt y_x_it);
};

Listing 5.14: Class implementation of the integral factorization.

Factorization is usually not initiated manually. Instead it is triggered
by the access method solve. Once the user requests to solve an
equation system, we check whether the matrix had previously been
factorized. If the factorization does not exist, it is lazily evaluated
on demand. Note that the parameters of solve are reminiscent of
equation (3.8). The input and the output are subdivided into the
λ-part and the x-part25. This is done because we handle the LP
case differently from the QP case. In the former situation we only
store the matrix A, because MB takes the simplified form of equation

25 See Section 3.3 for an explanation of the λ- and x-part.
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(3.14). We can see this distinction implemented in the two private
methods solve_QP and solve_LP that are used internally to compute
the solution. In the private section we further notice the method
compute_factorization that is used internally to trigger factoriza-
tion from scratch if need be.

Last, we have included the method rank_1_update, which is ac-
cessible publicly. It can be used by the caller to modify the internal
LU representation of the matrix stored (assuming that the factor-
ization already exists). The parameters y and z are according to
equation (4.55). Calls to this method are used to implement all the
different updates as described in Section 3.4.

5.3. Quadratic Programming Solver

The interface of the quadratic programming solver is hardly changed
by our implementation. Most important, the new LU version of the
solver is backward compatible with the previous code, except for one
detail. Previously, it was possible to retrieve dense iterators for the
matrices A and D26 from the program, i.e., by calling get_a(), which
returns an iterator to the matrix A. This has been replaced by sparse
access, i.e., get_a_sparse(), which also returns an iterator to the
matrix A but one that has an (index,value) structure. It is still
possible to construct the program from dense iterators. However,
this feature comes with certain restrictions concerning efficiency. We
will discuss some of these issues in the following Sections 5.4 and 5.5,
and in the chapter about the experimental results, Chapter 6.

Other than this, we refrain from describing the technical interface

26 Recall the matrices A and D from the definition of a quadratic program (1.1).
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at this point and refer to the CGAL documentation27. In Appendix
A.6 we include a few pages from the updated documentation. This
outlines the modified concept QuadraticProgram that defines the in-
terface for a quadratic programming instance. All the previous im-
plementations (called models) of this concept are still valid, and there
is a new model Quadratic_program_from_sparse_iterators.

5.4. Polytope Distance

This problem is a classical problem of computational geometry. A so-
lution is implemented as a package28 in CGAL and described in Schön-
herr’s PhD thesis [128]. It fully depends on the quadratic program-
ming solver. We will restate the mathematical definition of the prob-
lem and explain the approach by which it is solved, for consistency.
For an illustration see Figure 5.1b. The main point of this section,
however, is to describe how the LU version of the quadratic program-
ming solver can be adapted to work with the sparse iterator input
interface. Experimental results about this approach can be found in
Section 6.3.

Problem 5.15 (Polytope distance problem). Given two sets of points
P,Q ⊂ Rd, determine the minimum distance between the convex hulls
of the two sets.

The definitions of convex hull of a point set and distance between two
point sets are as follows.

27 http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.
html

28 http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Polytope_
distance_d/Chapter_main.html

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/packages.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Polytope_distance_d/Chapter_main.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Polytope_distance_d/Chapter_main.html
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Definition 5.16. The convex hull, conv(P ), of a finite point set P is
defined to be the set of all convex combinations of P . Formally,

conv(P ) :=


p∈P ′

λpp, for P ′ ⊆ P, λp ≥ 0, and

p∈P ′

λp = 1

 .
Definition 5.17. For two points sets P,Q ⊂ Rd we define their dis-
tance d(P,Q) as

d(P,Q) := min
p,q
∥p− q∥d ,

where p ∈ convP and q ∈ convQ.

Let the point sets consist of the following points, P = {p1, . . . , pr} and
Q = qr+1, . . . , qn. Let p ∈ conv(P ) and q ∈ conv(Q) be the two points
that attain the minimum distance between P and Q. Furthermore,
let v and w be two nonnegative d-vectors such that v−w = p−q. The
solution of Problem 5.15 can be formulated as the following quadratic
program,

(PD) min (v − w)T (v − w)

s.t. v − w −
r

i=1

xipi +
n

i=r+1

xiqi = 0

r
i=1

xi = 1

n
i=r+1

xi = 1

xi ≥ 0, 1 ≤ i ≤ n

vi, wi ≥ 0, 1 ≤ i ≤ d.

(5.18)

Here, the solution variables are all the entries of v and w and also
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xi for all 1 ≤ i ≤ n. The first constraint is a vector constraint that
formulates p and q as linear combinations of the points in P and Q,
and assures that v−w = p−q. The second and third constraints make
sure that the linear combinations are convex combinations, and that
the resulting points are therefore contained within the convex hulls
of P and Q. The objective function is simply the squared distance
∥v − w∥22 = ∥p− q∥22.

To summarize, the matrices A and D have the following form. We
assume that the ordering of the variables lists all unknowns of v, w,
and then all xi,

A =


Id −Id −P Q

0 0 1 0

0 0 0 1

 , (5.19)

where P and Q are the points of the two inputs sets arranged in
columns. Id is the identity matrix of order d, and the last two rows
in (5.19) are single rows. The four 0 entries in the lower left part are
therefore row vectors containing d zero entries. The four entries in
the lower right part are row vectors containing n entries each. The
dimension of A is (d+ 2)× (n+ 2d). This matrix is not particularly
sparse. The situation is different for D,

D =


Id −Id 0

−Id Id 0

0 0 0

 . (5.20)

Considering that none of the variables xi appear inD and that usually
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n≫ d, this matrix is extremely sparse. The 0 entry in the lower right
part is a sub-matrix of dimension n× n (which implicitly defines the
dimensions of the other 0 entries as well). The dimension of the whole
matrix D is (n+ 2d)× (n+ 2d).

To comply with the sparse iterator input interface (see Section 5.3),
the matrices A and D are implemented as follows. We only give the
description for D. The data structures for A are realized analogously.

// iterator for a fixed row of D
template <typename NT_ >
class D_sparse_column_iterator :

public boost:: iterator_facade <...>
{

// typedefs
...

// constructor
explicit D_sparse_column_iterator(int j, int d, int i)

: j_(j), i_(i), d_(d) {
adjust_indices ();

}

private:
// Used to skip zero elements
void adjust_indices () const;

// required by iterator_facade
void increment ();
void decrement ();
bool equal(const Derived & other) const;
value_type& dereference () const;

private:
int j_; // column number
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int i_; // row number
int d_; // dimension
mutable value_pair tmp_;

};

Listing 5.21: Refinement of boost::iterator_facade, defining column
iterators for D.

Iterators for one specific column of D can be realized by refin-
ing boost::iterator_facade29. In Listing 5.21 we left out all
the typedefs and many other requirements of iterator_facade for
brevity (indicated by “...”). Note that the type value_pair is sim-
ply std::pair<int, NT>. The data members are as follows: i_, j_,
and d_ are used to store the current position (row) of the iterator,
the column of D that it represents, and the total row dimension of D,
respectively. The member tmp_ is of type value_pair and is used to
store the return value, in case the iterator will be dereferenced. This
is necessary, because iterator semantics require that we return a refer-
ence. The member tmp_ is declared mutable, because comparison of
two iterators should yield the same result independent of whether or
not any of the iterators had been dereferenced earlier (which changes
tmp_). It is important to note that the references obtained from the
iterator constructed must not be kept for future use. This is a down-
side of this approach, but the advantage of being able to generate the
matrix elements on demand (as opposed to having to store the whole
matrix) is of greater interest.

The idea is as follows. The iterator_facade interface requires
us to implement the functions increment, decrement, equal, and
dereference. Essentially these provisions are sufficient to let

29 http://www.boost.org/doc/libs/1_50_0/libs/iterator/doc/iterator_
facade.html

http://www.boost.org/doc/libs/1_50_0/libs/iterator/doc/iterator_facade.html
http://www.boost.org/doc/libs/1_50_0/libs/iterator/doc/iterator_facade.html


Polytope Distance 153

D_sparse_column_iterator appear as any other standard C++ iter-
ator. The function adjust_indices was added to move the iterator
to the next nonzero position. For example, in the implementation of
increment, we advance i_ by one, and then call adjust_indices. It
is an invariant of the iterator that it should always point at a nonzero
entry (or the past-the-end position). So, after any manipulation of
i_ we have to adjust the indices.

This iterator adaption is really the core of the implementation
changes of the polytope distance problem. It provides a sparse iterator
that returns pairs of the form (index, value) forD. This needs to be
further embedded in a type D_sparse_column, from which to derive
the iterator, and then ultimately in types D_sparse_matrix_iterator
and D_sparse_matrix to provide access to the whole matrix.

template <typename NT_ >
class D_sparse_column {

...
D_sparse_column_iterator <NT> begin() {

return D_sparse_column_iterator <NT >(j_ , d_, 0);
}

D_sparse_column_iterator <NT> end() {
return D_sparse_column_iterator <NT >(j_ , d_, 2*d_);

}
...

private:
int j_; // col number
int d_; // dimension

};

Listing 5.22: Class representing the columns of D.
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template <typename NT_ >
class D_sparse_matrix: public std:: unary_function <int ,

D_sparse_column <NT_ > >;

template <typename NT_ >
struct D_sparse_matrix_iterator {

typedef typename boost :: transform_iterator <
D_sparse_matrix <NT_ >,
typename boost :: counting_iterator <int > > Type;

};

Listing 5.23: Classes representing the whole matrix D.

We have included the skeleton of the additional data structures nec-
essary to represent D in Listing 5.22 and Listing 5.23, hoping that
they are self-explanatory to the interested reader.

5.5. Minimum Annulus

As for the problem of the previous section, a solution to the minimum
annulus problem is implemented in CGAL and it was described in
Schönherr’s thesis [128]. Here, we will give the formal definition and
some implementation details. For an illustration of the minimum
annulus problem see Figure 5.1a.

Definition 5.24. An annulus is the region between two concentric
spheres in Rd with center c and radii r and R, where r ≤ R. Formally,
it is the set

{p ∈ Rd | r2 ≤ (p− c)T (p− c) ≤ R2}.
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The minimum annulus problem can be formulated as follows.

Problem 5.25 (Minimum annulus problem). Given a finite point set
P ⊂ Rd, determine the annulus that contains P and minimizes R2 − r2.

Making the substitution u := R2 − cT c and v := r2 − cT c, we can
formulate the problem as the following primal linear program,

(MA) max v − u
s.t. pT p− 2pT c ≥ v, ∀p ∈ P

pT p− 2pT c ≤ u, ∀p ∈ P.
(5.26)

The reader is invited to make the substitutions for u and v to see the
evident formulation of the problem. Introducing a dual variable xp
for every constraint of the first type, a variable yp for every constraint
of the second type, and some transformations, we obtain the following
dual program,

(MA’) min

p∈P

xpp
T p−


p∈P

ypp
T p

s.t. 2

p∈P

xpp− 2

p∈P

ypp = 0


p∈P

xp = 1


p∈P

yp = 1

xp, yp ≥ 0, ∀p ∈ P.

(5.27)

This is the problem that is solved in the CGAL implementation. The
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matrix A for MA’ looks as follows,

A =

Ü
2P −2P
1 0

0 1

ê
, (5.28)

where P = {p1, . . . , pn} contains the points as columns, and the en-
tries in the lower part of A are row vectors of n entries each. The
dimension of A is (d+2)×2n. There is no matrix D since the problem
is linear.

The implementation of this package was not changed to a sparse
input interface yet. We have left it like this for lack of time, but also
to demonstrate that the LU version of the solver is backward compat-
ible with the old interface. Dense input iterators are allowed. The
test results in Section 6.4, however, show that this is not a desirable
situation, because it leads to slow running times. If efficiency is an
issue, a sparse input interface should be used.

Let us briefly describe how the adaption of a dense input interface
works in the sparse version of the solver. To differentiate between
sparse and dense input interfaces, all incoming iterators are funnelled
through an adaptor class. This adaptor provides access to a sparse
version of the input, whichever interface is used for the input. List-
ing 5.29 shows the skeleton of this adaptor class.

template < typename Q_ , typename Is_sparse_ >
struct Sparse_iterator_adaptor {

typedef Is_sparse_ Is_sparse;
};

// sparse specialization
template < typename Q_ >
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struct Sparse_iterator_adaptor <Q_ , CGAL::Tag_true >
{

typedef Q_ Quadratic_program;
typedef Q_:: A_sparse_iterator A_sparse_iterator;
typedef Q_:: A_sparse_column_iterator

A_sparse_column_iterator;
typedef true Is_sparse;

A_sparse_iterator get_a_sparse(const Q_& qp) {
return qp.get_a_sparse ();

}
};

// dense specialization
template <typename Q_>
struct Sparse_iterator_adaptor <Q_ , CGAL::Tag_false >
{

typedef Q_:: A_iterator A_it;
typedef ... A_sparse_iterator;
typedef ... A_sparse_column_iterator;
typedef false Is_sparse;

A_sparse_iterator get_a_sparse(const Q_& qp) {
return A_sparse_iterator(qp.get_a(), ...);

}
};

Listing 5.29: Iterator adaptor class with two specializations for the sparse
and the dense case respectively.

We only want to get the basic idea of this approach across. Therefore,
the code in Listing 5.29 is highly simplified and only mentioning the
matrix A. In the actual implementation there are provisions for D
as well. The main idea is that we have the template adaptor class
Sparse_iterator_adaptor that is parameterized by the type of the
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quadratic program that it is meant to operate with and a Boolean
tag indicating whether this program is dense or sparse. The tag is
provided by the quadratic program itself. Then we define two special-
izations of that class which both define the function get_a_sparse.
This is to be called using a quadratic program (of the appropriate
type) as parameter. Depending on the type, the template switch
guarantees that the right function is compiled into the code.

The sparse specialization does nothing else than relay the types and
iterators of the quadratic program, because it knows that those are
sparse already. In the dense specialization more work is necessary.
We have to extract the iterator type A_it from the quadratic pro-
gram, and then wrap it and its columns in appropriate constructions
A_sparse_iterator and A_sparse_column_iterator, so it will be-
have like a sparse matrix. This is not completely trivial, and requires
further class definitions. We have omitted mention of those custom
types, which is indicated by ellipses in the listing. Ultimately, what
is important is that the function get_a_sparse returns the dense it-
erator wrapped in the newly defined type A_sparse_iterator. The
advantage of this approach is that we can always assume that we get
access to a sparse iterator, simply by calling get_a_sparse.

This concludes our description. For further details please see the
CGAL documentation or the source code of the implementation.



I love fools’ experiments.
I am always making them.

Charles Darwin

6
Experimental Results

We are going to discuss different test scenarios in the following sec-
tions. There are a multitude of quadratic programming solvers avail-
able; for example CPLEX30, Gurobi31, FinMath32, SNOPT33, KNI-
TRO34, MOSEK35 [7, 8, 6], to name a few of the best known commer-
cial ones. There is also integration of quadratic programming solvers

30 http://www.ibm.com/software/integration/optimization/
cplex-optimizer/

31 http://www.gurobi.com/products/gurobi-optimizer/
32 https://rtmath.net/products/finmath/
33 http://www.sbsi-sol-optimize.com/asp/sol_products_snopt_desc.htm
34 http://www.ziena.com/knitro.htm
35 http://mosek.com/products/mosek/
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into well-known mathematical computation environments like MAT-
LAB36, Maple37, and Mathematica38, through optimization packages
or specialized plug-in packages. Access to these software suites is
commercially restricted. There are a few open source packages, such
as the quadratic programming solver of the GNU Octave project39,
or the OpenOpt initiative40.

To the best of our knowledge, none of these solvers employ exact
arithmetic. Therefore, it is unfair to compare the CGAL solver to
any of them in terms of applicable range of parameters, especially the
ones implementing some fast interior point methods. For this reason –
but also because the main contribution of this work was to enable the
current CGAL implementation exploit sparse inputs – the main focus
of the comparison will be between two versions of CGAL. Throughout
this chapter we will denote the old version of the solver, which uses
direct inversion, by INV. By LU, on the other hand, we will denote the
version that employs LU factorization techniques.

The following sections will explain in more detail what the different
test cases and findings are. Section 6.1 will introduce test instances
from the Netlib repository. The following section, Section 6.2, inves-
tigates randomly generated instances. Finally, Sections 6.3, 6.4, and
6.5 are going to discuss the geometrical problems within the CGAL
library that rely on quadratic (or linear) programming formulations.
All tests were conducted on an Apple MacBook Pro, Intel Core 2 Duo
processor, 2.8 GHz, with 4 GB RAM.

36 http://www.mathworks.ch/products/matlab/
37 http://www.maplesoft.com/products/Maple/
38 http://www.wolfram.com/mathematica/
39 http://www.gnu.org/software/octave/
40 http://openopt.org/

http://www.mathworks.ch/products/matlab/
http://www.maplesoft.com/products/Maple/
http://www.wolfram.com/mathematica/
http://www.gnu.org/software/octave/
http://openopt.org/
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6.1. Netlib Cases

The Netlib repository41 is an online repository of freely available pro-
grams, documents, and databases of interest to the numerical and
scientific computing community. It is maintained by AT&T Labs42,
the University of Tennessee43, and Oak Ridge National Laboratory44.
It is of special interest to us, because it features a collection of sparse
linear programs in the MPS format45. Many of these programs are
to large to be handled by the CGAL solver. Some of the inexact,
commercial solvers mentioned earlier can do that, but we will restrict
ourselves to the following cases and compare the previous version of
the solver (INV) with the sparse one (LU).

There are several exact linear programming solvers that we could
also use to compare with. Some that are freely available are CDD46,
LRS47, QSopt-Exact48, and EXLP49. We only include comparisons
with the last one, because it conveniently supports the MPS interface,
as the CGAL solver does too.

In Table 6.1 we outline the specifications of the cases we investi-
gated. All of these cases are extremely sparse, except for FIT1D and
FIT2D. We include these for checking the overhead incurred by the
sparse handling. In Table 6.2 you will find the running times of the

41 http://www.netlib.org/
42 http://www.bell-labs.com/
43 http://www.utk.edu/
44 http://www.ornl.gov/
45 Described in the CGAL documentation http://www.cgal.org/Manual/

latest/doc_html/cgal_manual/QP_solver_ref/Concept_MPSFormat.html
46 http://www.ifor.math.ethz.ch/~fukuda/cdd_home/
47 http://cgm.cs.mcgill.ca/~avis/C/lrs.html
48 http://www.dii.uchile.cl/~daespino/QSoptExact_doc/main.html
49 http://members.jcom.home.ne.jp/masashi777/exlp.html

http://www.netlib.org/
http://www.bell-labs.com/
http://www.utk.edu/
http://www.ornl.gov/
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/QP_solver_ref/Concept_MPSFormat.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/QP_solver_ref/Concept_MPSFormat.html
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.dii.uchile.cl/~daespino/QSoptExact_doc/main.html
http://members.jcom.home.ne.jp/masashi777/exlp.html
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selected Netlib cases. All tests were run with GMP number types. In
particular, in CGAL this is the wrapper class gmpzf.

Name m n d opt
AFIRO 28 32 0.098 -4.65E+02
CAPRI 272 354 0.019 2.69E+03
FIT1D 25 1026 0.563 -9.15E+03
FIT2D 26 10500 0.506 -6.85E+04
FORPLAN 162 421 0.072 -6.64E+02
SCSD1 78 760 0.053 8.67E+00
SHARE1B 118 225 0.045 -7.66E+04
STOCFOR1 118 111 0.036 -4.11E+04

Table 6.1.: Summary of the tested Netlib cases. The columns m and n
indicate the number of (in)equalities and variables of the linear
program, as usual. The values 0 ≤ d ≤ 1 indicate the density of
the problem, that is the fraction of nonzero entries in A. The
final column gives the optimal value of the problem.

Problem LU INV LU/INV EXPL
AFIRO 0.006094 0.012834 0.47 0.167
CAPRI 72.5459 92.151 0.79 0.365
FIT1D 24.3692 29.1307 0.84 0.610
FIT2D 1573.45 2595.14 0.61 26.720
FORPLAN 12.8461 26.0381 0.49 0.620
SCSD1 12.3181 38.9794 0.32 0.118
SHARE1B 15.1337 16.8949 0.90 0.205
STOCFOR1 0.683486 2.05473 0.34 0.059

Table 6.2.: A table of the running times incurred by solving the Netlib
cases. The results are given in seconds, except for the fourth
column (LU/INV), which is the speed-up factor of the sparse
variant. We measured the complete execution time, including
problem input and actual solve time. For the two CGAL vari-
ants, the solver routine solve_linear_program was used.

The first thing we will briefly address is that the running times of



Netlib Cases 163

EXPL are a lot better than the CGAL running times; up to one or
two orders of magnitude. Unfortunately, we do not have a conclu-
sive explanation for that phenomenon, as our main concern lay on
the intrinsic improvement of and the comparison with the previous
CGAL solver. One possible explanations for the strikingly good per-
formance of EXLP is the fact that it only deals with linear programs.
Even though the solver routine solve_linear_program tries to avoid
superfluous computations and function calls associated with the so-
lution process of a proper quadratic program, the whole procedure
is of course embedded in a more complicated framework. EXPL is
light-weight and does use divisions over a field. The LU factorization
it uses is comparable to ours and also uses the Markowitz heuristic to
find the next LU pivot element. Since the factorization is driven by an
eta-file, the size of the numbers in the computation is not systemati-
cally bounded. That possible penalty cannot be prohibitive, however,
as the running time proves. On the other hand, the reasons for the
comparatively good performance of EXPL might also be extraneous
and have something to do with the number type used, for example.
Even though both solvers use GMP, the CGAL type has a wrapper
class around it that might incur considerable overhead. We propose
to investigate this behavior further.

Coming back to the comparison between LU and INV, we can see
that the speed-up factor – in some cases – is as good as 0.32, but
in other cases the running times are almost the same. We cannot
fully explain this but influencing factors are the structure of the ba-
sis matrix, the fill-in that is generated, and the specific set of basis
updates that have to be done. Recall that – in the case of the LU
factorization – the solver suffers from possible pivot failures (see Sec-
tion 4.5.3). Depending on which updates have to be done, and which
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of these fail, the running time is affected more or less. Let us give
a few more experimental pointers as to what happens in the above
Netlib cases in the following section.

6.2. Random Cases

In this section we present results that are obtained by considering
different random settings. Some of these settings are implemented
in the test suite of the quadratic programming solver in CGAL, and
have proved successful in finding errors in the code. By visiting a
large number of small cases it is possible to generate many rare con-
stellations.

We have subdivided the results in two subsections, 6.2.1 and 6.2.2,
which are not listed in the table of contents. These two sections
discuss completely randomized instances of varying size.

6.2.1. Small Cases

In this setting we look at small cases of 2 variables and 2 constraints
each. Everything else is randomized, the entries of the matrices A,
D, and also the entries of the vectors c and b are chosen as integer
numbers uniformly at random in the interval [-10, 10]. The relations
of the constraints in Ax ⪌ b and the upper and lower bounds for the
variables are chosen randomly as well.

Once an instance has been generated, it is solved with all the dif-
ferent solver routines of the quadratic programming solver. That is,
the instance is considered as a linear program as well as a proper
quadratic program. Also, we distinguish between nonnegative and
instances not having standard bounds. This gives four different solu-
tion routines. If any of the input data is not relevant for the chosen
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solution method, it is ignored, e.g., the matrix D in case we solve the
instance as an linear program. In Figure 6.3 we include a statistic
of how the solution of these problems turn out to be. In this small
setting there is not much difference between any of the solution meth-
ods. For the results included here, we generated a total number of
3 · 105 cases.

Optimal
Unbounded

Infeasible

54% 35%

11%

Figure 6.3.: Small random cases as described in Section 6.2.1 are solved.
The distribution of optimal, unbounded and infeasible cases is
shown. The plot represents an accumulation of 3 · 105 cases in
total.

We have solved half of the cases with the LU variant, and half of
the cases with the old INV variant. Table 6.4 summarizes results we
obtained with regards to the running time. We have divided the cases
into batches of 50000 each. This way we can screen the stability of our
measurements, i.e., ensure that different cases do not produce wildly
different running times. Note that we do not compare the same cases
between LU and INV – but given the small deviation between different
batches – we feel that this still gives a representative picture.

The conclusion we draw from the measurement of the running time
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LU INV
Batch 1 12.4901 5.6572
Batch 2 12.5437 5.7490
Batch 3 12.4545 5.7316

Table 6.4.: Gives the total running time in seconds for batches of 50000
cases each. The entries are chosen in the interval [−10, 10]. We
compare the LU version to the INV version.

is that the INV version is more than twice a fast as the LU version.
This is no reason for alarm, however, because this is expected, given
the setup. The cases are small, and the overhead of having to do the
bookkeeping of indices in the sparse case has a large impact in this
setting. The running time of an individual case is small; in the order
of a few dozen microseconds.

If we enlarge the range from which to choose the random entries
to [−1000, 1000], we can see the bookkeeping penalty decrease as the
computational effort shifts from iteration handling to actual compu-
tations involving numbers. See Table 6.5 for a breakdown.

LU INV
Batch 1 37.2128 25.1496
Batch 2 37.3286 25.5482
Batch 3 37.1586 25.0753

Table 6.5.: Gives the total running time in seconds for batches of 50000
cases each. The entries are chosen in the interval [−1000, 1000].
We compare the LU version with the INV version.

If we go one step further and also increase the number of variables
and constraints of the instances, as we will do in the following section,
we can see that the situation shifts in favor of the LU version.
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6.2.2. Medium Cases

We keep the general setup of the last section. That is, all entries
and relations are chosen randomly. The entries are chosen from the
interval [−10, 10] in all cases presented here. This time, however, we
vary the size of the problems generated. The number of variables n as
well as the number of constraints m are chosen uniformly at random
from an interval [1, s], for each test case individually, where s is an
integer. We present results for s = 10, 30, 60.

First, let us note that the structure of the solution landscape be-
comes more diverse. We start to see differences between the four
different solution methods. This is summarized in Figure 6.6.
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Figure 6.6.: Shows the fractions of optimal, infeasible, and unbounded prob-
lems. The groups of bars pertain to the different values of s.
Within the group we indicate the four different solution meth-
ods; QP for quadratic program and LP for linear program. The
N in NQP and NLP indicates nonnegativity bounds on the vari-
ables. For each value of s we consider 30000 cases.

We can see that, in general, the number of feasible solutions is de-
creasing with a growing number of constraints and variables. The
following table summarizes the results about the running time.
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s=10 s=30 s=60
LU INV LU INV LU INV

Batch 1 10.542 8.170 45.145 56.644 136.09 267.28
Batch 2 10.476 8.332 45.013 57.951 133.57 274.86
Batch 3 10.460 8.326 44.803 57.110 134.57 271.62

Table 6.7.: Gives the total combined running times in seconds for batches
of 5000 cases each. For different values of s different instances
are generated. The entries are chosen in the interval [−10, 10].
We compare the LU version with the INV version.

The relative advantage of the LU version becomes larger as s grows.
This has two reasons. First, the bookkeeping of iteration overhead
becomes less pronounced as the problem size grows. We believe this
is due to the decreasing ratio between the expense of creating iterators
and actually iterating over the entries. Second, the growing number of
infeasible problems plays a role too. For these problems, the simplex
algorithm never gets beyond its first phase, in which a linear program
has to be solved. Because of the special structure of our factorization
procedure we store the matrix D fully, even though it is symmetric.
This is not the case for the INV variant. It seems favorable for the LU

variant to finish in phase one because only the matrix A will have to
be considered.

6.3. Polytope Distance

The mathematical description and comments about the implementa-
tion can be found in Section 5.4. Briefly speaking, we have to de-
termine the minimum distance between the convex hulls of two point
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sets P and Q. This is implemented as part of the Optimal Distances50

package in CGAL. That implementation fully relies on the quadratic
programming solver. It is therefore an ideal test candidate. Evidently,
when redesigning the quadratic programming solver, it should be an
important goal that dependent applications do not suffer (too much)
from this redesign.

The first test series we will discuss is depicted in Figure 6.8. We
have used a homogeneous geometry kernel in CGAL to randomly
create instances of the polytope distance problem with varying di-
mension. We measured the running times of the LU variant compared
to the INV variant. We ran the same test setup for a Cartesian kernel
too. Even though the running times were different (on average a lit-
tle slower for Cartesian), looking at the comparison between LU and
INV does not reveal any major differences. Therefore, we refrain from
including the Cartesian results.

The two point sets are created as follows: Coordinates of the points
in P are sampled uniformly at random from the interval [0, 1048576]
(1048576dec =̂ 100000hex). The point set P lies in the positive or-
thant. Coordinates of the points in Q are sampled from the interval
[−1048576, 0]. The point set Q lies in the negative orthant. The con-
vex hulls of P and Q are disjoint, and the minimum distance between
them is positive (except for the unlikely case that both point sets
happen to include the origin).

The purpose of this test is to see whether the LU variant offers any
benefits for high dimensions, and indeed it does. Even though the LU

variant is slower for dimensions d ≲ 300, for d ≳ 300 the advantage
of the sparse formulation takes over. The reason for this clearly lies

50 http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Polytope_
distance_d/Chapter_main.html

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Polytope_distance_d/Chapter_main.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Polytope_distance_d/Chapter_main.html


170 Experimental Results

0 100 200 300 400 500 600 700

0.5

1

1.5

2

2.5

dimension

Re
la

ti
ve

 R
un

ni
ng

 T
im

e 
LU

/I
NV

 

 

Homogeneous Kernel

Figure 6.8.: Polytope distance problem with |P | = |Q| = 1000 in all test
cases. The coordinate density is 1. The diamonds indicate
average values of three test runs with a fixed dimension. The
vertical bars indicate the standard deviation among runs with
the same setup. The dimension was changed in increments of
10. The horizontal blue line represents the equality of the two
variants; below LU is faster, above INV is faster.

in the sparse implementation of the matrix D; see Section 5.4. If we
consider Theorem 3.5, we can deduce that the maximum basis size in
this problem is |B| ≤ m+rank(D) = (d+2)+2d = 3d+2. Assuming
that increasing d (and keeping n fixed) leads to larger bases, we can
conclude that matrix DB,B will have a growing number of zero rows
and columns as d grows. The LU variant takes advantage of this fact
and will skip all these entries, while the INV variant will always have
to consider the zeros explicitly. A similar argument is true for the
matrix A, or in other words yet, the density of the whole basis matrix
decreases as the ratio d/n grows.

In Figure 6.9, we can see the actual running times corresponding to
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the relative running times in Figure 6.8. Even though the LU variant is
slower for low dimensions, we notice that the absolute running times
are not large. For d ≳ 300, where the LU variant becomes faster, the
relative advantage seems more important because the running times
become prohibitively high.

Note that the number of points in this test (n = 1000) is relatively
low, and that the break-even point of the LU variant will be different
for different values of n. We can see this in the next test series, for
example.
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Figure 6.9.: Running times for the same cases as depicted Figure 6.8, that
is, polytope distance problems with |P | = |Q| = 1000 and
coordinate density 1.

Another setup we looked at is using a fixed dimension d = 3 but a
variable number of points; see Figure 6.10. This is an important case,
because real-world geometrical problems are formulated in physical
space. Of course, it is desirable that the new version does not loose too
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Figure 6.10.: Variable number of points polytope distance problem with
d = 3 in all test cases.

much compared to the old one in this case. According to the previous
test, this is not to be taken for granted, especially for low dimensions.
The results that are depicted in Figure 6.10 are reassuring, however.
We tested both variants with the number of points ranging between
5 · 105 and 2 · 107. The LU version is faster by more than 10% on
average.

The final test is designed to show that sparse coordinates posi-
tively influence the LU variant. Recall that the matrix A (see equa-
tion (5.19)) containing the points is not implemented in a sparse fash-
ion, because a priori we cannot have any sparsity information about
the point sets P and Q, and doing online checking or preprocess-
ing may be expensive. Nevertheless, the effect of thinning out the
coordinates of the points is clearly giving the LU implementation an
advantage, as we can see in Figure 6.11. In this test, saying that the
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coordinate density is 0 ≤ p ≤ 1 means that a particular entry has
probability p of being nonzero. The test is carried out for d = 300

and n = 1000, i.e., the same parameters as used in the first test.
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Figure 6.11.: Variable coordinate density polytope distance problem with
|P | = |Q| = 1000 in all test cases.

The reason for this behavior is that the basis matrix is set up in
a way to discard zero entries even if the input interface does not
respect that. That is, during the computation we extract entries
from the input iterators. Whenever we encounter a zero entry, we
will not incorporate this entry into the basis matrix, which is stored
internally.

6.4. Minimum Annulus

In this section we will review some results about the minimum annu-
lus problem. We have already introduced the problem definition in
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Section 5.5. Recall that the minimum annulus problem is formulated
as a linear program, and that the constraint matrix is not sparse in
general, because A mainly consists of the coordinates of the input
points (see equation (5.28)). In these test sets we have used both a
Cartesian as well as a homogeneous geometry kernel. Let us get to
the results.
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Figure 6.12.: Three minimum annulus problems are solved for each data
point with variable dimension d, between 10 and 100. The
number of points is n = 1000.

As we have described in Section 5.5 the implementation of the min-
imum annulus problem itself remains unchanged, and the adaption
to the new LU version of the solver is done internally by wrapping a
sparse iterator around the input iterator provided by the minimum
annulus formulation. This comes at an expected penalty, as we can
see in Figures 6.12 and 6.13.

In the former test we fix the number of points, n = 1000, and
increase the dimension of the points. In the latter we fix the dimension
d = 3 to and vary the number of points.

The good news is that in the case of d = 3 the penalty is not
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restrictive, and that in both tests the variability with respect to the
main parameter is more or less stable. It would be interesting to try
a sparse input scheme for the minimum annulus problem – as in the
case of polytope distance – to see whether the running time improves.
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Figure 6.13.: Three minimum annulus problems are solved for each data
point with a variable number of points, between 5 · 105 and
6 · 106. The geometric dimension is d = 3.

6.5. Extreme Points

In his master’s thesis [71] Helbling discusses an application of linear
programming that we are also going to have a closer look at. In
particular, we will investigate a few cases, and try to see how the
new LU version of the solver compares to the old INV version. The
application in question is finding the set of extreme points of a point
set in high dimensions.

Problem 6.14. Given a set of points P ∈ Rd, determine the subset
E ⊆ P of extreme points.
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To describe what an extreme point is, we need the concept of a convex
hull of a set of points, which we defined earlier; see Definition 5.16.

Definition 6.15. A point p in P is said to be extreme if it is not
contained in the convex hull of the other points, i.e.,

p ∈ P is extreme ⇔ p ̸∈ conv(P\{p}).

There is an output-sensitive algorithm by Dulá and Helgason [45]
which computes the extreme points without having to compute the
convex hull of a point set. This is essential, because computing the
convex hull is potentially expensive in higher dimensions. With re-
spect to the dimension d, the convex hull may contain exponentially
many facets. Therefore, any algorithm based on the computation
of the convex hull inherently suffers from the danger of having an
exponential running time. Roughly speaking, the Dulá-Helgason al-
gorithm avoids computing the convex hull by performing a number of
convex combination tests. The convex combination test is a procedure
which checks whether a point p is the convex combination of some set
of points A = {a1, . . . , an}. This can be formulated as the following
linear program:

(EP) min 0

s.t.
n

i=1

aixi = p

n
i=1

xi = 1

xi ≥ 0, ∀1 ≤ i ≤ n

(6.16)

It is a pure feasibility problem because the objective function is con-
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stant. Note that the columns of the constraint matrix

A =

Ñ
a1 . . . an

1 . . . 1

é
consist of the points in A, and that the last row of A is a row of ones.
The matrix A has d + 1 rows and n columns. Using this, the linear
programming formulation simplifies to the standard form,

(EP) min 0

s.t. Ax =


p

1


xi ≥ 0, ∀1 ≤ i ≤ n,

(6.17)

where x = (x1, . . . , xn)
T .

It should be clear that – if we choose points with few nonzero co-
ordinates – we end up with a sparse matrix A. In the following we
will look at the particular model where each of the points has exactly
k ≥ 2 nonzeros. This is also considered by Helbling [71]. We are not
going to go deeper into the workings of the Dulá-Helgason algorithm
though. The interested reader is referred to Helbling’s thesis.

Helbling has implemented the mentioned algorithm as a package
of CGAL that directly relies on the quadratic programming solver.
So, it is easy and convenient for us to compare the old version of the
solver (INV) with the new version (LU), which is optimized for sparse
inputs. The first example we look at is computing the extreme points
of one thousand points (n = 1000) with exactly two nonzeros each
(nnz = 2). The value of the geometric dimension varies; ranging from
10 to 150 in increments of 5.

For each value of d we generated 3 random instances. The posi-
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tion of the nonzeros is chosen uniformly at random among all pairs of
positions

[n]
2


within each point, and the actual entries are chosen uni-

formly at random between −65535 and 65535 (which corresponds to
the hexadecimal number FFFFhex, or decimal 216− 1). Figures 6.18
and 6.19 show the comparison of the running times.

There are two things that we notice. First, the running time of the
LU variant stays virtually constant for increasing dimension while the
INV variant increases; in particular for d ≳ 70. Therefore, the relative
running time comparison in Figure 6.19 decreases further and further
towards the right.
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Figure 6.18.: Running 3 random cases with 1000 points each, and different
values for 10 ≤ d ≤ 150. The points have exactly 2 nonzero
entries.
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Figure 6.19.: This figure depicts the relative running times for the same
cases displayed in Figure 6.18.

The second thing that we notice is the bump and sharp drop in run-
ning time that happens around d ≈ 65. This can be – at least par-
tially – explained by the following figure, Figure 6.20, which plots the
number of extreme points found in the random test cases. It becomes
clear that for d ≳ 70 almost all the points are extreme.

Intuitively, this makes sense. Consider some point having an ex-
tremal value in any of the coordinates. Then it is an extreme point,
because it cannot be expressed as a convex combination of the re-
maining points. The higher the dimension, the higher the probability
that some point has an extremal coordinate in at least one place.

The two findings seem to be linked, and the experimental data
suggests, that beyond d ≳ 70 we are able to reduce the performance
ratio almost arbitrarily with increasing dimension.
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Figure 6.20.: For the same instances as in Figure 6.18 and Figure 6.19 we
plot the number of extreme points. Recall that the total num-
ber of points is 1000 and that they have exactly 2 nonzero
entries.

The Dulá-Helgason algorithm is output sensitive, i.e., its combinato-
rial running time depends on the final number of extreme points. This
explains why the LU variant remains at a nearly fixed running time in
the setup we tested, because both the number of convex combination
tests and the number of nonzero entries in each of these remain con-
stant. The INV variant suffers from the increasing overall dimension
of A, in spite of most of the entries being zero.
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A.1. Encoding Numbers

Here are some basic facts about the encoding length of numbers. For
proofs and more detail see [67]. We assume that integer numbers are
encoded in binary encoding as {0, 1} bit strings. By ⟨n⟩ we denote
the encoding length of some integer.

The encoding length of an integer n ∈ Z\{0} is

⟨n⟩ := 1 + ⌈log2(|n|+ 1)⌉. (A.1)

We have to add one count for storing the sign. Encoding a plain 0

does not need that; one bit is enough.

181
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Any rational number r ∈ Q can be uniquely expressed in co-prime
form as p/q with q ∈ N\{0} and p ∈ Z. The encoding length is
therefore given as

⟨r⟩ := ⟨p⟩+ ⟨q⟩ . (A.2)

Strictly speaking, we are over-counting on two accounts, but for the
following considerations we can disregard this. On the one hand, as
we already pointed out, we do not need to store the sign of p if it is 0.
On the other hand, we never have to encode the sign for q, because
it was defined as nonnegative.

The encoding length of a vector ⟨v⟩ or a matrix ⟨A⟩ is simply the
sum of encoding lengths of its individual entries. The encoding length
of a sum or a product (the same holds for difference and integral
division) is nicely bounded. For r, s ∈ Q it holds that

⟨r + s⟩ ≤ ⟨r⟩+ ⟨s⟩ , (A.3)

⟨rs⟩ ≤ ⟨r⟩+ ⟨s⟩ . (A.4)

Finally, we point out an important fact about the encoding length of
the determinant of a matrix.

Lemma A.5 (Lemma (1.3.4)(b) of [67]).
For every matrix R ∈ Qn×n,

⟨det(R)⟩ ≤ 2 ⟨R⟩ − n2. (A.6)

The lemma shows that encoding the determinant is possible in space
polynomial in the encoding length of the input matrix.
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A.2. Models of Computation

The following definitions and conventions follow Section 1.3 of [67].
There are two different models of computation widely used. We as-
sume that all numbers are encoded as binary strings, as described in
Appendix A.1.

The Turing machine model counts the number of moves of the read-
write head of the Turing machine. The complexity of an arithmetic
operation like adding or multiplying two integer numbers is bounded
by a polynomial of the encoding lengths of the two integers.

Sometimes it is more natural, however, to consider the arithmetic
model, which counts the number of elementary arithmetic operations
on real numbers such as addition, subtraction, multiplication, divi-
sion, and comparison instead. In particular, if we are dealing with
real-life computers where computations are often carried out with
fixed precision (and the importance of the encoding length of the
numbers involved takes the back seat) we only care about this type of
operation count. In a broader context, this is also called the unit cost
model, assuming that some elementary operation takes up one unit of
time only.

The input size of an instance in the Turing machine model is the
combined encoding length of all the numbers in the input. The input
size of an instance in the arithmetic model disregards the encoding
length of the actual numbers, and it only counts the number of input
numbers.

There are problems that are polynomially bounded in the one model
but not in the other one; and vice versa. For example, computing 22

n

by repeated squaring is polynomial in the arithmetic model but not
in the Turing machine model (because the output number has expo-
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nentially many digits). On the other hand, the well-known Euclidean
algorithm to compute the greatest common divisor of two numbers
is polynomial in the Turing machine model but not in the arithmetic
model (because the input always consists of two numbers only).

If we say that an algorithm runs in polynomial time, we therefore
have to specify what model we are referring to. We can refine this idea
by supplementing the count of arithmetic operations by the assertion
that the numbers involved in the computations do not grow too large,
i.e., their encoding length is polynomially bounded by the encoding
length of the input. Of course, if this assertion holds, we can execute
an algorithm that is polynomial in the arithmetic model in polynomial
time on a Turing machine too. We say that an algorithm runs in
strongly polynomial time if it uses a polynomial number of elementary
operations (in the arithmetic model) and if it uses polynomial space
(in the Turing machine model). If an algorithm is polynomial in the
arithmetic model but its running time depends on the encoding size
of the input, we say that it runs in weakly polynomial time.

A.3. Geometry Basics

Let us gather a few basic definitions and tools about geometry, so we
can refer to them in the main chapters of the present thesis.

In CGAL there are two basic types of geometry kernels available.
The Cartesian and the homogeneous kernel. They differ in the way
coordinates are represented, and in the requirements on the number
types that have to be provided. In order to understand the difference
better, let us explain how points are represented.

Arguably the most natural way to represent a point in Rd is using
Cartesian coordinates. A (Cartesian) point pC is uniquely defined by
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d real numbers, c1, . . . , cd, that specify its position with respect to the
coordinate axes,

pC := (c1, . . . , cd).

Another possible way of representing points in Rd are homogeneous
coordinates. In this system, a (homogeneous) point pH is defined by
d+ 1 real numbers,

pH := (h1, . . . , hd, h).

The last coordinate h takes a special role, hence there is no subscript.
Any given Cartesian point pC is identified with (h1/h, . . . , hd/h), so
that pC corresponds to the tuple (c1h, . . . , cdh, h) in homogeneous
coordinates, for some h ̸= 0. It should be clear that a point does not
uniquely define its homogeneous coordinates, because multiplying all
its (homogeneous) coordinates by some nonzero constant does not
change the point represented.

The main motivation for homogeneous coordinates comes from pro-
jective geometry and from the need to be able to represent points at
infinity, which is achieved by setting h = 0. There is another impor-
tant advantage to the homogeneous system that can be of advantage
in geometric computations. Because of the fact that h can be used as
a normalizing constant, divisions can be avoided by multipling the last
coordinate by the divisor. Transformation to Cartesian coordinates
is achieved by dividing all the other coordinates by h.

Divisions are avoided in homogeneous geometry, which helps to
save expensive operations. It also lets us loosen the requirements on
the number type in a concrete implementation such as the geometric
kernels of CGAL. A homogeneous kernel can operate using a ring
number type, that does not provide a division operation.
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A.4. Implementation of Doolittle’s Algorithm

Algorithm 7: Doolittle’s LU factorization
Input: A ∈ Mn(F )

Output: L ∈ Ln(F ), U ∈ Un(F ), s.t. LU = A.
1 for i = 1 to n do
2 for j = 1 to i− 1 do
3 α← ai,j ;
4 for k = 1 to j − 1 do
5 α← α− ai,kak,j ;
6 end
7 ai,j ← α

aj,j
;

8 end
9 for j = i to n do

10 α← ai,j ;
11 for k = 1 to i− 1 do
12 α← α− ai,kak,j ;
13 end
14 ai,j ← α;
15 end
16 end
17 L← In + tril(A,−1);
18 U ← triu(A);
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A.5. Implementation of Crout’s Algorithm

Algorithm 8: Crout’s LU factorization
Input: A ∈ Mn(F )

Output: L ∈ Ln(F ), U ∈ Un(F ), s.t. LU = A.
1 for j = 1 to n do
2 for i = j to n do
3 α← ai,j ;
4 for k = 1 to j − 1 do
5 α← α− ai,kak,j ;
6 end
7 ai,j ← α;
8 end
9 for j = j to n do

10 α← ai,j ;
11 for k = 1 to i− 1 do
12 α← α− ai,kak,j ;
13 end
14 ai,j ← α;
15 end
16 end
17 L← In + tril(A,−1);
18 U ← triu(A);
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A.6. CGAL Documentation

Three pages, outlining the concept QuadraticProgram:

C
on
ce
pt

QuadraticProgram

Definition

A model of QuadraticProgram describes a convex quadratic program of the form

(QP) minimize xT Dx+ cT x+ c0

subject to Ax R b,

l x u

in n real variables x = (x0, . . . ,xn�1). Here,

• A is an m⇥n matrix (the constraint matrix),

• b is an m-dimensional vector (the right-hand side),

• R is an m-dimensional vector of relations from {,=,�},

• l is an n-dimensional vector of lower bounds for x, where l j 2 R[{�•} for all j

• u is an n-dimensional vector of upper bounds for x, where u j 2 R[{•} for all j

• D is a symmetric positive-semidefinite n⇥n matrix (the quadratic objective function),

• c is an n-dimensional vector (the linear objective function), and

• c0 is a constant.

The description is given by appropriate random-access iterators over the program data, see below. The program
therefore comes in dense representation which includes zero entries.

Has Models

Quadratic program<NT>
Quadratic program from mps<NT>
Quadratic program from sparse iterators<A s it, B it, R it, FL it, L it, FU it, U it, D s it, C it>
Quadratic program from iterators<A it, B it, R it, FL it, L it, FU it, U it, D it, C it>

Types

QuadraticProgram:: A sparse iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is an object that provides
bidirectional sparse iterators for the column in question by
member calls to begin() and end(). Such a column iterator
it is sparse, providing (index,value) pairs of all non-zero ele-
ments of the column. The index is accessed by it->first and
the value is accessed by it->second.

QuadraticProgram:: A iterator A random access iterator type to go columnwise over the
constraint matrix A. The value type is an random access iter-
ator type for an individual column that goes over the entries
in that column.

28
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QuadraticProgram:: B iterator A random access iterator type to go over the entries of the
right-hand side b.

QuadraticProgram:: R iterator A random access iterator type to go over the relations R. The
value type of R iterator is CGAL::Comparison result.

QuadraticProgram:: FL iterator A random access iterator type to go over the existence (finite-
ness) of the lower bounds l j, j = 0, . . . ,n−1. The value type
of FL iterator is bool.

QuadraticProgram:: L iterator A random acess iterator type to go over the entries of the
lower bound vector l.

QuadraticProgram:: UL iterator A random access iterator type to go over the existence (finite-
ness) of the upper bounds u j, j = 0, . . . ,n−1. The value type
of UL iterator is bool.

QuadraticProgram:: U iterator A random acess iterator type to go over the entries of the
upper bound vector u.

QuadraticProgram:: D sparse iterator A random access iterator type to go rowwise over the matrix
2D. The value type is an object that provides bidirectional
sparse iterators for the row in question by member calls to
begin() and end(). Such a column iterator it is sparse, pro-
viding (index,value) pairs of all non-zero elements of the row.
The index is accessed by it->first and the value is accessed by
it->second.

QuadraticProgram:: D iterator A random access iterator type to go rowwise over the matrix
2D. The value type is a random access iterator type for an
individual row that goes over the entries in that row, up to
(and including) the entry on the main diagonal.

QuadraticProgram:: C iterator A random access iterator type to go over the entries of the
linear objective function vector c.

Operations

int qp.get n() const returns the number n of variables (number of columns of A)
in qp.

int qp.get m() const returns the number m of constraints (number of rows of A) in
qp.

A sparse iterator qp.get a sparse() const

returns an iterator over the columns of A. The correspond-
ing past-the-end iterator is get a sparse()+get n(). For j =
0, . . . ,n−1, ∗ (get a()+ j) is an object that provides bidirec-
tional sparse iterators for column j by calls to begin() and
end(). These column iterators provide (index,value) pairs for
all non-zero entries.
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B iterator qp.get b() const returns an iterator over the entries of b. The corresponding
past-the-end iterator is get b()+get m().

R iterator qp.get r() const returns an iterator over the entries of R. The correspond-
ing past-the-end iterator is get r()+get m(). The value
CGAL::SMALLER stands for ≤, CGAL::EQUAL stands for
=, and CGAL::LARGER stands for ≥.

FL iterator qp.get fl() const returns an iterator over the existence of the lower bounds
l j, j = 0, . . . ,n−1. The corresponding past-the-end iterator is
get fl()+get n(). If *(get fl()+j) has value true, the variable
x j has a lower bound given by *(get l()+j), otherwise it has
no lower bound.

L iterator qp.get l() const returns an iterator over the entries of l. The corresponding
past-the-end iterator is get l()+get n(). If *(get fl()+j) has
value f alse, the value *(get l()+j) is not accessed.
Precondition: if both *(get fl()+j) and *(get fu()+j) have
value true, then ∗(get l()+ j)≤ ∗(get u()+ j)

FU iterator qp.get fu() const returns an iterator over the existence of the upper bounds
u j, j = 0, . . . ,n− 1. The corresponding past-the-end iterator
is get fu()+get n(). If *(get fu()+j) has value true, the vari-
able x j has an upper bound given by *(get u()+j), otherwise
it has no upper bound.

L iterator qp.get u() const returns an iterator over the entries of u. The corresponding
past-the-end iterator is get u()+get n(). If *(get fu()+j) has
value f alse, the value *(get u()+j) is not accessed.
Precondition: if both *(get fl()+j) and *(get fu()+j) have
value true, then ∗(get l()+ j)≤ ∗(get u()+ j)

D sparse iterator qp.get d sparse() const

returns an iterator over the rows of 2D. The correspond-
ing past-the-end iterator is get d sparse()+get n(). For i =
0, . . . ,n− 1, ∗(get d()+ i) is an object that provides bidi-
rectional sparse iterators for row i by calls to begin() and
end(). These column iterators provide (index,value) pairs for
all non-zero entries.

C iterator qp.get c() const returns an iterator over the entries of c. The corresponding
past-the-end iterator is get c()+get n().

std::iterator traits<C iterator>::value type

qp.get c0() const returns the constant term c0 of the objective function.

Requirements

The value types of all iterator types (nested iterator types for A iterator and D iterator, and the types of value
in the nested sparse iterators of A sparse iterator and D sparse iterator, respectively) must be convertible to
some common IntegralDomain ET .
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